Reply to Reviewers

Dear Reviewers,

Thank you for taking the time to review our submission titled “Evaluation of annual trends in
carbon cycle variables simulated by CMIP6 Earth system models in China” to Geoscientific Model
Development. We are grateful for your feedback and suggestions, which have significantly
strengthened the manuscript. All the comments have been carefully considered. We believe that the
revisions being made have addressed the concerns raised by the reviewers. We hope it meets the
standards for publication in Geoscientific Model Development.

Below, we provide point-to-point replies. Each of reviewers’ comments is first presented,
followed by our reply and changes in the paper. In the revised manuscript, all the changes are marked

in blue. Thank you once again for the time and expertise in reviewing our manuscript.
Sincerely,

Ziyang Li

Reviewer 1:

General Comment:

This manuscript presents a valuable and timely assessment of the performance of CMIP6 Earth
System Models (ESMs) in simulating key carbon cycle variables (LAI, GPP, NPP, NEP, LST) over
China during the historical period. The systematic comparison against satellite-derived
observational datasets provides crucial insights into model biases and uncertainties. The study is
well-structured, addresses a significant gap in evaluating regional ESM performance, and offers
meaningful contributions towards understanding model limitations for future projections. The
identification of spatial patterns of misestimation and the discussion linking deficiencies to model
processes are particularly insightful. Overall, this is a solid piece of research with important
implications for the carbon cycle modeling community.

While the manuscript is strong in its current form, I have several suggestions aimed at enhancing its
comprehensiveness, clarity, and robustness:

Reply:

Thanks for the comprehensive and professional comments. They are extremely helpful and
beneficial for improving our paper. Below, we have carefully prepared point-to-point replies for the
comments, particularly about the influences that affect the accuracy of the models. We hope that the
updated manuscript can address all your concerns.

Specific Comments (1):

The analysis focuses effectively on interannual trends. However, the seasonal cycle is a fundamental
aspect of ecosystem carbon dynamics and ESM performance. Could the authors provide some
analysis or discussion regarding how well the evaluated CMIP6 models capture the seasonal patterns
of carbon cycle indicators for terrestrial ecosystems across different regions of China?



Reply:

We thank the reviewer for raising this important point regarding the seasonal cycle in
ecosystem carbon dynamics and model performance. We acknowledge that the seasonal cycle is
indeed a fundamental aspect of terrestrial carbon cycling. However, the primary focus of this
particular study is on the interannual trends and variability of the carbon cycle indicators across
China. Our analysis and model evaluation framework were specifically designed to address
questions related to long-term, year-to-year changes and, therefore, do not encompass a detailed
assessment of seasonal patterns. We agree that evaluating how well CMIP6 models capture regional
seasonal dynamics represents a valuable and complementary research direction. To address the
reviewer's suggestion, we will explicitly include a discussion in the manuscript highlighting the
importance of assessing seasonal cycles in future work to further improve our understanding of
model capabilities in simulating phenological responses and intra-annual carbon fluxes across
different regions of China.

Changes in the paper:

Line 4331-434

“However, it is important to note that while this study focused on evaluating model
performance in capturing interannual trends and variability, the assessment of seasonal cycle
dynamics (e.g., phenological timing, amplitude of seasonal fluctuations) across China's diverse
regions represents a critical avenue for future research to further refine our understanding of model

capabilities in simulating terrestrial carbon cycle processes.”

Specific Comments(2):

Figure 3 effectively presents the evaluation of simulated interannual variability for LAI and GPP
against observations. To ensure consistency and provide a comparable level of detail for all key
variables, | recommend extending this type of analysis to NPP, NEP, and LST. Creating a new figure
(or adapting Figure 4) to include Taylor diagrams (or similar metrics) assessing interannual
variability for NPP, NEP, and LST, analogous to Figure 3, would greatly enhance the paper's
completeness and allow for a direct comparison of variability performance across all five variables.
Reply:

We thank the reviewer for this excellent suggestion. We agree that applying a consistent
evaluation framework across all key variables is crucial for a comprehensive and comparable
assessment of model performance regarding interannual variability.

In direct response to this comment, we have now extended our analysis of interannual
variability to include NPP, NEP, and LST, following the same methodology used for LAI and GPP
in the original Figure 3. To present these results clearly and maintain a comparable level of detail:
The Taylor diagrams evaluating the interannual variability of NPP and NEP have been incorporated
into a revised Figure 3 (which now also includes LAI and GPP). The Taylor diagram evaluating the
interannual variability of LST has been incorporated into a revised Figure 4 (alongside its temporal
trend).

Changes in the paper:

Line 267-270

“Figure 3: Overall annual average (a) NPP and (c) NEP trends in China during 2003-2014.
The asterisk (*) indicates the significant trend (p<0.05). The Taylor diagrams compare the remotely-

sensed and model-simulated annual mean (b) NPP and (d) NEP for the historical period (2003-



2014). The standard deviation shows the interannual variability of the observed and simulated LAI
The dashed green lines show centered root mean square difference (RMSD) between model
simulations and satellite observations.”

