Dear Editor and Reviewer,

Thank you for the constructive feedback regarding our submission. We have revised the manuscript
based on the suggestions. Detailed point-by-point response to the reviewer's comments follows
below.

COMMENT 1:

The manuscript presents an interesting study on learning from observational datasets, and
the authors propose a novel approach, building on their previous work on the HIDRA family,
to generate dense grid predictions. The text is generally well written; however, the model
architecture is not explained as clearly as expected, and my major concerns are regarding the
evaluation, explainability, and generalization aspects. How can one transfer the model to
other regions, and what are the limitations?

RESPONSE 1:

We sincerely thank the reviewer for the positive feedback of our work and for raising many
interesting points that helped us improve the paper. We address all the raised concerns carefully in
the following. In particular, to summarize the general concerns stated in this comment:

(1) The model architecture clarity concerns: we address this in the revised paper by adding Problem
definition subsection (see Response 2) and by further detailing the captions of the architecture
figures (see Responses 9 and 10). For full transparency and reproducibility, the complete source
code for training and evaluation is available.

(2) The evaluation, explainability, and generalization concerns: we agree that these are critical
aspects of data-driven modeling. Unlike numerical models based on physical laws, HIDRA-D learns
highly nonlinear statistical relations, which limits its interpretability. We have added a discussion on
these trade-offs to the Introduction of the revised paper (see Response 3). Regarding generalization,
we acknowledge that the current trained model is specialized for the Adriatic basin. However, the
model architecture is general and designed to work for any location, though applying it to new
regions requires retraining on local datasets. We have revised the Conclusions section to explicitly
discuss these limitations (see below). Furthermore, we added a citation to a recent study where the
HIDRA2 architecture was successfully applied to the Baltic basin, which gives us optimism regarding
the transferability of HIDRA-D, its successor.


https://doi.org/10.5194/os-21-1315-2025

Updated paragraph in the Conclusions:

A limitation of data-driven approaches like HIDRA-D, compared to process-based numerical models, is their lack of physical
interpretability. Future research will focus on addressing this and other open questions. First, we aim to enhance the model’s
predictive skill by exploring methods to resolve higher-frequency spatial variations and better capture dynamics in complex
coastal regions. Second, we will assess the generalizability of HIDRA-D. While the architecture is general and designed to
work for any location, application to new regions requires retraining on local datasets. We note that the HIDRA?2 architecture
was successfully applied in the Baltic basin along the Estonian coast (Barzandeh et al., 2025), performing well despite being
originally developed for the Adriatic. This gives optimism that HIDRA-D would also perform well there, as it is its successor,
although this remains to be thoroughly tested. We plan to adapt and evaluate the architecture in other ocean basins with diverse

characteristics, such as larger areas, different tidal regimes, and varying data availability, to verify its transferability.

COMMENT 2:

Suggesting sections 2.3 and 3.1 to a dataset section, along with the training dataset, to
improve clarity and flow. Adding a problem definition subsection before the model
architecture would be beneficial. The number of figures and tables is considerably higher
than in a typical paper. | suggest reducing them in the main text and relocating additional
information to an appendix to avoid distracting from the main flow of the research.

RESPONSE 2:

As the reviewer suggested, we have reorganized the text by creating a unified Data and experimental
setup section (merging Sect. 2.3 and Sect. 3.1) and adding a Problem Definition subsection prior to the
model architecture (see below). We have also moved Figure 7 and Figure 11 to the Appendix to
improve the readability of the main text.

3.1 Formal problem definition of dense sea level prediction

The goal of this study is to predict the temporal evolution of the ADT field, denoted as Y, on a dense two-dimensional grid
over the entire Adriatic basin. The target output is a sequence of hourly grid maps over a forecast horizon of 1" = 72 h. The
spatial domain is defined by a grid of size H x W (94 x 115), covering the latitudes 40.00°N to 45.87°N and longitudes 12.20°E
to 18.85°E.

The model approximates the mapping function F such that Y = F (XSSH, Xgm). The inputs consist of sparse SSH (XssH),
which encompasses the past 72 h of hourly SSH observations from N = 11 tide gauges along with their astronomical tide
components, and geophysical forcing (X, ), a tensor containing the past 72 h and forecasted future 72 h of atmospheric and
oceanic variables (e.g., wind, pressure, SST) derived from numerical models.

A fundamental challenge in this setting is that the ground truth for the dense output Y (satellite altimetry) is spatially sparse
and temporally intermittent. Furthermore, the input tide gauge measurements (y#¢) and the target satellite data (y*PT) utilize
different vertical datums. Therefore, the problem formulation includes the simultaneous estimation of a set of station-specific

bias parameters, {b;}\, to align the inputs with the prediction target.



COMMENT 3

L36: This statement requires an appropriate reference. Also, it is appreciated to mention the
limitations and challenges of data-driven models, such as stability and physical fidelity?

RESPONSE 3:

As suggested, we have added the necessary references to support this statement, and we revised
the text to discuss the limitations of data-driven models:

(Rus et al., 2025d, 2023; Zustetal., 2021);-. These models are designed to drastically reduce the computational cost of sea level

forecasting while maintaining or even exceeding the accuracy of traditional numerical models, a trend increasingly observed

in geophysical fluid dynamics domains (Bi et al., 2023; Lam et al., 2023).

