
1 
 

Spatial influence of agricultural residue burning and aerosols on land surface 1 
temperature  2 

Akanksha Pandey1, Richa Singh1, Kumari Aditi1,2, Neha Chhillar1, Tirthankar Banerjee1,2*  3 
 4 
1 Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India. 5 
2DST-Mahamana Centre of Excellence in Climate Change Research, Banaras Hindu University, Varanasi, India. 6 
*Correspondence to: T. Banerjee (tb.iesd@bhu.ac.in; tirthankaronline@gmail.com) 7 

 8 

Abstract 9 

The biophysical effects of agricultural residue burning, driven by the excessive release of 10 

energy and carbonaceous aerosols, remain poorly quantified at the global scale. Residue-11 

based fires have the potential to modify regional climate by altering land surface temperature 12 

(LST), highlighting the need for investigation at regional scale. Here, an observation-driven 13 

assessment of spatial variations in LST due to concurrent release of energy and aerosols has 14 

been made over northwestern India using multiple satellite and reanalysis-based datasets. 15 

Year-specific fire pixel density was used to delineate an intensive fire zone characterized by 16 

medium-to-large residue-based fire. Geospatial analysis revealed positive association among 17 

FRP (fire radiative power), LST and AOD (aerosol optical depth). Over intensive fire zone, a 18 

space-for-time approach revealed significant increase in both ΔLST (0.57°C; 95% CI:0.33-19 

0.81°C) and ΔAOD (0.13; 95% CI:0.08–0.17) due to fire. Random Forest non-linear model was 20 

employed to regress potential influence of FRP and AOD on LST having several other variables 21 

as confounding factors. FRP consistently emerged as the dominant predictor of LST, followed 22 

by planetary boundary layer height and aerosols. An increase in relative feature importance 23 

of FRP was noted during days having high fire intensity and posibve associabon with LST. 24 

Geographically weighted regression further explained spatial heterogeneity in LST 25 

modulation by FRP. Overall, this analysis provides the first empirical evidence that residue-26 

based fire contributes to changes in land surface temperature. It further highlights that the 27 

magnitude of this perturbation is governed by interannual variations in fire intensity and 28 

influenced strongly by prevailing meteorological conditions. 29 

Keywords: Aerosols, Biomass burning, Fire, GWR, Random Forest. 30 
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Introduction 34 

 Burning agricultural residues is a widespread practice for the rapid removal of post-35 

harvest biomass from croplands in many regions of the world (Streets et al., 2003; Singh et 36 

al., 2018; Shyamsundar et al., 2019). While biomass burning is often associated with 37 

deforestation (Chuvieco et al., 2021), forest fires (van der Velde et al., 2021; Aditi et al., 2025), 38 

and shifting cultivation (Prasad et al., 2000), residue burning on agricultural land is primarily 39 

conducted to clear fields, fertilize soil, eradicate weeds and pests, and prepare land for the 40 

next crop cycle (Graham et al., 2002; Korontzi et al., 2006; Lan et al., 2022). This practice is 41 

observed across large agricultural regions globally, including China (Streets et al., 2003; Zhang 42 

et al., 2020), South America (Graham et al., 2002), Southeast Asia (Lasko and Vadrevu, 2018; 43 

Yin, 2020), and northwestern India (Singh et al., 2018, 2021; Sarkar et al., 2018). In 44 

northwestern India, extensive residue burning during October to November is a recurring 45 

phenomenon and has been widely examined from multiple perspectives. Previous studies 46 

report that these burning events contribute to severe air-quality degradation in downwind 47 

urban centers (Singh et al., 2018; Jethva et al., 2019), alter aerosol loading and chemistry 48 

(Mhawish et al., 2022), modify aerosol vertical stratification and radiative forcing (Hsu et al., 49 

2003; Vinjamuri et al., 2020; Banerjee et al., 2021), induce adverse health effects (Singh et al., 50 

2021), and may influence regional hydrological processes (Kant et al., 2023). However, limited 51 

attention has been paid to investigate its effect on urban climate, especially on modulating 52 

lower atmospheric thermal budget which has been otherwise strongly evident in case of 53 

forest fire (Liu et al., 2018, 2019). 54 

Across the northwestern India, dual cropping pattern including rice and wheat crop is 55 

predominately practised over roughly 4.1 million ha of land (NAAS, 2017). Such a cropping 56 

pattern leads to generation of huge crop residues that are low in nutrient content and rich in 57 

silica and ash. Typically, residues from rice-wheat cropping system possess limited economic 58 

value, as they are unsuitable for use as alternative fodder, bioenergy feedstock or as raw 59 

material in pulp and paper industry (Shyamsundar et al., 2019; Lan et al., 2022). Besides, with 60 

the introduction of mechanical harvester in the 1980s and enactment of groundwater 61 

preservation act in the late 2000s, in situ burning of agricultural residues has become a 62 

recurrent practice among the local farmers. This practice serves to expedite field clearance 63 

and reduce the turnaround period between rice harvest and the subsequent sowing of the 64 



wheat crop (Balwinder-Singh et al., 2019). India produces an estimated 500 million metric 65 

tonnes (MT) of crop residues annually, of which 20–25% are disposed of through open-field 66 

burning. Crop residue burning is particularly prevalent in northwestern India, where roughly 67 

20-25 MT of residues are set on fire each year (Balwinder-Singh et al., 2019; Lan et al., 2022). 68 

Unregulated residue burning in this region contributes approximately 300 Gg/yr of PM2.5 and 69 

50 Tg of CO2 equivalent green-house gas emission (Singh et al., 2020). Notably, the frequency 70 

of fire incidences has exhibited a persistent upward trend, coinciding with concurrent 71 

increases in vegetation indices and atmospheric aerosol loading (Vadrevu et al., 2019; Jethva 72 

et al., 2019). In addition to atmospheric emissions, fires exert numerous biophysical impacts 73 

on the surrounding ecosystems. Fire induces a cascade of consequential processes, including 74 

modifications to the surface energy balance, redistribution of nutrients, alterations in species 75 

composition, changes in surface albedo, and variations in evapotranspiration rate (Ward et 76 

al., 2012; Liu et al., 2019). Additionally, fire can induce certain biogeochemical and biophysical 77 

stresses on local environment by modifying atmospheric composition and surface properties 78 

(Andela et al., 2017; Aditi et al., 2025). Such transformation of the native landscape, coupled 79 

with excessive release of energy, aerosols and its precursors, may therefore have several 80 

potential implications on the environment.  81 

Most studies on biomass-based fires have focused on identifying land–atmosphere 82 

processes responsible for fire initiation and propagation, quantifying emissions, and 83 

evaluating fire-induced land–atmosphere exchanges (Lasko and Vadrevu, 2018; Jethva et al., 84 

2019; Chuvieco et al., 2021; Aditi et al., 2025). In contrast, there is a paucity of knowledge 85 

regarding how biomass burning contributes to climate feedbacks through modifications of 86 

Earth’s surface radiative budget and land surface temperature (Bowman et al., 2009; Andela 87 

et al., 2017). Plausible explanation to this includes limited observation and associated 88 

uncertainties in estimating key biophysical parameter like surface albedo, land-atmosphere 89 

exchange of sensible heat flux and water vapor, changes in evapotranspiration before and 90 

after fire events. There are instances when global forest fire incidences and size have been 91 

linked with modifications in land surface temperature (LST; Alkama and Cescatti, 2016; Liu et 92 

al., 2018, 2019). Likewise, Liu et al. (2019) noted an enhancement in mean annual LST over 93 

burned forest area in the northern high latitudes. Similar evidence of increase in summertime 94 

surface radiometric temperature over temperate and boreal forests in the Northern 95 



