
 

 

Reply to Reviewers 

Dear Reviewers, 

Thank you for taking the time to review our submission titled “Evaluation of annual trends in 

carbon cycle variables simulated by CMIP6 Earth system models in China” to Geoscientific Model 

Development. We are grateful for your feedback and suggestions, which have significantly 

strengthened the manuscript. All the comments have been carefully considered. We believe that the 

revisions being made have addressed the concerns raised by the reviewers. We hope it meets the 

standards for publication in Geoscientific Model Development. 

Below, we provide point-to-point replies. Each of reviewers’ comments is first presented, 

followed by our reply and changes in the paper. In the revised manuscript, all the changes are marked 

in blue. Thank you once again for the time and expertise in reviewing our manuscript. 

Sincerely,  

Ziyang Li 

 

Reviewer 1: 

General Comment: 

This manuscript presents a valuable and timely assessment of the performance of CMIP6 Earth 

System Models (ESMs) in simulating key carbon cycle variables (LAI, GPP, NPP, NEP, LST) over 

China during the historical period. The systematic comparison against satellite-derived 

observational datasets provides crucial insights into model biases and uncertainties. The study is 

well-structured, addresses a significant gap in evaluating regional ESM performance, and offers 

meaningful contributions towards understanding model limitations for future projections. The 

identification of spatial patterns of misestimation and the discussion linking deficiencies to model 

processes are particularly insightful. Overall, this is a solid piece of research with important 

implications for the carbon cycle modeling community. 

While the manuscript is strong in its current form, I have several suggestions aimed at enhancing its 

comprehensiveness, clarity, and robustness: 

Reply: 
Thanks for the comprehensive and professional comments. They are extremely helpful and 

beneficial for improving our paper. Below, we have carefully prepared point-to-point replies for the 

comments, particularly about the influences that affect the accuracy of the models. We hope that the 

updated manuscript can address all your concerns. 

 

Specific Comments (1): 

The analysis focuses effectively on interannual trends. However, the seasonal cycle is a fundamental 

aspect of ecosystem carbon dynamics and ESM performance. Could the authors provide some 

analysis or discussion regarding how well the evaluated CMIP6 models capture the seasonal patterns 

of carbon cycle indicators for terrestrial ecosystems across different regions of China? 



 

 

Reply: 
We thank the reviewer for raising this important point regarding the seasonal cycle in 

ecosystem carbon dynamics and model performance. We acknowledge that the seasonal cycle is 

indeed a fundamental aspect of terrestrial carbon cycling. However, the primary focus of this 

particular study is on the interannual trends and variability of the carbon cycle indicators across 

China. Our analysis and model evaluation framework were specifically designed to address 

questions related to long-term, year-to-year changes and, therefore, do not encompass a detailed 

assessment of seasonal patterns. We agree that evaluating how well CMIP6 models capture regional 

seasonal dynamics represents a valuable and complementary research direction. To address the 

reviewer's suggestion, we will explicitly include a discussion in the manuscript highlighting the 

importance of assessing seasonal cycles in future work to further improve our understanding of 

model capabilities in simulating phenological responses and intra-annual carbon fluxes across 

different regions of China. 

Changes in the paper: 

Line 4331-434 

“However, it is important to note that while this study focused on evaluating model 

performance in capturing interannual trends and variability, the assessment of seasonal cycle 

dynamics (e.g., phenological timing, amplitude of seasonal fluctuations) across China's diverse 

regions represents a critical avenue for future research to further refine our understanding of model 

capabilities in simulating terrestrial carbon cycle processes.” 

 

Specific Comments(2): 

Figure 3 effectively presents the evaluation of simulated interannual variability for LAI and GPP 

against observations. To ensure consistency and provide a comparable level of detail for all key 

variables, I recommend extending this type of analysis to NPP, NEP, and LST. Creating a new figure 

(or adapting Figure 4) to include Taylor diagrams (or similar metrics) assessing interannual 

variability for NPP, NEP, and LST, analogous to Figure 3, would greatly enhance the paper's 

completeness and allow for a direct comparison of variability performance across all five variables. 

Reply: 
We thank the reviewer for this excellent suggestion. We agree that applying a consistent 

evaluation framework across all key variables is crucial for a comprehensive and comparable 

assessment of model performance regarding interannual variability. 

In direct response to this comment, we have now extended our analysis of interannual 

variability to include NPP, NEP, and LST, following the same methodology used for LAI and GPP 

in the original Figure 3. To present these results clearly and maintain a comparable level of detail: 

The Taylor diagrams evaluating the interannual variability of NPP and NEP have been incorporated 

into a revised Figure 3 (which now also includes LAI and GPP). The Taylor diagram evaluating the 

interannual variability of LST has been incorporated into a revised Figure 4 (alongside its temporal 

trend). 

Changes in the paper: 

Line 267-270 

“Figure 3: Overall annual average (a) NPP and (c) NEP trends in China during 2003-2014. 

The asterisk (*) indicates the significant trend (p<0.05). The Taylor diagrams compare the remotely-

sensed and model-simulated annual mean (b) NPP and (d) NEP for the historical period (2003-



 

 

2014). The standard deviation shows the interannual variability of the observed and simulated LAI. 

The dashed green lines show centered root mean square difference (RMSD) between model 

simulations and satellite observations.” 

