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Abstract. Marine dimethyl sulfide (DMS), a climatically active gas generated through 8 
microbial degradation of dimethyl sulfoniopropionate (DMSP), plays a key role in the 9 
Earth’s climate system by modifying its radiation budget. However, the sea-to-air flux 10 
and future variations under climate change are still uncertain. Simulations from Earth 11 
System Models (ESMs) provide divergent trends. Here, we developed an artificial 12 
neural network (ANN) model trained using DMS observations and eight observational 13 
environmental parameters, along with model parameters extracted from the 14 
simulations of CESM2-WACCM to predict variations of DMS concentrations and 15 
sea-to-air flux for both historical (1850–2014) and SSP5-8.5 scenario (2015–2100). 16 
Our simulation indicates that DMS concentrations will generally decline by the end of 17 
this century. Specifically, from 2015 to 2050, the DMS concentrations are projected to 18 
decrease at a rate of 0.40±0.13% per decade. From 2050 to 2100, the rate of decrease 19 
is expected to accelerate to 0.89±0.08% per decade. The sea-to-air flux of DMS 20 
exhibits a non-monotonic trend. It is projected to increase at a rate of 0.51±0.16% per 21 
decade from 2015 to 2050. However, from 2050 to 2100, the flux is expected to 22 
decrease at a rate of 0.37±0.11% per decade.We further explore the attribution of 23 
DMS changes by running a series of sensitivity tests. We find that elevated sea surface 24 
temperature (SST) and photosynthetically active radiation (PAR), along with nutrient 25 
depletion, are projected to lead to the decline in DMS concentrations by the end of 26 
this century. Furthermore, our geospatial analysis indicates that mixed layer depth 27 
(MLD) emerges as the predominant driver in the Southern Ocean, and nutrient-28 
dependent effects strongly correlate with DMS in the open seas (trades and 29 
westerlies). Our findings suggest that site-specific modeling schemes are needed to 30 
accurately model DMS dynamics. 31 

1 Introduction 32 
Oceanic dimethyl sulfide (DMS) is primarily synthesized in seawater through the 33 
enzymatic cleavage of the biogenic compound dimethyl sulfoniopropionate (DMSP) 34 
and released through microalgae exudation and mortality (Galí et al., 2015; Simó & 35 
Dachs, 2002; Stefels, 2000). DMS in the surface ocean is supersaturated compared to 36 
its atmospheric counterpart, and the sea-to-air flux is responsible for more than half of 37 
the total flux of gaseous sulfur to the atmosphere (Lana et al., 2011; Quinn & Bates, 38 
2011). Once in the atmosphere, DMS is oxidized to sulfuric and methane-sulfonic 39 
acids, which contribute to the formation of cloud condensation nuclei (CCN) and 40 
facilitate cloud formation, and thereby has the ability to reduces solar radiation and 41 
affects the Earth’s energy budget (Charlson et al., 1987). The CLAW hypothesis 42 
postulates a climate-negative feedback loop among phytoplankton, DMS emissions, 43 
CCN, and Earth’s energy budget. In the proposed feedback loop, CCN and cloud 44 
albedo are regulated up or down by oceanic phytoplankton through the medium of 45 
DMS emissions (Charlson et al., 1987). 46 

However, the conventional view of DMS induced negative climate feedback is 47 
increasingly challenged by emerging evidence. Both model simulations and 48 
mesocosm studies suggest that DMS may instead exert a positive climate feedback 49 
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effect under the global warming scenario (Six et al., 2013; Wang et al., 2018; Webb et 50 
al., 2016; Zhao et al., 2024). CO2 forcing simulations have been conducted to predict 51 
DMS distribution and its global-scale emissions, with varying forcing conditions 52 
revealing substantial spatial heterogeneity (Bopp et al., 2003; Gabric et al., 2013). As 53 
a result of the combined effects of ocean acidification and climate change, the 54 
projection of global DMS emissions decreases by about 18(±3)% in 2100 compared to 55 
the pre-industrial time in an Earth system model (ESM) climate simulations (Six et 56 
al., 2013). Similarly, global mean DMS concentrations are predicted to decrease by 57 
15.1% by the end of this century compared to the historical results (1960-2014), 58 
which is primarily driven by rising CO₂ levels (Zhao et al., 2024). In addition, a 59 
declining trend in DMS concentrations and sea-to-air flux under the RCP8.5 scenario 60 
are also detected using a fully coupled Earth system model (CESM) (Wang et al., 61 
2018). 62 