Line 271-277

“The Taylor diagram (Fig. 3b, 3d) evaluates interannual variations of NPP and NEP across
individual models, the MME, and observations. The SD of ESM-simulated NPP ranges from 7.70
(ACCESS-ESM1-5) to 24.95 (BCC-CSM2-MR), while RMSD values span from 8.82 (INM-CM4-8)
to 25.66 (INM-CM35-0). For NEP, SD ranges from 9.19 (CanESM5) to 20.24 (BCC-CSM2-MR) with
RMSD values between 13.55 (IPSL-CM6A-LR) and 21.41 (BCC-CSM2-MR). The MME
demonstrates notably lower variability, with SD values of 5.65 for NPP and 6.19 for NEP, and
RMSD values of 9.71 for NPP and 11.28 for NEP. Generally, the MME-simulated SD and RMSD
for both variables are lower than those of all individual models.”

Line 284-287

“Figure 4: (a) Overall annual average LST trends in China during 2003-2014. The asterisk (*)
indicates the significant trend (p<0.05). (b) The Taylor diagrams compare the remotely-sensed and
model-simulated global annual mean LST for the historical period (2003-2014). The standard
deviation shows the interannual variability of the observed and simulated LAI. The dashed green
lines show centered root mean square difference (RMSD) between model simulations and satellite
observations.”

Line 288-291

“The Taylor diagram evaluates interannual variations of LST across individual models, the
MME, and observations (Fig. 4). The SD of ESM-simulated LST ranges from 0.20 (INM-CM4-8) to
0.48 (IPSL-CMG6A-LR), while RMSD values span from 0.30 (MPI-ESM1-2-HR) to 0.59 (IPSL-
CMG6A-LR). The MME demonstrates notably lower variability and error, with an SD of 0.10 and
RMSD of 0.36.”

Specific Comments(3):

Presenting the observed interannual trends for the satellite datasets (LAI, NPP, NEP, LST,
CSIF-derived GPP) is essential context. However, to streamline the main manuscript narrative and
focus it more directly on the model evaluation results and analysis, I suggest moving the detailed
presentation of the observed trend maps (e.g., Figure 1 or its equivalent) to the Supplementary
Material. The main text can then succinctly summarize the key features of the observed trends before
delving into the model comparison. This would improve the flow and conciseness of the core results
section.
Reply:
We thank the reviewer for this constructive suggestion to improve the narrative flow and conciseness
of the manuscript. We agree that focusing the main text more directly on the model evaluation results
enhances the clarity of our core analysis. Accordingly, we have moved the detailed observational
trend maps for all key variables (specifically, the original Figures 2, 9, and 10, and Table 2) to the
Supplementary Material. The main text now provides a succinct summary of the key observed trends
before delving into the model comparison, which allows readers to grasp the essential context
without interrupting the primary narrative focused on the model assessment.
Changes in the paper:

Add Table S1, Figures S1-S8 to Supplement Materials.



Line 210-227

From 2003 to 2014, most regions across China exhibited increasing trends in MODIS LAI
(82.60% of the area, Fig. S1) and CSIF (86.50%, Fig. S2), with significant increases covering 44.10%
for LAI and 48.34% for CSIF concentrated in southern forests, northeastern China, and the Loess
Plateau. Notably, CSIF demonstrated stronger rising trends than LAI in the North China Plain.
MODIS NPP trends (Fig. S3) showed minimal significant changes, as 84.57% of the area exhibited
non-significant variability, while significant increases and decreases covered only 15.23% and 0.20%
respectively. These patterns closely mirrored MODIS NEP trends (Fig. S4), where 85.07% of the
area showed non-significant changes with merely 0.28% significant decreases. For MODIS LST
during 2003-2019 (Fig. S5), 47.34% and 52.66% of the study area exhibited increasing and
decreasing LST trends, respectively, yet 97.89% of the area showed non-significant changes, with
significant warming limited to 0.78%.

Spatially coherent trends emerged across northwestern China (Xinjiang grasslands/croplands,
central Inner Mongolia, Tibetan Plateau), where declining LAI and CSIF aligned with significant
LST increases, while vegetation productivity declines were also observed in parts of southern Tibet.
Conversely, northeastern China consistently exhibited significant increases in LAI, CSIF, NPP, and
NEP, coinciding with declining LST trends. The Loess Plateau (northern Shaanxi/Ningxia) similarly
demonstrated concurrent increases in LAI, CSIF, NPP, and NEP. Southern forested regions showed
LAI and CSIF gains, though central Yunnan experienced notable CSIF reductions alongside NPP
and NEP declines. Contrasting patterns characterized eastern China: the North China Plain had
significant CSIF increases but prominent CSIF reductions later, alongside NEP declines and LST
warming, while southeastern provinces (Guangdong, Fujian) and the Yangtze River Delta featured
NPP and NEP reductions alongside localized CSIF decreases.”

Specific Comments(4):

Section 4.3, "Uncertainty of the observed LAI and CSIF in China," rightly addresses uncertainties
in these specific observational products. However, the study relies on multiple satellite-derived
datasets (LAI, NPP, NEP, LST, CSIF). To provide a more comprehensive assessment of uncertainty
sources affecting the benchmark itself, the discussion in this section should be expanded to explicitly
consider the uncertainties associated with all the primary observational datasets used (NPP, NEP,
and LST, in addition to LAI and CSIF).