However, data-driven approaches face their own challenges, particularly regarding training stability, interpretability, and
the preservation of physical conservation laws, which often require careful hybrid modeling strategies (Irrgang et al, 2021).
Nevertheless, active research within the machine learning communities on explainable artificial intelligence (XAI) (Samek and Miiller, 201¢
» together with growing efforts to adapt these methods in geoscience (Mamalakis et al,, 2022; Chen etal,, 2023), offers a
promising outlook. We expect that emerging findings from these subfields will increasingly contribute to the interpretability of
deep learning methods in geophysics.

COMMENT 4:

L41: There are several successful models for ocean emulation and forecasting. It is unclear
why the authors primarily cite their own work to demonstrate the capabilities of data-driven
models in ocean applications. Also, Rus et al. is cited repeatedly in some parts of the text,
which is somewhat distracting.

RESPONSE 4:

We thank the reviewer for these valid points. We have modified the introduction of the revised
paper to contextualize our work within the broader field, we have added citations for major global
initiatives (ORCA-DL, TianHai, XiHe) and relevant regional architectures (OceanNet, MedFormer,
SeaCast) to properly expose the state-of-the-art in ocean emulation. We paste here the revised
paragraph:



The evolution of HIDRA parallels a broader paradigm shift in ocean forecasting, where data-driven models are increasingly
outperforming traditional numerical solvers. Recent global initiatives, such as ORCA-DL (Guo et al., 2025), TianHai (Niu
et al., 2025), and XiHe (Wang et al., 2024), have successfully employed deep learning to capture 3D ocean dynamics and
eddy-resolving features with high physical consistency. At regional scales, architectures like OceanNet (Chattopadhyay et al.,
2024) have introduced physics-inspired neural operators for sea-surface height emulation, while MedFormer (Epicoco et al.,
2025) and SeaCast (Holmberg et al., 2025) have demonstrated superior forecasting skills specifically within the Mediterranean
Sea. Within this rapidly advancing context, our work has focused on the specific challenge of coastal sea level prediction. The
initial HIDRA1 model (Zust et al., 2021) established that deep learning could predict sea surface height (SSH) at a single
tide gauge with improved accuracy and vastly reduced computational costs compared to operational numerical model NEMO
GCM (Licer et al., 2020). Subsequent iterations, HIDRA2 (Rus et al., 2023) and HIDRA3 (Rus et al., 2025d), addressed early
limitations by improving accuracy and utilizing data from neighboring operational stations to handle sensor failures. However,
these models remained fundamentally limited to specific sensor locations, lacking the capability to predict sea levels in open

waters, a gap that gridded approaches in the wider field have begun to address.

COMMENT 5

L57: The terminologies of sea level are mixed here. SLA and ADT are distinct terms. Some
studies use these terms imprecisely; however, when SLA, ADT, MDT, and SSH are discussed
together, their distinct definitions should be respected. SSH represents sea level relative to
the reference ellipsoid. ADT corresponds to sea level relative to the geoid (i.e., SSH -
geoidHeight) and is fundamentally different from SLA, which measures sea level relative to a
given mean sea surface (i.e., SSH - MSS); and MDT = MSS - geoidHeight. Hence, it is
recommended to use the appropriate terms consistently throughout the paper.

RESPONSE 5:

We thank the reviewer for spotting this. We have revised the manuscript to ensure the terms SLA,
ADT, and SSH are used correctly. For satellite data, we have replaced SLA with ADT throughout the
manuscript when referring to the satellite observations, as the variable we use is the sum of SLA,
MDT, and corrections.

We have retained the term SSH for tide gauge observations. This distinguishes the in-situ
measurements, which are relative to local vertical datums (often tied to a local reference ellipsoid),
from the satellite ADT, which is relative to the geoid.

COMMENT 6:

L115: By adding MDT to SLA, we will have ADT? If instantaneous satellite data are required for
this task, why are OTC and DAC applied?

RESPONSE 6:

In standard CMEMS L3 altimetry products, the variable SLA filtered is provided with ocean tides
(OTC) and atmospheric forcing (DAC) removed (i.e., corrected). However, the objective of HIDRA-D is



to forecast the total sea level (i.e., what a tide gauge measures) to support coastal flood risk
management. Therefore, we add the provided ocean_tide, MDT and DAC components back onto the
SLA filtered. Such handling of the altimetry data is the same as in the Mediterranean Copernicus
ocean model NEMO. A personal communication with the colleagues at CMCC, the CMEMS
Mediterranean NEMO model provider, confirmed that HIDRA-D predictions are comparable and
compatible with NEMO model results.

