Supplement of ## Measurement report: Insights into seasonal dynamics and planetary boundary layer influences on aerosol chemical components in suburban Nanjing from a long-term observation Jialu Xu^{1,*}, Yingjie Zhang^{1,2,*}, Yuying Wang¹, Xing Yan³, Bin Zhu¹, Chunsong Lu¹, Yuanjian Yang¹, Yele Sun⁴, Junhui Zhang¹, Xiaofan Zuo¹, Zhanghanshu Han¹, Rui Zhang⁵ ¹State Key Laboratory of Climate System Prediction and Risk Management/Key Laboratory for Aerosol-Cloud Precipitation of China Meteorological Administration/Special Test Field of National Integrated Meteorological Observation, Nanjing University of Information Science & Technology, Nanjing 210044, China ²School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China ³Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China ⁴State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China ⁵Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 519082, China *These authors contributed equally to this work. Correspondence to: Yuying Wang (yuyingwang@nuist.edu.cn) Figure S1: Correlation coefficients between POA, SOA and different tracers during four seasons. Figure S2: Mass spectral profiles and time series of POA and SOA in different seasons. Figure S3: RH/T dependence of (a) PM_{2.5} mass concentrations, (b) wind speed and (c) PBLH for the entire period. The data are grouped into grids with increments of RH and T being 5 % and 3 °C, respectively. Grid cells with the number of data points fewer than 10 are excluded. Figure S4: Time series of (a) mass concentration of diverse chemical components of PM_{2.5}, (b) mass faction of diverse chemical components of PM_{2.5}, (c) mass concentration of PM_{2.5} (left y axis, black lines) and precipitation (right y axis, cyan columns), (d) temperature (*T*, left y axis, blue lines) and relative humidity (RH, right y axis, red lines), (e) wind direction and wind speed (color scale) during four seasons Figure S5: RH /T dependence of mass concentrations and mass fractions of BC, ammonium, and chloride for the entire period. The data are grouped into grids with increments of RH and T being 5 % and 3 °C, respectively. Grid cells with the number of data points fewer than 10 are excluded. Figure S6: Monthly average mass fractions of SOA, sulfate and nitrate, temperature(T), relative humidity (RH), and PBLH. Figure S7: The relative change rate of PM_{2.5} chemical components with the decrease of PBLH. The data are grouped in PBLH bins with 200 m increments. Bins with the number of data points fewer than 10 are excluded.