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Abstract. Systematic evaluation of the carbon cycle physical and biological variables simulated in Earth System Model 

(ESM) participating in the Coupled Model Intercomparison Project Phase 6 (CMIP 6) is fundamental to the understanding of 

terrestrial ecosystems, as well as to future projections. Leaf Area Index (LAI), Gross Primary Productivity (GPP), Net 

Primary Productivity (NPP), Net Ecosystem Productivity (NEP) and Land Surface Temperature (LST) as key indicators of 

carbon cycle performance in ESM outputs, play a critical role in evaluating ecosystem functions. Assessing these metrics can 15 

provide valuable insights into the biases in model-simulated ecosystems and offer guidance for model improvement. In this 

study, we assessed the interannual trends performance of LAI, GPP, NPP, NEP and LST simulated by 12 CMIP6 ESMs 

during the historical period by using satellite LAI, NPP, NEP, LST and CSIF data as observations. The findings indicate that: 

(1) There are significant uncertainties in the overall trends in LAI, NPP, and LST captured by the CMIP6 ESM. Meanwhile, 

simulated GPP and NEP trends were lower than observations with discrepancies reaching 0.03·yr⁻¹ for GPP and 2.46 g 20 

C·m⁻²·yr⁻¹ for NEP. (2) Spatially, these models exhibited widespread misestimation of LAI, GPP, NPP, and NEP trends in 

most regions of China. The underestimation area except in limited areas, including parts of the western Tibetan Plateau, the 

Pearl River Basin in southern China, and the North China Plain. Meanwhile, the simulated LST trend is underestimated in 

northern China, while its overestimations in western and southern China. (3) ESMs inadequate responsiveness to 

anthropogenic and environmental forcing and incomplete mechanistic representation of plant respiration pathways struggled 25 

accurate simulation of trends in LAI, GPP, NPP, NEP and LST. 
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1 Introduction 

Since the Industrial Revolution, human activities have significantly altered the structure of the atmosphere and terrestrial 

biosphere, leading to profound changes in the structure and functioning of terrestrial ecosystems  (Allen et al., 2018). 30 

Vegetation, as a key component of the biosphere, regulates the exchange of carbon, water, momentum, and energy between 
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the land and the atmosphere (Wu et al., 2020). Vegetations maximize water-use efficiency at the leaf scale by dynamically 

regulating stomatal conductance, to effectively respond to rising atmospheric CO₂ concentrations and global warming  (Fu et 

al., 2022). However, due to its high sensitivity to environmental conditions (Jung et al., 2017; Nemani et al., 2003), 

vegetation has undergone notable changes. The response of vegetation to global change has attracted significant attention in 35 

recent years (Chen et al., 2019; Hovenden et al., 2019; Zhu et al., 2016). 

To capture the responses and feedbacks of terrestrial ecosystems to global environmental change, several Earth System 

Models (ESMs) in Coupled Model Intercomparison Project Phase 6 (CMIP6) simulate terrestrial vegetation structure and 

photosynthetic capacity (Song et al., 2021). Four key outputs of ESMs, which describe canopy structure and photosynthetic 

capacity—Leaf Area Index (LAI), Gross Primary Productivity (GPP), Net Primary Productivity (NPP), Net Ecosystem 40 

Productivity (NEP)—are critical components of the terrestrial carbon cycle (Le Quéré et al., 2009; Wang et al., 2015), and 

the main physical factors—Land Surface Temperature (LST) —controlling the land carbon balance(Anav et al., 2013; Piao 

et al., 2009). The relationship between LAI, GPP, and environmental factors is complex, as environmental drivers 

significantly influence LAI dynamics and collectively determine vegetation photosynthetic performance (Zhao et al., 2022; 

Zhao et al., 2020). Vegetation productivity can be directly estimated using canopy parameters, resulting in a high coupling 45 

between GPP and LAI (Walther et al., 2019; Tian et al., 2024). 

Both remote sensing and ecosystem models can be effective in investigating large-scale vegetation dynamics (Zhao et al., 

2020). Ecosystem models offer an advantage in attributing vegetation growth changes by addressing limitations inherent in 

traditional statistical models, such as the inability to distinguish correlation from causation and to capture nonlinear 

relationships (Piao et al., 2006; Zhu et al., 2016). Earth System Models (ESMs), which simulate the physical, chemical, and 50 

biological processes and their interactions within the atmosphere, land, ocean, biosphere, and cryosphere (Ziehn et al., 2017; 

Wu et al., 2019; Bao et al., 2020; Zhang et al., 2020), are critical tools for modeling terrestrial ecosystems (Li et al., 2019a; 

Lawrence, 2020).  

Understanding vegetation responses to past global environmental changes is crucial for improving predictions of future 

spatiotemporal changes in global vegetation (Zhao et al., 2020). However, numerous studies have evaluated and projected 55 

variables simulated by ESMs, revealing a general overestimation trend for model simulations (Anav et al., 2013; Mahowald 

et al., 2016; Kim et al., 2018; Zeng et al., 2016; Park and Jeong, 2021). Anav et al. (2013) reported that half of the models 

overestimated LAI trends from 1986 to 2005. Ziehn et al. (2017) found that the ACCESS-ESM1 model overestimated the 

seasonal mean and peak amplitude of global LAI during historical periods. Zhu et al. (2019) observed that ELMv1-ECA 

significantly overestimated LAI across most terrestrial surfaces, particularly in the tropics, while underestimating GPP in 60 

boreal forest systems and tropical ecosystems. Song et al. (2021) evaluated multiple ESMs and concluded that global LAI 

overestimation primarily stemmed from overestimated LAI in non-forest areas, with peak LAI in some regions occurring 1–

2 months later than observed. 

China's carbon sink accounts for approximately 10%-31% of the global terrestrial ecosystem carbon sink (Piao et al., 2022). 