Hemisphere was accounted by Zhao et al. (2024). Alkama and Cescatti (2016) reported 96 

increases in mean and maximum air temperature over arid regions following forest loss, 97 

highlighting the sensitivity of surface temperature to land-cover modification. However, fire-98 

induced thermal forcing is strongly constrained by the fire size (Zhao et al., 2024). Small, short-99 

lived fires, such as those associated with agricultural residue burning, often fail to produce 100 

sufficiently large changes in surface albedo or evapotranspiration, and therefore may not 101 

generate a detectable LST response. Incidence of elevated LST over different provinces in 102 

China due to agricultural residue burning has only recently reported by Zhang et al. (2020). A 103 

spatially heterogeneous increase in LST correlated strongly with fire count, with highest LST 104 

gradient noted at distances of 4–10 km from the central point of crop residue burning and 105 

persisting for 1-3 days. In contrast, the effects of post-harvest fire incidences in northwestern 106 

India on LST remain largely unexplored. This gap introduces considerable uncertainty in 107 

assessing the climate feedback of crop residue burning and highlights the need for a better 108 

understanding of the underlying mechanisms. 109 

This study aims to explore immediate biophysical effect of agricultural residue fire on 110 

surface temperature over northwestern India. By integrating spatially and temporally 111 

consistent satellite observations and reanalysis datasets, including fire counts, fire radiative 112 

power, land surface temperature, aerosols, meteorological covariates, topography, surface 113 

property, and physical environment over intensive fire zone, we sought to quantify time-114 

bound changes in LST in response to variations in fire intensity and aerosol loading. Several 115 

statistical methods were applied to construct the changes in LST with fire severity and 116 

aerosols. Additionally, a space-for-time framework was followed to assess the effects of 117 

recurrent FRP variations on LST and aerosol optical depth (AOD) throughout the fire season. 118 

Specifically, we addressed two key questions: (1) Does LST respond to changes in fire intensity 119 

over northwestern India? and (2) How do local meteorology and aerosol loading modulate 120 

LST variation with respect to space and time? To the best of our knowledge, this is the first 121 

systematic assessment of agricultural residue fire–driven modulations in LST over 122 

northwestern India. By integrating multiple geospatial observations, the analysis offers critical 123 

insights into the biophysical feedbacks of residue-based fire and advances understanding of 124 

LST responses to residue burning. Further, it refines estimates of fire-induced perturbations 125 



in the regional radiative budget offering valuable representation of biomass-based fire in 126 

Earth system models. 127 

2. Dataset and methodology 128 

2.1 Study domain 129 

 130 

Fig. 1. Spabal variabon in satellite-based fire radiabve power across northwest India, 131 

distribubon of FRP-based fire intensity (MW/pixel) (a) and domain selected for 132 

retrieval and processing of SNPP VIIRS FRP, AOD and Aqua MODIS LST (b). The region 133 

marked with blue in Fig. 1a subset indicates the Indo-Gangebc Plain (IGP) spanning 134 

from Pakistan to Bangladesh through India. The extended fire zone selected for 135 

analysis is marked with red within the IGP and has been shown in detail in Fig. 1b with 136 

fire pixel density. 137 

 138 

Post-harvest biomass burning is predominantly practiced across the northwestern 139 

Indo-Gangetic Plain (IGP) of South Asia, particularly in the agrarian states of Punjab and 140 

Haryana, which together contribute nearly 60–70% of India’s total food grain production. The 141 

concurrent rise in rice and wheat cultivation has led to a substantial increase in crop residue 142 

generation, resulting in higher fire intensity in recent years (Jethva et al., 2019). In this study, 143 



geospatial analyses of LST, fire activity, and aerosol loading were conducted over 144 

northwestern India during October–November between 2017 and 2021. The combination of 145 

high agricultural output, extensive biomass burning, and increasing fire activity makes this 146 

region particularly suitable for investigating fire dynamics and their environmental 147 

implications. Schematic workflow indicating core datasets and adopted methodology for 148 

exploring FRP-AOD-LST association is illustrated in Fig. S1. Instead of defining a fixed spatial 149 

domain a priori, year-wise fire signals were retrieved across cropland areas in northwestern 150 

India. This approach allowed the delineation of a core study region that varied annually 151 

according to year-specific fire intensity and spatial trends (as shown in Fig. S2), but all 152 

eventually bound to 29.2770° to 32.1625° N and 73.8996° to 77.0718° E, as illustrated in Fig. 153 

1b. 154 

2.2 Spa>al dataset  155 

Acbve fire count data was retrieved from the standard fire product of Visible Infrared 156 

Imaging Radiometer Suite (VIIRS) Collecbon-2 (VNP14IMG) available at 6-min L2 swath at 375 157 

m resolubon. The VIIRS onboard the Suomi Nabonal Polar-orbibng Partnership (SNPP) satellite 158 

is a cross-track single-angle scanning radiometer which was launched in year 2011 under joint 159 

operabon of NASA and NOAA. The VIIRS fire detecbon algorithm typically extends well refined 160 

and validated MODIS Fire and Thermal Anomalies product (Giglio et al., 2003). The I-band 161 

based fire detecbon algorithm primarily ublizes brightness temperature of Channel I4 on 162 

middle infrared spanning from 3.55 to 3.93 μm, centred at 3.74 μm. Addibonally, to isolate 163 

the acbve fire spots from the fire-free background channel, a single gain I5 at thermal infrared 164 

regions (10.5–12.4 μm) is also considered. Rest of the I-band channels i.e. I1 to I3, covering 165 

visible, near and short-wave IR are used to disbnguish pixels with cloud, water and sun-glint 166 

(Schroeder et al., 2014). The VIIRS fire database was considered due to its superior precision 167 

and accuracy in idenbfying relabvely small fire, greater spabal resolubon at footprint and pixel 168 

saturabon temperature (Li et al., 2018; Vadrevu and Lasko, 2018; Adib et al., 2023). For this 169 

experiment, SNPP VIIRS 375 m L2 acbve fire count data with nominal (fire mask class 8) and 170 

high confidence (fire mask class 9), was retrieved over northwestern India from year 2017 to 171 

2021 (all inclusive). 172 

Fire radiabve power (FRP) quanbfies the release of radiabve energy from biomass 173 

burning integrated at all angles and wavelengths over a spabal scale. Measured in Wap, FRP 174 



retrieval quanbfies the release of heat energy against bme and in many instances linearly 175 

associated with the rate of fuel consumpbon and emission (Ichoku et al., 2008; Nguyen and 176 

Wooster, 2020). A detailed descripbon on FRP retrieval and comparison among the sensors 177 

are available in Wooster et al. (2003, 2005) and Ichoku et al. (2008). Li et al. (2018) concluded 178 

VIIRS FRP as comparable with MODIS FRP in most of fire clusters and stable across swath. 179 

Here, FRP (MW) was processed from the SNPP VIIRS C2 Level-2 (L2) 375 m acbve fire product 180 

(VNP14IMG). VIIRS FRP was used as a proxy of fire intensity and potenbal emission strength 181 

from the biomass burning area, and considered as a direct measurement of radiabve energy 182 

being released from individual fire pixel.  183 

Land surface temperature (LST, in °C) at 1 km spatial resolution was utilized from 184 

Moderate Resolution Imaging Spectroradiometer (MODIS) version 6.1 Land Surface 185 

Temperature and Emissivity retrievals product (MYD11A1). Typically, LST indicates 186 

thermodynamic temperature of the interface atmospheric layer within soil, plant cover and 187 

lower atmosphere, and serves as an indicator of land-atmosphere interaction and exchange 188 