Reply:

We sincerely thank the reviewer for this insightful suggestion. We agree that a comprehensive
discussion of uncertainties across all primary observational datasets is crucial for a robust
interpretation of the model evaluation results. In direct response to this comment, we have
significantly expanded Section 4.3. The section has been retitled to reflect its broader scope (e.g.,
"Uncertainties in the Observational Benchmark Datasets"), and the discussion now explicitly
incorporates a detailed analysis of the uncertainties associated with the MODIS NPP, NEP, and LST
products, in addition to the existing analysis of LAI and CSIF-derived GPP uncertainties.

Changes in the paper:
Line 464-475
“4.3 Uncertain of the observed datasets in China

Accurate observational data are essential for determining and improving the precision of



models (Luo et al., 2016). In this study, two remote sensing datasets that better reflect actual
vegetation growth, namely the reprocessed MODIS dataset and the CSIF dataset, were selected for
evaluation. However, satellite remote sensing data in China are subject to considerable uncertainty
due to various factors. High cloud cover during the rainy season and snow cover in high-latitude
areas during winter can introduce inaccuracies. Additionally, satellite sensors are prone to
degradation over time, leading to reduced sensitivity. Although the reprocessed MODIS and CSIF
datasets utilize spatiotemporal filtering and machine learning techniques to enhance data quality
(Zhang et al., 2018, Yuan et al., 2011), significant uncertainties remain. Similarly, limitations in
satellite remote sensing-based carbon accounting (Araza et al., 2023), contribute to substantial
uncertainties in MODIS NPP and NEP products (Sun et al., 2021; Huang et al., 2018, Ma et al.,
2016). Concurrently, studies attribute uncertainties in MODIS LST primarily to spatial
inconsistencies and surface emissivity uncertainties, the latter resulting from inadequate global

representativeness in land cover classification (Ma et al., 2021; Wan et al., 2002; Duan et al., 2019).”

Specific comments(5):

The analysis focuses on the period 2003-2014. Could the authors please provide a more explicit
justification for selecting this specific timeframe? Clarifying the rationale is important for
interpreting the results and their broader applicability.

Reply:

We appreciate the reviewer's suggestion for clarifying the rationale behind our selected
timeframe (2003-2014). The start year of 2003 was chosen primarily to ensure the stability and
consistency of the MODIS sensor data used in our analysis. Following the launch of the MODIS
Aqua satellite in October 2002, which formed the dual-satellite constellation (Terra and Aqua)
essential for improved temporal coverage, we avoided the immediate post-launch period (2002) to
mitigate potential transient effects or calibration uncertainties that could introduce abrupt changes
in the vegetation monitoring record. Therefore, 2003 marks the beginning of a stable, dual-sensor
era for MODIS data. The end year of 2014 aligns with the termination point of the historical
experiment simulations provided by the CMIP6 models, which constitute a core component of our
comparative analysis. This timeframe selection ensures both the reliability of the benchmark remote
sensing data and direct comparability with the available CMIP6 historical climate model outputs.
Changes in the paper:

Line 137-139

“The analysis period spans 2003 to 2014. This timeframe was selected to utilize the stable
post-launch era of the MODIS Terra-Aqua dual-satellite constellation for vegetation monitoring,
commencing after potential initial sensor calibration transients, and to align with the end year of

the CMIP6 historical experiment simulations used for comparison.”

Technical corrections(1):

On page 2, line 33, “..regulating stomatal conductance, to effectively respond to rising
atmospheric CO: concentrations...” should be “...regulating stomatal conductance to effectively
respond to rising atmospheric CO: concentrations...". Please check and change accordingly.
Reply:

Thanks for pointing this mistake out. We revised the sentence to correct the mistake.
Changes in the paper:



Line 32-34

“Vegetations maximize water-use efficiency at the leaf scale by dynamically regulating
stomatal conductance to effectively respond to rising atmospheric CO: concentrations and global
warming (Fu et al., 2022).”

Technical corrections(2):

On page 5, line 112, “where the inter-model errors is mitigated through model averaging,
thereby amplifying underlying true signals.” should be “where the inter-model errors are--". Please
check and change accordingly.

Reply:

Thanks for pointing this mistake out. We revised the sentence to correct the mistake.
Changes in the paper:

Line 129-130

“This approach combines the true and noise signals, where the inter-model errors are
mitigated through model averaging, thereby amplifying the underlying true signals.”

Technical corrections(3):

On page 20, line 350, “(Anav et al., 2013; Song et al., 2021),” should be “(Anav et al., 2013;
Song et al., 2021).”. Please check and change accordingly.

Reply:

Thanks for pointing this mistake out. We revised the sentence to correct the mistake.
Changes in the paper:

Line 366-367

“Previous studies have found that, whether for CMIP5 or CMIP6, models have not effectively

captured the long-term trends of vegetation (Anav et al., 2013; Song et al., 2021).”

Technical corrections(4):

On page 23, line 427, “tree cover prcentage” should be “tree cover percentage”. Please check
and change accordingly.
Reply:

Thanks for pointing this mistake out. We revised the sentence to correct the mistake.
Changes in the paper:

Figure S8

“Figure S8: Evaluation of the tree cover percentage trend performance of the CMIP6 ESM
from 2003 to 2014 in China.”