More accurate simulations of terrestrial ecosystems using CMIP ESM models are highly valuable for both scientific research 65 
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and policy development. Currently, CMIP has progressed to its sixth phase (CMIP6). Compared to CMIP5, CMIP6 models 

feature significantly improved resolution, incorporate more comprehensive biogeochemical processes (Eyring et al., 2016), 

and consider more plausible future scenarios (O'neill et al., 2016), an advancement that will enhance the potential for 

simulating terrestrial ecosystems. However, research evaluating the outputs of CMIP6 models remains limited compared to 

CMIP5 evaluations. In existing evaluation studies, researchers have made significant progress in assessing the performance 70 

of ESMs. For example, Zhao et al. (2020) focused on the temporal variability of LAI in CMIP6 models, while Song et al. 

(2021) evaluated global LAI and tree height performance. However, limitations in spatial resolution and geographical scope 

have left gaps in the systematic evaluation of ESM simulations for specific regions, such as China. Similarly, Sun et al. 

(2023) conducted evaluations of LAI, GPP and NPP across Asia but lacked a comprehensive methodology and finer-scale 

analyses for historical periods. These gaps highlight the need for more detailed and region-specific assessments of CMIP6 75 

ESMs outputs.  

Based on the current lack of multi-variable evaluations in ESM assessment studies and the absence of systematic regional 

evaluations in China, this study utilizes remote sensing data as observational references to evaluate the interannual trends 

performance of LAI, GPP, NPP, NEP and LST simulated by 12 CMIP6 ESMs (ACCESS-ESM1-5, BCC-CSM2-MR, 

CanESM5, CESM2-WACCM, EC-Earth3-Veg, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-80 

ESM1-2-LR, NorESM2-LM, and NorESM2-MM) in China. A 3×3 sliding window approach is applied spatially to provide a 

more systematic assessment of trends performance. Finally, remote sensing data of tree cover were used to evaluate the 

simulated trends of tree distribution patterns. 

2 Data and method 

2.1 The study area 85 

China is situated at the intersection of East and Central Asia, with a geographical range approximately between 18°N and 

53°N latitude and 73°E and 135°E longitude. China exhibits diverse topographical features, ranging from expansive plains 

and hills in the east to high plateaus and mountains in the west, with an overall terrain gradient sloping from west to east. 

The monsoon region in the east has abundant precipitation and a large temperature difference from north to south, which is 

suitable for a wide variety of plants to grow, while the arid region in the west has scarce precipitation and sparse vegetation. 90 

Against this climatic background, China has developed a diversity of vegetation types ranging from humid broad-leaved 

evergreen forests to arid desert grasslands, with significant regional differences between seasonal and inter-annual variations 

in vegetation (Figure 1). 

https://doi.org/10.5194/egusphere-2025-3169
Preprint. Discussion started: 6 August 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

 

Figure 1: Distribution of vegetation types in China. 95 

2.2 CMIP6 Earth System Models 

The Coupled Model Intercomparison Project (CMIP), organized under the auspices of the World Climate Research 

Programme (WCRP) Working Group on Coupled Modelling (WGCM), which enables the simulation of difficult-to-observe 

early global coupled climate models by conducting experiments using atmospheric models coupled to the dynamical ocean, a 

simple land surface, and thermodynamic sea-ice (Meehl et al., 1997). CMIP6 adopts a novel, more coordinated 100 

organizational structure (Eyring et al., 2016).  

This study utilizes the outputs of LAI and GPP variables from 12 CMIP6 models (ACCESS-ESM1-5, BCC-CSM2-MR, 

CanESM5, CESM2-WACCM, EC-Earth3-Veg, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-

ESM1-2-LR, NorESM2-LM, and NorESM2-MM) under five scenarios: historical, SSP1-26, SSP2-45, SSP3-70, and SSP5-

85 as the simulated values of the model. To ensure consistency, the outputs from the first realization (r1i1p1) of each model 105 

were selected. Monthly data outputs from all models were uniformly resampled to a spatial resolution of 0.5° × 0.5°. 

Additionally, based on whether the models incorporate a dynamic vegetation module, the 12 models were classified into 

groups with and without dynamic vegetation integration (Table 1). 

Table 1: Spatial resolution of selected CMIP6 models and variables information 

Model name Spatial Resolution LAI GPP NPP NEP LST TCF 
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ACCESS-ESM1-5 1.875°×1.25° √ √ √ √ √ √ 

BCC-CSM2-MR 1.125°×1.125° √ √ √ √ √ × 

CanESM5 2.8°×2.8° √ √ √ √ √ √ 

CESM2-WACCM 0.9°×1.25° √ √ √ √ √ √ 

EC-Earth3-Veg 0.7°×0.7° √ √ √ √ √ √ 

INM-CM4-8 2°×1.5° √ √ √ × √ √ 

INM-CM5-0 2°×1.5° √ √ √ × √ √ 

IPSL-CM6A-LR 2.5°×1.27° √ √ √ √ √ √ 

MPI-ESM1-2-HR 0.9°×0.9° √ √ √ × √ √ 

MPI-ESM1-2-LR 1.875°×1.875° √ √ √ √ √ √ 

NorESM2-LM 2.5°×1.9° √ √ √ √ √ √ 

NorESM2-MM 1.25°×0.9° √ √ √ √ √ √ 

The Multi-Model Ensemble (MME) mean-based approach, an established statistical integration technique, synthesizes 110 

outputs from diverse models through weighted averaging(Zeng et al., 2016). This approach combines the true and noise 

signal, where the inter-model errors is mitigated through model averaging, thereby amplifying underlying true signals.  

2.3 Benchmark data 

The 2003-2014 LAI data from the reprocessed MODIS product in China (Yuan et al., 2011), were used to validate the LAI 

outputs of 12 ESMs under the historical scenario. The reprocessed MODIS product refines the original MODIS LAI data 115 

(MOD15A2H and MYD15A2H) using modified temporal-spatial filtering (mTSF) technique to fill data gaps and correct 

low-quality data. Subsequently, the TIMESAT SG filtering technique was applied for post-processing to produce the final 

product. The reprocessed remote sensing LAI data were then resampled to a 0.5° × 0.5° monthly grid for consistency with 

the model outputs.  