(Li et al., 2023). Here, MODIS MYD11A1 radiometric dataset with quality flag ‘00’ was 189 

specifically chosen considering its broad swath and wider applicability in estimating land 190 

surface temperature. MODIS LST is validated against ground observations on diverse land 191 

covers and reported to provide realistic estimate of surface temperature (Wan, 2014) with an 192 

uncertainty of ≤0.5 K. The dataset includes daytime maximum LST (at 1:30 PM local time) and 193 

nighttime minimum LST (at 1:30 AM local time). Here, daytime LST dataset were obtained 194 

solely from the MODIS sensor onboard the Aqua satellite to closely coincide with VIIRS fire 195 

count observations at 1:30 PM local time, a period when crop residue–based fires are 196 

expected to reach at peak. 197 

Aerosol opbcal depth (AOD) from Visible Infrared Imaging Radiometer Suite (VIIRS) 198 

sensor on-board SNPP satellite offers accurate esbmabon of columnar aerosol loading at 550 199 

nm over land. Accuracy of VIIRS V1 DB AOD was evaluated extensively over South Asia by Adib 200 

et al. (2023) and reported to provide stable AOD retrieval against AERONET. Sayer et al. (2019) 201 

reported an esbmated error of ±(0.05+20%) in VIIRS Version 1 DB AOD dataset. Here, Deep 202 

Blue (DB) Version 1 AOD dataset (AERDB_L2_VIIRS_SNPP Level-2) was used to retrieve AOD 203 

with a nominal spabal resolubon of 6 km at nadir. Only quality assured AOD (QA ≥ 2) was 204 

retrieved for the months of October to November over selected spabal domain. 205 



Terra/Aqua MODIS land cover data was used to discriminate crop land against the rest 206 

to filter out thermal anomalies exclusively over the agriculture land. To achieve this, MODIS 207 

L3 V6.1 Global Land Cover type product (MCD12Q1) was retrieved from LAADS DAAC site for 208 

year 2017, available at 0.5 km spatial resolution. MODIS land cover types adopts International 209 

Geosphere-Biosphere Programme (IGBP) and other land type classification schemes to 210 

classify land cover. Here, land cover type 12 (cropland) was earmarked to isolate the 211 

agriculture land from its surrounding (Fig. S3). 212 

Daily composite data on surface and root-zone soil moisture (SM, m³ m⁻³) available at 213 

9 km resolution was obtained from NASA’s Soil Moisture Active Passive (SMAP) satellite 214 

mission having L-band radar. The Normalized Difference Vegetation Index (NDVI) at 6 km 215 

resolution was derived from the VIIRS/SNPP Deep Blue (AERDB_L2_TOA_NDVI) dataset and 216 

was utilized to quantify surface vegetation greenness dynamics. Elevation data at 30 m 217 

resolution was retrieved from Copernicus DEM - Global and European Digital Elevation Model 218 

dataset for year 2015. Surface albedo data was acquired from MCD43 suite of NASA standard 219 

product which integrates both Terra and Aqua retrievals. Here, white-sky version 6.1 220 

shortwave albedo data (MCD43A3, Albedo_WSA_shortwave) at 500 m pixel resolution with 221 

daily-time step (quality score: 0) was used. 222 

 Lower surface meteorological data including air temperature (AT), total solar radiabon 223 

flux (SR), precipitabon (PR), relabve humidity (RH) was procured from European Centre for 224 

Medium-Range Weather Forecasts (ECMWF) AgERA5 dataset. The AgERA5 dataset has been 225 

generated by Copernicus Climate Change Service (2020) from hourly ECMWF ERA5 dataset for 226 

specific agro-ecological based applicabons. The meteorological data were pre-customized 227 

with temporal aggregabon aligned to local bme zones and spabal enhancement to a 0.1° 228 

resolubon using grid-based variable-specific regression model. Here, air temperature at 2 229 

meters above the surface, total solar radiabon flux received at the surface over a 24-hour bme 230 

period, and relabve humidity at 2 m height was selecbvely used over pre-idenbfied intensive 231 

crop-based fire zone. Planetary boundary layer height (PBLH) data at 0.25° x 0.25° resolubon 232 

was acquired from ECMWF ERA5 for 13:00-14:00 h local bme corresponding with VIIRS 233 

overpass bme. A descripbon of all core datasets used in this analysis and their resolubon, 234 

version, and quality flags is included in Table S1 (in supplementary file).  235 
 236 



2.3 Spa>al analysis for fire-aerosols-LST associa>on 237 

2.3.1 Selec>on of intensive fire zone 238 

 Post-harvest residue burning typically begins in mid-October and reaches peak 239 

intensity by mid-November across northwestern India. Accordingly, all spatial analyses were 240 

conducted for October and November for the years 2017–2021. The VIIRS 375 m fire product 241 

successfully retrieved active fire pixels across the Indo-Gangetic Plain, capturing substantial 242 

spatial heterogeneity. To ascertain a representabve region having predominance of residue-243 

based fire, spabal comparison of fire pixel density was made using daily retrieved VIIRS FRP 244 

dataset. FRP was selected instead of fire counts because it directly quantifies the radiative 245 

energy released from active burning and therefore provides a more meaningful metric for 246 

assessing potential impact on LST. FRP density was computed on a 1.5 × 1.5 km2 grid to 247 

characterize spatial variations in fire intensity across northwestern India. Following Giglio et 248 

al. (2006), FRP density was estimated as the ratio of total FRP within a grid cell to the grid 249 

area. 250 

 251 

Fig. 2. Selecbon of high intensity residue-based fire zone based on fire radiabve power pixel 252 
density (MW 2.25 km-2 day-1). Fig. 2a indicates the ‘extended geographical region’ 253 
demarcabng the enbre area with varying fire intensity selected for spabal analysis. Rest 254 
of the figures classify year-specific ‘intensive fire zone’ based on FRP density. 255 
 256 



Initially, geospatial variations in fire intensity and the associated changes in LST and 257 

AOD were evaluated. Spatial intercomparison between FRP, LST, and AOD was performed 258 

over the region delineated in Fig. 2a. This area was selected to encompass an extended 259 

geographical domain without imposing thresholds on low or high FRP density across 260 

northwestern India. The region is hereafter referred to as the “extended geographical 261 

region,” as it integrates fire activity across all years and was used exclusively to establish the 262 

spatial association between the predictor (FRP) and dependent variables (LST and AOD). 263 

In contrast, to assess the day-to-day influence of fire intensity and aerosol loading on 264 

LST, a comparatively high-intensity fire zone was delineated relative to low-intensity areas. 265 

To achieve this, the entire crop-residue burning region of northwestern India was mapped 266 

using a constraint from low FRP density (<5 MW grid⁻¹) to high FRP density (>15 MW grid⁻¹). 267 

Spatial variations in FRP density were evaluated for each year, and regions with FRP density 268 

>5 MW grid⁻¹ were identified as the “intensive fire zone” (Fig. 2b–f). This threshold ensured a 269 

better representation of the effect of medium to large crop-based fire on regional LST as 270 

small-intensity fire deem to extinguish faster while being inconducive to considerably 271 

influence surface temperature (Zhao et al., 2024).  272 

All subsequent spabal datasets used for evaluabng FRP–AOD–LST relabonships were 273 

retrieved exclusively within the year-specific ‘intensive fire zone’ having FRP density >5 MW 274 

grid-1. Notably, the spabal extent of the high-FRP region remained largely consistent across all 275 

years (Fig. 2b–f), with areal esbmates summarized in Table S2. It is noteworthy, the region was 276 

pre-filtered based on the Terra/Aqua MODIS land cover data to deselect any FRP pixel that 277 

emerged from a non-agricultural/crop land. 278 

2.3.2 Selec>on of temporal window  279 

A�er isolabng the region with higher fire pixel density, the next step was to idenbfy 280 

the temporal window in which potenbal associabons between fire intensity and other 281 

explanatory variables could be examined. The temporal selecbon was based on two scenarios, 282 

as illustrated in Fig. 3. Scenario 1 was designed to quanbfy the influence of FRP, aerosols, and 283 

other parameters on LST during the period when fire acbvity begins to intensify and remains 284 

persistent over the intensive fire zone. Scenario 1 defines the inibabon day as the first instance 285 

in October when aggregate FRP consistently exceeds 1500 MW and shows at least a 50% 286 

increase compared to the previous day. The scenario concludes in November when aggregate 287 