We have added additional explanation to the manuscript:

To enable supervised training of the network on the entire basin, the along-track sea level anomalies (SLA) from altime-
ter satellites were acquired from the Copernicus marine service product SEALEVEL_EUR_PHY L3 MY 008_061. The
SLA vatues-are-ealeulated-variables are provided relative to a 20-y mean (1993-2012) with a 1 Hz (~7 km) sampling res-
olution. This dataset incorporates data from all available altimeter missions, including Sentinel-6A, Jason-3, Sentinel-3A,
Sentinel-3B, Saral/AltiKa, Cryosat-2, Jason-1, Jason-2, Topex/Poseidon, ERS-1, ERS-2, Envisat, Geosat Follow-On, HY-
2A, HY-2B, and others. The SEA-—values-ADT values used in this study are computed as the sum of variables-the provided
variables: SLA_filtered, ocean_tide, mean dynamic topography (MDT) and dynamic atmospheric correction (DAC). Note that

ocean_tide (ocean tide correction, or OTC) and DAC are explicitly added back to the anomaly. This effectively reverses the
standard altimetry corrections, restoring the high-frequency tidal and atmospheric suree signals that were filtered out, thereb

reconstructing the instantaneous total water level observed by tide gauges. This is consistent with how SEA-ADT is treated
in the CMEMS NEMO model for the purposes of data assimilation (Ali Aydogdu, CMCC, personal communication) and thus

enables comparisons to the NEMO model (Clementi et al., 2021).

COMMENT 7

L126: It's not clear what adjustments were applied, and is it only for visualization? Weren't
they applied for model training and evaluation?

RESPONSE 7:

For the plots, we subtracted the mean so that positive/negative values represent points
above/below the average. The same adjustment is applied for model training and evaluation. As
detailed in Section Aligning ADT and Tide Gauges, we independently center both satellite ADT and tide
gauge time series by removing their respective means as a standard pre-processing step.

We have updated the text to explicitly state that this visualization adjustment is consistent with the
pre-processing used for training:

For comparisons with hourly measurements from our model or NEMO, the time of an-SEA-a satellite ADT measurement
was not rounded to the nearest hour, recognizing that sea level can change rapidly. Instead, hourly time series from our model
or NEMO were linearly interpolated to the exact time of each SEA-satellite ADT observation. The spatial locations of the
SEA-satellite ADT measurements were binned into a grid with size 94 x 115 equal to the spatial output of our model. In cases
where multiple SEA-satellite ADT measurements fall within the same grid cell, the average of those measurements is taken.

For visualization purposes, SEA-ADT values are adjusted to have the mean equal to zero. This adjustment is consistent with
the model training and evaluation setup, where mean removal is applied as a pre-processing step (see Sect. 2.3).



COMMENT 8:
L154-155: This sentence is not clear. Is this HIDRA models' challenge or a general challenge?

RESPONSE 8:

We intended to express that the high dimensionality of the output is a general challenge in dense
field forecasting by deep learning, rather than a specific limitation of the HIDRA architecture. We
have revised the sentence:

values (see Fig. 5 for architecture). For this purpose, we introduce the Dense decoder module (detailed in Sect. 3.2.2). However,

a general challenge in directly forecasting dense sea level fields
very-largeis the very large output dimensionality, which would typically necessitate a model with a large number of parameters.

COMMENT 9:

Fig.5: GT was not defined. L(s) and their arrows are confusing, perhaps require an explanation
in the caption. Is block HIDRA3 frozen, fine-tuned, or jointly trained during the training of
model HIDRA-D?

RESPONSE 9:

We have updated the caption to explicitly define GT, and described the specific role of each loss
term indicated by the arrows. HIDRA3 block is jointly trained with the rest of the model, we have
added the statement to the caption to make this clear:

Geophysical % L
variables |, ==
-72h:72h HIDRA3 | —Point SSH predictions
N i ‘ 0:72h
A Tides ‘ %
-72h:72h
AN Intermediate
o0 SSH features 7
A -72h:0h Y F
=
Dense decoder |— - 28—
=
m \v\—i
VN

2D Fourier domain
(low freq. only)  Dense sea level predictions
0:72h

Figure 5. The HIDRA-D architecture. The model is_trained end-to-end using a composite loss function: £, supervises HIDRA3 point

redictions using GT (ground truth) SSH; £- supervises dense predictions using available satellite GT ADT; and L3 ensures consistenc

between the dense output and tide gauge data (using GT SSH where available, or HIDRA3 point predictions otherwise). Dashed curves

in SSH data indicate potential unavailable tide gauge data. The notation a:b indicates hourly data points from the interval (a,b], while the

prediction point is at the index 0.



COMMENT 10:

Fig.6: How can we intuitively explain the 2D Fourier domain? The reshape block and how the
data are transformed from physical space to Fourier space are not clear.

RESPONSE 10:

Note that the Dense Decoder module does not transform data from physical space to Fourier space.
Instead, the neural network uses the learned latent features to directly predict the coefficients in the
Fourier domain - the final dense layer of the network outputs values, which represent the amplitudes
and phases (real and imaginary parts) of the sea level's low-frequency spatial components. The
Reshape block in Fig. 6 reorganizes the flat output vector (dimension 6,480) into the 3D tensor shape
required to populate the low-frequency corners of the Fourier grid. Then, as shown in the broader
architecture (Fig. 5), these coefficients are subsequently transformed into physical space predictions
using 2D IDFT. Since the 2D IDFT is differentiable, this allows us to place supervision on the spatial
reconstruction at sparse locations, while the error gradient flows backward through the IDFT to
supervise the network's ability to directly predict the complete dense output in the frequency
domain.