The CSIF dataset was used to validate the GPP outputs of the models under the historical scenario. CSIF data are generated 120 

by using surface reflectance data from MODIS C6 (MCD43C1) as input (Zhang et al., 2018), trained with daily SIF 

observations derived from the Orbiting Carbon Observatory-2 using a machine learning algorithm. CSIF effectively captures 

the seasonal dynamics of satellite-observed SIF and shows a strong correlation with ecosystem GPP, making it a suitable 

proxy for GPP in vegetation phenology analysis. The CSIF data were aggregated from 4 days to monthly scale data, and the 

spatial resolution was sampled into a 0.5° × 0.5° grid using mean aggregation.  125 

The NPP dataset was derived from the MOD17A3HGF Version 6 product of MODIS, featuring a spatial resolution of 500 m 

× 500 m and a temporal resolution of 8 days. Annual NPP values were calculated as the cumulative sum of 8-day Net 

Photosynthesis (PSN) products for each year. The reprocessed remote sensing NPP data were then resampled to a 0.5° × 0.5° 

monthly grid for consistency with the model outputs. 
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The NEP dataset was obtained from the reprocessed annual NEP data based on MOD17A3HGF V6 products, provided by 130 

the Loess Plateau Subcenter of the National Earth System Science Data Center. This dataset retains a spatial resolution of 

500 m × 500 m, the study resampled the remote sensing NEP data to 0.5° × 0.5° monthly grid. 

The LST data were sourced from the Global Daily 0.05° Spatiotemporally Continuous LST dataset hosted by the National 

Tibetan Plateau Data Center. The dataset reconstructs clear-sky LST by applying an Empirical Orthogonal Function (EOF) 

interpolation method to MODIS Terra/Aqua LST products. It further integrates ERA5-Land climate reanalysis data using a 135 

Cumulative Distribution Function (CDF) matching method, generating high-quality global spatiotemporally continuous LST 

data under both clear-sky and all-weather conditions. The final product has a spatial resolution of 0.05° × 0.05°, while the 

remote sensing LST dataset were resampled to 0.5° × 0.5° monthly grid in this study. 

Tree cover fraction (TCF) were extracted from the MODIS Terra Vegetation Continuous Fields (VCF) product 

(https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/science-domain/vegetation-continuous-fields), 140 

providing global tree cover fraction at a 500 m × 500 m spatial resolution. To consistency with the model output, the remote 

sensing TCF data were resampled to a 0.5° × 0.5° monthly grid. 

2.4 Auxiliary data 

The IGBP classification scheme from the MODIS MCD12Q1 product was used to categorize the vegetation in China into 

four land cover types: forest (Tree Cover), grassland (Grassland), cropland (Crop), and non-vegetated areas (Non-Vegetable). 145 

Specifically, evergreen coniferous forest, evergreen broadleaf forest, deciduous coniferous forest, deciduous broadleaf forest, 

mixed forest, woody savanna and savanna are combined to be classified as Tree Cover; closed shrubland, open shrubland, 

grassland and permanent wetland are combined to be classified as Grassland; farmland and agricultural land (with natural 

vegetation) are classified as Cropland; and urban and built-up land, permanent snow and ice, unutilized land, and water are 

combined to be classified as Non-Vegetable areas. The specific classification details are summarized in Table 2. 150 

Table 2: Summary of the classification of vegetation and land use types in China. 

Name Vegetation or land use type Classification type area proportion (%) 

ENF Evergreen Needleleaf Forests Tree Cover 0.77 

EBF Evergreen Broadleaf Forests Tree Cover 2.37 

DNF Deciduous Needleleaf Forests Tree Cover 0.15 

DBF Deciduous Broadleaf Forests Tree Cover 3.29 

MF Mixed Forests Tree Cover 2.75 

CS Closed Shrublands Grassland 0.04 

OS Open Shrublands Grassland 0.08 

WS Woody Savannas Tree Cover 10.01 

Sa Savannas Tree Cover 7.96 
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Gr Grasslands Grassland 30.04 

PW Permanent Wetlands Grassland 0.21 

Cr Croplands Crop 12.92 

UBL Urban and Built-up Lands Non Vegetable 1.25 

C/NVM Cropland/Natural Vegetation Mosaics Crop 2.02 

PSI Permanent Snow and Ice Non Vegetable 0.33 

Ba Barren Non Vegetable 24.82 

WB Water Bodies Non Vegetable 0.99 

2.5 Analysis 

The Theil-Sen Median method was employed to estimate the interannual trends of observed and simulated LAI, GPP, NPP, 

NEP and LST from 2003 to 2014, while the Mann-Kendall (MK) test was applied to assess the statistical significance of 

these trends. Additionally, the performance of each model in simulating the interannual LAI, GPP, NPP, NEP and LST time 155 

series was quantified using the standard deviation (SD) of interannual time series, correlation coefficient (r), and root mean 

square error (RMSE).  

Observed LAI and CSIF trends were used to validate the spatial trends of simulated LAI and GPP, providing a 

comprehensive spatial assessment of model performance. At the pixel scale, a 3×3 sliding window approach was applied to 

extract paired pixel value sequences from model simulations and satellite observations. These paired sequences were 160 

statistically compared using a paired t-test (also known as a dependent or correlated t-test). This method compares the means 

and standard deviations of two related groups to determine whether significant differences exist between them. The 

hypotheses for the paired t-test are formulated as follows: H0: m=0 (null hypothesis, where m is the mean of differences 

between paired samples); H1: m≠0 (alternative hypothesis). 
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Here, i=1,2,…,n. Where m represents the mean of paired sample differences, S denotes the standard deviation of these 

differences, and n is the number of paired samples. The critical t-value is determined by degrees of freedom (df) and 

significance level (α). If the calculated t-value is less than the critical value at α-level (P), this indicates P>α, leading to 170 
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acceptance of H0 and rejection of H1 at the α significance level. Conversely, if the calculated t-value exceeds the critical 

value, H0 is rejected in favor of H1. 

To enable a comparison between the trends of CSIF and GPP, it is necessary to normalize the annual-scale CSIF data and the 

GPP outputs from the ESMs. Normalization ensures that both datasets are brought to a comparable scale, facilitating a more 

accurate and meaningful trend analysis.  175 

iX mean
X

std

−
=     (4) 

Where X is the annual normalized CSIF or GPP data, Xi is the annual unnormalized data, mean is the average of the multi-

year annual data, and std is the standard deviation of the multi-year annual data. 