FRP decreases by at least 50% relabve to the previous day. The selected dates for Scenario 1 288 

are listed in Table S3, with two excepbons. First, in year 2018 when a >50% criteria was not 289 

met despite having an aggregate FRP >1500 MW and second, in year 2017 when a prior 290 

decrease (>50%) in FRP was avoided because of subsequent rise in fire intensity.  291 
 292 

 293 

Fig. 3. FRP and LST bme series over intensive fire zone showing the extent of scenarios used 294 

for geospabal modelling.  295 

To define Scenario 2, a statistical association was examined between day-specific 296 

aggregate FRP and the spatially averaged LST. Pixel-based LST values were averaged over the 297 

intensive fire zone and compared against the area-weighted sum of FRP on a day-to-day basis. 298 

A temporal window (“Scenario 2” in Fig. 3) was selected using two criteria: (i) the end of the 299 

window had to coincide with a period of persistently high FRP, and (ii) the window had to 300 

exhibit a strong positive correlation (r ≥ 0.5) between FRP and regional LST. Such restricted 301 

criteria were put to ensure that we only select year-specific window(s) when FRP (so the fire 302 

count) increases with bme and exhibit a strong associabon with regional LST. Descripbve 303 

stabsbcs of both scenarios are included in Table S4. It is noteworthy that selecbng mulbple 304 

windows within a year having coinciding days was avoided while ensuring windows should not 305 

contain more than 5% of missing days, irrespecbve of parameters. 306 

2.4 Spa>al correla>on between fire, aerosols and LST 307 

To examine the spabal associabon among FRP, LST, and AOD over the residue–based 308 

fire zone, grid-based spabal correlabon coefficients were computed, and their stabsbcal 309 

significance (p < 0.05) was tested across the study domain. Daily FRP (375 m) and LST (1 km) 310 



datasets were inibally resampled to a 6x6 km2 resolubon to match the VIIRS AOD dataset 311 

before subject to spabal correlabon analyses among the predictor and dependent variables. 312 

This approach facilitated the idenbficabon of regions exhibibng strong co-variability in thermal 313 

condibons corresponding to variabons in fire intensity and columnar aerosol loading. 314 

2.5 Hurst Exponent 315 

The Hurst exponent is a stabsbcal measure used to characterize the properbes of a 316 

bme series without imposing assumpbons about its underlying distribubon. Originally 317 

introduced by Hurst (1951) in hydrological studies and later refined by Markonis and 318 

Koutsoyiannis (2016), it has since been widely applied across diverse scienbfic disciplines to 319 

analyse long-term trends and variability. In this study, the Hurst exponent was computed for 320 

FRP, AOD, and LST bme series to idenbfy long-term stabsbcal persistence in the datasets. To 321 

esbmate the Hurst exponent at the spabal scale, 6 × 6 km² resampled datasets of FRP, AOD, 322 

and LST were used. Adjustment of seasonal cycle was not accounted, as the datasets were 323 

retrieved and processed exclusively for a single season across the selected years. The main 324 

calculabon procedures were as follows (Granero et al., 2008): 325 

A bme series x(t) is given,  326 

(x)! = 1/𝜏 ∑ 𝑥(𝑡)			𝑡 = 1, 2, 3…		"
#$%        (1) 327 

The cumulabve deviabon is determined using Eq. 2: 328 

𝑋(𝑡, 𝜏) = ∑ (𝑥(𝑢) − (x)!)"
&$% , with a condibon of 1 ≤ t ≤ τ.    (2) 329 

Extreme deviabon sequence, is defined as: 330 

R(τ) 	= 	 max
%'!'(

X(𝑡, 𝜏) −	 min
%'!'(

X(𝑡, 𝜏)		𝑤ℎ𝑒𝑟𝑒	𝜏 = 1, 2, 3…	    (3) 331 

The standard deviabon sequence is calculated by Eq. (4): 332 

𝑆(𝜏) = [1/𝜏@ (x(t) − (𝑋)")
"
#$%

2]1/2 	𝑤ℎ𝑒𝑟𝑒	𝜏 = 1, 2, 3…    (4) 333 

By considering both extreme deviabon sequence and standard deviabon sequence, 334 

R/S = R (𝜏 )/S (𝜏) when assuming (R/S) ∝ (τ/2) H     (5) 335 

The Hurst exponent ranges between 0 and 1. A value of 0.5 indicates that the bme 336 

series behaves as a purely stochasbc process without persistence, implying that future 337 

variabons are independent of past behaviour. Values greater than 0.5 denote stabsbcal 338 



persistence, reflecbng a tendency for future changes to follow the same trend as in the past, 339 

with higher values corresponding to stronger persistence. Conversely, values below 0.5 340 

indicate anb-persistence, suggesbng a tendency for the bme series to reverse its trend over 341 

bme; lower values represent stronger anb-persistence (Peng et al., 2011). 342 

2.6 Space-for->me approach 343 

 A space-for-bme approach was employed to assess and compare the changes in LST 344 

and AOD with respect to FRP within the extended geographical region experiencing recurrent 345 

medium- to high-intensity fire. To ensure that changes in LST and AOD were attributable solely 346 

to fire activity, grids with similar characteristics in terms of topography, climate, and physical 347 

environment were compared (Liu et al., 2019). To achieve this, daily datasets including 348 

meteorological covariates (PBLH, AT, SR, RH and PR), physical environment (elevabon), 349 

vegetabon and soil characterisbcs (NDVI, soil moisture), climatological mean LST and AOD, 350 

and surface property (albedo) were extracted over both fire and no-fire grids at a spatial 351 

resolution of 10 × 10 km². The daily data were retrieved for each grid under Scenario 2, when 352 

FRP reached its peak and exhibited a positive association with regional LST. 353 

After filtering out the grid cells with missing LST or AOD values, remaining grids were 354 

classified into two groups: those with zero FRP (no-fire) against the grids having FRP > 0, 355 

indicating presence of fire. Fire and no-fire grids with comparable spatial characteristics were 356 

grouped into a single stratum, and a stratified matching technique was applied to generate 357 

multiple strata based on combinations of the selected confounders. Grids were retained only 358 

when differences in their physical environment, vegetation and soil characteristics, climate 359 

and land cover between fire and no-fire conditions were smaller than the defined thresholds 360 

(Delevation < 50 m; DNDVI <0.05; Dsoil moisture <0.05; Dalbedo <0.05; DLST <10.0; DAOD 361 

<0.80). Comparisons were then made within strata containing grids of similar attributes to 362 

ensure that the observed variations in LST and AOD could be attributed solely to fire activity. 363 

The difference in LST (DLST) among the fire grids (LSTfire) and grids exhibiting no-fire (LSTno-fire) 364 

having similar attributes were compared to constitute effect of residue-based fire on LST. A 365 

positive (negative) DLST (LSTfire – LSTno-fire) indicates fire-induced warming (cooling) and was 366 

used to quantify changes in LST associated with residue burning for the selected years. A 367 

similar approach was also adopted to evaluate DAOD variations using grid-based retrievals.  368 