An ensemble of four ESMs (CNRM-ESM2-1, MIROC-ES2L, NorESM2-LM, and 63 
UKESM1-0-LL) from the CMIP6 historical and SSP5-8.5 experiments provided 64 
divergent trends in DMS concentrations and sea-to-air flux starting from the year of 65 
2015, which means that there is significant uncertainty regarding the changes of 66 
projected DMS trends based on Earth System Models in the future (Bock et al., 2021). 67 
A recent study by Joge et al. (2025) found that the global mean surface DMS 68 
concentration exhibits a decreasing trend with warming. However, in contrast to the 69 
decreasing trend of DMS concentration, the combined effects of increasing wind 70 
speed, increasing sea surface temperature, and decreasing ice-coverage lead to an 71 
increasing trend of sea-to-air DMS flux. Consensus has not been reached regarding 72 
future trends in DMS concentrations and sea-to-air flux. Key factors controlling DMS 73 
variations have yet to be determined. Consequently, the response of DMS 74 
concentrations/flux under a warming climate remains uncertain. 75 

Here, we train an artificial neural network (ANN) model using DMS measurements 76 
(Fig. S1) and eight observational environmental variables, including Chl a, MLD, 77 
dissolved inorganic nitrate (DIN), PAR, dissolved inorganic phosphorus (DIP), 78 
silicate (SiO4), sea surface salinity (SSS), and sea surface temperature (SST). 79 
Subsequently, we feed the model with the monthly outputs from CESM2-WACCM 80 
historical and SSP5-8.5 experiments to predict global DMS concentrations and 81 
temporal variations (Fig. S2). Furthermore, we investigate the mechanisms driving the 82 
variations of DMS concentrations under global warming scenarios. We also conducte 83 
a series of sensitivity tests to explore the attribution of DMS changes in a warming 84 
climate state, and identify the key factors (SST, PAR and nutrients) in different 85 
regions. In the end, we make prospects and suggestions for future study. 86 

2 Data and Methods 87 
2.1 Observations 88 
Observational DMS concentration data were obtained from two primary sources: 1) 89 
the Global Surface Seawater DMS Database (Pacific Marine Environmental 90 
Laboratory, PMEL; last access: 1 May 2020) and 2) the North Atlantic Aerosols and 91 
Marine Ecosystems Study (NAAMES; Behrenfeld et al., 2019) (Table S1). After 92 
quality control, which excluded measurements with DMS concentrations below 0.1 93 
nM or exceeding 100 nM following Galí et al. (2015), a total of 93,571 valid data 94 
points were retained (PMEL: 86,785; NAAMES: 6,786). The Global Surface 95 
Seawater DMS Database also provides additional in situ measurements, including Chl 96 
a (PMEL: 11,491; NAAMES: 6,750), SST (PMEL: 81,069; NAAMES: 6,786), and 97 
SSS (PMEL: 77,209; NAAMES: 6,786). We used in situ measurements when they are 98 
available. Otherwise, we supplemented the missing values with monthly climatology 99 
data from auxiliary datasets (Table S1). For example, SeaWiFS monthly averaged 100 
Level 3-binned Chl a data (9.2 km resolution; last access: 1 May 2020) from 101 
December 1997 to March 2010 were spatially and temporally matched to DMS 102 
measurements. Simillarly, SeaWiFS monthly averaged Level 3-binned PAR data (9.2 103 
km resolution; last access: 1 May 2020) from September 1997 to August 2010 were 104 
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also matched with DMS observations. Climatological MLD data were downloaded 105 
from the Monthly Isopycnal/Mixed-Layer Ocean Climatology (MIMOC; Schmidtko 106 
et al., 2013). Nutrients (nitrate, phosphate, silicate) data were obtained from the World 107 
Ocean Atlas 2013 (WOA2013). All ancillary data were aligned with DMS 108 
measurements based on sampling location and time of year. Rigorous quality control 109 
was applied following Galí et al. (2015). For instance, coastal data (salinity<30), as 110 
well as measurements with anomalously low nutrient concentrations (phosphate<0.01 111 
μM; nitrate<0.01 μM; silicate<0.1 μM) and low Chl a (Chl a<0.01 mg m-3) were 112 
excluded to focus on open-ocean conditions. 113 