3 Results 

3.1 Trend of observed variables in China 180 

From the spatial trends of MODIS LAI across China from 2003 to 2014 (Fig. 2a), 82.60% and 17.40% of the study area 

exhibited increasing and decreasing LAI trends, respectively. Among these, areas with statistically significant increasing and 

decreasing trends accounted for 44.10% and 7.24%, respectively. Spatially, declining LAI trends were primarily 

concentrated in grassland and cultivated areas of northwestern Xinjiang, central Inner Mongolia grasslands, and parts of the 

Tibetan Plateau. In contrast, significant increases in LAI were predominantly observed in southern forested regions, 185 

grassland areas of the Loess Plateau, and forest-cultivated zones of northeastern China. 
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Figure 2: The observed annual (a) MODIS LAI, (b) CSIF, (c) MODIS NPP, (d) MODIS NEP, (e) MODIS LST and (f) MODIS 

TCF trend during 2003~2014 in China. Pink color represents the percentage of area of decreasing regions (DE), red color 

represents the percentage of area of significantly decreasing regions (SD), yellow color represents the percentage of area of regions 190 
with no significant change (N), green color represents the percentage of area of significantly increasing regions (SI), and light 

green color represents the percentage of area of increasing regions (IN). The dot indicated the significant trend (p<0.05). 

Figure 2b illustrates the spatial trends of CSIF in China during 2003–2014. Overall, 86.50% and 13.49% of the region 

displayed increasing and decreasing CSIF trends, respectively, with significant increases and decreases covering 48.34% and 

1.19% of the area. The trends in CSIF during 2003–2014 exhibited similar patterns to those of LAI, particularly in southern 195 

forested regions, northeastern China, and the Loess Plateau, where both variables showed significant increases. However, 

CSIF exhibited more significant rising trends in the North China Plain compared to LAI. Conversely, while declining trends 
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in CSIF were observed in parts of Xinjiang, Inner Mongolia, and the Tibetan Plateau—consistent with LAI patterns—CSIF 

reductions were more prominent in central Yunnan, the Yangtze River Delta, and the Beijing-Tianjin-Hebei region. 

The spatial trends of MODIS NPP in China during 2003–2014 reveal that most regions exhibited no statistically significant 200 

changes (Fig. 2c), with 84.57% of the area showing non-significant variability. Areas with increasing and decreasing trends 

accounted for 54.47% and 13.93% of the total area, respectively, while statistically significant increases and decreases 

covered 15.23% and 0.20% of the region. Spatially, reductions in remote sensing-derived NPP were primarily distributed in 

the Central Plains region, Guangdong and Fujian provinces, central Yunnan, and southern Tibet. In contrast, significant 

increases in NPP were notably observed in northern Shaanxi and Ningxia regions, as well as parts of northeastern China. 205 

The spatial trends of MODIS NEP in China during 2003–2014 (Fig. 2d) closely resembled the spatial patterns of MODIS 

NPP. Across China, 56.06% and 14.65% of the area exhibited increasing and decreasing NEP trends, respectively. Among 

these, 85.07% of the region showed no statistically significant changes, while significant increases and decreases accounted 

for 14.65% and 0.28% of the total area. Similar to the spatial distribution of remote sensing NPP trends, significant NEP 

increases were observed in northern Shaanxi and Ningxia regions, as well as parts of northeastern China. Conversely, 210 

declining trends in NEP were concentrated in the North China Plain, Guangdong and Fujian provinces, central Yunnan, and 

southern Tibet. 

Figure 2e illustrates the spatial trends of MODIS LST across China during 2003–2019. Overall, 47.34% and 52.66% of the 

study area exhibited increasing and decreasing LST trends, respectively. However, only 0.78% and 1.33% of the area 

showed significant increases and decreases, while 97.89% of the region displayed no statistically significant changes. 215 

Spatially, rising LST trends were concentrated in central-western Inner Mongolia, eastern Xinjiang, the Gansu-Qinghai 

region, the Sichuan-Tibet Plateau, Yunnan Province, and the North China Plain. Conversely, declining LST trends were 

primarily observed in northeastern China and southern China. 

To better investigate the promoting effects of human activities, such as afforestation and the Grain-for-Green Program, on 

vegetation growth, we analysed the spatial trends of MODIS TCF changes in China during 2003–2014 (Fig. 2f). The results 220 

indicate that 64.19% and 32.49% of the study area exhibited increasing and decreasing TCF trends, respectively. Among 

these, statistically significant increases and decreases accounted for 14.57% and 1.28% of the total area, while 84.15% 

showed no significant trend. Most tree-abundant regions in eastern and central China displayed TCF gains. In contrast, 

declining TCF trends were observed in western China, where natural conditions are unsuitable for tree growth and land 

cover is predominantly grassland or non-vegetated areas. Significant TCF increases were concentrated in the Shaanxi-225 

Gansu-Ningxia region, the Greater Khingan Mountains region in northeastern China, and Guizhou, Guangdong, and 

Guangxi provinces. 

3.2 Evaluating the overall trends of CMIP6 variables 

As shown in the bar chart comparing observed LAI trends with MME simulated LAI (Fig. 3a), the MODIS LAI exhibited a 

trend of 0.11 m²·m⁻²·yr⁻¹, which falls within the MME uncertainty range (0.0060 ± 0.0058 m²·m⁻²·yr⁻¹). This indicates that, 230 
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overall, the models are capable of capturing the observed LAI trend. However, it is worth noting that the trend values 

simulated by individual models vary significantly, ranging from -0.0021 yr⁻¹ (INM-CM5-0) to 0.019 yr⁻¹ (NorESM2-MM), 

contributing to substantial uncertainties in trends of simulated LAI.  

A similar analysis was conducted for the normalized interannual trends of observed CSIF and simulated GPP in China 

during 2003–2014 (Fig. 3c). The observed CSIF exhibited a significant trend of 0.13 yr⁻¹, which substantially exceeded all 235 

model simulations, including the MME. Simulated GPP trends ranged from -0.020 yr⁻¹ (INM-CM5-0) to 0.10 yr⁻¹ (MME). 