To make this clearer to the reader, we updated the text:

To ensure that only wavelengths A > A are represented in the output, the model predicts only those Fourier coefficients
F,;, for which the corresponding spatial frequencies satisfy |k, (a)| < 27 /Ag and |k, (b)| < 27/Ap. Since the model predicts
real-valued sea level fields, the Fourier matrix F must be Hermitian. Consequently, it is only necessary to predict approximately
half of the Fourier coefficients, as the other half can be computed by transposition and conjugation. Specifically, the output
from a Dense decoder populates complex coefficients in F at the lowest spatial frequencies, which in our setup correspond
to 5 x5 and 4 x 5 regions in the corners of the matrix F (see Fig. 6). The final dense layer thus outputs a vector of 6480
features (comprising 90 real and imaginary components for each of the 72 forecast lead times). The remaining elements of F,
corresponding to higher spatial frequencies, are set to zero. For each of the 72 temporal slices, the matrix F is transformed
into a spatial field using an inverse 2D discrete Fourier transform (2D IDFT). The resulting field is then multiplied by a binary
land-sea mask of the Adriatic. The final spatial predictions are obtained by concatenating the 72 processed temporal slices,

resulting in a grid of size 72 x H x W.

Updates in the caption of Figure 6:
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Figure 6. Structure of the Dense decoder module. Geophysical features and station-specific feature vectors are concatenated and processed
through multiple dense layers that include SELU activation, dropout, and residual connections. The final output vector is reorganized

(reshaped) into a tensor format, and-where the predicted values are assigned as coefficients to the low-frequency components in the 2D
discrete Fourier domain (ready for the Inverse DFT shown in Fig. 5).



COMMENT 11:

L231: If b is due to the difference between the vertical reference surface, it should be
constant or change due to vertical land movements at the location of tide gauges. Isn't it?

RESPONSE 11:

We agree that the parameter b, represents the offset between the satellite geoid reference and the
local tide gauge datum, which we assume to be physically constant. Any temporal variation in this
parameter would indeed be due to slow geological processes. Our original phrasing (generally
changing in time) was intended to acknowledge these potential long-term trends, but we recognize
that it misleadingly implied high-frequency variability. We have revised the text to clarify that this
offset is effectively constant by definition, with vertical land movements being the only (negligible)
source of variation over the studied period:

To address this discrepancy, we define-an-interealibration-transtformation-perform a bias correction for each tide gauge i, to
convert it into SEAADT. The following model is used to transform the tide gauge measurements 5 © into SEA#L43-ADT

YA = g, M

gauge -

where y; - is the raw measurement from tide gauge 4, and b; represents the unknown vertical dﬁ-p}&eemeﬁt—blas for that spe-

cific tide gauge relative to the geoid. This displacement is-genera

over-timeseales-considered-in-this-studyprimarily represents the offset between the vertical datums, which we assume to be
hysically constant over the timescales of this study. While vertical land movements can induce slow temporal variations in
this offset, these changes are not taken into account here; therefore, we approximate it-by-b; as a constant.

COMMENT 12:

Table 1: Could you also add the performance of Nemo and HIDRA-D against the tide gauge
over the testing period?

RESPONSE 12:

We thank the reviewer for this suggestion. While we agree that comparing performance against tide
gauges is essential, we have chosen to keep the tide gauge evaluation separate from Table 1. The
results in Table 1 utilize the full HIDRA-D model trained on all available tide gauges to evaluate dense
basin-scale performance against satellite data. However, the experiment, where HIDRA-D is
evaluated against tide-gauges, tests ability to make accurate predictions for new locations without
tide-gauge data available for training - this requires a leave-one-out approach (denoted as HIDRA-D"
in the manuscript) to ensure the network is not tested on the location which was available during
training. Mixing results from the full network and the leave-one-out networks in a single table could
be misleading, as they were trained on different datasets and under different setups.

To ensure the readers can immediately locate this information, we have added a sentence explicitly
referencing the later section:



To assess the accuracy of dense sea level predictions, we compare them against SEA-ADT values (i.e., satellite swath-along-track
measurements) on the test set, spanning the period from June 2019 to the end of 2020. Table 1 presents the mean absolute er-
ror (MAE) and root mean squared error (RMSE) for HIDRA-D and NEMO (Madec, 2016) based on satellite ADT data. The

erformance of the model against in situ tide gauge measurements requires a specific cross-validation setup to avoid data
leakage and is detailed separately in Sect. 4.3 and Table 3. Results indicate that overall HIDRA-D outperforms NEMO, with

Model MAE (cm) RMSE (cm) Bias (cm)
NEMO 4.85 6.17 0.00

HIDRA-D 349 4.82 —0.17
Table 1. Comparison of MAE, RMSE and bias between HIDRA-D and NEMO, based on SEtA-satellite ADT data over Adriatic basin

during the testing period from June 2019 to the end of 2020. Bold values highlight the best performance. The bias for NEMO is zero, as

an offset correction was applied to its forecasts. The performance of the model against in situ tide gauge measurements requires a specific
leave-one-out setup to avoid data leakage and is detailed separately in Sect. 4.3 and Table 3.

COMMENT 13:
Fig. 7 & 8: It would be helpful to indicate the RMSE value for each panel in the bottom row.

