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Abstract 9 

The biophysical effect of agriculture-residue based fire through excessive release of energy 10 

and carbonaceous aerosols essentially unaccounted globally. Elucidating climate feedback 11 

from residue-based fire however, remain pertinent as energy released from fire pose 12 

potential to modify land surface temperature (LST) thereby, regional climate. Here, an 13 

observation-driven assessment of spatial change in LST due to concurrent release of energy 14 

and aerosols has been explored over northwest India using multiple satellite and reanalysis-15 

based datasets. Initially, year-specific fire pixel density was computed to identify intensive fire 16 

zone encompassing only medium to large fire. Spatial analysis revealed positive correlation 17 

among FRP (fire radiative power), LST and AOD (aerosol optical depth) across the intensive 18 

fire zone. Residue-based fire accounted an increase in LST by 0.48°C and AOD by 0.19 yearly 19 

during peak fire season over intensive fire zone. A Random Forest non-linear model was used 20 

to regress potential influence of FRP and AOD on LST. Two pre-constructed scenarios were 21 

evaluated to ascertain FRP-AOD-LST nexus. Interestingly, both scenarios recognized FRP as a 22 

top predictor to influence LST followed by solar radiation and AOD. A significant enhancement 23 

in relative feature importance of FRP was also noted during days having high fire intensity and 24 

positive association against LST. Geographically Weighted Regression further explained spatial 25 

heterogeneity in LST modulation by FRP. Our analysis therefore, provides first evidence on 26 

crop residue-based fire on modifying regional climate by altering land surface temperature. 27 

It also underlines that extent of such perturbation is subject to year-specific fire intensity and 28 

govern by meteorology.  29 
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Introduction 34 

 Burning agriculture residues is a widespread practice for quick removal of post-harvest 35 

crop leftover from the field over many parts of the world (Streets et al., 2003; Singh et al., 36 

2018; Shyamsundar et al., 2019). While burning biomass is often associated with the practice 37 

of deforestation (Chuvieco et al., 2021), forest fire (van der Velde et al., 2021; Aditi et al., 38 

2025) and shifting cultivation (Prasad et al., 2000); agriculture residue burning is more 39 

commonly associated with cleaning farmland, fertilizing soil, eradicating pests and weeds, and 40 

making land suitable for the subsequent crop (Graham et al., 2002; Korontzi et al., 2006; Lan 41 

et al., 2022). Agriculture residue burning is a common practice across the globe as reported 42 

in China (Streets et al., 2003; Zhang et al., 2020), South America (Graham et al., 2002), 43 

Southeast Asia (Lasko and Vadrevu, 2018; Yin, 2020) and from the northwest India (Singh et 44 

al., 2018, 2021; Sarkar et al., 2018). Crop residue burning over northwest India has been 45 

investigated widely from diverse perspectives. A widespread intensive burning during 46 

October to mid-November is a recurring phenomenon and often associated with poor air 47 

quality at downstream (Jethva et al., 2019; Singh et al., 2018), modifying aerosol loading and 48 

chemistry (Mhawish et al., 2022; Ravindra et al., 2023), influencing aerosol vertical 49 

stratification and radiative forcing (Hsu et al., 2003; Vinjamuri et al., 2020; Banerjee et al., 50 

2021), inducing negative health impacts (Singh et al., 2021), and possibly shifting regional 51 

hydrological cycle (Kant et al., 2023). However, limited attention has been paid to investigate 52 

its effect on urban climate, especially on modulating lower atmospheric thermal budget 53 

which has been otherwise strongly evident in case of forest fire (Liu et al., 2018, 2019). 54 

Across the northwest part of India, dual cropping pattern including rice and wheat 55 

crop is predominately practised over roughly 4.1 million ha of land. Such cropping pattern 56 

results in generating huge crop residues having poor nutrient content with high silica and ash 57 

fractions. Typically, residues from rice-wheat cropping system have limited economic value 58 

not being fitted as alternative fodder, biofuel or being procured in pulp and paper industries 59 

(Lan et al., 2022; Shyamsundar et al., 2019). Besides, with the advent of mechanical harvester 60 

in 1980s and enactment of groundwater preservation act in late 2000s, in situ indiscriminate 61 

burning of agriculture residues has been the recurrent choice of the local farmers to reduce 62 

the turn-around time between rice harvesting and subsequent sowing of wheat crop 63 

(Balwinder-Singh et al., 2019). India generates approximately 500 million metric tonnes (MT) 64 
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of crop residues per year with roughly 20-25% i.e. 100-120 MT/yr residues usually burn in the 65 

field itself, majority (~20-25 MT/yr) of such practised over northwest Gangetic plain (Lan et 66 

al., 2022; Balwinder-Singh et al., 2019). Unregulated burning of agriculture residues across 67 

the northwest part of India usually held responsible for approximately 300 Gg/yr of PM2.5 and 68 

50 Tg of CO2 equivalent green-house gas emission (Singh et al., 2020). Interestingly, fire 69 

incidences have exhibited a consistent increasing trend with concurrent growth in vegetation 70 

index and aerosol loading (Vadrevu et al., 2018; Jethva et al., 2019). Beside emissions, 71 

biophysical effects of fire on surrounding ecosystem could be many as fire drives several 72 

consequential changes, be it in modifying surface energy balance, redistributing nutrients and 73 

species, modifying surface albedo thereby, altering evapotranspiration rate (Ward et al., 74 

2012; Liu et al., 2019). Additionally, fire could also induce certain biogeochemical and 75 

biophysical stresses on local environment by modifying atmospheric composition and surface 76 

properties (Andela et al., 2017; Aditi et al., 2025). Such transformation in the native landscape 77 

coupled with excessive release of energy, emission of aerosols and its precursors may 78 

therefore, have several potential implications on the local environment.  79 

Majority of the researches involving biomass-based fire are dedicated to recognize 80 

land and atmospheric processes and precursors on initiating and propagating fire, quantifying 81 

emissions and evaluating land surface-atmosphere exchange. There is however, limited 82 

understanding on how biomass-based fire induce climate feedback by altering Earth’s surface 83 

radiative budget and land surface temperature (Bowman et al., 2009; Andela et al., 2017). 84 

Plausible explanation to this includes limited observation and associated uncertainties in 85 

estimating key biophysical processes like surface albedo, land-atmosphere exchange of 86 

sensible heat flux and water vapor, changes in evapotranspiration rate during pre- and post-87 

fire events. There are instances when global forest fire incidences and size have been linked 88 

with modifications in land surface temperature (LST; Alkama and Cescatti, 2016; Liu et al., 89 