2.2 Earth System Models 114 
For the input data to our ANN model, we first used the surface and monthly 115 
environmental outputs from CESM2-WACCM. This model ensemble was selected 116 
because it demonstrates the best overall results among the CMIP6 ensembles when 117 
compared to observational data (see Fig S6). We then compare our predicted DMS 118 
concentrations and fluxes with the outputs from four ESMs in CMIP6 (CNRM-119 
ESM2-1, MIROC-ES2L, NorESM2-LM, UKESM1-0-LL). More detailed descriptions 120 
of these four ESMs are provided below. 121 

The oceanic components and their respective resolutions for the four ESMs are 122 
detailed in Table S2, which includes ensemble numbers for both the historical (1850-123 
2014) and SSP5-8.5 (2015-2100) experiments. All datasets were downloaded from the 124 
CMIP6 Earth System Grid Federation (ESGF) nodes. These ESMs simulate the main 125 
large-scale features of the ocean circulation. Recent studies have also shown that these 126 
models have improved simulations of MLD, a key driver for marine biogeochemistry 127 
and marine DMS emissions (Seferian et al., 2020). 128 

For the CNRM-ESM2-1 model, DMS concentrations are computed using the 129 
biogeochemical model PISCES, coupled with the global ocean general circulation 130 
model (OGCM) NEMO. The version of PISCES used, PISCESv2-gas, includes a 131 
module for simulating the cycle of gases relevant to climate. DMS flux is calculated 132 
using the parameterization of gas exchange coefficients of Wanninkhof (2014) 133 
(Michou et al., 2020). 134 

In the MIROC-ES2L model, DMS concentrations are calculated based on the Aranami 135 
and Tsunogai (2004) parameterization, which links sea surface DMS concentrations to 136 
MLD and Chl-a concentration as follows: 137 

DMS = !
!"."
$%&

																																																𝑖𝑓 '()
$%&

	< 	0.02

55.8 ∙ , '()
$%&

- + 0.6																							𝑖𝑓 '()
$%&

	> 0.02
 , 138 

in which MLD and Chl a are simulated by OECO-v2, coupled in MIROC-ES2L 139 
(Hajima et al., 2020). DMS flux is calculated using Aranami and Tsunogai (2004) 140 
parameterization. 141 

For the NorESM2-LM model, the biogeochemical model iHAMOCC is coupled in the 142 
global OGCM BLOM to compute DMS concentrations, which is a function of 143 
temperature and export production (Tjiputra et al., 2020). 144 

For the UKESM1-0-LL model, DMS concentrations are computed within the ocean 145 
biogeochemistry model MEDUSA (Yool et al., 2013) and interactively coupled with 146 
the global OGCM NEMO. DMS concentrations are linearly correlates with a 147 
composite variable that includes the logarithm of Chl a, light, and nutrients. DMS flux 148 
is calculated according to the air-to-sea gas transfer scheme of Liss and Slater (1974). 149 
DMS concentrations in the atmosphere are subsequently modified through a number 150 
of gas-phase aerosol precursor reactions within the stratospheric and tropospheric 151 
chemistry schemes of the UKESM1-0-LL model (Mulcahy et al., 2020). 152 
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2.3 Artificial neural network model 153 
The ANN model is a branch of artificial intelligence (AI), which builts with a fully 154 
connected network of nodes and neurons. Each neuron has an activation function and 155 
is connected to other neurons by iteratively determined weights (Gardner & Dorling, 156 
1998). This algorithm has a great advantage because they make no prior assumptions 157 
on the data distribution and can fit data in gap area using non-linear equation 158 
(Breiman, 2001; Gardner & Dorling, 1998). 159 

The ANN model is trained using the Keras deep-learning toolbox in Python 3.8, with 160 
eight environmental variables (Chl a, MLD, DIN, DIP, PAR, SiO4, SST, SSS) as 161 
predictants and DMS as predictor. All data are log transformed and normalized to the 162 
range of [−1,1]. 163 