RESPONSE 13:

As suggested, we have calculated the root mean square difference (RMSD) between the HIDRA-D
and NEMO forecasts, these values are now explicitly indicated in each panel of the bottom row:
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Figure 8. A subset of dense sea level predictions generated by HIDRA-D and NEMO during a storm surge event. The forecasts correspond
to T'= October 14, 2020, 23:00, the units are cm. HIDRA-D produces a spatially smoother forecast compared to NEMO. The bottom row
illustrates the difference between HIDRA-D and NEMO; note that it has a separate color bar. The root mean squared difference (RMSD)

between the two models is indicated in each panel.
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Figure B1. A subset of dense sea level predictions generated by HIDRA-D and NEMO under calm atmospheric conditions. The forecasts
correspond to 7' = November 4, 2020, 23:00, the units are cm. HIDRA-D produces a spatially smoother forecast compared to NEMO. The
bottom row illustrates the difference between HIDRA-D and NEMO; note that it has a separate color bar. The root mean squared difference

(RMSD) between the two models is indicated in each panel.

COMMENT 14:

Sec. 3.2: | suggest adding (or replacing with Fig. 7 or 8) the RMSE contour of HIDRA-D against
Nemo for the lead times over the test dataset.

RESPONSE 14:

We have included a new figure (see below) showing the spatial distribution of the RMSD between
HIDRA-D and NEMO for lead times T+1 h, T+24 h, T+48 h, and T+72 h. The results indicate that
discrepancies are highest in the Northern Adriatic and remain stable across different forecast
horizons.

To further analyze the spatial and temporal structure of the discrepancies between the models, Fig. 7 illustrates the root
mean square difference (RMSD) between HIDRA-D and NEMO across the basin for different forecast lead times. The metric
is computed over the entire test period. Visually, the highest RMSD values (reaching approx. 8 cm) are concentrated in the
northern Adriatic, likely due to the complex shallow-water dynamics in that region. Comparisons with available satellite ADT
measurements (latitude > 43.5°) confirm that while both models exhibit higher errors in this area, HIDRA-D performs better
with an RMSE of 5.37 cm compared to 6.79 cm for NEMO. In contrast, the central and southern parts of the basin generally
exhibit lower differences, mostly ranging between 4 and 6 cm. Notably, both the spatial pattern and the magnitude of the
RMSD remain remarkably stable across all lead times, indicating that the divergence between the two models does not grow

significantly as the forecast horizon extends from T+1 h to T+72 h.
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Figure 7. Spatial distribution of the root mean square difference (RMSD) between HIDRA-D and NEMO forecasts for lead times T+1 h,
T+24 h, T+48 h, and T+72 h, computed over the test period. Discrepancies are most pronounced in the shallow northern Adriatic and remain

stable across all lead times.

COMMENT 15:

L323: according to Fig. 7, visually, one can observe that the difference between NEMO and
HIDRA-D contains processes greater than \lambda_R=150km. Suggest comparing the radially
averaged power spectrum of NEMO and HIDRA-D to discuss the spatial scales that the model
can capture.

RESPONSE 15:

We agree that comparing the radially averaged power spectra of NEMO and HIDRA-D would be an
excellent method to quantitatively verify which spatial scales both models capture and to confirm if
they share similar energy distributions in the low-frequency domain.

We attempted to perform this spectral analysis as suggested; however, we encountered significant
technical challenges due to the complex geometry of the Adriatic basin. The irregular land-sea mask
introduces sharp edges that severely distort the Fourier spectrum when standard 2D FFT methods
are applied. We attempted to mitigate this by inpainting the land areas (e.g., using a Gaussian
kernel), but the resulting spectra were dominated by processing artifacts, showing energy at
frequencies that are explicitly excluded from HIDRA-D by design. Since we could not produce a
faithful spectral representation without these artifacts, we omitted the plot.

At first glance an alternative would be to compute 1D power spectrum along a given line of sight
(along the long axis of the basin or across the basin) but here we encounter the problem that the
basin is 800 km long and 170 km wide, again limiting the spatial scales in one of the two directions.
Therefore we could unfortunately not find a way to accommodate the reviewer's remark in a
satisfactory manner.



COMMENT 16:

Table 3: For what lead time? As a question, is RMSE simply averaged over all tide gages, or
RMSE=sqrt(mean(MSE_i)). The second form should be presented as RMSE total. | suggest
adding the performance of a naive baseline model for comparison with Nemo and HIDRA-D,
in which the forecast for the next time step is simply the last observed value (i.e., yp_{t+1} =
y_t).

RESPONSE 16:

Table 3 presents the average performance computed over all forecast lead times, spanning from T+1
hour to T+72 hours. The reported RMSE value is the average of the individual RMSE values computed
for each tide gauge station.

As the reviewer suggested, we have computed a naive Persistence baseline (y..; = y,). Results indicate
that this baseline performs significantly worse than both NEMO and HIDRA-D (e.g., Overall MAE of
15.46 cm vs. 3.61 cm for HIDRA-D), which shows the complexity of the forecasting task and the skill
of the dynamic models. Given this, we chose not to include it in the revised version of the
manuscript but provide the values here for reviewer’s reference.