Line 271-277 

“The Taylor diagram (Fig. 3b, 3d) evaluates interannual variations of NPP and NEP across 

individual models, the MME, and observations. The SD of ESM-simulated NPP ranges from 7.70 

(ACCESS-ESM1-5) to 24.95 (BCC-CSM2-MR), while RMSD values span from 8.82 (INM-CM4-8) 

to 25.66 (INM-CM5-0). For NEP, SD ranges from 9.19 (CanESM5) to 20.24 (BCC-CSM2-MR) with 

RMSD values between 13.55 (IPSL-CM6A-LR) and 21.41 (BCC-CSM2-MR). The MME 

demonstrates notably lower variability, with SD values of 5.65 for NPP and 6.19 for NEP, and 

RMSD values of 9.71 for NPP and 11.28 for NEP. Generally, the MME-simulated SD and RMSD 

for both variables are lower than those of all individual models.” 

Line 284-287 

“Figure 4: (a) Overall annual average LST trends in China during 2003-2014. The asterisk (*) 

indicates the significant trend (p<0.05). (b) The Taylor diagrams compare the remotely-sensed and 

model-simulated global annual mean LST for the historical period (2003-2014). The standard 

deviation shows the interannual variability of the observed and simulated LAI. The dashed green 

lines show centered root mean square difference (RMSD) between model simulations and satellite 

observations.” 

Line 288-291 

“The Taylor diagram evaluates interannual variations of LST across individual models, the 

MME, and observations (Fig. 4). The SD of ESM-simulated LST ranges from 0.20 (INM-CM4-8) to 

0.48 (IPSL-CM6A-LR), while RMSD values span from 0.30 (MPI-ESM1-2-HR) to 0.59 (IPSL-

CM6A-LR). The MME demonstrates notably lower variability and error, with an SD of 0.10 and 

RMSD of 0.36.” 

 

Specific Comments(3): 

Presenting the observed interannual trends for the satellite datasets (LAI, NPP, NEP, LST, 

CSIF-derived GPP) is essential context. However, to streamline the main manuscript narrative and 

focus it more directly on the model evaluation results and analysis, I suggest moving the detailed 

presentation of the observed trend maps (e.g., Figure 1 or its equivalent) to the Supplementary 

Material. The main text can then succinctly summarize the key features of the observed trends before 

delving into the model comparison. This would improve the flow and conciseness of the core results 

section. 

Reply: 
We thank the reviewer for this constructive suggestion to improve the narrative flow and conciseness 

of the manuscript. We agree that focusing the main text more directly on the model evaluation results 

enhances the clarity of our core analysis. Accordingly, we have moved the detailed observational 

trend maps for all key variables (specifically, the original Figures 2, 9, and 10, and Table 2) to the 

Supplementary Material. The main text now provides a succinct summary of the key observed trends 

before delving into the model comparison, which allows readers to grasp the essential context 

without interrupting the primary narrative focused on the model assessment. 

Changes in the paper: 

Add Table S1, Figures S1-S8 to Supplement Materials. 



 

 

Line 210-227 

“From 2003 to 2014, most regions across China exhibited increasing trends in MODIS LAI 

(82.60% of the area; Fig. S1) and CSIF (86.50%; Fig. S2), with significant increases covering 44.10% 

for LAI and 48.34% for CSIF concentrated in southern forests, northeastern China, and the Loess 

Plateau. Notably, CSIF demonstrated stronger rising trends than LAI in the North China Plain. 

MODIS NPP trends (Fig. S3) showed minimal significant changes, as 84.57% of the area exhibited 

non-significant variability, while significant increases and decreases covered only 15.23% and 0.20% 

respectively. These patterns closely mirrored MODIS NEP trends (Fig. S4), where 85.07% of the 

area showed non-significant changes with merely 0.28% significant decreases. For MODIS LST 

during 2003–2019 (Fig. S5), 47.34% and 52.66% of the study area exhibited increasing and 

decreasing LST trends, respectively, yet 97.89% of the area showed non-significant changes, with 

significant warming limited to 0.78%. 

Spatially coherent trends emerged across northwestern China (Xinjiang grasslands/croplands, 

central Inner Mongolia, Tibetan Plateau), where declining LAI and CSIF aligned with significant 

LST increases, while vegetation productivity declines were also observed in parts of southern Tibet. 

Conversely, northeastern China consistently exhibited significant increases in LAI, CSIF, NPP, and 

NEP, coinciding with declining LST trends. The Loess Plateau (northern Shaanxi/Ningxia) similarly 

demonstrated concurrent increases in LAI, CSIF, NPP, and NEP. Southern forested regions showed 

LAI and CSIF gains, though central Yunnan experienced notable CSIF reductions alongside NPP 

and NEP declines. Contrasting patterns characterized eastern China: the North China Plain had 

significant CSIF increases but prominent CSIF reductions later, alongside NEP declines and LST 

warming, while southeastern provinces (Guangdong, Fujian) and the Yangtze River Delta featured 

NPP and NEP reductions alongside localized CSIF decreases.” 

 

 

Specific Comments(4): 

Section 4.3, "Uncertainty of the observed LAI and CSIF in China," rightly addresses uncertainties 

in these specific observational products. However, the study relies on multiple satellite-derived 

datasets (LAI, NPP, NEP, LST, CSIF). To provide a more comprehensive assessment of uncertainty 

sources affecting the benchmark itself, the discussion in this section should be expanded to explicitly 

consider the uncertainties associated with all the primary observational datasets used (NPP, NEP, 

and LST, in addition to LAI and CSIF).  