The dataset is then divided into three sections: training, internal testing, and external 164 
validating datasets. Specifically, data falling into the following 14 latitude bands (64–165 
65°N, 54–55°N, 44–45°N, 34–35°N, 24–25°N, 14–15°N, 4–5°N, 4–5°S, 14–15°S, 24–166 
25°S, 34–35°S, 44–45°S, 54–55°S, 64–65°S) are left out for internal testing (9084 167 
points). Similarly, data falling to the fifteen latitude bands (69–70°N, 59–60°N, 49–168 
50°N, 39–40°N, 29–30°N, 19–20°N, 9–10°N, 1–0°S, 9–10°S, 19–20°S, 29–30°S, 39–169 
40°S, 49–50°S, 59–60°S, 69–70°S) are left out for external validation (10870 points). 170 
The remaining data are used as training dataset (63042 data points). Separating the 171 
data by latitude bands rather than using random separation helps prevent information 172 
leakage, as in situ measurments are internally correlated. The traditional random 173 
separation methods tend to overfitting (Wang et al., 2020).  174 

In the training process, we adjust the hyper-parameters, such as dropout ratio, number 175 
of hidden layers, and number of nodes on each layer to prevent overfitting while 176 
achieving the best goodness of fit to observations. Eventurally, the finial ANN model 177 
adopted consists of one input layer, two dense hidden layers, and one output layer. 178 
The input layer comprises nodes corresponding to the predictors. Each hidden layer 179 
contains 128 nodes, and the output layer has a single node for DMS concentration 180 
simulations. To mitigate overfitting, two dropout layers with a dropout ratio of 0.25 181 
are incorporated into each hidden layer. Additionally, an L2 kernel regularizer with a 182 
value of 0.001 is applied to each hidden layer. During network training, the mean 183 
squared error of the internal validation data is monitored. After obtaining a 184 
satisfactory combination of those hyper-parameters, we fix them and finetune the 185 
network using all available data. 186 

2.4 Sea-to-air flux of DMS 187 
DMS flux is calculated using an empirical formula, which takes into account sea 188 
surface wind (SSW), sea ice coverage, and the viscosity coefficient related to gas 189 
transfer velocities in atmosphere and surface ocean. 190 

Air–sea gas transfer is estimated using the following bulk formula: 191 
𝐹 = 𝐾*(𝐶* − 𝐶+/𝐻) , 192 

where F is sea-to-air gas exchange flux, 𝐶* and 𝐶+ are bulk water and gas 193 
concentrations, and 𝐾* (𝑐𝑚	ℎ,-) is the overall gas transfer velocity, expressed in 194 
waterside units (Liss & Merlivat, 1986). 𝐾* reflects the combined resistance to gas 195 
transfer on both sides of the interface, as follows: 196 

-
.!
= -

/!
+ 1/𝐻𝑘+ , 197 

where the dimensionless H is the Henry law constant (gas or liquid), and 𝑘+ and 𝑘* 198 
are gas transfer velocities in air and seawater, respectively. DMS in the surface ocean 199 
is strongly supersaturated with respect to that in the overlying atmosphere (Cw ≫ Ca), 200 
so the DMS flux bulk formula is simplified as: 201 

𝐹 = 𝐾*𝐶* 202 
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Our study uses the parameterization for 𝐾* that refer to Goddijn-Murphy et al. 203 
(2012) (hereafter GM12), which is based on regressions between satellite-based wind 204 
speed observations and shipboard in situ measurements of DMS gas transfer velocities 205 
using eddy covariance method. SSW and sea ice area coverage data are from the 206 
CESM-WACCM monthly simulation datasets. 207 

3. Results and discussion 208 
3.1 Long-term trends of DMS under global warming scenario 209 
The ANN model captures the major variance in the observed data with the goodness-210 
of-fit R2 value of 0.68 for the training datasets and 0.66 for the testing datasets (Fig. 211 
S3). We then conduct temporal simulations by feeding the ANN model with 212 
parameters extracted from CESM2-WACCM, which best reproduces the 213 
corresponding observational parameters among CMIP6 ensembles (Fig. S4). 214 
Compared to the historical pattern, the model reveals distinct trends in DMS 215 
concentration across the global ocean, with notable patterns emerging in several key 216 
areas (Fig.1a). For instance, DMS concentrations exhibit an increasing trend in the 217 
Southern Ocean, the eastern equatorial Pacific, the subpolar North Atlantic, and the 218 
Arctic Ocean, with the highest concentration increase occurring in the Southern 219 
Ocean between 40°S and 60°S. This is particularly important because the Southern 220 
Ocean is far from anthropogenic aerosol sources, and the sea-to-air flux of DMS is the 221 
major source of atmospheric sulfur. Therefore, it strongly influences the radiative 222 
budget in the Southern Hemisphere (Hamilton et al., 2014).  223 