Model MAE (cm) RMSE (em) ACC (%) Bias (cm) Re (%) Pr(%) Fl (%)
Persistence baseline 15.46 19.38 44,86 —0.84 / / /
Overall NEMO 3.82 4.95 95.25 0.00 / / /
HIDRA-DV 3.61 4.83 95.24 0.00 / / /
Persistence baseline 36.71 38.51 5.28 36.71 5.18 / /
Low SSH
Val NEMO 7.08 8.44 69.82 5.78 75.01 91.87 80.78
alues .
HIDRA-DV 541 6.49 85.76 3.94 89.03 99.33 92.49
Persistence baseline 27.76 32.11 22.44 -27.15 2322 17.68 19.89
High SSH
Val NEMO 6.05 8.39 84.96 -4.77 93.86 98.76 96.08
alues .
HIDRA-D® 8.61 11.26 69.82 -7.69 88.67 98.44 93.10

Table 3. Performance comparison between the Persistence baseline, HIDRA-D”, and NEMO using tide gauge measurements. The evaluation
covers all SSH values ("Overall"), as well as separate metrics for low and high SSH values. The reported scores are averaged over all forecast
lead times (T+1 to T+72 h) and over all tide gauge locations. The results indicate that HIDRA-D® achieves lower errors overall and

particularly for low SSH values, while both dynamic models significantly outperform the persistence baseline.

COMMENT 17:

Fig. 10,13,14: | suggest including or replacing the plot with RMSE as a better index for
performance assessment. | realised that black and gray colors in the legend refer to dark and
light colors, but it's not a good way to show. Please show, e.g., dark and light orange for Nemo
(and similarly for HiDRA-D) in the legend or simply remove the black and gray and mention it
in the caption.



RESPONSE 17:

We have replaced MAE with RMSE in Figures 10, 13, and 14. We removed the confusing color
references from the legends and explicitly described the solid (overall RMSE) and semi-transparent

(high SSH) distinctions in the captions:
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HIDRA-D” and NEMO. Solid regions represent the overall RMSE, while semi-transparent regions indicate the RMSE for high SSH values.
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The models exhibit similar performance overall, while HIDRA-D™ shows larger errors for high SSH values. Note that during training

HIDRA-D” did nor see any data from the respective station.
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Figure 12. RMSE performance against tide gauge measurements —eemputed-for

the HIDRA-D}" and NEMO,, —Beth-modelswere-bias-adjusted-, Solid regions represent the overall RMSE, while semi-transparent regions
indicate the RMSE for high SSH values. A bias adjustment was applied using the first 12 h of each forecast. HIDRA-D}Y exhibits larger
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Figure 13. MAE-RMSE increase when having only a subset of tide gauges as input. The model HIDRA-Dys is trained using only tide gauges
from the southern Adriatic, while HIDRA-D v is trained using only northern locations. The figure presents MAE-RMSE scores for regions

that were not included as input during training. Solid regions represent the overall RMSE, while semi-transparent regions indicate the RMSE

for high SSH values. The results show that, despite the exclusion of entire regions, the performance degradation remains minimal.

We have also updated the manuscript text to compare performance using RMSE at tide gauge
locations used in training:

It is important to note, however, that these conclusions apply to an arbitrary point on the coastline where no training data
is provided. At training tide gauge locations, HIDRA-D performs marginally worse than HIDRA3. The average MAE-RMSE
across all stations increases from 2:42-3.28 cm to 2:76-3.61 cm. For high sea level values, the MAE-inereasesfrom4-06 RMSE
increases from 5.61 cm to 4:99-6.72 cm. For low sea levels, the performance is more similar, with an MAE-6f3:30-RMSE of
4.24 cm for HIDRA3 and 3374 .41 cm for HIDRA-D.

COMMENT 18:

Fig. 11: Are the time series hourly? Has any smoothing been applied to the tide gauge data?
Have you calculated the correlation between tide gauges? | can see the neighbor tide gauges
have similar behavior, so we can expect that excluding one tide gauge is unlikely to have a
significant impact on model training.

RESPONSE 18:

The data is hourly; we have made sure this information is in the Problem Definition section (see
Response 2). The original data (1 min or 10 min resolution) was resampled to satisfy Nyquist
constraints, i.e., the signals have been smoothed using a Gaussian kernel with o =25 min and then
downsampled to an hourly resolution. See the updated section:



which results in a constant output value for an extended period of time, (ii) extreme outliers, and (iii) extreme jumps in the sig-
nals. Subsequently, the measurements were downsampled to hourly resolution. To prevent aliasing and reduce high-frequency
noise, we applied a Gaussian smoothing kernel (¢ = 25 min) using a weighted moving ayerage prior to subsampling. The
Gaussian weighted averaging was implemented with dynamic weight normalization to robustly handle missing time-steps in
the raw high-frequency series. For each location, the astronomical tides in 1-year intervals were computed using the UTIDE
Tidal Analysis package for Python (Codiga, 2011).