Reply: 
We sincerely thank the reviewer for this insightful suggestion. We agree that a comprehensive 

discussion of uncertainties across all primary observational datasets is crucial for a robust 

interpretation of the model evaluation results. In direct response to this comment, we have 

significantly expanded Section 4.3. The section has been retitled to reflect its broader scope (e.g., 

"Uncertainties in the Observational Benchmark Datasets"), and the discussion now explicitly 

incorporates a detailed analysis of the uncertainties associated with the MODIS NPP, NEP, and LST 

products, in addition to the existing analysis of LAI and CSIF-derived GPP uncertainties. 

Changes in the paper: 

Line 464-475 

“4.3 Uncertain of the observed datasets in China 

Accurate observational data are essential for determining and improving the precision of 



 

 

models (Luo et al., 2016). In this study, two remote sensing datasets that better reflect actual 

vegetation growth, namely the reprocessed MODIS dataset and the CSIF dataset, were selected for 

evaluation. However, satellite remote sensing data in China are subject to considerable uncertainty 

due to various factors. High cloud cover during the rainy season and snow cover in high-latitude 

areas during winter can introduce inaccuracies. Additionally, satellite sensors are prone to 

degradation over time, leading to reduced sensitivity. Although the reprocessed MODIS and CSIF 

datasets utilize spatiotemporal filtering and machine learning techniques to enhance data quality 

(Zhang et al., 2018; Yuan et al., 2011), significant uncertainties remain. Similarly, limitations in 

satellite remote sensing-based carbon accounting (Araza et al., 2023), contribute to substantial 

uncertainties in MODIS NPP and NEP products (Sun et al., 2021; Huang et al., 2018; Ma et al., 

2016). Concurrently, studies attribute uncertainties in MODIS LST primarily to spatial 

inconsistencies and surface emissivity uncertainties, the latter resulting from inadequate global 

representativeness in land cover classification (Ma et al., 2021; Wan et al., 2002; Duan et al., 2019).” 

 

Specific comments(5): 

The analysis focuses on the period 2003-2014. Could the authors please provide a more explicit 

justification for selecting this specific timeframe? Clarifying the rationale is important for 

interpreting the results and their broader applicability. 

Reply: 
We appreciate the reviewer's suggestion for clarifying the rationale behind our selected 

timeframe (2003-2014). The start year of 2003 was chosen primarily to ensure the stability and 

consistency of the MODIS sensor data used in our analysis. Following the launch of the MODIS 

Aqua satellite in October 2002, which formed the dual-satellite constellation (Terra and Aqua) 

essential for improved temporal coverage, we avoided the immediate post-launch period (2002) to 

mitigate potential transient effects or calibration uncertainties that could introduce abrupt changes 

in the vegetation monitoring record. Therefore, 2003 marks the beginning of a stable, dual-sensor 

era for MODIS data. The end year of 2014 aligns with the termination point of the historical 

experiment simulations provided by the CMIP6 models, which constitute a core component of our 

comparative analysis. This timeframe selection ensures both the reliability of the benchmark remote 

sensing data and direct comparability with the available CMIP6 historical climate model outputs. 

Changes in the paper: 

Line 137-139 

“The analysis period spans 2003 to 2014. This timeframe was selected to utilize the stable 

post-launch era of the MODIS Terra-Aqua dual-satellite constellation for vegetation monitoring, 

commencing after potential initial sensor calibration transients, and to align with the end year of 

the CMIP6 historical experiment simulations used for comparison.” 

 

Technical corrections(1): 

On page 2, line 33, “ ...regulating stomatal conductance, to effectively respond to rising 

atmospheric CO₂ concentrations…” should be “...regulating stomatal conductance to effectively 

respond to rising atmospheric CO₂ concentrations…”. Please check and change accordingly. 

Reply: 
Thanks for pointing this mistake out. We revised the sentence to correct the mistake. 

Changes in the paper: 



 

 

Line 32-34 

“Vegetations maximize water-use efficiency at the leaf scale by dynamically regulating 

stomatal conductance to effectively respond to rising atmospheric CO₂ concentrations and global 

warming (Fu et al., 2022).” 

 

Technical corrections(2): 

On page 5, line 112, “where the inter-model errors is mitigated through model averaging, 

thereby amplifying underlying true signals.” should be “where the inter-model errors are…”. Please 

check and change accordingly. 

Reply: 
Thanks for pointing this mistake out. We revised the sentence to correct the mistake. 

Changes in the paper: 

Line 129-130 

“This approach combines the true and noise signals, where the inter-model errors are 

mitigated through model averaging, thereby amplifying the underlying true signals.” 

Technical corrections(3): 

On page 20, line 350, “(Anav et al., 2013; Song et al., 2021),” should be “(Anav et al., 2013; 

Song et al., 2021).”. Please check and change accordingly. 

Reply: 
Thanks for pointing this mistake out. We revised the sentence to correct the mistake. 

Changes in the paper: 

Line 366-367 

“Previous studies have found that, whether for CMIP5 or CMIP6, models have not effectively 

captured the long-term trends of vegetation (Anav et al., 2013; Song et al., 2021).” 

 

Technical corrections(4): 

On page 23, line 427, “tree cover prcentage” should be “tree cover percentage”. Please check 

and change accordingly. 

Reply: 
Thanks for pointing this mistake out. We revised the sentence to correct the mistake. 