2018, 2019). Likewise, Liu et al. (2019) noted an enhance in mean annual LST over burned 90 

forest area in the northern high latitudes. Similar evidence of increase in summertime surface 91 

radiometric temperature over temperate and boreal forests in the Northern Hemisphere was 92 

accounted by Zhao et al. (2024). Alkama and Cascatti (2016) evident a corresponding increase 93 

in mean and maximum air temperature over the arid zone due to loss of forest cover. 94 

However, fire induced thermal forcing was reported to be constrained by fire size (Zhao et al., 95 
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2024) and often, relatively small scale burning, particularly involving crop residues on 96 

agriculture farmland may not be sufficient enough to induce robust change in surface albedo 97 

and evapotranspiration, resulting insignificant variation in LST. Incidence of elevated LST over 98 

different provinces in China due to agriculture residue burning has only recently reported by 99 

Zhang et al. (2020). A spatially inconsistent increase in LST correlated well with fire count, 100 

having highest LST gradient noted in 4 to 10 km distance from the central point of cop residue 101 

burning and remained valid till 1-3 days. In contrast, post-harvest fire incidence over 102 

northwest India has not yet explored in terms of its effect on LST. This induces significant 103 

uncertainty in recognizing climate feedback of crop residue burning and warrants a better 104 

understanding of the underlying mechanism. 105 

This study aims to explore immediate biophysical effect of agriculture crop residue fire 106 

on surface temperature over northwest India. By integrating spatially and temporally 107 

consistent satellite- and reanalysis- based observations on fire counts, fire radiative power, 108 

land surface temperature, aerosol loading and regional meteorology over intensive fire zone, 109 

we tried to establish time-bound changes in LST with concurrent variations in fire strength. 110 

Several statistical means were explored to construct the changes in LST with fire severity. A 111 

space-for-time approach was used to construct changes in LST and AOD due to recurrent 112 

changes in FRP over the fire season. Specifically, we tried to investigate two questions, (1) 113 

does land surface temperature respond to changes in fire intensity over northwest India, and 114 

(2) how local meteorology and aerosol loading modulate LST variation with respect to space 115 

and time? To best of our knowledge, such understanding on fire regulated changes in LST has 116 

not yet explored over northern India and could provide vital evidence on climate feedback 117 

from crop-residue based fire.  118 

2. Dataset and methodology 119 

2.1 Study domain 120 

Post-harvest burning of biomass is mainly practised over the northwest part of the 121 

Indo-Gangetic Plain (IGP) of South Asia. The region encompassing the agrarian states of 122 

Punjab and Haryana is particularly productive and accounts for a whopping 60-70% of India’s 123 

food grain generation. Coupled with increased production of rice and wheat crop, generation 124 

of crop residues has been increased multi-fold in recent years resulting higher intensity in 125 

crop-based fire over the region (Jethva et al., 2019). For this research, the geospatial analysis 126 
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of LST in continuation with fire activity and aerosol loading has been made over the northwest 127 

part of India for the months of October to November between year 2017 and 2021. The 128 

combination of high agricultural output, extensive biomass burning, and documented 129 

increases in fire activity renders this region specifically appropriate for analysing fire dynamics 130 

and their environmental consequences. However, instead of pre-identifying a fixed research 131 

domain, we have retrieved year-wise fire signal across the northwest India constrained by crop 132 

land. This led to the selection of core-study region differs annually with respect to year-specific 133 

fire intensity and spatial trend (as in Fig. S1, in supplementary file), but all eventually bound 134 

to 29.2770° to 32.1625° N and 73.8996° to 77.0718° E, as illustrated in Fig. 1b. 135 

 136 

 137 

Fig. 1. Spatial variation in satellite-based fire radiative power across northwest India, 138 

distribution of FRP-based fire intensity (MW/pixel) (a) and domain selected for 139 

retrieval and processing of SNPP VIIRS FRP, AOD and Aqua MODIS LST (b). 140 

NOTE. The region marked with blue in Fig. 1a subset indicates the Indo-Gangetic Plain (IGP) spanning 141 

from Pakistan to Bangladesh through India. The extended fire zone selected for analysis is 142 

marked with red within the IGP and has been shown in detail in Fig. 1a with fire pixel density. 143 

The selection criteria of the spatial domain are discussed in section 2.3. The pixel size of VIIRS 144 
VNP14IMG is 375x375 m2. India shape file is acquired from Survey of India archive.  145 

 146 

https://doi.org/10.5194/egusphere-2025-3163
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



 6 

2.2 Spatial dataset  147 

Active fire count data was retrieved from the standard fire product of Visible Infrared 148 

Imaging Radiometer Suite (VIIRS) Collection-2 Level-1B (VNP14IMG) available at 6-min L2 149 

swath at 375 m resolution. The VIIRS onboard the Suomi National Polar-orbiting Partnership 150 

(SNPP) satellite is a cross-track single-angle scanning radiometer which was launched in year 151 

2011 under joint operation of NASA and NOAA. The VIIRS fire detection algorithm typically 152 

extends well refined and validated MODIS Fire and Thermal Anomalies product (Giglio et al., 153 

2003). The I-band based fire detection algorithm primarily utilizes brightness temperature of 154 

Channel I4 on middle infrared spanning from 3.55 to 3.93 μm, centred at 3.74 μm. 155 

Additionally, to isolate the active fire spots from the fire-free background channel, a single 156 

gain I5 at thermal infrared regions (10.5–12.4 μm) is also considered. Rest of the I-band 157 

channels i.e. I1 to I3, covering visible, near and short-wave IR are used to distinguish pixels 158 

with cloud, water and sun-glint (Schroeder et al., 2014). The VIIRS fire database was 159 

considered due to its superior precision and accuracy in identifying relatively small fire, 160 

greater spatial resolution at footprint and pixel saturation temperature (Vadrevu et al., 2018; 161 

Li et al., 2018; Aditi et al., 2023). For this experiment, SNPP VIIRS 375 m C2 L1B active fire 162 

count data with nominal (fire mask class 8) and high confidence (fire mask class 9), was 163 

retrieved over northwest India from year 2017 to 2021 (all inclusive). 164 

Fire radiative power (FRP) quantifies the release of radiative energy from biomass 165 

burning integrated at all angles and wavelengths over a spatial scale. Measured in Watt, FRP 166 

retrieval quantifies the release of heat energy against time and in many instances linearly 167 

associated with the rate of fuel consumption and emission (Ichoku et al., 2008; Nguyen and 168 