We agree that neighboring tide gauges in the Adriatic often exhibit similar behavior due to the
basin's cohesive dynamics. To expose and validate this property, we have calculated the Pearson
correlation coefficients between all tide gauge pairs and added a correlation matrix heatmap to the
manuscript in the appendix:

Appendix A: Tide gauge correlations

To assess the redundancy of information provided by the tide gauge network, we computed the Pearson correlation coefficients
between the SSH signals of all station pairs. Two distinct clusters with high internal correlation are visible (Fig. Al): the

northern Adriatic group (Koper, Venice, Ravenna, Ancona) and the central/southern group.
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Figure Al. Pearson correlation matrix of SSH measurements between different tide gauge locations. The stations are: Koper (KP), Venice
(VE), Ravenna (RA), Ancona (AN), Ortona (OR), Tremiti (TR), Vieste (VI), Sobra (SO), Vela Luka (VL), Neretva (NE), and Stari Grad
(SG). Two distinct clusters with high internal correlation are visible: the northern Adriatic group (KP, VE, RA, AN) and the central/southern
group.

The plot confirms that there are high correlations between neighboring stations, particularly
between northern (Koper, Venice, Ravenna, Ancona) and southern/central tide gauges. We agree
that in the leave-one-out experiment, the model can indeed leverage information from highly
correlated neighbors. However, this finding reinforces the importance of our Removing regions of tide
gauges experiment. In that experiment, we deliberately removed correlated northern stations
(Koper, Venice, Ravenna, Ancona). Despite this lack of correlated neighbors, HIDRA-D. still



performed with minimal degradation, proving that the model learns valid basin-scale dynamics and
does not rely solely on local interpolation from nearby sensors.

Changes in Training and testing datasets:

The following tide gauges along the Adriatic coast are considered in this study for SSH measurements: Koper, Venice, An-
cona, Ortona, Vieste, Neretva, Ravenna, Sobra, Stari Grad, Tremiti and Vela Luka (see Fig. 1). To characterize the inter-dependencies

within this network, we analyzed the correlation between station records, observing strong clustering between neighborin
stations (see Appendix A). Their SSH availability ranges from 15 % to 90 % during years 2000-2022 (Rus et al., 2025d),

which has to be accounted for during training and testing, as the model is required to cast predictions also when data from

Changes in Removing regions of tide gauges:
4.4 Removing regions of tide gauges

HIDRA-D is further evaluated by removing subsets of nearby tide gauges within the Adriatic basin. Specifically, we conduct
two separate training experiments. In-the-first-setup-we-As demonstrated in the correlation analysis (Fig. A1), the Adriatic tide
auges form two distinct clusters with high internal correlation: the northern group (Koper, Venice, Ravenna, Ancona) and the

central/southern group. To rigorously test the model’s ability to infer dynamics without relying on highly correlated neighbors
we first exclude tide gauge data from Koper, Venice, Ravenna, and Ancona;—which-are-located-in-the-northern-Adriatic. We

COMMENT 19:

L402: The variants are not clear. Has the grid size changed after reshaping, or was the feature
vector dimension modified and then reshaped to 4by4 instead of 5by5?

RESPONSE 19:

The final spatial grid size (94 x 115) remains constant in all variants, the modification applies strictly
to the cutoff frequency in the Fourier domain. Changing the size of the predicted Fourier
submatrices requires modifying the output dimension of the final dense layer to match the changed
number of Fourier coefficients. These coefficients are then placed into the corners of the full-size
Fourier matrix (with high frequencies zeroed out) before applying the inverse transform. We have
updated the Section:



4.5 Influence of the spatial scale threshold

In Sect. 3.2.2, the northern Adriatic barotropic Rossby radius was used to define the spatial scale threshold as Ag = 150 km.
This threshold represents the lower limit for the forecasted wavelength in the dense output of HIDRA-D and determines the
size of the non-zero element regions in the Fourier matrix F, which for Ag = 150 egual-km corresponds to 5 x 5 and 4 x 5
submatrices. To investigate the influence of this hyperparameter, we conducted an ablation study by training medel-variants-with
one-grid point smaller and-larger submatrices- two model variants where the dimensions of the predicted Fourier submatrices
were increased or decreased by one element in each dimension. This modification required changing the output dimension
(94 x 115) remains unchanged. These variants are hereafter referred to as HIDRA-Dy, 4 (utilizing 4 X 4 and 3 X 4 submatrices)

and HIDRA-Dg ¢ (utilizing 6 x 6 and 5 x 6 submatrices). For the cross-validation setup, they are denoted as HIDRA-DY, ,
and HIDRA-DJ' ;.

COMMENT 20:

In the model definition, it would be worth mentioning that the tensor of Fourier components
is padded to produce the desired output grid (?).

RESPONSE 20:

The high-frequency components in the Fourier matrix F are set to zero to match the dimensions
required for the inverse 2D discrete Fourier transform. We have added a sentence to clarify that:

5x-5-and-4->-5-submatrices-components for each of the 72 forecast lead times). The remaining elements of F, corresponding
to higher spatial frequencies, are set to zero. For each of the 72 temporal slices, the matrix F is transformed into a spatial field

COMMENT 21:

L418: This is a strong claim, as the Nemo model is evaluated in an autoregressive (AR) mode,
whereas HIDRA-D is assessed for single-step forecasting. | think these two evaluation settings
are not directly comparable.