Changes in the paper: 

Figure S8 

“Figure S8: Evaluation of the tree cover percentage trend performance of the CMIP6 ESM 

from 2003 to 2014 in China.” 

  

  



 

 

Reviewer 2: 

Dear Prof. Li, 

Thank you sincerely for dedicating your time to provide the Community Comment on our 

submission titled “Evaluation of annual trends in carbon cycle variables simulated by CMIP6 Earth 

system models in China” to Geoscientific Model Development. Your insights and feedback are 

highly valued, as they have offered critical guidance to further refine and strengthen the scientific 

rigor of our manuscript. 

We have carefully and thoroughly reviewed every point raised in your comment, and have 

made targeted revisions to address the concerns you noted—we are confident these adjustments 

have enhanced the quality and clarity of the work. It is our sincere hope that the revised manuscript 

now aligns well with the publication standards of Geoscientific Model Development. 

Below, we present a detailed point-to-point response to your comment: first, we restate your 

original comment for clarity, followed by our specific reply and a description of the corresponding 

revisions made to the paper. For ease of reference, all modifications in the revised manuscript are 

highlighted in blue. 

Once again, we would like to express our gratitude for your professional expertise and the time 

you have invested in reviewing our work. 

Sincerely, 

Ziyang Li 

 

Overview 

Leaf Area Index (LAI), Gross Primary Productivity (GPP), Net Primary Productivity (NPP), 

Net Ecosystem Productivity (NEP) and Land Surface Temperature (LST) as key indicators of carbon 

cycle in terrestrial ecosystems. In this paper, this research provides a quite interesting question about 

the interannual trends performance of LAI, GPP, NPP, NEP and LST simulated by 12 CMIP6 Earth 

System Models. 

This study is significant as it provides information on how Earth System Models fail to capture 

the trends of CMIP6 ESM-simulated variables in China. The manuscript falls within the scope of 

the journal and should be considered for publication subject to minor revisions. 

General comment (1) 

In the introduction, the author does not clearly present the research significance, particularly 

the practical relevance of evaluating five indices from CMIP6 simulations. 

Reply: 
We thank the reviewer for this valuable comment. In response, we have expanded the 

Introduction to provide a clearer and more detailed explanation of the scientific definitions and 

practical significance of the five key indicators (LAI, GPP, NPP, NEP, and LST) evaluated from the 

CMIP6 simulations. These additions highlight the practical relevance of our study in understanding 

ecosystem carbon dynamics and model performance, thereby strengthening the motivation and 

context of our research. 

Changes in the paper: 

Lines 47-61 

“The LAI, defined as the total one-sided leaf area per unit ground surface area, is a key 



 

 

parameter of vegetation canopy structure that directly influences light interception, transpiration, 

and the spatial heterogeneity of GPP. GPP refers to the total amount of carbon dioxide fixed into 

organic compounds by vegetation through photosynthesis, serving as a core indicator of an 

ecosystem's carbon sequestration capacity. NPP represents the net carbon accumulation after 

subtracting autotrophic respiration from total photosynthetic fixation, reflecting the primary 

production potential and health of ecosystems as influenced by GPP and plant physiological 

regulation. NEP denotes the net carbon exchange between the ecosystem and the atmosphere by 

further subtracting heterotrophic respiration from NPP, making it a crucial measure for assessing 

regional carbon source/sink status under the influence of environmental factors such as atmospheric 

CO₂ and climate (Fang et al., 2001). LST is the thermodynamic temperature at the land-atmosphere 

interface, playing a key role in surface energy and water exchange while jointly affecting ecological 

processes through interactions with solar radiation, soil properties, vegetation, and atmospheric 

conditions (Li et al., 2023). In-depth research on LST facilitates a deeper understanding of surface-

atmosphere exchange processes at global and regional scales and provides high-quality quantitative 

indicators of surface conditions for scientific applications. Consequently, LST has been designated 

as an indispensable observation indicator for the International Geosphere and Biosphere Program 

(IGBP) and the Global Climate Observing System (GCOS) (Townshend et al., 1994; Hollmann et 

al., 2013).” 

 

General comment (2) 

Among the 12 CMIP6 models evaluated, which one performs best? 

Reply: 
Our comprehensive evaluation of 12 CMIP6 models reveals that no single model performs 

consistently best across all variables (LAI, GPP, NPP, NEP, LST) and regions in China. It is 

noteworthy that while certain models may appear to capture the overall interannual trend of a 

specific variable reasonably well at the aggregate scale, this apparent skill often masks substantial 

and widespread spatial biases, where large geographical areas exhibit significant misestimation of 

both the magnitude and direction of the trend. This discrepancy between a seemingly accurate 

broad-scale trend and poor spatial realism is a common limitation among the models. Consequently, 

we caution against endorsing any single model as universally reliable. Instead, despite the noted 

performance limitations of the Multi-Model Ensemble mean (MME) across China's complex 

landscapes, we still recommend its use as a pragmatic approach to balance out individual model 

biases and provide a more conservative projection for assessing regional vegetation and climate 

dynamics. 

Changes in the paper: 

Lines 125-129 

“To provide a more robust and integrated assessment than any single model can offer, we primarily 

utilize the Multi-Model Ensemble (MME) mean, calculated as the arithmetic mean of all available 

models, as a central benchmark for evaluating the simulated spatial patterns and interannual 

variability of vegetation and climatic variables over China. The MME mean-based approach, an 

established statistical integration technique, synthesizes outputs from diverse models through 

averaging (Zeng et al., 2016).” 