Wooster, 2020). A detailed description on FRP retrieval and comparison among the sensors 169 

are available in Wooster et al. (2003, 2005) and Ichoku et al. (2008). Li et al. (2018) concluded 170 

VIIRS FRP as comparable with MODIS FRP in most of fire clusters and very stable across swath. 171 

Here, FRP (MW) was processed from the SNPP VIIRS C2 Level-2 (L2) 375 m active fire product 172 

(VNP14IMG). VIIRS FRP was used as a proxy of fire intensity and potential emission strength 173 

from the biomass burning area, and considered as a direct measurement of radiative energy 174 

being released from individual fire pixel.  175 

Land surface radiometric temperature (LST) at 1 km spatial resolution was utilized 176 

from Moderate Resolution Imaging Spectroradiometer (MODIS) version 6.1 Land Surface 177 
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Temperature and Emissivity retrievals product (MYD11A1). Typically, LST indicates 178 

thermodynamic temperature of the interface atmospheric layer within soil, plant cover and 179 

lower atmosphere, and serves as an indicator of land-atmosphere interaction and exchange 180 

(Li et al., 2023). Here, MODIS MYD11A1 radiometric dataset with quality flag ‘00’ was 181 

specifically chosen considering its broad swath and wider applicability in estimating land 182 

surface temperature. Besides, MODIS LST is validated against ground observations on diverse 183 

land covers and reported to provide realistic estimate of surface temperature (Wan, 2014) 184 

with a uncertainty of ≤0.5 K. Both daytime maximum and nighttime minimum LST 185 

approximately at 1:30 PM and 1:30 AM local time respectively, are available. However, to 186 

better approximate the timing of VIIRS fire count retrieval at 1:30 PM local time when crop 187 

residue-based fire presumably remains at peak, surface retrievals of LST was only made from 188 

MODIS onboard Aqua satellite. 189 

Aerosol optical depth (AOD) from Visible Infrared Imaging Radiometer Suite (VIIRS) 190 

sensor on-board SNPP satellite offers accurate estimation of columnar aerosol loading at 550 191 

nm over land. Accuracy of VIIRS V1 DB AOD was evaluated extensively over South Asia by Aditi 192 

et al. (2023) and reported to provide stable AOD retrieval against AERONET. Sayer et al. (2019) 193 

reported an estimated error of ±(0.05+20%) in VIIRS AOD dataset. Here, Deep Blue (DB) 194 

Version 1 AOD dataset (AERDB_L2_VIIRS_SNPP Level-2) was used to retrieve AOD with a 195 

nominal spatial resolution of 6 km at nadir. Only quality assured AOD (QA ≥ 2) was retrieved 196 

for the months of October to November for years 2017 to 2021 over selected spatial domain. 197 

Terra/Aqua MODIS land cover data was used to discriminate crop land against the rest 198 

to filter out thermal anomalies exclusively over the agriculture land. To achieve this, MODIS 199 

L3 V6.1 Global Land Cover type product (MCD12Q1) was retrieved from LAADS DAAC site for 200 

year 2017, available at 0.5 km spatial resolution. MODIS land cover types adopts International 201 

Geosphere-Biosphere Programme (IGBP) and other land type classification schemes to 202 

classify land cover. Here, land cover type 12 (cropland) was earmarked to isolate the 203 

agriculture land from its surrounding (Fig. S2). 204 

 Lower surface meteorological data including air temperature (At), total solar radiation 205 

flux (Sr), precipitation (Pr) and relative humidity (RH) was procured from European Centre for 206 

Medium-Range Weather Forecasts (ECMWF) AgERA5 dataset. The AgERA5 dataset has been 207 

generated by Copernicus Climate Change Service (2020) from hourly ECMWF ERA5 dataset for 208 
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specific agro-ecological based applications. The meteorological data were pre-customized 209 

with temporal aggregation aligned to local time zones and spatial enhancement to a 0.1° 210 

resolution using grid-based variable-specific regression model. Here, air temperature at 2 211 

meters above the surface, total solar radiation flux received at the surface over a 24-hour time 212 

period, and relative humidity at 2 meter height was selectively used over pre-identified 213 

intensive crop-based fire zone. 214 

2.3 Spatial analysis for fire-aerosols-LST association 215 

2.3.1 Selection of intensive fire zone 216 

 Post-harvest specific crop residue burning typically commences during mid-October 217 

and reaches its peak intensity during mid-November, particularly over northwest India. All the 218 

spatial analysis was therefore, conducted for the months of October and November for year 219 

2017 to 2021 (all inclusive). The VIIRS 375 m fire product was able to retrieve active fire pixels 220 

across the IGP with marked spatial heterogeneity. To ascertain a representative region having 221 

predominance of residue-based fire, spatial comparison of fire pixel density was made using 222 

daily retrieved VIIRS FRP dataset. The selection of FRP over fire count as a criterion to isolate 223 

intensive fire region was driven by the fact that FRP directly relates energy release from active 224 

fire thereby, potentially modulate the spatial change in LST. Pixel density of fire radiative 225 

power was assessed at 1.5 x 1.5 km grid to compare spatial variations in FRP intensity across 226 

northwest India. To compute FRP density, a ratio between FRP and the grid area was computed 227 

following the protocol mentioned in Giglio et al. (2006).  228 

Initially, geospatial variations in fire intensity and associated changes in LST and AOD 229 

was assessed. Spatial intercomparison between fire intensity with LST and AOD was made 230 

over the designated zone shown in Fig. 2a. The zone was earmarked to cover an extended 231 

geographical area without imposing any discrimination between low and high FRP density 232 

over the northwest India. The zone was henceforth, referred as ‘extended geographical 233 

region’ as it combines fire intensity across the years and was solely meant to constitute spatial 234 

association between the dependent and predictor variables. 235 

https://doi.org/10.5194/egusphere-2025-3163
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