Reviewer 2:

Dear Prof. Li,

Thank you sincerely for dedicating your time to provide the Community Comment on our
submission titled “Evaluation of annual trends in carbon cycle variables simulated by CMIP6 Earth
system models in China” to Geoscientific Model Development. Your insights and feedback are
highly valued, as they have offered critical guidance to further refine and strengthen the scientific
rigor of our manuscript.

We have carefully and thoroughly reviewed every point raised in your comment, and have
made targeted revisions to address the concerns you noted—we are confident these adjustments
have enhanced the quality and clarity of the work. It is our sincere hope that the revised manuscript
now aligns well with the publication standards of Geoscientific Model Development.

Below, we present a detailed point-to-point response to your comment: first, we restate your
original comment for clarity, followed by our specific reply and a description of the corresponding
revisions made to the paper. For ease of reference, all modifications in the revised manuscript are
highlighted in blue.

Once again, we would like to express our gratitude for your professional expertise and the time
you have invested in reviewing our work.

Sincerely,
Ziyang Li

Overview

Leaf Area Index (LAI), Gross Primary Productivity (GPP), Net Primary Productivity (NPP),
Net Ecosystem Productivity (NEP) and Land Surface Temperature (LST) as key indicators of carbon
cycle in terrestrial ecosystems. In this paper, this research provides a quite interesting question about
the interannual trends performance of LAI, GPP, NPP, NEP and LST simulated by 12 CMIP6 Earth
System Models.

This study is significant as it provides information on how Earth System Models fail to capture
the trends of CMIP6 ESM-simulated variables in China. The manuscript falls within the scope of
the journal and should be considered for publication subject to minor revisions.

General comment (1)

In the introduction, the author does not clearly present the research significance, particularly
the practical relevance of evaluating five indices from CMIP6 simulations.
Reply:

We thank the reviewer for this valuable comment. In response, we have expanded the
Introduction to provide a clearer and more detailed explanation of the scientific definitions and
practical significance of the five key indicators (LAI, GPP, NPP, NEP, and LST) evaluated from the
CMIP6 simulations. These additions highlight the practical relevance of our study in understanding
ecosystem carbon dynamics and model performance, thereby strengthening the motivation and
context of our research.

Changes in the paper:

Lines 47-61

“The LAI defined as the total one-sided leaf area per unit ground surface area, is a key



parameter of vegetation canopy structure that directly influences light interception, transpiration,
and the spatial heterogeneity of GPP. GPP refers to the total amount of carbon dioxide fixed into
organic compounds by vegetation through photosynthesis, serving as a core indicator of an
ecosystem's carbon sequestration capacity. NPP represents the net carbon accumulation after
subtracting autotrophic respiration from total photosynthetic fixation, reflecting the primary
production potential and health of ecosystems as influenced by GPP and plant physiological
regulation. NEP denotes the net carbon exchange between the ecosystem and the atmosphere by
further subtracting heterotrophic respiration from NPP, making it a crucial measure for assessing
regional carbon source/sink status under the influence of environmental factors such as atmospheric
CO: and climate (Fang et al., 2001). LST is the thermodynamic temperature at the land-atmosphere
interface, playing a key role in surface energy and water exchange while jointly affecting ecological
processes through interactions with solar radiation, soil properties, vegetation, and atmospheric
conditions (Li et al., 2023). In-depth research on LST facilitates a deeper understanding of surface-
atmosphere exchange processes at global and regional scales and provides high-quality quantitative
indicators of surface conditions for scientific applications. Consequently, LST has been designated
as an indispensable observation indicator for the International Geosphere and Biosphere Program
(IGBP) and the Global Climate Observing System (GCOS) (Townshend et al., 1994, Hollmann et
al, 2013).”

General comment (2)
Among the 12 CMIP6 models evaluated, which one performs best?
Reply:
Our comprehensive evaluation of 12 CMIP6 models reveals that no single model performs
consistently best across all variables (LAI, GPP, NPP, NEP, LST) and regions in China. It is
noteworthy that while certain models may appear to capture the overall interannual trend of a
specific variable reasonably well at the aggregate scale, this apparent skill often masks substantial
and widespread spatial biases, where large geographical areas exhibit significant misestimation of
both the magnitude and direction of the trend. This discrepancy between a seemingly accurate
broad-scale trend and poor spatial realism is a common limitation among the models. Consequently,
we caution against endorsing any single model as universally reliable. Instead, despite the noted
performance limitations of the Multi-Model Ensemble mean (MME) across China's complex
landscapes, we still recommend its use as a pragmatic approach to balance out individual model
biases and provide a more conservative projection for assessing regional vegetation and climate
dynamics.
Changes in the paper:

Lines 125-129
“To provide a more robust and integrated assessment than any single model can offer, we primarily
utilize the Multi-Model Ensemble (MME) mean, calculated as the arithmetic mean of all available
models, as a central benchmark for evaluating the simulated spatial patterns and interannual
variability of vegetation and climatic variables over China. The MME mean-based approach, an
established statistical integration technique, synthesizes outputs from diverse models through

averaging (Zeng et al., 2016).”