Nevertheless, a decreasing trend in DMS concentrations is evident in the low-to-224 
middle latitude regions of the Pacific, Indian, and Atlantic Oceans. Using a similar 225 
network model, Joge et al. (2025) found that DMS concentrations increase in the 226 
subtropical gyres, whereas we observe a decreasing trend in the same regions. The 227 
discrepancy is primarily attributed to two factors: 1) Data sources: We trained our 228 
model using predominantly observational parameters, while Joge et al. (2025) used 229 
model outputs. Given the evident biases between model simulations and observational 230 
data, we believe that the observational parameters are more effective in capturing the 231 
true relationship with DMS concentrations than model-devrived data. 2) Model 232 
Ensembles: We employed output solely from CESM2-WACCM as input to our 233 
network model, whereas Joge et al. (2025) used an ensemble of eight models. As 234 
illustrated in Fig. S4, CESM2-WACCM demonstrated the best reproduction of 235 
observational data, while other models exhibit significant biases. These differences in 236 
data sources and model ensembles likely account for the divergent results observed in 237 
DMS concentration trends. The sea-to-air flux of DMS generally follows a similar 238 
trend to DMS concentrations. The correlation sign is consistent in most of the open 239 
oceans, except for regional discrepancies in coastal biomes. These discrapencies are 240 
probably caused by the inverse change of wind speed with DMS concentrations.  241 

To elaborate more on the trend of DMS with global warming, we calculate the global 242 
area-weighted annual mean DMS concentrations and DMS flux. The temporal trend 243 
from our ANN model is plotted alongside another neural network model and four 244 
ESM ensembles, all of which explicitly model DMS under historical and SSP5-8.5 245 
scenarios, spanning from 1850 to 2100 (Fig.2 and Table 1, 2). DMS concentrations 246 
and fluxes in all models show a similar flat trend with different magnitudes over the 247 
historical period. For future projections, our global mean surface DMS concentration 248 
shows a decreasing trend, consistent with Joge et al. (2025). However, the global 249 
mean sea-to-air flux of DMS exhibits a non-monotonic trend. From 2015 to 2050, the 250 
sea-to-air flux of DMS shows a similar increasing trend to that reported by Joge et al. 251 
(2025), but with a higher increasing rate (Table 2). This increasing trend is likely due 252 
to the combined effects of decreasing ice coverage, increasing wind speed, and 253 
increasing sea surface temperature, which compensate for the decreasing DMS 254 
concentration (Fig. 1). However, from 2050 to 2100, the increasing trend reverses to a 255 
decreasing trend, with a rate of 0.37±0.11% per decade. Among the CMIP6 models, 256 
two EMSs (NorESM2-LM, and UKESM1-0-LL) predict decreasing trends in the 257 
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future, while the other two models (CNRM-ESM2-1 and MIROC-ES2L) predict the 258 
opposite. This divergence has previously been suggested to be explained by the bias in 259 
modelled SST (Bock et al., 2021).  260 

3.2 Attribution of DMS changes under global warming scenario 261 
To identify the parameter(s) driving the temporal variations of DMS, we conduct 262 
eight sensitivity experiments. In each, we hold seven of the eight environmental 263 
paramters needed by the ANN at their initial historial values, and allow the remaining 264 
one to vary according to historical and SSP5-8.5 simulation. These eight experiments 265 
are denoted as VChl, VMLD, VDIN, VPAR, VDIP, VSiO4, VSSS, and VSST, 266 
representing the varying parameter of Chl a, MLD, DIN, PAR, DIP ,SiO4, SSS, and 267 
SST, respectively. For the eight parameters, PAR and SST display an increase trend, 268 
and the other six variables show a decrease trend under the SSP5-8.5.  269 