 9 

 236 

Fig. 2. Selection of high intensity residue-based fire zone based on fire radiative power pixel 237 

density (MW 2.25 Km-2 day-1). 238 

NOTE. Fig. 2a indicates the ‘extended region’ demarcating the entire area with varying fire intensity 239 

selected for spatial analysis. Rest of the figures classify year-specific ‘intensive fire zone’ used 240 

to retrieve all the variables for spatiotemporal analysis. 241 
 242 

In contrast, to establish potential effect of day to day variations in fire intensity and 243 

aerosol loading on LST, comparatively high intensity fire zone was designated against low 244 

intensity zone. To achieve this, entire crop-residue burning region of northwest India was 245 

earmarked constraining low (<5 MW grid-1) to high FRP density (>15 MW grid-1). Spatial 246 

variations in FRP density were compared among the selected years and region(s) was 247 

identified considering a threshold FRP density >5 MW grid-1 area (Fig. 2b-f). This ensured a 248 

better representation of the effect of medium to large crop-based fire on regional LST as very 249 

small-intensity fire deem to extinguish faster while being inconducive to considerably 250 

influence surface temperature (Zhao et al., 2024). All the spatial datasets were subsequently 251 

retrieved exclusively within the year-wise designated ‘intensive fire zone’ having FRP density 252 

>5 MW grid-1, and included for ascertaining FRP-AOD-LST association. Incidentally, area having 253 

high FRP density (>5 MW grid-1) remained almost consistent as illustrated in Fig. 2(b-f) and 254 

quantified in Table S1. It is noteworthy, the fire intensive region was pre-filtered based on the 255 
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Terra/Aqua MODIS land cover data to deselect any FRP pixel that emerged from a non-256 

agricultural/crop land. 257 

2.3.2 Selection of temporal window  258 

As the region with higher fire pixel density was isolated, our subsequent effort was to 259 

identify temporal window to assess potential association between fire intensity and other 260 

explanatory variables  on the identified zone. Selection of temporal window for spatial analysis 261 

was based on two scenarios as illustrated in Fig. 3. Scenario (1) was to quantify the influence 262 

of FRP, aerosols and other parameters on LST when fire intensity starts to build up and remain 263 

persistent over the intensive fire zone. Scenario (1) therefore, considers the day as initiation 264 

when FRP starts to build up for the first time in October and consistently exceeds 1500 MW 265 

with a corresponding 50% increase in area weighted FRP aggregate against its previous day. 266 

The Scenario (1) concludes with the same approximation during November with a 50% decline 267 

in aggregate FRP compared to its previous day. The dates selected for scenario (1) are shown 268 

in Table S2 with two exceptions. First, in year 2018 when a >50% criteria was not met despite 269 

having an aggregate FRP >1500 MW and second, in year 2017 when a prior decrease (>50%) 270 

in FRP was avoided because of subsequent rise in fire intensity.  271 

 272 

 273 

Fig. 3. FRP time series against LST over year-specific intensive fire zone with marked time 274 

frame for both scenarios selected for geospatial modelling. 275 

NOTE. All the spatial datasets including FRP, fire count, AOD and LST were retrieved exclusively within 276 
the year-wise designated fire intensive zone having FRP density >5 MW grid-1. Scenario (1) refers 277 
extended timeframe to consider entire fire period while scenario (2) select the interlude having 278 
high temporal coefficient between FRP and LST.  279 

 280 
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To constitute scenario (2), statistical association between day-specific aggregate FRP and 281 

spatially average LST retrievals were examined. Precisely, pixel-based LST was averaged over 282 

intensive fire zone and compared against area weighted FRP sum on day-to-day basis. Here, a 283 

temporal window (‘Scenario: 2’ in Fig. 3) for spatial analysis was identified fulfilling two 284 

criteria; first, the end date of the window should coincide with the day having relatively high 285 

FRP and second, the selected window should achieve a robust and positive correlation (r 0.5) 286 

between FRP and LST. Such restricted criteria were put to ensure that we only select year-287 

specific window(s) when FRP (so the fire count) increases with time and exhibit a strong 288 

association with regional LST. It is noteworthy that selecting multiple windows within a year 289 

having coinciding days was avoided while ensuring windows should not contain more than 5% 290 

of missing days, irrespective of parameters. 291 

2.4 Spatial correlation between fire, aerosols and LST 292 

To identify spatial association between FRP, LST and AOD over the crop residue-based 293 

fire zone, pixel-based spatial correlation coefficient was computed and its statistical 294 

significance (P<0.05) was tested across the study domain. This enables us to identify region 295 

having robust co-variability across the thermal conditions with varying fire intensity and 296 

columnar aerosol loading.  297 

2.5 Hurst Exponent 298 

The Hurst exponent is a statistical measure used to characterize the properties of a 299 

time series without imposing assumptions regarding its statistical distribution. Originally 300 

introduced by H.E. Hurst (1951) in the context of hydrological studies and later refined by 301 

Markonis and Koutsoyiannis (2016), it has since been widely applied across diverse scientific 302 

disciplines for analysing long-term trends and variability. Here, Hurst exponent was computed 303 

for FRP, AOD and LST timeseries to recognize long term persistence of the dataset. The main 304 

calculation procedures were as follows (Granero et al., 2008): 305 

A time series x(t) is given,  306 

(x)t = 1/𝜏 ∑ 𝑥(𝑡)   𝑡 = 1, 2, 3 …  𝜏
𝑡=1        (1) 307 

The cumulative deviation is determined using Eq. 2: 308 

𝑋(𝑡, 𝜏) = ∑ (𝑥(𝑢) − (x)t)𝜏
𝑢=1 , with a condition of 1 ≤ t ≤ τ.    (2) 309 
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Extreme deviation sequence, is defined as: 310 

R(τ)  =  max
1≤t≤τ

X(𝑡, 𝜏) − min
1≤t≤τ

X(𝑡, 𝜏)  𝑤ℎ𝑒𝑟𝑒 𝜏 = 1, 2, 3 …     (3) 311 

The standard deviation sequence is calculated by Eq. (4): 312 

𝑆(𝜏) = [1/𝜏 ∑ (x(t) − (𝑋)𝜏)
𝜏

𝑡=1
2]1/2  𝑤ℎ𝑒𝑟𝑒 𝜏 = 1, 2, 3 …    (4) 313 

By considering both extreme deviation sequence and standard deviation sequence, 314 

R/S = R (𝜏 )/S (𝜏) when assuming (R/S) ∝ (τ/2) H     (5) 315 

Hurst exponent varies between 0 and 1. A value of 0.5 signifies that the time series 316 

behaves as a stochastic process lacking persistence, indicating that future trends in the series 317 

are independent of those observed during the study period. Values exceeding 0.5 denote 318 

persistence in the time series, reflecting a tendency for future changes to follow the same 319 

trend as in the past; higher values correspond to stronger persistence. Values below 0.5 320 

indicate anti-persistence, meaning the time series exhibits a tendency to reverse its trend over 321 

time, with lower values indicating stronger anti-persistence (Peng et al., 2011). 322 