General comment (3)



It is recommended to evaluate an ensemble model.
Reply:

We thank the reviewer for raising this important point regarding ensemble model evaluation.
We fully agree with the recommendation, and we would like to clarify that the core of our analysis
is precisely built upon the systematic evaluation of a Multi-Model Ensemble (MME) mean, which
is constructed from the simple average of all 14 available model outputs. The performance of this
MME for all key ecosystem carbon cycle variables (LAI, GPP, NPP, NEP and LST) across China is
not only a central focus of our results but also forms the primary basis for our main conclusions. We
contend that the MME serves a dual purpose: it functions both as a robust integrated benchmark that
collectively represents the current modeling capability and as a diagnostic tool that reveals common
biases and uncertainties, thereby providing a critical reference point for assessing the overall model
performance and guiding future model development.
Changes in the paper:

Line 125-129

“To provide a more robust and integrated assessment than any single model can offer, we
primarily utilize the Multi-Model Ensemble (MME) mean, calculated as the arithmetic mean of all
available models, as a central benchmark for evaluating the simulated spatial patterns and
interannual variability of vegetation and climatic variables over China. The MME mean-based
approach, an established statistical integration technique, synthesizes outputs from diverse models

through averaging (Zeng et al., 2016).”

General comment (4)

It is recommended that the author focus on specific regions (e.g., the North China Plain, the
Pearl River Delta) and provide targeted suggestions for improving the simulations.

Reply:

We sincerely thank the reviewer for this constructive suggestion to enhance the practical value
of our study. We agree that providing region-specific insights is crucial for guiding future model
development. In our initial analysis, we indeed assessed model performance across several key
regions, including the Tibetan Plateau, the Loess Plateau, northeastern China, the North China Plain,
and southern China, as reflected in the spatial evaluation. However, we acknowledge that the
conclusion section lacked targeted discussions for these specific areas. In direct response to your
comment, we have now supplemented the conclusion with a focused analysis and specific
recommendations for three representative regions exhibiting distinct model biases: the Tibetan
Plateau (where models show a systematic overestimation), the Loess Plateau (characterized by a
general underestimation), and the Pearl River Basin (where simulations show significant and
complex errors).

Changes in the paper:

Lines 491-495

“The model simulations exhibit pronounced regional biases, including a systematic
overestimation of ecological variables on the cold-arid Tibetan Plateau, a general underestimation
over the extensively vegetated Loess Plateau likely linked to misrepresented ecological restoration
processes, and widespread simulation errors in the rapidly urbanizing Pearl River Basin, potentially

due to unaccounted-for anthropogenic pressures.”



Reviewer 3:

Dear Reviewers,

Thank you sincerely for dedicating your time to provide the Community Comment on our
submission titled “Evaluation of annual trends in carbon cycle variables simulated by CMIP6 Earth
system models in China” to Geoscientific Model Development. Your insights and feedback are
highly valued, as they have offered critical guidance to further refine and strengthen the scientific
rigor of our manuscript.

We have carefully and thoroughly reviewed every point raised in your comment, and have
made targeted revisions to address the concerns you noted—we are confident these adjustments
have enhanced the quality and clarity of the work. It is our sincere hope that the revised manuscript
now aligns well with the publication standards of Geoscientific Model Development.

Below, we present a detailed point-to-point response to your comment: first, we restate your
original comment for clarity, followed by our specific reply and a description of the corresponding
revisions made to the paper. For ease of reference, all modifications in the revised manuscript are
highlighted in blue.

Once again, we would like to express our gratitude for your professional expertise and the time
you have invested in reviewing our work.

Sincerely,
Ziyang Li

Overview

This manuscript evaluates annual trends in LAI, GPP, NPP, NEP, and LST over China using
CMIP6 Earth system models. While the topic is relevant, the analysis does not provide new insight
into the causes of model—observation discrepancies or pathways to reduce them. The contribution
would be stronger with a clear attribution of biases and concrete recommendations for model
improvement. In addition, the manuscript contains numerous grammatical errors and would benefit
from thorough language editing.

General comment (1)

CMIP6 models simulate their own meteorology, which can diverge from observed climate. In
contrast, TRENDY simulations are driven by observed forcings (e.g., CRUJRA). Please justify
evaluating interannual trends with fully coupled CMIP6 output and clarify/discuss how much of the
trend mismatch stems from (i) differences in simulated climate versus observations, vs. (ii) process
parameterizations or structural choices. Current discussion on the model-observation mismatch is
too vague (e.g. section 4.1).

The authors should also discuss whether the large inter-model spread arises primarily from differing
simulated climate trajectories or from carbon-cycle parameterizations/structures.

Reply:

We thank the reviewers for these insightful comments regarding the respective roles of
simulated climate versus model structural differences in driving the inter-model spread and trend
mismatches. We agree that this is a critical aspect of interpreting our results.

In response, we have significantly expanded our discussion in Section 4.1 to address this point
more concretely. We acknowledge that fully and precisely attributing the discrepancies to climatic



versus structural factors with the standard CMIP6 output is challenging, as it would require idealized
model experiments. However, we have incorporated new analyses to provide clearer insights.