RESPONSE 21:

We agree that the wording is too broad given the differences in methodology. However, we
emphasize that both models are evaluated on exactly the same task: predicting the hourly evolution
of sea level over a 72-hour horizon, given only the information available at T=0. Neither model has
access to ground truth data during the forecast window. We have revised the text in both the
Abstract and Conclusions to be strictly precise about the comparison. Instead of claiming general
superiority, we explicitly mention the circumstances of comparison:



Changes in Abstract:
to learn the complex basin-scale dynamics of sea level. HIDRA-D achieves this by integrating a HIDRA3 module for point
predictions at tide gauges with a novel Dense decoder module, which generates low-frequency spatial components of the
sea level field in the Fourier domain, whose Fourier inverse is an hourly sea level forecast over a 3-day horizon. Evaluation

When comparing 3-day forecasts against satellite absolute dynamic topograph ADT) data in the Adriaticdemenstrates—that

. HIDRA-D signifi ing-achieves a 28.0 % reduction in mean
absolute error when-ecompared-to-satellite sea-levelanomaly-(SEA)-datarelative to the NEMO general circulation model. How-

Changes in Conclusions:

Evaluated-en-When comparing 3-day forecasts of NEMO and HIDRA-D with satellite ADT measurements in the Adriatic
Sea, HIDRA-D surpasses-the NEMO-general-cirenlation-model-achieving-achieves a 28.0 % reduction in MAEes-SEA-values.

This demonstrates that deep learning is a viable, and often more accurate, alternative to computationally expensive numerical

COMMENT 22:
-- Some Minors:

Check the first line of the abstract. It's not aligned with the title regarding using satellite
altimetry data.

RESPONSE 22:

We have updated the abstract to explicitly mention that the model uses both sparse satellite
altimetry and in situ tide gauge data:

This paper introduces HIDRA-D, a novel deep-learning model for basin scale dense (gridded) sea level prediction frem
using sparse satellite altimetry and in situ tide gauge data. Accurate sea level prediction is crucial for coastal risk management,

marine operations, and sustainable development. While traditional numerical ocean models are computationally expensive, es-

COMMENT 23:

L30: "when modeling using a numerical model", what about data-driven models? Is it only for
numerical models?

RESPONSE 23:

The inherent uncertainties in initial conditions and physical processes require a probabilistic
approach in all types of models; we have revised the text to read when modeling complex geophysical
systems to reflect this.



COMMENT 24:

L31-33: This statement is somewhat overstated. Numerical models do not always rely on
ensemble modeling, as this depends on the task. Also, ensembles vary not only in parameters
but also in initial conditions, boundary conditions, and forcing fields (?).

RESPONSE 24:

We agree. Numerical models are indeed often used deterministically, and ensemble spread is not
generated just by varying parameters. Here is the revised text:

(Ferrarin et al., 2023; Bernier and Thompson, 2015; Mel and Lionello, 2014). Instead of a single, deterministic prediction,

numerical medelsrely-onforecasting systems often employ ensemble modeling, generating multiple simulations with slightly
varying initial conditions, forcings, or parameters to capture the envelope of possible sea level outcomes. While this approach

COMMENT 25:

L38-41: It is expected that forecasting at a single point would be substantially faster than
performing spatiotemporal Nemo forecasting?

RESPONSE 25:

We agree that a significant speedup is naturally expected given the reduced scope of a single-point
model compared to a numerical model covering the entire Mediterranean Sea. We have revised the
text to claim vastly reduced computational costs instead of a specific multiplier, emphasizing the
operational benefit rather than a direct computational comparison:

the specific challenge of coastal sea level prediction. The initial HIDRA1 model (Zust et al., 2021) demenstrated-that-a-deep
learning-moedel-established that deep learning could predict sea surface height (SSH) at a single tide gauge leeation{kKepesr
Stevenia)-with improved accuracy and a-mithieon-timesfaster-than-our-vastly reduced computational costs compared to op-
erational numerical model NEMO GCM (Licer et al., 2020). Fhis-indicated-thefundamental-feasibility-of the-deep-learning

COMMENT 26:
L61: "As a rule, "?

RESPONSE 26:

We have removed the phrase.



COMMENT 27:
L64-66: Please revisit these lines to ensure clarity.

RESPONSE 27:

We have revised the lines:

Ag-arute;-SEA-ADT measurements from the satellite altimeter are not calibrated with the SSH measurements at different
tide gauges and, furthermore, the tide gauges are often not calibrated between each other, each reporting the sea level values
relative to their local vertical datum. In this paper we propose a novel formulation that casts tide gauge and SEA-ADT inter-

calibration as part of the learning problem. 4

tide-gauges-an-inter-calibration-transformation-to-the-Specifically, the model estimates a vertical offset for each tide gauge,
effectively aligning all stations to the common satellite-referenced SEA;-thus-mutually-ealibrating—themADT datum, This
allows HIDRA-D to function in operational mode, where it generates dense, basin-scale ADT forecasts using only sparse tide

COMMENT 28:

The term “swath” is not commonly used for conventional satellite altimetry data, except for
the SWOT dataset. Standard altimeters provide along-track measurements.

RESPONSE 28:

We thank the reviewer for pointing this out. We have replaced all instances of swath with track,
ground track, or along-track.

COMMENT 29:
L222: "SLA represents the level relative to a reference geoid."?

RESPONSE 29:
With the update from Response 5, the text now reads ADT instead of SLA.
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