It is noteworthy that the grids were not classified based on meteorological covariates, 369 

as only insignificant variations were noted among the grids. The entire northwestern cropland 370 

experiences a relatively uniform background climate during October–November, including 371 

comparable boundary layer heights, with PBLH standard deviations ranging from ±10 m to 372 

±33 m within a single fire season. The climatological mean LST and AOD were computed only 373 

for the pre-fire season (September, 2017-2021), during which none of the grids experienced 374 

residue-burning activity. Furthermore, grids were not differentiated by slope or aspect, given 375 

the minimal topographic variation across the Gangetic Plain. 376 

2.7 Mul>collinearity assessment 377 

Multicollinearity, where independent variables are highly correlated, can distort 378 

regression estimates and obscure the true contribution of individual predictors (Graham, 379 

2003). To assess this, the Variance Inflation Factor (VIF) for all covariates was calculated using 380 

the statsmodels library. A VIF of 1 indicates no correlation, values between 1 and 5 suggest 381 

moderate correlation, and values greater than 5 are generally interpreted as evidence of 382 

substantial multicollinearity (Daoud, 2017). All biophysical, land-surface, and meteorological 383 

variables met acceptable VIF thresholds, except solar radiation, which was therefore excluded 384 

from Random Forest and GWR analysis. Additionally, soil moisture data was removed from 385 

further analysis due to a high percentage of missing observations (~30%). 386 

2.8 Random Forest regression 387 

Random Forest regression was used to model the relationship between the 388 

dependent variable (LST) and predictor variables (AOD, PBLH, AT, RH, SR, PR, NDVI, elevation, 389 

albedo, and FRP) within the intensive fire zone. Daily retrievals, averaged over the year-390 

specific intensive fire area, were incorporated into the ensemble framework to capture 391 

potential non-linear associations among variables. The selected approach ensures robustness 392 

to multicollinearity, minimizes overfitting, and effectively captures complex predictor 393 

interactions. 394 

Random Forest is a non-linear ensemble machine learning algorithm that constructs 395 

multiple decision trees from bootstrapped samples of the training data, with a random subset 396 

of predictors evaluated at each split. Final predictions are obtained by averaging all trees, 397 

improving generalization and reducing overfitting (Breiman, 2001; Puissant et al., 2014). The 398 



algorithm was selected due to its strong predictive capability, scalability to large 399 

environmental datasets, resilience to correlated inputs, and demonstrated success in 400 

previous LST-related studies (Logan et al., 2020; Wang et al., 2022; Zhang et al., 2025). These 401 

attributes collectively support Random Forest as an appropriate and interpretable choice for 402 

assessing the complex interactions between fire intensity, aerosol loading, and LST dynamics. 403 

Key Random Forest hyperparameters (n_estimators, max_depth, min_samples_split, 404 

min_samples_leaf, and max_features) were optimized using Bayesian optimization 405 

implemented via BayesSearchCV in scikit-optimize (Snoek et al., 2012; Shahriari et al., 2015; 406 

Frazier, 2018). This adaptive, probabilistic search strategy efficiently identifies near-optimal 407 

hyperparameter combinations while minimizing computational cost. To ensure robust model 408 

evaluation and mitigate temporal dependence, we employed temporal block cross-validation 409 

using a 3-fold GroupKFold in the scikit-learn library, where all observations from a given year 410 

were assigned to the same fold. This approach prevented temporal overlap between training 411 

and validation datasets and reduced information leakage across years. This approach also 412 

minimized temporal autocorrelation and prevented data leakage across time periods. Model 413 

performance was quantified using cross-validated coefficient of determination (R²), Root 414 

Mean Squared Error (RMSE), and Mean Absolute Error (MAE), providing a comprehensive 415 

assessment of model accuracy and prediction error. 416 

2.9 Assessment of rela>ve feature importance  417 

Variable importance was derived from the trained RF model using the mean decrease 418 

in impurity method, which quanbfies each predictor’s relabve contribubon to reducing 419 

variance in model predicbons. This approach provides insight into the dominant factors 420 

governing the spabal and temporal variability of LST. Feature importance values were 421 

extracted and ranked to idenbfy the most influenbal predictors under different fire intensity 422 

scenarios. To enable direct comparison among predictors, the relabve contribubon of each 423 

feature was expressed as its importance score normalized by the sum of all feature 424 

importances. As Scikit-learn’s RandomForestRegressor.feature_importances_ inherently 425 

returns normalized values summing to one, the reported scores directly represent each 426 

predictor’s proporbonal influence within the model. 427 

2.10 Spa>al heterogeneity assessment using GWR 428 



Spatial heterogeneity in the influence of FRP, AOD, and other spatial predictors on LST 429 

within the intensive fire zone was assessed using Geographically weighted regression (GWR) 430 

at 1x1 km2 grid. GWR is a spatially explicit regression technique designed to quantify how 431 

relationships between predictors and a dependent variable vary across geographic space by 432 

estimating spatially varying coefficients (Brunsdon et al., 1996). The method applies a 433 

distance-based weighting scheme, whereby observations closer to a given location receive 434 

higher weights, allowing local parameter estimation that reflects neighbourhood-specific 435 

dynamics (Yang et al., 2020). Unlike global regression models that assume spatial stationarity, 436 

GWR produces location-specific coefficient estimates, offering a more nuanced 437 

understanding of spatially varying associations between LST and its predictors (Fotheringham 438 

et al., 2009). The GWR model is formally expressed as: 439 

𝑦) = 𝛽*(𝑢𝑖, 𝑣𝑖) +@ (𝛽𝑘(𝑢𝑖, 𝑣𝑖)	𝑥𝑖𝑘) +	+
,$% 𝜀𝑖                                                              (6) 440 

where (ui, vi) are the coordinates of observation i, βk(ui, vi) are spatially varying coefficients, 441 

xik are predictor variables, and εi denotes random error. In GWR, local parameters are 442 

estimated using weighted least squares, where each observation is assigned a weight based 443 

on its spatial proximity to the location being evaluated. These weights are determined by a 444 

spatial kernel function and a bandwidth parameter that defines the extent of spatial 445 

influence. Selecting an optimal bandwidth is therefore essential to balance the trade-off 446 

between model bias and variance. In this study, the optimal bandwidth was identified through 447 

an iterative optimization procedure that minimizes the corrected Akaike Information 448 

Criterion (AICc) (Fotheringham et al., 2009). This approach ensures robust estimation of local 449 

relationships while effectively accounting for spatial non-stationarity in the dataset. Such a 450 

framework is particularly valuable in fire-affected landscapes, where the impacts of fire 451 

intensity, aerosol loading, and surface characteristics on LST are inherently heterogeneous 452 

and vary substantially across space. 453 

3. Results and discussions 454 

3.1 Spatial association between fire, aerosols and LST 455 

Spatial variations in FRP, LST and AOD averaged for October to November between 456 