First, to evaluate the role of simulated climate, we now include an assessment of the core
climate drivers (temperature, precipitation, and solar radiation) from the CMIP6 models against
observational datasets (CRUNCEP, ERAS) using Taylor diagrams (Figure S9) and a summary table
of biases (Table S2). This analysis quantitatively shows that the models exhibit substantial biases in
their simulated climate over China, for instance, generally overestimating temperature while
underestimating precipitation and radiation, with high RMSD values.

Second, to address the role of model structure and parameterization, we have synthesized
information from key literature to create a new summary table (Table S3) detailing the key land
surface components and related parameters for the selected ESMs. This table visually underscores
the considerable diversity in model structures and parameterizations, which is a fundamental source
of the inter-model spread in carbon cycle simulations.

While we cannot provide a precise quantitative partition, the new figures and tables allow for
a more informed discussion, suggesting that both erroneous climatic trajectories and divergent
carbon-cycle representations are significant and intertwined contributors to the overall model-
observation mismatch and the large inter-model spread.

Changes in the paper:

Lines 167-172
“To verify the accuracy of CMIP6 ESMs in simulating climate data (temperature, precipitation, and
solar radiation), we employed historical temperature and precipitation data sourced from the
reanalyzed CRUNCEP dataset. Specifically, we utilized monthly data from the atmospheric stress
component of CRUNCEP (https://rda.ucar.edu/datasets/ds) and standardized its spatial resolution
to 0.5° x 0.5° Given that CRUNCEP does not include solar radiation data, this study also uses
monthly-scale net solar radiation data from ERAS
(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset), with its spatial resolution
resampled to 0.5° x 0.5°”

Lines 421-431
“The large inter-model spread and the model-observation mismatch in carbon cycle trends can be
attributed to two primary sources: biases in the simulated climate and differences in model
structure/parameterization. Qur evaluation of the models' climatic outputs (Figure S9, Table S2)
reveals that models did not accurately reproduce the observed climate over China for 2003-2014,
generally overestimating mean temperature while underestimating mean precipitation and solar
radiation. The high RMSD values, particularly for precipitation and radiation, indicate
substantial errors in the simulated climatic drivers that propagate into the carbon cycle
simulations. Furthermore, parameterization and model structure are fundamental for ecosystem
models to generate realistic projections, playing a critical role in their accuracy (Luo et al.,

2016). As synthesized from previous studies (Table S3), the selected ESMs exhibit considerable
diversity in their key land surface components and related parameters (Spafford and Macdougall,
2021; Arora et al., 2020, Pan et al., 2025). This structural and parametric heterogeneity is a
major factor contributing to the divergent performances in simulating the trends of carbon-cycle

variables among the models.”
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Figure 89: The Taylor diagram compares the observed and model-simulated annual means of
climate factors (a) precipitation, (b) temperature, and (c) solar radiation for the historical period
(2003-2014). The standard deviation shows the interannual variability of the observed and
simulated LAIL The dashed green lines show centered root mean square difference (RMSD)

between model simulations and satellite observations.

Table S2: Summary of Statistical Metrics (Mean, SD, RMSD) for Observed and Model-Simulated Annual

Mean Precipitation, Temperature, and Radiation

Precipitation(mm) Temperature(°C) Radiation(W/m?)
Mean SD RMSD Mean SD RMSD Mean SD RMSD
Remote sensing  613.64806 33.26141 / 7.63093  0.28095 / 178.18524  2.14209 /
observation
MME 867.4114 6.73035  31.29347 6.52192 0.10744 0.29024 194.01037 0.78118  2.3726

ACCESS- 1040.18351 41.31607 41.28819 7.16172 0.35231 0.51566 184.97961  2.2438  3.17482
ESM1-5

BCC-CSM2- 727.37508  31.7226  35.76094 4.82402 0.34208 0.42253 183.79863 1.55593  2.42488
MR

CanESM5 747.40222  29.02126 30.65384 3.78862 0.32382 0.47857 188.30924 3.32677 3.61066




CESM2- 931.57702  47.06833  43.754 8.61381 0.20517 0.31106 191.1325 2.66486 2.81495
WACCM
EC-Earth3-Veg  697.68418  46.3696  45.6074 5.62987 0.4737  0.48608 190.16296 1.87844 2.44838
INM-CM4-8 1116.61609 46.36924 54.74785 7.04681 0.19034 0.29721 210.0205  1.56934 2.75106
INM-CM5-0 1082.96623 53.14569 60.16718 6.52697 0.4369 0.47534 210.44639 1.90865 3.38243
[PSL-CM6A- 738.0079  33.52197 33.67346 3.04972  0.49094 0.56015 201.9655  1.75335 2.47112
LR
MPI-ESM1-2-  733.44302 344346  56.33748 7.25265 0.23723  0.27916 194.34585 1.30037 2.40424
HR
MPI-ESM1-2-  794.64687 26.41971 48.19112 6.4484  0.24422 0.35745 186.96089 1.76221 3.17683
LR
NorESM2-LM  851.89759  44.01298 60.15218 831717 0.41054 0.50303 193.13471 1.98927 3.31409
NorESM2-MM  834.14687  53.5992  75.2135 7.8185 0.43701 0.46347 197.56405 2.76213  4.02235
Table S3: Summary of key land surface components and related parameters for selected ESMs
Fire/N Prognostic
Modelling  Land surface Number of Number of
ESM name cycle/Dynamic ~ LAI/leaf live&dead
group model carbon pools PFTs
vegetation phenology
ACCESS-
CSIRO CABLE2.4 No/Yes/No Yes/No 3&6 13
ESMI1-5
BCC-CSM2- Yes/Yes(for
BCC BCC-AVIM2 No/No/No 3&8 16
MR deciduous)
CLASS-
CanESMS5 CCCma No/No/No Yes/Yes 3&2 9
CTEM
CESM2-
CESM CLM5 -/Yes/No Yes/Yes 22 &7 22
WACCM
H-TESSEL &
EC-Earth3-Veg  EC-Earth - - - -
LPJ-GUESS