2.6 Space-for-time approach 323 

 A space-for-time approach (Liu et al., 2019) was used to assess and compare 324 

heterogeneity in AOD and LST against the variation in FRP within residue-based fire zone. 325 

Initially, year specific intensive fire zone was categorically divided in to multiples of 10x10 km2 326 

grid cell, selected on the basis of resolution of VIIRS AOD. Daily LST, AOD and FRP was 327 

subsequently retrieved over individual grid for the duration selected under scenario two 328 

when both fire and corresponding LST increases with time. After filtering out the grid cell 329 

having missing values for either LST or AOD, grids were classified into groups, one, having zero 330 

FRP (no fire) against all the grids having FRP > 0, indicating presence of fire. Subsequently, LST 331 

and AOD across all the grids with zero FRP were averaged (LSTno fire) and compared against 332 

mean LST (LSTfire) computed by averaging the grids exhibiting residue-based fire. A positive 333 

(negative) LST (LSTfire – LSTno fire) indicates a warming (cooling) induced by fire and was used 334 

to assess change in LST due to residue-based fire for the selected years. A similar approach 335 

was also used to constitute AOD variations utilizing grid-based retrievals.  336 

 337 
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2.7 Multicollinearity assessment 338 

Multicollinearity, where independent variables are highly correlated, can distort 339 

regression model estimates and obscure the true relationships between predictors and the 340 

target variable (Graham, 2003). In this study, multicollinearity was assessed by calculating the 341 

Variance Inflation Factor (VIF) using the statsmodels library. A VIF value of 1 indicates no 342 

multicollinearity, values between 1 and 5 suggest moderate correlation, and values above 5 343 

indicate significant multicollinearity (Daoud, 2017). 344 

2.8 Random Forest regression 345 

Random Forest (RF) regression was used to model the relationship between the 346 

dependent (LST) and the predictor variables (AOD, At, RH, Sr, Pr, FRP). It is noteworthy that RF 347 

was employed on daily-based spatial average of individual dataset to model the change. The 348 

RF is a non-linear ensemble learning method that constructs multiple decision trees using 349 

bootstrapped samples of the training data, with random subsets of predictors considered at 350 

each split. The final prediction is obtained by averaging the outputs of all trees, which 351 

improves generalization and mitigates overfitting. Due to its ability to model complex non-352 

linear relationships and handle multicollinearity and interactions among predictors effectively, 353 

RF is particularly suited for environmental modelling tasks (Breiman, 2001; Puissant et al., 354 

2014). 355 

The RF model was implemented using Scikit-learn’s RandomForestRegressor with 100 356 

trees and a fixed random seed to ensure reproducibility. A correlation pattern of prime 357 

predictor with dependent variable was also plotted through partial dependence plots (PDPs). 358 

The dataset was partitioned into training (75%) and testing (25%) subsets, and model 359 

performance was assessed using statistical metrics like coefficient of determination (R²), Root 360 

Mean Squared Error (RMSE), and Mean Absolute Error (MAE), allowing a comprehensive 361 

evaluation of model accuracy and prediction error.  362 

2.9 Assessment of relative feature importance  363 

Variable importance was computed from the trained RF model using the mean 364 

decrease in impurity approach, which quantifies the relative contribution of each predictor 365 

variable in reducing variance in the model’s prediction. This analysis offers a focused 366 

understanding of the dominant variables driving spatial and temporal variability in LST. 367 

https://doi.org/10.5194/egusphere-2025-3163
Preprint. Discussion started: 15 August 2025
c© Author(s) 2025. CC BY 4.0 License.



 14 

Feature importance were extracted and ranked to identify the most influential predictors of 368 

LST during diverse fire intensity scenarios. To facilitate meaningful comparison across 369 

predictors, the relative contribution of each feature was calculated as the ratio of its 370 

importance score to the sum of all feature importances. This normalized metric reflects the 371 

proportional influence of each predictor within the model. Since Scikit-learn’s 372 

RandomForestRegressor.feature_importances_ provides these values as normalized 373 

contribution summing to 1, the output inherently aligns with the relative contribution.  374 

2.10 Spatial heterogeneity assessment using GWR 375 

Spatial heterogeneity in FRP modulated variations in LST across intensive fire zone was 376 

further assessed using Geographically Weighted Regression (GWR). It is an advanced 377 

statistical method designed to capture heterogeneity in association across space between 378 

predictors and dependent variables by constraining spatially-varying coefficient estimates 379 

(Brunsdon et al., 1996). The GWR allows regression coefficients to vary locally across 380 

geographic space and effectively track these coefficients by using a weight matrix which 381 

evaluates the association between kernel and nearby samples (Yang et al., 2020). Unlike 382 

global models that assume spatial stationarity, GWR estimates location-specific parameters, 383 

thus providing a nuanced understanding of spatially varying relationships between 384 

dependent and independent variables (Fotheringham et al., 2009). The GWR model is 385 

formally expressed as: 386 

yi = β0(ui, vi) + ∑k=i  m βk(ui, vi) xik + εi       (6) 387 

where (ui, vi) are the coordinates of observation i, βk(ui, vi) are spatially varying coefficients, 388 

xik are predictor variables, and εi denotes random error. Here, local parameter is estimated 389 

using a weighted least square in which each observation is weighted according to its spatial 390 

proximity to the location being evaluated. The weights are determined by a spatial kernel 391 

function and a bandwidth parameter, which controls the degree of spatial influence. Choosing 392 

an optimal bandwidth is therefore, critical to balance the trade-off between model bias and 393 

variance. In this study, the optimal bandwidth is selected through an iterative optimization 394 

process that minimizes the corrected Akaike Information Criterion (Fotheringham et al., 395 

2009). This also ensures robust estimation of local relationships while accounting spatial non-396 

stationarity in the dataset. 397 
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3. Results and discussions 398 

3.1 Spatial association between fire, aerosols and LST 399 

 400 

Fig. 4. Spatial association between predictor (FRP, AOD) and dependent variables (LST), 5-year 401 

mean FRP (a), LST (b) and AOD (c), and spatial correlation between FRP_LST (d), 402 