These results demonstrate a systematic underestimation of GPP trends in China by DGVMs. 

 

Figure 3: Overall annual average (a) LAI and (c) GPP trends in China during 2003-2014. The asterisk (*) indicated the significant 

trend (p<0.05). The Taylor diagrams compare the remotely-sensed and model-simulated global annual mean (b) LAI and (d) GPP 240 
for the historical period (2003-2014). The standard deviation shows the interannual variability of the observed and modeled LAI. 

The dashed green lines show centered root mean square difference (RMSD) between model simulations and satellite observations.  

The Taylor diagram (Fig. 3b, 3d) is employed to evaluate and compare the interannual variations of LAI and GPP among 

individual models, the MME, and observations. According to the reference observational data, the standard deviation (SD) of 

the interannual time series for LAI and CSIF over the Chinese region during 2003–2014 is 0.041 and 0.49, respectively. The 245 

SD of ESM-simulated LAI ranges from 0.011 (MPI-ESM1-2-LR) to 0.089 (NorESM2-MM), while that of GPP ranges from 
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0.139 (ACCESS-ESM1-5) to 0.515 (INM-CM4-8). The MME-simulated SD for LAI and GPP are 0.021 and 0.425, 

respectively. The root mean square deviations (RMSDs) of the models for LAI range from 0.024 (NorESM2-LM) to 0.063 

(NorESM2-MM), and for GPP, from 0.334 (EC-Earth3-Veg) to 0.697 (INM-CM5-0). The MME-simulated RMSD for LAI 

and GPP are 0.022 and 0.249, respectively. Generally, the MME-simulated SD and RMSD for both LAI and GPP are smaller 250 

than those of most individual models. The correlation coefficients between the ESM-simulated interannual LAI time series 

and the observed LAI range from -0.409 (INM-CM5-0) to 0.855 (NorESM2-LM). The correlation coefficient for the MME-

simulated LAI is 0.922, exceeding that of any individual model. Similarly, the correlation coefficients between the ESM-

simulated GPP and observed CSIF time series range from -0.207 (INM-CM5-0) to 0.809 (NorESM2-MM), with the MME-

simulated GPP showing a correlation coefficient of 0.847, which is higher than that of all individual models.  255 

Figure 4a illustrates the observed NPP exhibited a trend of 2.70 g C·m⁻²·yr⁻¹, which lies within the uncertainty range of the 

MME trend (1.19 ± 1.53 g C·m⁻²·yr⁻¹), indicating that models broadly captured the direction of NPP changes (Fig. 6a). 

However, three models—ACCESS-ESM1-5 (-0.49 g C·m⁻²·yr⁻¹), INM-CM5-0 (-1.42 g C·m⁻²·yr⁻¹), and MPI-ESM1-2-LR (-

0.27 g C·m⁻²·yr⁻¹)—simulated declining NPP trends. In contrast, MODIS NPP showed a statistically significant increasing 

trend during 2003–2014, whereas only INM-CM4-8, NorESM2-LM, and the MME produced significant positive trends 260 

among the models. 

 

Figure 4: Overall annual average (a) NPP, (b) NEP and (c) LST trends in China during 2003~2014. The asterisk (*) indicated the 

significant trend (p<0.05). 

The observed NEP exhibited a statistically significant increasing trend (2.66 g C·m⁻²·yr⁻¹), whereas simulated NEP trends 265 

were systematically lower than observations (Fig. 4b). The MME simulated NEP trend of 0.20 ± 0.64 g C·m⁻²·yr⁻¹—

substantially below the observed value—with exceptionally large model simulations uncertainties. Specifically, ACCESS-

ESM1-5 (-0.05 g C·m⁻²·yr⁻¹), BCC-CSM2-MR (-0.21 g C·m⁻²·yr⁻¹), CanESM5 (-0.76 g C·m⁻²·yr⁻¹), and MPI-ESM2-LR (-

0.14 g C·m⁻²·yr⁻¹) simulated declining NEP trends, highlighting the models' underestimation of carbon sink intensification.  

The observed LST exhibited declining trend of -0.0045 °C·m⁻²·yr⁻¹ in China during 2003–2014 (Fig. 4c). which lies within 270 

the uncertainty range of the MME simulated a positive LST trend (0.0088 ± 0.035 °C·m⁻²·yr⁻¹). Notably, only five models—

ACCESS-ESM1-5, CESM2-WACCM, INM-CM5-0, MPI-ESM1-2-HR, and NorESM2-MM—captured negative LST trends, 

whereas all others simulated positive LST trend. The NorESM2-LM model produced a statistically significant positive LST 

trend. 
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3.3 Assessment of spatial patterns and trends in CMIP6 variables 275 

From a spatial perspective, a comparison between simulated and observed LAI trends reveals that most models exhibit 

significant overestimation and underestimation in China (Fig. 5). The MME overestimated, underestimated, and simulated 

well with observed LAI trends in 21.71%, 46.29%, and 32.00% in China, respectively. Specifically, the MME predominantly 

underestimated LAI trends in regions with statistically significant observed increases—particularly southern China, the 

Loess Plateau, and northeastern China—while overestimating trends in areas with declining or non-significant LAI changes 280 

(e.g., northwestern Xinjiang, the Tibetan Plateau, and parts of the North China Plain). Among individual models, EC-Earth3-

Veg exhibited relatively better performance, but even this model aligns with 40.36% of its simulated LAI trends matching 

observations (Fig. 5f). However, most models showed dominant underestimation patterns: CanESM5 (62.97%), INM-CM4-

8 (60.09%), and INM-CM5-0 (63.50%) had the largest proportions of underestimated LAI trends. 
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 285 

Figure 5: Evaluation of the LAI trend performance of the CMIP6 ESMs from 2003 to 2014 in China. A paired t-test with a sample 

size of 9 was conducted using a 3 × 3 sliding window to determine whether the model simulated a trend that was not significantly 

different from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than 

the observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', respectively. 