 

General comment (3) 



 

 

It is recommended to evaluate an ensemble model. 

Reply: 
We thank the reviewer for raising this important point regarding ensemble model evaluation. 

We fully agree with the recommendation, and we would like to clarify that the core of our analysis 

is precisely built upon the systematic evaluation of a Multi-Model Ensemble (MME) mean, which 

is constructed from the simple average of all 14 available model outputs. The performance of this 

MME for all key ecosystem carbon cycle variables (LAI, GPP, NPP, NEP and LST) across China is 

not only a central focus of our results but also forms the primary basis for our main conclusions. We 

contend that the MME serves a dual purpose: it functions both as a robust integrated benchmark that 

collectively represents the current modeling capability and as a diagnostic tool that reveals common 

biases and uncertainties, thereby providing a critical reference point for assessing the overall model 

performance and guiding future model development. 

Changes in the paper: 

Line 125-129 

“To provide a more robust and integrated assessment than any single model can offer, we 

primarily utilize the Multi-Model Ensemble (MME) mean, calculated as the arithmetic mean of all 

available models, as a central benchmark for evaluating the simulated spatial patterns and 

interannual variability of vegetation and climatic variables over China. The MME mean-based 

approach, an established statistical integration technique, synthesizes outputs from diverse models 

through averaging (Zeng et al., 2016).” 

 

General comment (4) 

It is recommended that the author focus on specific regions (e.g., the North China Plain, the 

Pearl River Delta) and provide targeted suggestions for improving the simulations. 

Reply: 
We sincerely thank the reviewer for this constructive suggestion to enhance the practical value 

of our study. We agree that providing region-specific insights is crucial for guiding future model 

development. In our initial analysis, we indeed assessed model performance across several key 

regions, including the Tibetan Plateau, the Loess Plateau, northeastern China, the North China Plain, 

and southern China, as reflected in the spatial evaluation. However, we acknowledge that the 

conclusion section lacked targeted discussions for these specific areas. In direct response to your 

comment, we have now supplemented the conclusion with a focused analysis and specific 

recommendations for three representative regions exhibiting distinct model biases: the Tibetan 

Plateau (where models show a systematic overestimation), the Loess Plateau (characterized by a 

general underestimation), and the Pearl River Basin (where simulations show significant and 

complex errors). 

Changes in the paper: 

Lines 491-495 

“The model simulations exhibit pronounced regional biases, including a systematic 

overestimation of ecological variables on the cold-arid Tibetan Plateau, a general underestimation 

over the extensively vegetated Loess Plateau likely linked to misrepresented ecological restoration 

processes, and widespread simulation errors in the rapidly urbanizing Pearl River Basin, potentially 

due to unaccounted-for anthropogenic pressures.” 

  



 

 

Reviewer 3: 

Dear Reviewers, 

Thank you sincerely for dedicating your time to provide the Community Comment on our 

submission titled “Evaluation of annual trends in carbon cycle variables simulated by CMIP6 Earth 

system models in China” to Geoscientific Model Development. Your insights and feedback are 

highly valued, as they have offered critical guidance to further refine and strengthen the scientific 

rigor of our manuscript. 

We have carefully and thoroughly reviewed every point raised in your comment, and have 

made targeted revisions to address the concerns you noted—we are confident these adjustments 

have enhanced the quality and clarity of the work. It is our sincere hope that the revised manuscript 

now aligns well with the publication standards of Geoscientific Model Development. 

Below, we present a detailed point-to-point response to your comment: first, we restate your 

original comment for clarity, followed by our specific reply and a description of the corresponding 

revisions made to the paper. For ease of reference, all modifications in the revised manuscript are 

highlighted in blue. 

Once again, we would like to express our gratitude for your professional expertise and the time 

you have invested in reviewing our work. 

Sincerely, 

Ziyang Li 

 

Overview 

This manuscript evaluates annual trends in LAI, GPP, NPP, NEP, and LST over China using 

CMIP6 Earth system models. While the topic is relevant, the analysis does not provide new insight 

into the causes of model–observation discrepancies or pathways to reduce them. The contribution 

would be stronger with a clear attribution of biases and concrete recommendations for model 

improvement. In addition, the manuscript contains numerous grammatical errors and would benefit 

from thorough language editing. 

General comment (1) 

CMIP6 models simulate their own meteorology, which can diverge from observed climate. In 

contrast, TRENDY simulations are driven by observed forcings (e.g., CRUJRA). Please justify 

evaluating interannual trends with fully coupled CMIP6 output and clarify/discuss how much of the 

trend mismatch stems from (i) differences in simulated climate versus observations, vs. (ii) process 

parameterizations or structural choices. Current discussion on the model-observation mismatch is 

too vague (e.g. section 4.1). 

The authors should also discuss whether the large inter-model spread arises primarily from differing 

simulated climate trajectories or from carbon-cycle parameterizations/structures. 

Reply: 
We thank the reviewers for these insightful comments regarding the respective roles of 

simulated climate versus model structural differences in driving the inter-model spread and trend 

mismatches. We agree that this is a critical aspect of interpreting our results. 

In response, we have significantly expanded our discussion in Section 4.1 to address this point 

more concretely. We acknowledge that fully and precisely attributing the discrepancies to climatic 



 

 

versus structural factors with the standard CMIP6 output is challenging, as it would require idealized 

model experiments. However, we have incorporated new analyses to provide clearer insights. 