2017 and 2021 over extended geographical region is shown in Figure 4(a-c). While residue-457 

based FRP did not exhibit a distinct spatial pattern, temporal variations were prominent, with 458 



monthly mean FRP in November (310,188 MW month⁻¹) showing nearly a 100% increase 459 

compared to October (152,616 MW month⁻¹; Table S5). In contrast, the spatial pattern of LST 460 

exhibited considerable heterogeneity, with relatively higher temperature observed in the 461 

southern parts of the region that gradually declined northward. This north–south gradient 462 

may be partially attributed to the proximity of the Himalayan foothills, where the cooler 463 

mountainous environment likely offsets fire-induced surface warming. A gradual decline in 464 

spatially averaged monthly mean LST was also accounted in November (29.0±2.4 °C) 465 

compared to October (31.0±1.6 °C).  A spatially distinct pattern in columnar aerosol loading 466 

was evident across the extended geographical region, with elevated AOD (> 0.65) retrieved 467 

over the central areas that gradually decreased towards its periphery (< 0.30). Such spatial 468 

variability in aerosol loading is likely driven by differences in the intensity of residue-based 469 

fires and the associated emissions of aerosols and trace gas precursors. Moreover, the 470 

pronounced increase in monthly mean AOD (October: 0.59 ± 0.08; November: 0.82 ± 0.12) 471 

likely reflects the intensification of fire during early November, compounded by concurrent 472 

meteorological influences, most notably the seasonal decline in boundary layer height  473 

(Banerjee et al., 2022). 474 



 475 

Fig. 4. Spatial variations of FRP, LST and AOD over extended geographical region, 5-year mean 476 

FRP (a), LST (b) and AOD (c), and spatial correlation between FRP_LST (d), FRP_AOD (e) 477 

and AOD_LST (f). To compute spatial correlation, daily retrievals of FRP, AOD and LST 478 

were converted to a common 6x6 km2 grid. Spatial correlation was computed for the 479 

entire duration and significant correlation (P<0.05) is shown with black dot. 480 

 481 
Spatial associations among VIIRS-derived FRP, MODIS LST, and VIIRS-based AOD daily 482 

retrievals were assessed over the extended geographical region (Fig. 4d–f). Spatial correlation 483 

between pixel-based FRP against LST reveals positive but spatially heterogenous association 484 

across most parts of the study area, except in the southern region. A statistically significant 485 

relationship (P < 0.05) between FRP and LST underscores the potential influence of crop 486 

residue burning on surface temperature. Similarly, a significant association between FRP and 487 

AOD was observed across the central region, where fire intensity was notably higher than in 488 

surrounding areas. This spatial covariation between fire intensity and columnar aerosol 489 

loading further reinforces the influence of biomass-burning-induced emissions of aerosols 490 



and their precursors on atmospheric aerosol abundance. Biomass-burning aerosols, 491 

predominantly composed of carbonaceous soot particles, are known to modulate the thermal 492 

budget of the lower atmosphere (Freychet et al., 2019; Xu et al., 2021). The spatial association 493 

between AOD and LST further supports the existence of a fire–aerosol–surface temperature 494 

nexus over northwestern India. A comparatively weak yet statistically significant positive 495 

correlation between AOD and LST likely reflects lower-atmospheric warming induced by 496 

smoke aerosols, consistent with the similar warming effect over western United States during 497 

2017 California wildfire (Gomez et al., 2024). 498 

3.2 Evaluation of Hurst exponent  499 

 The Hurst exponent was evaluated to assess the long-term persistence of fire 500 

intensity, surface temperature, and aerosol loading time series over the extended 501 

geographical region. In principle, the Hurst exponent is used to quantitatively distinguish a 502 

purely stochastic time series (H = 0.50) from a persistent (H > 0.50) or anti-persistent (H < 503 

0.50) time series of pixel-based FRP, LST, and AOD, following the methodology described in 504 

Markonis and Koutsoyiannis (2016) and Chen et al. (2022). 505 

As shown in Figure 5, nearly the entire extended geographical region of northwestern 506 

India exhibits Hurst exponent values greater than 0.50 for FRP, with relatively higher values 507 

(0.60–0.70) concentrated toward its central zone. Although variations in Hurst exponent for 508 

FRP was spatially inconsistent, primarily due to temporal and spatial fluctuations in fire 509 

intensity, the FRP time series over most of the region indicates statistical persistence. 510 

Similarly, elevated Hurst exponent values for LST (>0.50) across the region also exhibits 511 

persistence at long run. Notably, the northern portion of the study region shows slightly 512 

higher Hurst exponent values compared to the southern part. For regional aerosol loading, 513 

except few isolated patches, comparatively high Hurst exponent values (>0.75) were 514 

observed over the central region. Notably, this area also coincides with zones characterized 515 

by high AOD (>0.65) and a statistically significant FRP–AOD association. Overall, the Hurst 516 

exponent analysis indicates that the observed FRP, LST, and AOD time series across most of 517 

the residue-burning region exhibit statistical persistence. 518 



 519 
 520 

Fig. 5. Estimating FRP (MW), LST (°C) and AOD time-series persistence in extended 521 

geographical region. 522 

However, interpretation of the Hurst exponent results should be approached with 523 

caution. The five-year dataset used here may not be sufficient to derive statistically robust 524 

estimates. For the same reason, trend analysis was not undertaken, as the limited dataset 525 

constrains the reliability of such estimates and falls beyond the scope of the present study. 526 

Nonetheless, several studies have documented long-term trends in fire dynamics and aerosol 527 

loading over northwestern India (e.g., Vadrevu and Lasko, 2018; Jethva et al., 2019; Singh et 528 

al., 2020). 529 

3.3 Surface temperature and aerosols response to fire intensity  530 

Fire intensity in terms of pixel-based FRP, aerosol loading and surface temperature 531 

were retrieved to compute corresponding daily and spatial means based on five years of 532 

satellite retrievals. It is noteworthy that to account immediate response of fire intensity and 533 

aerosol loading on surface temperature, all variables were retrieved exclusively over year-534 

specific intensive fire zones, having cumulative FRP ³ 5 MW grid-1, as illustrated in Fig. 2(b-f).  535 

A distinct temporal pattern is evident in the FRP time series (Fig. 6a), which corresponds 536 

closely with daily variations in fire counts (Fig. S4). Over northwestern India, FRP starts to 537 

build-up typically in mid-October, peaks consistently during the first week of November, and 538 

declines thereafter by mid-November. In contrast, the temporal pattern of the five-year mean 539 

LST time series appears less pronounced, as daily retrievals exhibit substantial variability. 540 

Regional LST demonstrates both interannual and intra-annual fluctuations, as illustrated in 541 

Fig. S5. Notably, the FRP time series aligns well with the mean columnar aerosol loading, 542 



underscoring the potential influence of aerosol and precursor emissions from widespread 543 

biomass burning. The characteristic rise in AOD during the first two weeks of November likely 544 

represents a direct response to intensified fire activity, as columnar AOD values consistently 545 

exceed 1.00 over the intensive fire zone. Interestingly, between October 25 and November 546 

20 each year, approximately 90% of daily AOD observations surpass the five-year mean (0.74 547 

± 0.28), coinciding with an 800% increase in average FRP (13,085 ± 6,825 MW) compared to 548 

the remainder of the season (1,148 ± 1,478 MW). During this interval, the five-year mean 549 

columnar AOD exhibits a strong association with the aggregate FRP (r = 0.46) and mean LST 550 

(r = 0.41), whereas these associations weaken considerably outside this period (AOD–FRP: r = 551 

0.18; AOD–LST: r = –0.02). 552 

 553 

Fig. 6. Time series of five-year mean fire radiative power (FRP, a), land surface temperature 554 

(LST, b) and aerosol optical depth (AOD, c) against daily retrievals, (d) covariation of FRP, 555 

AOD and LST over intensive fire zone. Gray dots show daily retrievals from October to 556 

November (2017–2021), with the red line depicting the corresponding 5-year mean. 557 

The temporal associations among FRP, AOD, and LST clearly demonstrate the 558 

immediate response of fire-induced variations in aerosol loading and surface temperature 559 

over northwestern India. Accordingly, in the subsequent section, these relationships were 560 



modelled using a geospatial tree-based regression framework that integrates concurrent 561 

temporal features (e.g., day-specific retrievals) and spatial predictors (e.g., regional 562 

meteorology, aerosol loading, and fire intensity) to quantify and characterize the FRP–AOD–563 