The spatial distribution of normalized GPP trend discrepancies between simulated and observed CSIF exhibited similar 290 

patterns to that of the model LAI performance (Fig. 6). For the MME, overestimated, underestimated, and simulated well 

GPP trends accounted for 20.26%, 43.47%, and 36.26% in China, respectively (Fig. 6a). Regions with overestimated GPP 

trends were predominantly distributed in Yunnan Province, the Sichuan-Tibet Plateau, and northwestern border areas. 

Among individual models, INM-CM4-8 exhibited the largest proportion of overestimated GPP trends (18.06%), alongside 
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55.62% underestimated areas (Fig. 6g). In contrast, MPI-ESM1-2-LR showed extreme underestimation biases, with 75.47% 295 

of its simulated GPP trends being lower than observations—the highest underestimation proportion among all models—

while only 7.68% of areas were overestimated (Fig. 6k). 

 

Figure 6: Evaluation of the normalized GPP trend performance of the CMIP6 ESMs from 2003 to 2014 in China. A paired t-test 

with a sample size of 9 was conducted using a 3 × 3 sliding window to determine whether the model simulated a trend that was not 300 
significantly different from the observed data (Good), significantly smaller than the observed data (Underestimate), or 

significantly larger than the observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', 

respectively. 

The spatial patterns of discrepancies between simulated and MODIS NPP trends during 2003–2014 are shown in Fig. 7. 

Simulated NPP trends were generally overestimated in southwestern and southern China but underestimated across most 305 
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other regions (Fig. 7). For the MME, overestimated, underestimated, and simulated well NPP trends occupied 28.62%, 

49.81%, and 21.57% of the study area, respectively. Overestimated regions were predominantly concentrated in the Central 

Plains, Sichuan-Tibet Plateau, and Yunnan Province (Fig. 7a). Notably, the NorESM2-LM model showed the highest 

proportion of overestimated NPP trends (47.46%) among all models, with underestimated and simulated well areas covering 

33.84% and 18.70%, respectively. Its overestimations spanned southwestern China, southern China, the North China Plain, 310 

the middle Yangtze River Basin, and parts of northeastern China (Fig. 7l). Two other models—MPI-ESM1-2-HR and 

NorESM2-MM—also exhibited substantial overestimation (42.88% and 46.07%, respectively), while their underestimation 

proportions reached 29.86% and 28.30%. In contrast, CanESM5 and INM-CM5-0 displayed most underestimation biases, 

with 62.27% and 69.85% of their simulated NPP trends falling below observations. 
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 315 

Figure 7: Evaluation of the NPP trend performance of the CMIP6 ESMs from 2003 to 2014 in China. A paired t-test with a sample 

size of 9 was conducted using a 3 × 3 sliding window to determine whether the model simulated a trend that was not significantly 

different from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than 

the observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', respectively. 

Figure 8 displays spatial discrepancies between simulated and MODIS NEP trends across China during 2003–2014. The 320 

MME underestimated, overestimated, and simulated well NEP trends in 61.34%, 16.60%, and 22.06% in China, respectively 

(Fig. 8a), with spatial patterns similar to that of the simulated NPP trend spatial performance, indicating systemic 

uncertainties in coupled carbon flux simulations. Among individual models, NorESM2-LM exhibited the highest proportion 

of overestimated NEP trends (29.72%), alongside 49.38% underestimation and 20.90% simulated well (Fig. 8i), while 
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NorESM2-MM showed the lowest underestimation rate (35.38%) with 27.12% overestimation and 37.51% simulated well 325 

(Fig. 8j). In contrast, all other models underestimated NEP trends in over 50% of the region, with CanESM5 displaying the 

most severe underestimation bias (65.61% underestimated, 12.33% overestimated) (Fig. 8e).  

 

Figure 8: Evaluation of the NEP trend performance of the CMIP6 ESMs from 2003 to 2014 in China. A paired t-test with a sample 

size of 9 was conducted using a 3 × 3 sliding window to determine whether the model simulated a trend that was not significantly 330 
different from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than 

the observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', respectively. 

Figure 9 illustrates spatial differences between simulated and observed LST trends in China during 2003–2014. Most models 

overestimated LST trends, with the MME overestimating, underestimating, and simulating well observations in 54.57%, 

28.02%, and 17.42% of the study area, respectively (Fig. 9a). Spatially, the MME overestimated LST trends in southern 335 

China, northeastern China, Xinjiang, the Tibetan Plateau, and the Shaanxi-Gansu region compared to observations. While 

some models proportion of underestimated LST trend—including ACCESS-ESM1-5 (45.36%), CESM2-WACCM (46.19%), 

INM-CM5-0 (63.99%), and NorESM2-MM (59.59%)—showed substantial underestimation biases, the majority of models 

still exhibited larger overestimated areas. Notably, NorESM2-LM displayed the most extreme overestimation, with 84.38% 
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of its simulated LST trends exceeding observations, except in localized underestimations over the North China Plain, central 340 

Inner Mongolia, and parts of Yunnan (Fig. 9l). 

 

Figure 9: Evaluation of the LST trend performance of the CMIP6 ESMs from 2003 to 2014 in China. A paired t-test with a sample 

size of 9 was conducted using a 3 × 3 sliding window to determine whether the model simulated a trend that was not significantly 

different from the observed data (Good), significantly smaller than the observed data (Underestimate), or significantly larger than 345 
the observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', respectively. 
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4 Discussion 

4.1 ESM captures CMIP6 variables trends in China 

Previous studies have found that, whether for CMIP5 or CMIP6, models have not effectively captured the long-term trends 

of vegetation (Anav et al., 2013; Song et al., 2021), Overestimations of LAI, GPP, and NPP are more common in the mid-350 

latitude regions of Asia (Sun et al., 2023). This study also reveals that the models have misrepresented the trends of LAI and 

GPP in the China region, with significant underestimation of LAI and GPP growth in the forested areas of central and 

southern China, and overestimation of LAI and GPP trends in grassland areas of eastern Inner Mongolia and the Tibetan 