FRP_AOD (e) and AOD_LST (f) over extended geographical region. 403 

NOTE. To constitute a spatial association, daily retrievals of FRP, AOD and LST pixels were converted 404 
to a common 6x6 km grid. Spatial correlation between FRP, LST and AOD daily retrievals on 405 
selected grid was made for the entire duration over extended geographical region. Significant 406 
correlation (P<0.05) is shown with black dot. 407 

 408 

Spatial variations in FRP, LST and AOD averaged during October to November between 409 

2017 and 2021 over extended geographical region without discriminating low to high fire 410 

intensity is shown in Figure 4(a-c). Variations in FRP did not reveal any specific spatial pattern 411 

while temporal differences were robust with approximately 100% increase in monthly mean 412 

FRP in the month of November (310,188 MW month-1) compared to October month (152,616 413 

MW month-1, Table S3). Spatial pattern in LST however, indicate a marked heterogeneity with 414 

comparably high temperature at lower southern region that declined gradually towards 415 
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north. This could potentially due to the proximity of mountainous region which partially offset 416 

the fire induced elevated LST in the northern part. Overall, spatially averaged LST monthly 417 

mean varied from 28 to 32 °C with slightly higher temperature during October (31.0±1.6 °C) 418 

compared to November month (29.0±2.4 °C). On the contrary, a spatially robust signature in 419 

columnar aerosol loading was apparent across the extended geographical region. 420 

Comparatively high AOD (>0.65) was retrieved at the centre that too receded towards its 421 

border (<0.30). Such spatially robust variation in columnar aerosols potentially influenced by 422 

the varying intensities of fire associated emission of aerosols and trace gas precursors. A 423 

strong deviation in monthly mean AOD (October: 0.59 ±0.08; November: 0.82±0.12) was also 424 

accounted which either influenced by November specific increase in fire intensity and/or 425 

meteorological variables, especially due to the decline in planetary boundary layer height 426 

(Banerjee et al., 2022). 427 

Spatial association between VIIRS FRP against MODIS LST and VIIRS driven AOD daily 428 

retrieval was also assessed over pre-identified geographical region (Fig. 4d-f). Spatial 429 

correlation between pixel-based FRP against LST reveals a heterogenous positive association 430 

over major portion of the area except southern part. A statistically significant association 431 

(P<0.05) between FRP and LST indicates potential influence of crop-based fire on surface 432 

temperature. FRP and AOD also accounts a statistically significant association across the 433 

central part where fire intensity was considerably high compared to its outskirts. Such spatial 434 

covariation between fire intensity and columnar aerosol loading reemphasize the possible 435 

influence of incremental aerosols and its precursors’ emission from biomass burning on 436 

columnar aerosols. Biomass burning aerosols primarily being carbonaceous smoke particles 437 

are reported to modulate lower atmospheric thermal budget (Bond et al., 2013). Spatial 438 

association between AOD and LST provide further evidence on possible fire-aerosols-surface 439 

temperature nexus over northwest India. A comparatively low but significant positive 440 

association between AOD and LST was possibly the consequence of smoke aerosols induced 441 

lower atmospheric warming, as was also accounted by Gomez et al. (2024) over western 442 

United States during 2017 California wildfire. 443 

3.2 Evaluation of Hurst exponent  444 

 Hurst exponent was evaluated to ascertain long-term persistence of fire intensity, 445 

surface temperature and aerosol loading time-series over the intensive fire zone. Principally, 446 
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Hurst exponent is employed to quantitative segregate a stochastic time series (H: 0.50) 447 

against a sustainable (H> 0.50) and anti-persistence time-series (H< 0.50) of pixel-based FRP, 448 

LST and AOD following the protocol as mentioned in Markonis and Koutsoyiannis (2016) and 449 

Chen et al. (2022). 450 

It could be seen from Fig. 5 that almost entire extended region over northwest India 451 

appears to have a Hurst exponent >0.50 for FRP with relatively high exponent (0.60-0.70) at 452 

the centre. Although the variations in Hurst exponent was not highly consistent as fire 453 

intensity fluctuates with time and space, we note that the accounted FRP time-series over 454 

major proportion of the region should sustain in longer time period. Similarly, a high exponent 455 

for LST (>0.50) across the region entails LST time-series too persisted and possibly remain 456 

stable in near future. For agriculture land located at the northern part, Hurst exponent 457 

appeared to be >0.65 indicating a strong trend in LST time series. For regional aerosol loading, 458 

barring few isolated tiny patches, Hurst exponent enhanced with space and time and 459 

accounted highest value (>0.75) over the central part. The region also coincides with area 460 

having high AOD (>0.65) and statistically significant association for FRP and AOD.  461 

 462 
 463 

Fig. 5. Estimating FRP, LST and AOD time-series persistence in extended geographical region . 464 
 465 

Its noteworthy that we have avoided analysing trend in respective time series as such 466 

estimation was not within the scope of the present research. Besides, a 5-year time period 467 

may not result statistically robust trend deemed comparable with previous estimates. Long-468 

term trend in fire dynamics and aerosol loading over the northwest region has however been 469 

reported by several researches, like Vadrevu and Lasko (2018), Jethva et al. (2019) and Singh 470 

et al. (2020). 471 
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3.3 Surface temperature and aerosols response to fire intensity  472 

Fire intensity in terms of pixel-based FRP, aerosol loading and surface temperature 473 

were retrieved to constitute respective daily means and spatial mean based on five year 474 

retrievals. It is noteworthy that to account immediate response of fire intensity and aerosol 475 

loading on surface temperature, all variables were retrieved exclusively over year wise 476 

intensive fire zone having cumulative FRP  5 MW grid-1 as illustrated in Fig. 2(b-f).  477 

 478 

Fig. 6. Time series of five-year mean fire radiative power (FRP, a), land surface temperature 479 

(LST, b) and aerosol optical depth (AOD, c) against daily retrievals, (d) covariation of FRP, 480 

AOD and LST over intensive fire zone.  481 

NOTE: Gray dots indicate daily retrievals from October to November over the years from 2017 to 2021 482 

while 5-yr mean is the daily average based on retrievals from 2017 to 2021, and is indicated 483 

with red line. 484 

 485 

A robust temporal pattern could be extracted from FRP timeseries (Fig. 6a) which 486 

reciprocates well with corresponding daily variations in fire count (Fig. S3). We note FRP 487 

initiates during mid-October over northwest India and reaches its peak consistently in the first 488 

week of November before reducing mid-November onwards. In contrast, temporal pattern in 489 

five-year mean LST timeseries is less intensive as daily retrievals shows extensive range of 490 

deviations. Regional LST clearly reflects both inter- and intraannual fluctuations, as shown in 491 
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Fig. S4. FRP time series however, matches well with mean columnar aerosol loading 492 

emphasizing possible effect of emission of aerosols and its precursors from extensive biomass 493 

burning. The characteristic rise in AOD during first two weeks of November possibly exhibits 494 

the direct response to elevated fire intensity as columnar aerosols consistently surpass 1.00 495 

over the intensive fire zone. Interestingly, every year in between October 25 to November 20, 496 