LST nexus within the intensive fire zone. 564 

3.4 Fire induced change in LST and AOD 565 

The effect of crop residue burning on land surface temperature and aerosol loading 566 

was assessed using a space-for-time approach by overlaying grid-based VIIRS LST, FRP, and 567 

AOD datasets over the northwestern region experiencing recurrent fire. To remove potential 568 

confounding effect, fire and no-fire grids were retained for comparison only when they 569 

matched in terms of topography, meteorology, physical environment, vegetation and soil 570 

characteristics, climatological mean LST and AOD, and surface property. Comparisons were 571 

performed within defined strata containing grids with identical characteristics to ensure that 572 

the quantified changes in LST and AOD could be attributed solely to fire. A total of 7489 paired 573 

no-fire and fire grids were used between 2017 and 2021 to quantify the relative change in LST 574 

and AOD. It is noteworthy that all grids, whether exhibiting fire or not, were selected from 575 

within the extended geographical region to capture localized variations in temperature and 576 

aerosol loading. 577 

 578 
Fig. 7. Crop residue-based fire induced changes in land surface temperature and aerosol 579 

loading. 580 

As illustrated in Fig. 7, a consistent yet temporally dynamic increase in both LST and 581 

AOD was observed over regions affected by residue-based burning compared with no-fire 582 

zone. However, the magnitude of LST and AOD change across the fire zone was spatially 583 



heterogeneous. On average, residue-based burning induced an increase of 0.60 °C in LST 584 

during 2017–2021, with interannual variability ranging from 0.33 °C to 0.76 °C. This indicates 585 

that residue burning exerts a persistent warming influence on land surface temperature, likely 586 

driven by reduced evapotranspiration, enhanced shortwave absorption, increased sensible 587 

heat flux, and fire-induced changes in surface albedo. However, a strong spatial heterogeneity 588 

in LST and AOD modulation further indicates the potential influence of key confounding 589 

factors and intensity of fire in regulating the change. The results of this study align with Liu et 590 

al. (2019), who attributed a 0.15 °C rise in surface temperature over burned areas globally to 591 

satellite-observed forest fires, as well as Liu et al. (2018), who documented a net warming 592 

effect over the Siberian boreal forest. Additional evidence from Alkama and Cescatti (2016) 593 

and Zhao et al. (2024) also indicates a positive linkage between forest fire occurrence, fire 594 

intensity, and surface temperature. In contrast, the biophysical effects of agricultural residue 595 

burning on land surface temperature remain poorly constrained. Zhang et al. (2020) reported 596 

LST increases of 1–3 °C over three provinces in China associated with crop residue burning. 597 

However, the feedback effects of meteorological covariates and systematic land-cover 598 

differences on fire occurrence were not accounted for, leading to causal attribution of fire to 599 

LST remains tentative.  600 

A consistent annual increase in aerosol loading was also observed over the fire-601 

affected grids over northwestern India. A clear upward trend in AOD was noted across the 602 

fire zones, with a mean increase of 0.13 AOD year⁻¹ and a range of 0.07–0.22 AOD year⁻¹. The 603 

change in columnar aerosol loading, however, was spatially heterogeneous. Overall, the 604 

increase in AOD from fire-associated emissions of aerosols and their gaseous precursors 605 

reinforces the source-specific contribution of crop residue burning, a phenomenon well 606 

documented in previous studies (Vinjamuri et al., 2020; Mhawish et al., 2022). 607 

To quantify uncertainty in the estimated differences between fire-affected and non-608 

fire-affected grid cells, we further computed 95% confidence intervals for ΔLST and ΔAOD 609 

using nonparametric bootstrapping. For each variable, 10,000 bootstrap samples were 610 

generated by resampling grid cells with replacement, and the mean difference was 611 

recalculated for each bootstrap replicate. The 2.5th and 97.5th percentiles of the resulting 612 

sampling distribution were taken as the bounds of the 95% confidence interval (CI). 613 

Nonparametric bootstrapping results into significant increase in both ΔLST (0.57°C; 95% CI: 614 



0.33–0.81°C) and ΔAOD (0.13; 95% CI: 0.08–0.17) in fire-affected regions. Because both CIs 615 

do not overlap zero, these differences are statistically robust and unlikely to be due to 616 

sampling variability.  617 

3.5 Spatial regression of fire intensity and aerosols on LST  618 

A machine learning algorithm was employed to establish the statistical association 619 

between the dependent variable LST and multiple predictors including fire radiative power, 620 

aerosol loading, regional meteorology (Fig. S6), surface properties, and vegetation 621 

characteristics. All biophysical parameters, except SR and soil moisture, retrieved under two 622 

pre-defined scenarios, (one) days with moderate-to-high fire intensity and (two) days with 623 

sustained high fire intensity exhibiting a positive association with regional mean LST, were 624 

used to model the FRP–AOD–LST relation. Relative feature importance (RFI) of selected 625 

predictors was first evaluated for the fire season, and the marginal effects of FRP and aerosols 626 

on LST were subsequently quantified. Figure 8(a) presents the normalized RFI values for all 627 

predictors under both scenarios, and the Random Forest hyperparameter tuning procedure 628 

is summarized in Table S6. RFI quantifies the sensitivity of regional LST to each predictor and 629 

reflects their partial contribution to surface temperature variability. Fire radiative power 630 

emerged as the dominant predictor under both scenarios, indicating the strong influence of 631 

fire-related energy release on regional radiative balance, likely through reduced 632 

evapotranspiration and fire-induced changes in surface albedo (Liu et al., 2018, 2019). 633 

Notably, the RFI was substantially higher during period of sustained high-intensity burning 634 

(Scenario 2; RFI = 0.40) compared with days characterized by moderate-to-high fire activity 635 

(Scenario 1; RFI = 0.22), highlighting the stronger thermal response associated with intensive 636 

burning condition. 637 

Next to FRP, PBLH exerted a significant influence on LST (RFI: 0.21–0.24), followed by 638 

atmospheric temperature (RFI: 0.09–0.21). The strong effect of PBLH on LST can be explained 639 

by restricted turbulent mixing during shallow boundary-layer conditions in post-monsoon 640 

season. A relatively low PBLH (mean±SD: 71±29 m) over northwestern India reduces vertical 641 

mixing and traps fire-induced heat and aerosols close to the surface (Vinjamuri et al., 2020). 642 

This enhances shortwave absorption, suppresses evaporative cooling, and limits turbulent 643 

heat dissipation, resulting in a stronger and more persistent increase in LST. Another notable 644 

finding was the modification of LST due to enhanced columnar aerosol loading during fire 645 



season. The RFI of AOD varies from 0.09 to 0.11, indicating its influence on regional radiative 646 

budget. Residue burning releases aerosols and their gaseous precursors, which can exert 647 

significant radiative impacts and drive rapid adjustments in both surface and atmospheric 648 

temperature (Freychet et al., 2019; Xu et al., 2021). Fire-generated aerosols influence the 649 

energy balance through scattering and absorption of radiation, alterations in cloud 650 

microphysics, and changes in surface albedo via deposition of carbonaceous particles. 651 

However, the magnitude and direction of these radiative effects remain uncertain at the 652 

global scale (Tian et al., 2022). The partial influence of all other parameters, including 653 

meteorological variables, land characteristics and elevation was less significant (RFI < 0.30).  654 