INM-CM4-8 INM




INM-CMS5-0 INM - - - -

[PSL-CM6A- ORCHIDEE
I[PSL No/No/No Yes/Yes 8&3
LR v2.0
MPI-ESM1-2-
MPI JSBACH3.2 Yes/Yes/Yes Yes/Yes 3&18
HR
MPI-ESM1-2-
MPI JSBACH3.2 Yes/Yes/Yes Yes/Yes 3& 18
LR
NorESM2-LM  NorESM CLM5 Yes/Yes/No Yes/Yes 22&7
NorESM2-MM  NorESM CLM5 Yes/Yes/No Yes/Yes 22 &7

General comment (2)

The authors should provide a rationale for the chosen variables. If the aim is the carbon cycle,
biomass (above-ground/below-ground) is a key integrator and should be evaluated or explicitly
justified as out of scope. Also note that LST primarily reflects the surface energy balance; explain
how LST evaluation informs carbon-cycle processes, or consider adding energy-balance variables
(e.g., sensible/latent heat, ET) for context.

Reply:

We thank the reviewer for these insightful comments regarding variable selection. In response
to the first point, we have enhanced the Introduction to provide a clearer rationale for our chosen
variables (LAI, GPP, NPP, NEP), which collectively represent key processes in the terrestrial carbon
cycle from canopy structure (LAI) to photosynthetic input (GPP), net biomass production (NPP),
and ecosystem-level carbon flux (NEP). While we acknowledge biomass as an important integrated
carbon pool, our study specifically focuses on flux-related and vegetation-influenced variables that
are more directly comparable across CMIP6 models. The exclusion of biomass was primarily due
to the considerable challenges in obtaining reliable, spatially explicit observational data for
benchmarking, as well as significant structural uncertainties in model representations of biomass
partitioning.

Regarding LST, we have expanded our explanation to clarify its role as a critical environmental
regulator—rather than a direct carbon flux—that strongly influences carbon-cycle processes by
modulating plant physiological activity, soil respiration rates, and ecosystem-scale carbon
exchanges. We use LST as a widely available and physically consistent proxy for assessing model
capability in reproducing surface climatology, which indirectly supports the interpretation of carbon
flux simulations.

Changes in the paper:

Lines 47-61

“The LAI defined as the total one-sided leaf area per unit ground surface area, is a key
parameter of vegetation canopy structure that directly influences light interception, transpiration,
and the spatial heterogeneity of GPP. GPP refers to the total amount of carbon dioxide fixed into
organic compounds by vegetation through photosynthesis, serving as a core indicator of an

ecosystem's carbon sequestration capacity. NPP represents the net carbon accumulation after



subtracting autotrophic respiration from total photosynthetic fixation, reflecting the primary
production potential and health of ecosystems as influenced by GPP and plant physiological
regulation. NEP denotes the net carbon exchange between the ecosystem and the atmosphere by
further subtracting heterotrophic respiration from NPP, making it a crucial measure for assessing
regional carbon source/sink status under the influence of environmental factors such as atmospheric
CO: and climate (Fang et al., 2001). LST is the thermodynamic temperature at the land-atmosphere
interface, playing a key role in surface energy and water exchange while jointly affecting ecological
processes through interactions with solar radiation, soil properties, vegetation, and atmospheric
conditions (Li et al., 2023). In-depth research on LST facilitates a deeper understanding of surface-
atmosphere exchange processes at global and regional scales and provides high-quality quantitative
indicators of surface conditions for scientific applications. Consequently, LST has been designated
as an indispensable observation indicator for the International Geosphere and Biosphere Program
(IGBP) and the Global Climate Observing System (GCOS) (Townshend et al., 1994, Hollmann et
al, 2013).”

General comment (3)

The study focuses on interannual trends but does not evaluate absolute levels. Please assess model
skill for the magnitude (bias, RMSE, correlation) alongside trends, or cite and synthesize prior
evaluations that establish these baselines. Without this, it is difficult to judge whether trend errors
arise from mean-state biases or not.