90% of daily-AOD exceeds 5-yr mean AOD (0.74±0.28) with corresponding 800% rise in 497 

average FRP (13085±6825 MW) compared to rest of the period (1148±1478 MW). Dring this 498 

interlude, five-year mean columnar AOD corelates well with 5-yr aggregate FRP (r: 0.46) and 499 

mean LST (0.41) which was otherwise, not the case for the remaining period (AOD-FRP: 0.18; 500 

AOD-LST: -0.02).  501 

Temporal association between FRP-AOD and LST clearly illustrates the immediate 502 

response of fire-associated changes in aerosol loading and surface temperature over the 503 

northwest part of India. In the subsequent section, such association was therefore, modelled 504 

using a geospatial tree-based regression model using several concurrent temporal (like day-505 

specific retrieval) and spatial features (like regional meteorology, aerosol loading and fire 506 

intensity) to construct FRP-AOD-LST nexus over intensive fire zone in northwest India. 507 

3.4 Fire induced change in LST and AOD 508 

 Crop-residue based fire induced change in surface temperature and aerosol loading 509 

was quantified using space-for-time approach, overlaying grid-based VIIRS LST, FRP and AOD 510 

at 10x10 km2 resolution over year-specific intensive fire zone. As illustrated in Fig. 7, with 511 

year-specific dataset included in Table S4, a clear and robust pattern of change in LST and 512 

AOD was noted over the areas exhibiting residue-based fire against that of no fire zone. 513 

Results are reported in terms of anomaly where a positive (negative) LST indicates reginal 514 

warming (cooling). Fire induced an increase in LST by 0.48 °C over the fire zone during year 515 

2017 to 2021, with marked temporal heterogeneity in temperature change with a range 516 

varying from -0.55 to 1.69 °C. It imply that there was instance when fire had cooling effect on 517 

surface temperature, as was in year 2019, although a very limited number of grid (2) 518 

exhibiting no fire could possibly the reason behind such unanticipated result. Barring this, an 519 

increase in LST was accounted in each year averaging 0.72 °C year-1 which could possibly due 520 

to reduced evapotranspiration, as was also noted during forest fire (Liu et al., 2018, 2019). 521 
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Similarly, Zhang et al. (2020) asserted an increase in LST by 1-3 °C by agriculture residue-based 522 

fire in three provinces across China. 523 

 524 
Fig. 7. Crop-residue based fire induced change in LST and AOD over intensive fire zone. 525 

 A consistent increase in aerosol loading was also accounted over the grids 526 

encountered with fire against no fire zone. Satellite based observation shows a clear trend in 527 

increasing AOD over the fire zone with a mean rise of 0.19 AOD year-1 with a range 0.07 to 528 

0.28 AOD year-1. Interestingly, increase in AOD was consistent across the monitoring period 529 

which link biomass burning emission with elevated aerosol emission over the source region, 530 

reported in literature across the globe (Mhawish et al., 2022; Ravindra et al., 2023). 531 

3.5 Spatial regression of fire intensity and aerosols on LST  532 

To establish a possible association between predictors viz. fire intensity, aerosols and 533 

meteorology on dependent variable LST, a machine learning algorithm was employed 534 

hypothesizing non-linear statistical association among the variables. The choice of Random 535 

Forest (RF) to regress the association was based on its excellent accuracy, ability to handle 536 

large dataset, superior performance and prior applications on LST-based research (Logan et 537 

al., 2020; Wang et al., 2022; Zhang et al., 2025). Here, relative importance of fire intensity, 538 

aerosol loading and meteorological variables (Fig. S5) were assessed to sustain spatial 539 

variations in LST across the year-constrained intensive fire zone. Further, relative 540 

contributions of each predictors were quantified and marginal effects of predictor variables 541 

on LST have been quantified. Two pre-specified scenarios (Table S5), one, that includes days 542 

with extended fire intensity starting from fire initiation to terminate, and second, days 543 

including high intensity fire having strong positive correlation between FRP and LST were 544 
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modelled. Such approximation were meant to evaluate and compare the relative importance 545 

of predictor variables both in the cases of high intensity fire and during entire crop-based fire 546 

episode. 547 

 548 

Fig. 8.  Relative feature importance of predictor variables on LST (a), statistical performance 549 

of random forest for two diverse scenarios (b), and partial dependence plots of LST on 550 

AOD (c) and FRP (d). 551 

NOTE. For Fig. 8d, K indicates x1000. The PDP plots are based on scenario 2. 552 

Figure 8(a) indicate the relative feature importance (RFI) of the selected predictor 553 

variables modelled across the identified scenarios. Variable relative feature importance refers 554 

the sensitivity of LST against individual predictors and serves as an identity about their partial 555 

influence in predicting LST. Scenario 1 resulted the strongest influence of FRP (RFI: 0.240) on 556 

LST across the intensive fire zone followed by solar radiation (0.208) and aerosol loading 557 

(0.177). The partial influence of other parameters including meteorological variables were 558 

less significant (<0.140). The prediction of FRP as the top feature to modulate LST changes 559 

during crop residue-based fire event is imperative as it hold greater repercussion on the 560 

regional climate and human health. However, the RFI scores for both FRP and SR were 561 

comparable indicating their shared partial influence on LST. Another interesting finding was 562 

to attain significant impact of columnar aerosol loading on LST modification which was 563 

otherwise reported by researchers investigating global fire aerosols and climate (Tian et al., 564 

2022). It is noteworthy that RF model performance for the scenario 1 records high RMSE 565 

(1.41) and MAE (1.05) with comparatively low R2 (0.35) which translates into some 566 

uncertainties in the prediction. 567 
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In contrast, a superior model performance was achieved in case of scenario 2 when 568 

very high coefficient of determination (R2: 0.80) was accounted with sufficiently less RMSE 569 