First, to evaluate the role of simulated climate, we now include an assessment of the core 

climate drivers (temperature, precipitation, and solar radiation) from the CMIP6 models against 

observational datasets (CRUNCEP, ERA5) using Taylor diagrams (Figure S9) and a summary table 

of biases (Table S2). This analysis quantitatively shows that the models exhibit substantial biases in 

their simulated climate over China, for instance, generally overestimating temperature while 

underestimating precipitation and radiation, with high RMSD values. 

Second, to address the role of model structure and parameterization, we have synthesized 

information from key literature to create a new summary table (Table S3) detailing the key land 

surface components and related parameters for the selected ESMs. This table visually underscores 

the considerable diversity in model structures and parameterizations, which is a fundamental source 

of the inter-model spread in carbon cycle simulations. 

While we cannot provide a precise quantitative partition, the new figures and tables allow for 

a more informed discussion, suggesting that both erroneous climatic trajectories and divergent 

carbon-cycle representations are significant and intertwined contributors to the overall model-

observation mismatch and the large inter-model spread. 

Changes in the paper: 

Lines 167-172 

“To verify the accuracy of CMIP6 ESMs in simulating climate data (temperature, precipitation, and 

solar radiation), we employed historical temperature and precipitation data sourced from the 

reanalyzed CRUNCEP dataset. Specifically, we utilized monthly data from the atmospheric stress 

component of CRUNCEP (https://rda.ucar.edu/datasets/ds) and standardized its spatial resolution 

to 0.5° × 0.5°. Given that CRUNCEP does not include solar radiation data, this study also uses 

monthly-scale net solar radiation data from ERA5 

(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset), with its spatial resolution 

resampled to 0.5° × 0.5°.” 

Lines 421-431 

“The large inter-model spread and the model-observation mismatch in carbon cycle trends can be 

attributed to two primary sources: biases in the simulated climate and differences in model 

structure/parameterization. Our evaluation of the models' climatic outputs (Figure S9, Table S2) 

reveals that models did not accurately reproduce the observed climate over China for 2003-2014, 

generally overestimating mean temperature while underestimating mean precipitation and solar 

radiation. The high RMSD values, particularly for precipitation and radiation, indicate 

substantial errors in the simulated climatic drivers that propagate into the carbon cycle 

simulations. Furthermore, parameterization and model structure are fundamental for ecosystem 

models to generate realistic projections, playing a critical role in their accuracy (Luo et al., 

2016). As synthesized from previous studies (Table S3), the selected ESMs exhibit considerable 

diversity in their key land surface components and related parameters (Spafford and Macdougall, 

2021; Arora et al., 2020; Pan et al., 2025). This structural and parametric heterogeneity is a 

major factor contributing to the divergent performances in simulating the trends of carbon-cycle 

variables among the models.” 



 

 

 

Figure S9: The Taylor diagram compares the observed and model-simulated annual means of 

climate factors (a) precipitation, (b) temperature, and (c) solar radiation for the historical period 

(2003-2014). The standard deviation shows the interannual variability of the observed and 

simulated LAI. The dashed green lines show centered root mean square difference (RMSD) 

between model simulations and satellite observations. 

 

Table S2: Summary of Statistical Metrics (Mean, SD, RMSD) for Observed and Model-Simulated Annual 

Mean Precipitation, Temperature, and Radiation 

 

Precipitation(mm)  Temperature(°C)  Radiation(W/m²) 

Mean SD RMSD  Mean SD RMSD  Mean SD RMSD 

Remote sensing 

observation 

613.64806 33.26141 /  7.63093 0.28095 /  178.18524 2.14209 / 

MME 867.4114 6.73035 31.29347  6.52192 0.10744 0.29024  194.01037 0.78118 2.3726 

ACCESS-

ESM1-5 

1040.18351 41.31607 41.28819  7.16172 0.35231 0.51566  184.97961 2.2438 3.17482 

BCC-CSM2-

MR 

727.37508 31.7226 35.76094  4.82402 0.34208 0.42253  183.79863 1.55593 2.42488 

CanESM5 747.40222 29.02126 30.65384  3.78862 0.32382 0.47857  188.30924 3.32677 3.61066 



 

 

CESM2-

WACCM 

931.57702 47.06833 43.754  8.61381 0.20517 0.31106  191.1325 2.66486 2.81495 

EC-Earth3-Veg 697.68418 46.3696 45.6074  5.62987 0.4737 0.48608  190.16296 1.87844 2.44838 

INM-CM4-8 1116.61609 46.36924 54.74785  7.04681 0.19034 0.29721  210.0205 1.56934 2.75106 

INM-CM5-0 1082.96623 53.14569 60.16718  6.52697 0.4369 0.47534  210.44639 1.90865 3.38243 

IPSL-CM6A-

LR 

738.0079 33.52197 33.67346  3.04972 0.49094 0.56015  201.9655 1.75335 2.47112 

MPI-ESM1-2-

HR 

733.44302 34.4346 56.33748  7.25265 0.23723 0.27916  194.34585 1.30037 2.40424 

MPI-ESM1-2-

LR 

794.64687 26.41971 48.19112  6.4484 0.24422 0.35745  186.96089 1.76221 3.17683 

NorESM2-LM 851.89759 44.01298 60.15218  8.31717 0.41054 0.50303  193.13471 1.98927 3.31409 