Reply:

We thank the reviewer for raising this critical point regarding the assessment of model skill in
simulating absolute magnitudes. In response, we have expanded our evaluation beyond interannual
trends to comprehensively assess model performance in representing the mean state of all variables.
Specifically, we have incorporated Taylor diagrams into the revised Figures 3 (for LAI, GPP, NPP,
and NEP) and 4 (for LST), which simultaneously visualize three key statistical metrics—the
correlation coefficient, centered root-mean-square error (RMSE), and the standard deviation
(representing the amplitude of variability). This multi-metric approach allows for a direct and
quantitative assessment of how well the models replicate both the spatial patterns and the absolute
magnitudes of the observed benchmarks. By integrating this analysis, we can now more robustly
discern whether potential trend errors are linked to underlying mean-state biases or to inaccuracies
in representing temporal dynamics, thereby strengthening the foundation for interpreting our trend-
based results.

Changes in the paper:

Line 267-270

“Figure 3: Overall annual average (a) NPP and (c) NEP trends in China during 2003-2014.
The asterisk (*) indicates the significant trend (p<0.05). The Taylor diagrams compare the remotely-
sensed and model-simulated annual mean (b) NPP and (d) NEP for the historical period (2003-
2014). The standard deviation shows the interannual variability of the observed and simulated LAL
The dashed green lines show centered root mean square difference (RMSD) between model
simulations and satellite observations.”

Line 271-277

“The Taylor diagram (Fig. 3b, 3d) evaluates interannual variations of NPP and NEP across
individual models, the MME, and observations. The SD of ESM-simulated NPP ranges from 7.70



(ACCESS-ESM1-5) to 24.95 (BCC-CSM2-MR), while RMSD values span from 8.82 (INM-CM4-8)
to 25.66 (INM-CM35-0). For NEP, SD ranges from 9.19 (CanESM5) to 20.24 (BCC-CSM2-MR) with
RMSD values between 13.55 (IPSL-CM6A-LR) and 21.41 (BCC-CSM2-MR). The MME
demonstrates notably lower variability, with SD values of 5.65 for NPP and 6.19 for NEP, and
RMSD values of 9.71 for NPP and 11.28 for NEP. Generally, the MME-simulated SD and RMSD
for both variables are lower than those of all individual models.”

Line 284-287

“Figure 4: (a) Overall annual average LST trends in China during 2003-2014. The asterisk (*)
indicates the significant trend (p<0.05). (b) The Taylor diagrams compare the remotely-sensed and
model-simulated global annual mean LST for the historical period (2003-2014). The standard
deviation shows the interannual variability of the observed and simulated LAI. The dashed green
lines show centered root mean square difference (RMSD) between model simulations and satellite
observations.”

Line 288-291

“The Taylor diagram evaluates interannual variations of LST across individual models, the
MME, and observations (Fig. 4). The SD of ESM-simulated LST ranges from 0.20 (INM-CM4-8) to
0.48 (IPSL-CMG6A-LR), while RMSD values span from 0.30 (MPI-ESM1-2-HR) to 0.59 (IPSL-
CMG6A-LR). The MME demonstrates notably lower variability and error, with an SD of 0.10 and
RMSD of 0.36.”

General comment (4)

The authors should justify using CSIF alone for GPP evaluation. CSIF is not a purely observational
GPP product and carries its own assumptions. Consider evaluating with additional GPP datasets
(e.g., GOSIF-GPP, FLUXCOM-GPP). The authors should show whether conclusions are robust
across benchmarks.

Reply:

We thank the reviewer for this valuable suggestion regarding GPP benchmark selection. We
fully acknowledge that CSIF is not a purely observational product and carries inherent assumptions.
In response, we have now added justification in the Methods section explaining our selection of
CSIF as the primary GPP benchmark. This decision is further supported by our prior empirical
comparisons with alternative GPP products (including GOSIF and FLUXCOM-GPP), which
indicated that the temporal trends in CSIF align more closely with observed vegetation dynamics
across China. Compared with GOSIF-GPP and FLUXCOM-GPP, the CSIF demonstrates superior
temporal continuity by effectively mitigating data gaps from clouds and sensor revisits, possesses a
more direct physiological link to photosynthesis through chlorophyll fluorescence, and offers more
consistent spatial scalability. Although minor quantitative differences exist, the core conclusions
regarding model performance remain robust. A statement to this effect has been added to the
Discussion to acknowledge the potential influence of benchmark choice.

Changes in the paper:

Lines 140-145

“Solar-Induced Chlorophyll Fluorescence (SIF), which integrates the complex physiological
Sfunctions of plants and can directly reflect the dynamic changes in plants' actual photosynthetic
process, exhibits a strong linear relationship with GPP, thereby serving as a direct observational
indicator for GPP (Mohammed et al., 2019, Frankenberg et al., 2014; Walther et al., 2016).



Compared with GOSIF-GPP and FLUXCOM-GPP, CSIF exhibits higher temporal resolution and
more robust spatial data gap-filling capability. Therefore, the CSIF dataset was used to validate
the GPP outputs of the models under the historical scenario.”

Lines 470-471
“‘Although the reprocessed MODIS and CSIF datasets utilize spatiotemporal filtering and

machine learning techniques to enhance data quality (Zhang et al., 2018, Yuan et al., 2011),

significant uncertainties remain.”