DMS concentration shows a significant increase in the VSST test and a modest 270 
increase in the VPAR test compared to the control run, which is consistent with the 271 
trends of SST and PAR. The elevated SST, especially in high latitude oceans, 272 
promotes phytoplankton production, which is the primary producer of DMS (del Valle 273 
et al., 2007; Derevianko et al., 2009; Galí et al., 2013; Watanabe et al., 2007). VPAR 274 
test reveals a modest positive correlation between the changing trends of DMS 275 
concentrations and PAR (Fig. 3a, b).The higher irradiance inhibits bacterial 276 
consumption of DMS, influencing the proportion of high DMSP producers within 277 
assemblages (Galí et al., 2011; McNabb & Tortell, 2022; Vance et al., 2013). 278 
Conversely, the distribution of PAR shows an overall negative spatial correlation with 279 
DMS (Fig. 1a and Fig. S5), which may indicate a role for photolytic degradation in 280 
DMS loss (del Valle et al., 2007). These findings suggest that light-induced oxidative 281 
stress and inhibited microbial DMS consumption may influence regional DMS 282 
distributions. This particularly true in areas where photolysis significantly drives 283 
DMS oxidation. The relative contributions of biotic and abiotic processes require 284 
further in situ validation. 285 

DMS exhibits a decrasing trend in the VMLD test, likely because the fact that the 286 
shoaling of MLD due to global warming inhibits the upwelling of bottom nutrients 287 
(Fig.3a), hinders the vertical mixing of higher nutrients from deeper layers and 288 
oxygen-rich waters in the upper ocean, suppressing phytoplankton primary production 289 
in low-to-middle latitude oceans and ultimately resulting in a decline of DMS 290 
concentrations in the surface ocean. In the VChl test, DMS concentration remains 291 
nearly unchanged, which differes from the decreasing trend of global mean Chl-a 292 
concentration. This is in contrast to previous studies that extensively link DMS to Chl 293 
a, and indicates that the biogeochemical cycle of DMS is far more complex than Chl a 294 
can represent (Galí & Simó, 2015; Nemcek et al., 2008; Simó & Dachs, 2002). 295 
Indeed, applying an algorithm based on Chl a yielded little insight into DMS 296 
dynamics (Hirata et al., 2011). This is probably bacause the taxonomic composition of 297 
phytoplankton assemblages that differ in their ability of DMS production likely 298 
influence the variability of DMS cycling. As such, the bulk Chl a, representing a 299 
composite signal from all phytoplankton taxa, may have limited utility in predicting 300 
the spatial patterns of DMS on a global scale, but may be useful regionally. 301 

For the nutrient tests, DMS concentration show an increasing trend in both VDIN and 302 
VDIP, while both DIN and DIP decrease under SSP5-8.5. Overall, DMS–nutrients 303 
relationship may be partially attributed to the sulfur overflow hypothesis (Stefels, 304 
2000), which suggests that nutrient-limited phytoplankton increase DMSP production, 305 
and its subsequent cleavage to DMS as a mechanism to regulate intracellular sulfur 306 
quotas when protein synthesis is limited (Hatton & Wilson, 2007; Kinsey et al., 2016; 307 
Simó & Vila-Costa, 2006; Spiese & Tatarkov, 2014; Stefels, 2000). This hypothesis 308 
also explains elevated DMS concentrations in the Southern Ocean, subpolar North 309 
Atlantic and the Bering Sea, where nutrients concentrations are showing decreasing 310 
trends (Fig. S5). Moreover, nutrient-dependent effects significantly explain seasonal 311 
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variability, particularly as phytoplankton growth becomes nutrient-limited during 312 
summer time. 313 

The ocean represents an intricate system where environmental changes directly 314 
modulate DMS concentrations. Under the warming scenario (SSP5-8.5), elevated SST 315 
and PAR will strengthen ocean stratification, shoaling the MLD and reducing nutrient 316 
supplies from the deep ocean. Our findings suggest that these effects jointly 317 
determines the temperol variation of DMS concentrations.  318 