NorESM2-MM 834.14687 53.5992 75.2135  7.8185 0.43701 0.46347  197.56405 2.76213 4.02235 

 

Table S3: Summary of key land surface components and related parameters for selected ESMs 

ESM name 

Modelling 

group 

Land surface 

model 

Fire/N 

cycle/Dynamic 

vegetation 

Prognostic 

LAI/leaf 

phenology 

Number of 

live&dead 

carbon pools 

Number of 

PFTs 

ACCESS-

ESM1-5 

CSIRO CABLE2.4 No/Yes/No Yes/No 3 & 6 13 

BCC-CSM2-

MR 

BCC BCC-AVIM2 No/No/No 

Yes/Yes(for 

deciduous) 
3 & 8 16 

CanESM5 CCCma 

CLASS-

CTEM 

No/No/No Yes/Yes 3 & 2 9 

CESM2-

WACCM 

CESM CLM5 -/Yes/No Yes/Yes 22 & 7 22 

EC-Earth3-Veg EC-Earth 

H-TESSEL & 

LPJ-GUESS 

- - - - 

INM-CM4-8 INM - - - - - 



 

 

INM-CM5-0 INM - - - - - 

IPSL-CM6A-

LR 

IPSL 

ORCHIDEE 

v2.0 

No/No/No Yes/Yes 8 & 3 15 

MPI-ESM1-2-

HR 

MPI JSBACH3.2 Yes/Yes/Yes Yes/Yes 3 & 18 13 

MPI-ESM1-2-

LR 

MPI JSBACH3.2 Yes/Yes/Yes Yes/Yes 3 & 18 13 

NorESM2-LM NorESM CLM5 Yes/Yes/No Yes/Yes 22 & 7 22 

NorESM2-MM NorESM CLM5 Yes/Yes/No Yes/Yes 22 & 7 22 

 

General comment (2) 

The authors should provide a rationale for the chosen variables. If the aim is the carbon cycle, 

biomass (above-ground/below-ground) is a key integrator and should be evaluated or explicitly 

justified as out of scope. Also note that LST primarily reflects the surface energy balance; explain 

how LST evaluation informs carbon-cycle processes, or consider adding energy-balance variables 

(e.g., sensible/latent heat, ET) for context. 

Reply: 
We thank the reviewer for these insightful comments regarding variable selection. In response 

to the first point, we have enhanced the Introduction to provide a clearer rationale for our chosen 

variables (LAI, GPP, NPP, NEP), which collectively represent key processes in the terrestrial carbon 

cycle from canopy structure (LAI) to photosynthetic input (GPP), net biomass production (NPP), 

and ecosystem-level carbon flux (NEP). While we acknowledge biomass as an important integrated 

carbon pool, our study specifically focuses on flux-related and vegetation-influenced variables that 

are more directly comparable across CMIP6 models. The exclusion of biomass was primarily due 

to the considerable challenges in obtaining reliable, spatially explicit observational data for 

benchmarking, as well as significant structural uncertainties in model representations of biomass 

partitioning. 

Regarding LST, we have expanded our explanation to clarify its role as a critical environmental 

regulator—rather than a direct carbon flux—that strongly influences carbon-cycle processes by 

modulating plant physiological activity, soil respiration rates, and ecosystem-scale carbon 

exchanges. We use LST as a widely available and physically consistent proxy for assessing model 

capability in reproducing surface climatology, which indirectly supports the interpretation of carbon 

flux simulations. 

Changes in the paper: 

Lines 47-61 

“The LAI, defined as the total one-sided leaf area per unit ground surface area, is a key 

parameter of vegetation canopy structure that directly influences light interception, transpiration, 

and the spatial heterogeneity of GPP. GPP refers to the total amount of carbon dioxide fixed into 

organic compounds by vegetation through photosynthesis, serving as a core indicator of an 

ecosystem's carbon sequestration capacity. NPP represents the net carbon accumulation after 



 

 

subtracting autotrophic respiration from total photosynthetic fixation, reflecting the primary 

production potential and health of ecosystems as influenced by GPP and plant physiological 

regulation. NEP denotes the net carbon exchange between the ecosystem and the atmosphere by 

further subtracting heterotrophic respiration from NPP, making it a crucial measure for assessing 

regional carbon source/sink status under the influence of environmental factors such as atmospheric 

CO₂ and climate (Fang et al., 2001). LST is the thermodynamic temperature at the land-atmosphere 

interface, playing a key role in surface energy and water exchange while jointly affecting ecological 

processes through interactions with solar radiation, soil properties, vegetation, and atmospheric 

conditions (Li et al., 2023). In-depth research on LST facilitates a deeper understanding of surface-

atmosphere exchange processes at global and regional scales and provides high-quality quantitative 

indicators of surface conditions for scientific applications. Consequently, LST has been designated 

as an indispensable observation indicator for the International Geosphere and Biosphere Program 

(IGBP) and the Global Climate Observing System (GCOS) (Townshend et al., 1994; Hollmann et 

al., 2013).” 

 

General comment (3) 

The study focuses on interannual trends but does not evaluate absolute levels. Please assess model 

skill for the magnitude (bias, RMSE, correlation) alongside trends, or cite and synthesize prior 

evaluations that establish these baselines. Without this, it is difficult to judge whether trend errors 

arise from mean-state biases or not. 