(0.38) and MAE (0.33). This ensured a robust model prediction when high correlation 570 

coefficient between FRP and LST were selectively considered. Interestingly, FRP also emerged 571 

as the top feature in modulating LST variation during scenario 2 with robust RFI of 0.503. This 572 

essentially establish the added contribution of excessive heat energy released during high 573 

intensity fire on LST modifications over high intensity residue-based fire zone. The very next 574 

contribution on LST variations was due to SR (RFI: 0.143) and aerosol loading (RFI: 0.68) which 575 

emerged to reduce significantly against scenario 1 when fire intensity spread across over 576 

extended time period. The partial dependence plot (PDP) on the marginal effects of FRP and 577 

AOD on LST have been included in Fig. 8(c-d). This indicates the relative change in LST with 578 

corresponding unit change in predictor variable when other predictors remain stable. The 579 

effect estimates of unit increase in AOD on LST remained inconsistent because of sudden 580 

reversal of trend when AOD remain within 1.00 to 1.20. In contrast, the marginal effect of FRP 581 

on LST has been prominent with an increase in regional FRP resulted in consequent increase 582 

in LST for almost all the cases. The RF model therefore, concludes with certainty the 583 

implications of crop-residue based fire associated release of energy and aerosols on regional 584 

LST which could have diverse consequences on regional climate, agriculture and human 585 

health. 586 

3.6 Geographically weighted regression on LST 587 

Initially, Global Moran’ I test was performed to verify spatial autocorrelation in LST 588 

across the intensive fire zone cumulatively for five years. Results, as in Table S6, indicate 589 

Moran’I value (0.224) for LST has a high positive Z-score and remain spatially significant (p-590 

value: 0.000). This refers very less possibility (<1%) of the clustered LST pattern could be due 591 

to random chance. Therefore, geographically weighted regression (GWR) was performed to 592 

assess spatial heterogeneity in FRP driven variations on LST across year-specific intensive fire 593 

zone over northwest India. GWR was however, simulated only for the main predictor FRP 594 

against dependent LST for scenario 2 based on prior outcome from RF regression. Figure 9 595 

details the spatial outcome of GWR for the entire duration while model running criteria and 596 

year-wise performance is included in Table S7. Results indicate spatial heterogeneity in 597 

coefficient estimates with overall positive values over the intensive fire zone. It was however, 598 
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predictable as FRP over the intensive fire zone did vary with time and space which potentially 599 

influence LST at a diverse scale. Overall, GWR model clearly imply that higher FRP is primarily 600 

associated with increase in LST over the region which potentially have implications on regional 601 

climate and agriculture. 602 

 603 

Fig. 9. Spatial distribution of GWR coefficients across intensive fire zone.  604 

Conclusions 605 

 This analysis reveals that physical effect of crop-residue based fire can substantially 606 

affect the regional climate by modifying land surface temperature over an extensive 607 

geographical region in northwest India. However, the magnitude of surface temperature 608 

modification could vary with intensity of fire and associated modulation by regional 609 

meteorology. Results reported here were in line with the findings of Liu et al. (2019) when 610 

satellite-based observations on forest fire was held accountable for 0.15 K rise in surface 611 

temperature over burned area globally, and a net warming over Siberian Boreal Forest (Liu et 612 

al. (2018). There are other evidences too, as in Alkama and Cascatti (2016), Zhao et al. (2024) 613 

when incidences and intensities of forest fire were positively linked with temperature. 614 

However, biophysical effects of agriculture residue-based fire on land surface temperature 615 

are observationally scarce, making it difficult to constrain its environmental consequences 616 

over diverse landforms. In a recent work, Zhang et al. (2020) has found association of elevated 617 

land surface temperature over three different provinces in China due to crop residual burning. 618 

However, feedback of air temperature on fire incidences were not included for consideration. 619 
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Our effort in understanding residue-based fire associated changes in surface temperature was 620 

therefore, novel considering the extensive and recurrent fire incidences over northern India 621 

that has been associated with deteriorating air quality in Delhi and its surroundings. The 622 

findings of this study are however, limited with inability to measure counter feedback of the 623 

agriculture system towards limiting changes in land surface temperature, uncertainty 624 

associated with estimating fire radiative power, and accounting aerosols counter feedback on 625 

local meteorology and vice-versa. 626 

 The manuscript unfolds with identifying geospatial variations in crop residue-based 627 

fire, associated aerosol loading and land surface temperature over northern part of India. 628 

Based on year wise pixel-based fire intensity, geographical region encompassing intensive fire 629 

was earmarked and all satellite-based retrievals and reanalysis datasets were processed only 630 

over the selected zone. A robust spatial variation in FRP matched well with corresponding 631 

AOD and LST, providing first evidence on possible perturbations of fire on land surface 632 

temperature. Hurst exponent reaffirms long-term persistence of fire intensity, surface 633 

temperature and aerosol loading time-series. Spatial correlation established a strong 634 

temporal association between predictor and dependent variables that too constrained with 635 

years. A grid-based analysis over the intensive fire zone concluded a robust increase in LST 636 

and AOD during peak fire season.  637 

The article further introduces Random Forest model and Geographically Weighted 638 

Regression to ascertain the potential influence of FRP and aerosol loading on LST, taking into 639 

account the existing meteorological variables over the selected zone. Two contrasting 640 

scenarios were hypothesized to regress the FRP-LST-AOD nexus. Scenario one, considered 641 

spatially aggregate FRP from fire initiating days to subside while scenario two accounted for 642 

days with very high intensity fire with strong and positive correlation between FRP and LST. 643 

Interestingly, for both the cases RF regression was able to capture and map the FRP induced 644 

modulation in LST with varying intensities and model performance. A clear increment in FRP 645 

induced LST modulation was noted especially during high intensity fire events. Beside FRP, 646 

both solar radiation and columnar aerosol loading also noted to partially influence the LST 647 

variations although with different intensities. However, the influence of columnar aerosol 648 

loading on LST seems to enhance during days with intense energy release possibly linked to 649 

excessive emission of carbonaceous aerosols from biomass burning. As Global Moran’ I test 650 
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concludes significant clustering in LST over the intensive fire zone, the interrelationship 651 

between LST and FRP were further assessed using geographically weighted regression. GWR 652 

output put further evidences on FRP modulated LST variations over northwest India although 653 

it appears to vary strongly with respect to space. Our study therefore, provides a 654 

comprehensive insight into the distinctive and persistent LST responses to fire intensity, 655 

emphasizing the importance of recognizing the climate feedback from crop residue-based fire 656 

dynamics. 657 
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