3.3 Key factors regulating DMS variation in typical regions 319 
To further investigate these regional variabilities, we divide the ocean into six regions 320 
according to Longhurst (1998): polar North, polar South, westerlies North, westerlies 321 
South, trades, and coastal (see Fig. 4a). We then examine the key factors influencing 322 
DMS concentrations across these regions (Fig. 4b). No key driving factors of DMS 323 
variation are identified in the polar North and coastal regions, likely because these 324 
areas encompass diverse biomes with site-specific drivers. When analyzed as a whole, 325 
no single dominant factor emerges. In contrast, DMS concentrations in the westerlies 326 
North region show strong negative correlations with DIN (r = –0.46), DIP (r = –0.58), 327 
and SiO₄ (r = –0.31), and strong positive correlations with PAR (r = 0.60), SSS (r = 328 
0.52), and SST (r = 0.53). These results suggest that low nutrient levels, strong light, 329 
and warm surface waters may favor small phytoplankton or Phaeocystis, which are 330 
more prolific DMS producers compared to diatoms. 331 

Conversely, in the westerlies South region, Chl a and MLD emerge as the dominant 332 
factors (r = 0.44 and –0.48, respectively) influencing DMS variation. This indicates 333 
that Chl a is a strong predictor of DMS concentrations in this region, likely because 334 
prolific DMS-producing phytoplankton contribute significantly to Chl-a levels. A 335 
similarly strong negative correlation is observed between MLD and predicted DMS 336 
concentrations in the polar South (r = –0.48). Both polar South and westerlies South 337 
regions are characterized by high background nutrient concentrations and deep mixed 338 
layers. The deepening of the MLD may dilute phytoplankton biomass and DMS, 339 
leading to the observed relationships. In the trades region (open ocean), where 340 
nutrient levels are generally low and small phytoplankton dominate, DMS 341 
concentrations are positively correlated with DIN, DIP, PAR, and Chl a. This suggests 342 
that in the trades, nutrient-driven higher primary production leads to higher DMS 343 
production. 344 

Observational and modeling studies have extensively documented the distribution of 345 
DMS concentrations and sea-to-air fluxes across the global ocean (Galí et al., 2015; 346 
Joge et al., 2025; Lana et al., 2011; Seferian et al., 2020; Simó et al., 2002). These 347 
studies indicate that DMS emissions are not solely governed by global 348 
biogeochemical cycles but also arise from complex ecological interactions, planktonic 349 
food-web dynamics, cellular physiological processes, and marine chemical 350 
transformations (Simó et al., 2002). Notably, elevated sea-to-air DMS fluxes are 351 
predominantly observed in upwelling zones, particularly in the tropical and equatorial 352 
Pacific Ocean. Furthermore, recent research highlights the influence of SST, deep-353 
water formation, biological productivity, and thermohaline circulation on DMS flux 354 
variability (Seferian et al., 2020). Our results demonstrate that DMS concentrations 355 
exhibit regional-scale dependence on multiple environmental drivers (Fig. 5). 356 

Conclusions 357 
The comparison of DMS concentrations and flux variations over the simulation 358 
periods from 1850 to 2100 (historical and SSP5-8.5 for CMIP6 ESMs) yields two key 359 
insights. Firstly, all models exhibit relative stability during the historical period. In 360 
contrast, in future simulations, two models (CNRM-ESM2-1 and MIROC-ES2L) 361 
show an increase in surface ocean DMS concentrations and flux, while the other four 362 
models (Joge25, NorESM2-LM, UKESM1-0-LL, and ANN) show a decreasing trend 363 
in DMS concentration. Although ESMs or non-linear equations may not fully 364 
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elucidate the relationship between DMS and marine phytoplankton, clarifying its 365 
response to climate change is crucial.  366 

Secondly, our findings suggest that DMS concentrations exhibit regional-scale 367 
dependence on multiple environmental drivers. In the trades region (open ocean), 368 
higher DMS production is primarily driven by nutrient-mediated increases in primary 369 
productivity. Conversely, in the westerlies North region, DMS concentrations display 370 
strong negative correlations with DIN, DIP, and SiO₄, while showing strong positive 371 
correlations with PAR, SSS, and SST. In the westerlies South region, Chl a emerges as 372 
a key positive predictor of DMS, and MLD is negatively correlated with DMS in the 373 
polar South. 374 