 655 

Fig. 8. Normalized relative feature importance of predictor variables on LST (a), cross-656 

validated evaluation of random forest performance (b), and partial dependence plots 657 

of LST on AOD (c) and FRP (d). Here, K indicates x1000. The PDP plots are based on 658 

scenario 2. Both RMSE and MAE have unit °C. 659 

   660 

The predictive skill of the random forest model was assessed using temporal block 661 

cross-validation to minimize temporal autocorrelation and prevent data leakage. Under both 662 

scenarios model performance was found satisfactory with R2 varying from 0.65-0.75, marked 663 

with relatively low RMSE (0.87-0.95 °C) and MAE (0.58-0.61 °C). A satisfactory model 664 

performance also ensures that residue burning provide a clear LST response and the RF model 665 

was able to resolve non-linear land–atmosphere interactions, irrespective of the selected 666 

scenarios. Relatively better performance was however, achieved in scenario 2 during the fire 667 



days having better spatial association between FRP and LST. Collectively, this confirms that 668 

moderate-to-high intensity residue burning leaves a measurable and predictable thermal 669 

signature on the land surface over northwestern India. 670 

The partial dependence plots (PDPs) in Fig. 8(c–d) illustrate the marginal effects of FRP 671 

and AOD on LST. These plots show the expected change in LST associated with variation in 672 

each predictor while holding all other predictors constant. The estimated effects of both FRP 673 

and AOD exhibit a non-linear, saturating response. LST increases sharply at low-to-moderate 674 

values of each predictor but the effect progressively weakens at higher magnitudes, 675 

approaching an asymptotic limit. This behaviour likely arises from the complex interplay of 676 

radiative and thermodynamic processes associated with biomass-burning emissions. Fire-677 

originated aerosols exert both direct and indirect radiative effects whose magnitudes and 678 

signs vary with aerosol loading and composition (Freychet et al., 2019; Xu et al., 2021; Tian et 679 

al., 2022). At moderate aerosol loading, UV-absorbing black carbon aerosols may enhance 680 

atmospheric heating and can transiently increase near-surface temperature (Jacobson, 2001). 681 

Fire-induced convective plumes may initially enhance surface temperatures, whereas strong 682 

aerosol build-up can reduce solar transmittance to the ground. Aerosol–cloud interactions 683 

further contribute to non-linearity by modifying cloud microphysics, lifetime, and albedo, 684 

altering the regional radiative balance. Additionally, aerosol-driven changes in boundary-layer 685 

structure, evapotranspiration, and soil moisture introduce additional land–atmosphere 686 

feedbacks. Together, these interacting processes operate across multiple spatial and 687 

temporal scales and do not scale linearly with aerosol loading or fire intensity, producing the 688 

observed non-linear LST response. The RF model therefore provides strong evidence that 689 

both fire intensity and fire-derived aerosols exert measurable and non-linear effects on 690 

regional LST, with potentially important implications for the regional radiative budget.  691 

3.6 Geographically weighted regression on LST 692 

A Global Moran’s I test was first applied to assess spatial autocorrelation in LST across 693 

the intensive fire zone for the cumulative five-year period. As shown in Table S6, Moran’s I 694 

was 0.225, accompanied by a high positive Z-score and a statistically significant p-value (< 695 

0.001), indicating a clustered spatial pattern of LST that is highly unlikely (<1%) to have arisen 696 

by random chance. Given this spatial dependence, GWR was employed to evaluate spatial 697 

heterogeneity in the relationships between LST, FRP, and other predictors. All variables used 698 



in the Random Forest model were incorporated into the GWR framework under both pre-699 

defined scenarios. Model specifications and performance metrics including bandwidth and 700 

kernel details are mentioned in Table S8. 701 

 702 
Fig. 9. Spatial distribution of FRP and AOD GWR coefficients across intensive fire zone.  703 

GWR model demonstrated strong explanatory power, with global R² values exceeding 704 

0.74, confirming that the selected predictors effectively captured spatial variability in LST. FRP 705 

consistently showed a positive and spatially varying association with LST across both 706 

scenarios, underscoring its dominant influence in fire-affected regions. Aerosol loading 707 

demonstrated weak but spatially heterogeneous effects, reflecting localized differences in 708 

aerosol–temperature interactions. Other predictors, including NDVI, RH, AT, PBLH, elevation, 709 

and albedo (Fig. S7), exhibited local coefficients ranging from −0.76 to +0.23, indicating spatial 710 

variability but comparatively weaker contributions to LST modulation across the study area. 711 

Conclusions 712 

 The manuscript unfolds by identifying the geospatial variations in crop residue–based 713 

fires and their associated impacts on aerosol loading and land surface temperature across 714 

northwestern India. A brief methodology and key findings are summarized in Fig. S8. Based 715 



on year-wise, pixel-level fire intensity, the geographical region with intensive fire activity was 716 

initially delineated, and all satellite-derived and reanalysis datasets were subsequently 717 

processed exclusively over the selected zone. A robust and consistent spatial correlation 718 

between FRP, AOD, and LST was observed across multiple years, indicating potential fire-719 

induced perturbations in LST. The Hurst exponent analysis reaffirmed the long-term 720 

persistence of fire intensity, surface temperature, and aerosol loading time series. A grid-721 

based analysis over the intensive fire zone revealed a significant increase in both LST and AOD 722 

during the peak fire season. 723 

The article further employs the Random Forest model and Geographically weighted 724 

regression (GWR) to assess the potential influence of FRP and aerosol loading on LST, while 725 

accounting meteorological covariates, physical environment, vegetation characteristic and 726 

surface property as confounding factors within the selected zone. Two contrasting scenarios 727 

were hypothesized to examine the FRP–LST–AOD nexus. Scenario 1 considered spatially 728 

aggregated FRP from fire initiation to subsidence, whereas Scenario 2 focused on days 729 

characterized by high-intensity fires exhibiting a strong positive correlation between FRP and 730 

LST. In both the scenarios, the Random Forest regression successfully captured and mapped 731 

FRP-induced modulation of LST, though with varying magnitudes. A distinct increase in FRP-732 

induced LST modulation was observed during high-intensity fire events. Both boundary layer 733 

height and columnar aerosol loading also contributed partially, with aerosols’ influence on 734 

LST increasing during periods of intense release of fire energy. The Global Moran’s I test 735 

indicated significant spatial clustering of LST while GWR results further confirmed FRP and 736 

AOD-modulated LST variations across northwestern India, highlighting strong spatial 737 

heterogeneity in FRP-AOD-LST nexus. 738 

This analysis reveals that the biophysical effects of crop residue–based fires across 739 

northwestern India can substantially influence the regional radiative budget by altering LST. 740 

The magnitude of LST modulation, however, depends on fire intensity and feedbacks from 741 

regional meteorology. This study provides novel insights into residue-based fire induced 742 

surface temperature dynamics in a region where recurrent fires have been historically linked 743 

primarily with deteriorating air quality in Delhi and its surroundings. The observation-driven 744 

analysis offers a comprehensive understanding of LST responses to residue burning and helps 745 

reduce uncertainties in fire-induced modifications of the radiative budget. Nonetheless, 746 



uncertainties remain due to unaccounted agricultural feedbacks, limited temporal coverage, 747 

retrieval uncertainty in geospatial datasets, and the complexity in aerosol–meteorology 748 

interactions. The multifaced influence of fire aerosols and energy on regional climate through 749 

rapid atmospheric and land surface adjustments, remains complicated at the global level. Our 750 

findings underscore the need for Earth system model–based simulations to better quantify 751 

climate feedbacks from crop residue burning. Besides, assessing the underlying mechanisms 752 

of fire-energy-induced changes in evapotranspiration, the radiative effects of aerosols, fire–753 

aerosol–meteorology feedbacks, and incorporating additional proxies could further reduce 754 

the uncertainty in estimating radiative impacts from residue burning. 755 
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