Plateau, where the growth or decline of LAI and GPP is less significant. Ecosystem models suggest that the global greening 

of vegetation is mainly driven by the increase in atmospheric CO2 concentrations, while climate change and land-use 355 

changes are strong regional drivers of vegetation dynamics (Chen et al., 2019; Zhu et al., 2016). The misrepresentation of 

LAI and GPP trends in the models can be attributed to unreasonable parameter settings and missing mechanisms (Song et al., 

2021). The overestimation of the growing season length (GSL) (Verger et al., 2016) in the models is a key factor 

contributing to the widespread overestimation of LAI in northern and temperate regions. Additionally, in the models, the 

reduction in water limitation mechanisms results in the overestimation of LAI in non-forest areas (Song et al., 2021). The 360 

overestimation of maximum carboxylation rates in the models leads to excessive biomass allocation to leaves, further 

overestimating LAI in some regions, compounded by missing mechanisms (Li et al., 2019a). The lack of adequate 

mechanisms for soil moisture and nutrient limitations in the models results in an overestimation of the positive drivers for 

increased LAI caused by elevated atmospheric CO2 concentrations, temperature rise, and woody plant invasions (Huang et 

al., 2017; Reich et al., 2014; Wang et al., 2014).  365 

Despite substantial progress in understanding vegetation autotrophic respiration through field experiments and observational 

studies, significant challenges remain in simulating respiratory processes and their responses to environmental changes due 

to inherent physiological complexities (Smith and Dukes, 2013; Yuan et al., 2024). Empirical studies suggest that the ratio of 

NPP to GPP often converges toward a constant value across regions, vegetation adapts photorespiration to changes in 

photosynthesis through self-regulation (Gifford, 1995; Dewar et al., 1998; Collalti and Prentice, 2019). However, respiratory 370 

processes are inherently harder to quantify than photosynthesis, leading models to rely heavily on empirical functions for 

simulating NPP and NEP. Such parameterizations often fail to capture real-world vegetation respiratory acclimation. Spatial 

discrepancies in ESM simulated NPP trends (Fig. 7) mirror those of GPP trends (Fig. 6), with systematic underestimations in 

northeastern forested areas, the Loess Plateau, Inner Mongolian grasslands, and the middle-lower Yangtze River Basin, 

alongside overestimations over Tibetan Plateau grasslands. These biases indicate that ESMs primarily misrepresent trends in 375 

photosynthetic capacity, which leads to misestimation in simulated NPP. Satellite observations reveal pronounced NPP 

declines in Guangdong and Fujian provinces during 2003–2014 (Fig. 2c), yet models paradoxically overestimate NPP trends 

in these regions. Critically, the NPP and GPP ratio is not static but varies across ecosystems and responds to environmental 

drivers (Zhang et al., 2009; Amthor, 2000; Delucia et al., 2007). For instance, temperature, precipitation, and rising CO₂ 
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levels fertilization can enhance plant carbon-use efficiency by reducing photorespiration, thereby increasing NPP (Slot and 380 

Kitajima, 2015; Schuur et al., 2001; Aspinwall et al., 2017), leads to changes of the ratio of NPP and GPP (Zhang et al., 

2009). Schuur et al. (2001) demonstrated that excessive rainfall in warm-humid regions (e.g., southern China) may leach 

nutrients, reduce light availability, and impair soil oxygen diffusion—all suppressing NPP. Current ESMs inadequately 

represent these nuanced respiratory responses to environmental, particularly in regions like Guangdong and Fujian.  

ESMs face critical limitations in representing soil carbon-atmosphere interactions and respiratory mechanisms, largely due to 385 

insufficient understanding of large-scale vegetation autoregulatory respiration and soil heterotrophic respiration processes 

(Zhao et al., 2019; Tang et al., 2020). These models often lack mechanistic descriptions of soil respiration (Tang et al., 2020) 

and struggle to simulate soil carbon-climate feedbacks (Lehmann and Kleber, 2015). The spatial discrepancies between 

simulated and observed NEP trends in China (Fig. 8) closely resemble those of NPP trends (Fig. 7), as NEP—calculated as 

the difference between NPP and soil heterotrophic respiration—inherits biases from both components. Models fail to capture 390 

regional heterogeneity in soil respiration, and misestimation in simulated NPP (e.g., underestimation in afforestation zones 

or overestimation in grasslands) propagate directly into NEP biases. For instance, systematic underestimation of NPP in 

northeastern forests and the Loess Plateau (Fig. 8), combined with oversimplified soil respiration parameterizations, leads to 

misestimation in simulated NEP. This highlights a fundamental issue: current models cannot disentangle uncertainties in 

photosynthesis and respiration, nor represent their spatially divergent responses to environmental drivers. These limitations 395 

underscore the urgent need for mechanistic advancements in simulating soil-vegetation-atmosphere continuum dynamics. 

In southern China and northeastern forested regions, simulated LST trends were significantly higher than observed values 

(Fig. 9), coinciding with systematic underestimation of LAI trends in these areas (Fig. 5). This contradiction highlights a 

critical model bias: increased LAI in forested ecosystems reduces LST through enhanced shortwave radiation interception, 

modified albedo, and altered aerodynamic and surface resistances (Li et al., 2015; Li et al., 2019b). Vegetation growth 400 

typically cools surface temperatures by improving canopy shading and evapotranspiration efficiency—mechanisms poorly 

represented in current parameterizations. The models’ failure to capture LAI increases thus leads to simulated LST warming 

trends, underscoring the necessity for improved representation of biophysical feedbacks in land surface. 

4.2 Potential anthropogenic impact for ESM inaccuracy 

A series of ecological engineering initiatives, such as afforestation, reforestation, and grassland restoration in southern China 405 

and the Loess Plateau, have greatly promoted vegetation growth. However, the models may fail to capture the effects of 

these human activities. ESMs likely fail to adequately represent these anthropogenic impacts. 

Figures 10 and Figures 11 compare observed and simulated TCF trends at both overall and spatial scales during 2003–2014. 