Our results demonstrate that variations in DMS concentration are rarely unidirectional 375 
in response to isolated changes in a single environmental parameter (Fig. 5). This 376 
highlights the complex interactions among these environmental factors, which cannot 377 
be adequately captured by a linear regression model. Future work should focus on the 378 
combined effects, using observational data to constrain models, and integrating these 379 
with ESMs to more accurately simulate DMS concentrations under different 380 
scenarios. It is also crucial to consider the potential climatic implications of changes 381 
in DMS production driven by biogeochemical factors when projecting future climate 382 
change.  383 
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 570 
Table 1. Summary of DMS trends for historical and future scenarios at different 571 
durations from 1850 to 2100 under the high emission scenario (SSP5.85). The trends 572 
were calculated according to the method described by Joge et al. (2025) using a 573 
bootstrap approach. The unit is % per decade, which indicates the relative changes in 574 
DMS concentration compared to the initial year of each period. 575 

 Trend ± SD % decade-1 

Model 1850-1900 1900-1950 1950-2014 2015-2050 2050-2100 

CNRM-ESE2-1 -0.06±0.01 0.02±0.01 0.06±0.01 0.41±0.03 1.19±0.04 

MIROC-ES2L -0.01±0.02 0.15±0.02 0.43±0.02 0.82±0.04 0.69±0.02 

NorESM2-MM 0.02±0.04 -0.09±0.03 0.06±0.03 -0.69±0.13 -1.01±0.09 

UKESM1-0-LL 0.04±0.03 -0.09±0.03 -0.18±0.03 -1.51±0.08 -1.26±0.06 

Joge25 0.07±0.02 0.01±0.02 0.06±0.02 -0.46±0.03 -0.58±0.02 

this study 0.14±0.08 -0.12±0.09 -0.45±0.06 -0.40±0.13 -0.89±0.08 

 576 
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 578 
Table 2. Summary of DMS flux trends for historical and future scenarios at different 579 
durations from 1850 to 2100 under the high emission scenario (SSP5.85). The trends 580 
are calculated according to the method described by Joge et al. (2025) using a 581 
bootstrap method. The unit is % per decade, which indicates the relative changes in 582 
DMS flux compared to the initial year of each period. 583 

 Trend ± SD % decade-1 

Model 1850-1900 1900-1950 1950-2014 2015-2050 2050-2100 

CNRM-ESE2-1 -0.04±0.05 0.03±0.04 0.37±0.03 0.68±0.13 1.32±0.07 

MIROC-ES2L -0.005±0.05 0.18±0.03 0.33±0.04 1.16±0.06 1.45±0.03 

NorESM2-MM -0.009±0.06 -0.13±0.04 0.06±0.04 -0.41±0.13 -0.51±0.08 

UKESM1-0-LL 0.03±0.04 -0.06±0.03 0.17±0.02 -0.71±0.09 0.03±0.06 

Joge25 0.04±0.03 0.08±0.02 0.26±0.02 0.16±0.03 0.37±0.03 

this study 0.01±0.09 -0.04±0.07 -0.07±0.06 0.51±0.16 -0.37±0.11 

 584 
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 586 

 587 
Figure 1. Changing trends of concentration and flux DMS with assimilatory 588 
parameters from 2015 to 2100 under SSP5–8.5 simulation. a, trend of DMS 589 
concentration. b, trends of DMS flux. c, trend of sea surface wind speed. d, trend of 590 
sea surface temperature. e, trend of sea ice coverage.  591 
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 593 

 594 
Figure 2. Time series of mean annual global area-weighted surface ocean DMS 595 
concentration and DMS flux over 1850-2100 (CMIP6 historical and SSP5-8.5 596 
simulations). a, DMS concentration (nM). b, DMS flux (Tg S yr-1) 597 
  598 
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 599 

 600 
Figure 3. Time series of input variables and DMS concentrations of sensitivity tests 601 
over 1850–2100. a, Time series of eight input environmental variables normalized to 602 
(-1,1). b, Time series of mean annual global area-weighted DMS concentrations of 603 
eight sensitivity tests. 604 
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 606 

 607 
Figure 4. Correlation of DMS concentrations with environmental variables in six 608 
main regions. a, Six oceanic regions that were separated based on Longhurst’s biomes 609 
(Longhurst, 1998). b, Correlation of DMS concentrations with eight input 610 
environmental variables in six oceanic regions. 611 
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 613 

 614 
Figure 5. Modified diagram of the climate feedback loop of DMS. 615 
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