Reply: 
We thank the reviewer for raising this critical point regarding the assessment of model skill in 

simulating absolute magnitudes. In response, we have expanded our evaluation beyond interannual 

trends to comprehensively assess model performance in representing the mean state of all variables. 

Specifically, we have incorporated Taylor diagrams into the revised Figures 3 (for LAI, GPP, NPP, 

and NEP) and 4 (for LST), which simultaneously visualize three key statistical metrics— the 

correlation coefficient, centered root-mean-square error (RMSE), and the standard deviation 

(representing the amplitude of variability). This multi-metric approach allows for a direct and 

quantitative assessment of how well the models replicate both the spatial patterns and the absolute 

magnitudes of the observed benchmarks. By integrating this analysis, we can now more robustly 

discern whether potential trend errors are linked to underlying mean-state biases or to inaccuracies 

in representing temporal dynamics, thereby strengthening the foundation for interpreting our trend-

based results. 

Changes in the paper: 

Line 267-270 

“Figure 3: Overall annual average (a) NPP and (c) NEP trends in China during 2003-2014. 

The asterisk (*) indicates the significant trend (p<0.05). The Taylor diagrams compare the remotely-

sensed and model-simulated annual mean (b) NPP and (d) NEP for the historical period (2003-

2014). The standard deviation shows the interannual variability of the observed and simulated LAI. 

The dashed green lines show centered root mean square difference (RMSD) between model 

simulations and satellite observations.” 

Line 271-277 

“The Taylor diagram (Fig. 3b, 3d) evaluates interannual variations of NPP and NEP across 

individual models, the MME, and observations. The SD of ESM-simulated NPP ranges from 7.70 



 

 

(ACCESS-ESM1-5) to 24.95 (BCC-CSM2-MR), while RMSD values span from 8.82 (INM-CM4-8) 

to 25.66 (INM-CM5-0). For NEP, SD ranges from 9.19 (CanESM5) to 20.24 (BCC-CSM2-MR) with 

RMSD values between 13.55 (IPSL-CM6A-LR) and 21.41 (BCC-CSM2-MR). The MME 

demonstrates notably lower variability, with SD values of 5.65 for NPP and 6.19 for NEP, and 

RMSD values of 9.71 for NPP and 11.28 for NEP. Generally, the MME-simulated SD and RMSD 

for both variables are lower than those of all individual models.” 

Line 284-287 

“Figure 4: (a) Overall annual average LST trends in China during 2003-2014. The asterisk (*) 

indicates the significant trend (p<0.05). (b) The Taylor diagrams compare the remotely-sensed and 

model-simulated global annual mean LST for the historical period (2003-2014). The standard 

deviation shows the interannual variability of the observed and simulated LAI. The dashed green 

lines show centered root mean square difference (RMSD) between model simulations and satellite 

observations.” 

Line 288-291 

“The Taylor diagram evaluates interannual variations of LST across individual models, the 

MME, and observations (Fig. 4). The SD of ESM-simulated LST ranges from 0.20 (INM-CM4-8) to 

0.48 (IPSL-CM6A-LR), while RMSD values span from 0.30 (MPI-ESM1-2-HR) to 0.59 (IPSL-

CM6A-LR). The MME demonstrates notably lower variability and error, with an SD of 0.10 and 

RMSD of 0.36.” 

 

General comment (4) 

The authors should justify using CSIF alone for GPP evaluation. CSIF is not a purely observational 

GPP product and carries its own assumptions. Consider evaluating with additional GPP datasets 

(e.g., GOSIF-GPP, FLUXCOM-GPP). The authors should show whether conclusions are robust 

across benchmarks. 

Reply: 
We thank the reviewer for this valuable suggestion regarding GPP benchmark selection. We 

fully acknowledge that CSIF is not a purely observational product and carries inherent assumptions. 

In response, we have now added justification in the Methods section explaining our selection of 

CSIF as the primary GPP benchmark. This decision is further supported by our prior empirical 

comparisons with alternative GPP products (including GOSIF and FLUXCOM-GPP), which 

indicated that the temporal trends in CSIF align more closely with observed vegetation dynamics 

across China. Compared with GOSIF-GPP and FLUXCOM-GPP, the CSIF demonstrates superior 

temporal continuity by effectively mitigating data gaps from clouds and sensor revisits, possesses a 

more direct physiological link to photosynthesis through chlorophyll fluorescence, and offers more 

consistent spatial scalability. Although minor quantitative differences exist, the core conclusions 

regarding model performance remain robust. A statement to this effect has been added to the 

Discussion to acknowledge the potential influence of benchmark choice. 

Changes in the paper: 

Lines 140-145 

“Solar-Induced Chlorophyll Fluorescence (SIF), which integrates the complex physiological 

functions of plants and can directly reflect the dynamic changes in plants' actual photosynthetic 

process, exhibits a strong linear relationship with GPP, thereby serving as a direct observational 

indicator for GPP (Mohammed et al., 2019; Frankenberg et al., 2014; Walther et al., 2016). 



 

 

Compared with GOSIF-GPP and FLUXCOM-GPP, CSIF exhibits higher temporal resolution and 

more robust spatial data gap-filling capability. Therefore, the CSIF dataset was used to validate 

the GPP outputs of the models under the historical scenario.” 

Lines 470-471 

“Although the reprocessed MODIS and CSIF datasets utilize spatiotemporal filtering and 

machine learning techniques to enhance data quality (Zhang et al., 2018; Yuan et al., 2011), 

significant uncertainties remain.” 