The observed TCF exhibited a significant increasing trend of 0.14% yr⁻¹ (Fig. 10), whereas simulated trends ranged from -

0.0041% yr⁻¹ (INM-CM4-8) to 0.096% yr⁻¹ (MPI-ESM1-2-HR), with the MME yielding trend of 0.039 ± 0.032% yr⁻¹. 410 

Critically, all models systematically underestimated TCF changes, and none captured the significant increase observed in 

satellite data. 
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Figure 10: Overall annual average TCF trends in China during 2003~2014. The asterisk (*) indicated the significant trend 

(p<0.05). 415 

Figure 11 illustrates spatial differences between simulated and observed TCF trends across China. While most models 

showed reasonable TCF trend simulations in the sparsely vegetated northwestern regions, they overestimated trends on the 

Tibetan Plateau and underestimated trends in eastern China. The MME underestimated, overestimated, and simulated well 

TCF trends in 43.72%, 21.47%, and 34.81% in China, respectively. CanESM5 and MPI-ESM1-2-HR demonstrated 

relatively better simulated TCF trend with observations, well simulating TCF trends in 41.81% and 42.79% of the area, 420 

respectively, while overestimating 22.90% and 21.76% and underestimating 35.28% and 35.45% (Fig. 11d and 11i). 

However, both models still overestimated TCF changes in eastern coastal regions and parts of the Central Plains. Notably, 

MPI-ESM1-2-LR exhibited the highest proportion of overestimated TCF trends (27.92%) among all models, with 36.24% 

underestimation. In contrast, INM-CM5-0 showed the most underestimation, underestimating TCF trends in 53.29% of the 

area while overestimating 12.46%. 425 
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Figure 11: Evaluation of the tree cover prcentage trend performance of the CMIP6 ESM from 2003 to 2014 in China. A paired t-

test with a sample size of 9 was conducted using a 3×3 sliding window to determine whether the model simulated a trend that was 

not significantly different from the observed data (Good), significantly smaller than the observed data (Underestimate), or 

significantly larger than the observed data (Overestimate). U, G, and O represent 'Underestimate ', 'Good', and 'Overestimate', 430 
respectively. 

The underestimation in regions with observed significant TCF increases (e.g., afforestation zones in southern China and the 

Loess Plateau) suggests that CMIP6 models likely fail to adequately represent anthropogenic contributions to vegetation 

growth, such as afforestation policies and ecological engineering impacts.  

4.3 Uncertain of the observed LAI and CSIF in China 435 

Accurate observational data are essential for determining and improving the precision of models (Luo et al., 2016). In this 

study, two remote sensing datasets that better reflect actual vegetation growth, namely the reprocessed MODIS dataset and 

the CSIF dataset, were selected for evaluation. However, satellite remote sensing data in China are subject to considerable 

uncertainty due to various factors. High cloud cover during the rainy season and snow cover in high-latitude areas during 

winter can introduce inaccuracies. Additionally, satellite sensors are prone to degradation over time, leading to reduced 440 
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sensitivity. Although the reprocessed MODIS and CSIF datasets utilize spatiotemporal filtering and machine learning 

techniques to enhance data quality (Zhang et al., 2018; Yuan et al., 2011), significant uncertainties remain. 

5.Conclusion 

This study evaluates the trends performance of CMIP6 ESM-simulated LAI, GPP, NPP, NEP and LST in China from 2003 

to 2014 using MODIS (LAI, NPP, NEP and LST) and CSIF, as observational references. Overall, ESMs fail to capture the 445 

trends of CMIP6 ESM-simulated variables in China. In particular, the simulations overestimates and underestimates that are 

spatially distributed over a large part of the area. The 12 CMIP6 ESMs revealed substantial errors in overall trends in LAI, 

NPP, and LST, along with significant underestimations in overall trends of GPP and NEP. Discrepancies between observed 

and simulated trends reached 0.03·yr⁻¹ for GPP and 2.46 g C·m⁻²·yr⁻¹ for NEP. Spatially, CMIP6 ESMs underestimated 

trends in LAI, GPP, NPP, and NEP across China. The MME underestimated these variables in 46.29% (LAI), 43.47% (GPP), 450 

49.81% (NPP), and 61.34% (NEP) of the study area. Concurrently, models predominantly overestimated LST trends in 

southern China, while predominantly underestimating trends in northern China (MME overestimation: 54.57% and 

underestimation: 28.02%). 

The CMIP6 ESMs exhibit significant misestimation of trends in carbon cycle physical and chemical variables, primarily 

attributed to inadequate response of environmental factor dynamics and insufficient consideration of anthropogenic 455 

influences. This limitation is compounded by the model's failure to adequately represent ecosystem and soil respiration 

mechanisms, which affects the simulation accuracy of NPP and NEP. Furthermore, systematic misestimation of LAI trend 

prevents accurate reproduction of the inhibitory effect of LAI on LST. 

Code and data availability 

The R code used for analysis is publicly available. Required packages include rtrend, terra and tidyverse, accessible via 460 

CRAN repositories at https://cran.r-project.org/web/packages. All data used in this study are publicly available. The raw 

CMIP6 data (Eyring et al., 2016) can be downloaded from the USA portal of the Earth System Grid Federation 

(https://aims2.llnl.gov/search/cmip6). The MODIS LAI data (Yuan et al., 2011) can be downloaded from Data Publisher for 

Earth & Environmental Science: http://globalchange.bnu.edu.cn/research/laiv061. The CSIF data (Zhang et al., 2018) can be 

accessed through Figshare: https://doi.org/10.6084/m9.figshare.6387494 (Zhang, 2018). The MODIS NPP data can be 465 

download from NASA Land Processes Distributed Active Archive Center: https://doi.org/10.5067/MODIS/MOD17A3H.006 

(Running, 2015). The NEP data can be download from Loess Plateau SubCenter, National Earth System Science Data Center, 

National Science & Technology Infrastructure of China (http://loess.geodata.cn). The LST data (Yu et al., 2022) can be 

download from National Tibetan Plateau/Third Pole Environment Data Center: 

https://doi.org/10.11888/Meteoro.tpdc.271663 (Zhao, 2021). The VCF data employed to describe the TCF can be 470 
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downloaded from NASA Land Processes Distributed Active Archive Center: https://doi.org/10.5067/MODIS/MOD44B.006 

(Dimiceli, 2015). 
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