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Abstract 9 

The biophysical effects of agricultural residue burning, driven by the excessive release of 10 

energy and carbonaceous aerosols, remain poorly quantified at the global scale. Residue-11 

based fires have the potential to modify regional climate by altering land surface temperature 12 

(LST), highlighting the need for investigation at regional scale. Here, an observation-driven 13 

assessment of spatial variations in LST due to concurrent release of energy and aerosols has 14 

been made over northwestern India using multiple satellite and reanalysis-based datasets. 15 

Year-specific fire pixel density was used to delineate an intensive fire zone characterized by 16 

medium-to-large residue-based fire. Geospatial analysis revealed positive association among 17 

FRP (fire radiative power), LST and AOD (aerosol optical depth). Over intensive fire zone, a 18 

space-for-time approach revealed significant increase in both ΔLST (0.57°C; 95% CI:0.33-19 

0.81°C) and ΔAOD (0.13; 95% CI:0.08–0.17) due to fire. Random Forest non-linear model was 20 

employed to regress potential influence of FRP and AOD on LST having several other variables 21 

as confounding factors. FRP consistently emerged as the dominant predictor of LST, followed 22 

by planetary boundary layer height and aerosols. An increase in relative feature importance 23 

of FRP was noted during days having high fire intensity and positive association with LST. 24 

Geographically weighted regression further explained spatial heterogeneity in LST 25 

modulation by FRP. Overall, this analysis provides the first empirical evidence that residue-26 

based fire contributes to changes in land surface temperature. It further highlights that the 27 

magnitude of this perturbation is governed by interannual variations in fire intensity and 28 

influenced strongly by prevailing meteorological conditions. 29 

Keywords: Aerosols, Biomass burning, Fire, GWR, Random Forest. 30 
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Introduction 34 

 Burning agricultural residues is a widespread practice for the rapid removal of post-35 

harvest biomass from croplands in many regions of the world (Streets et al., 2003; Singh et 36 

al., 2018; Shyamsundar et al., 2019). While biomass burning is often associated with 37 

deforestation (Chuvieco et al., 2021), forest fires (van der Velde et al., 2021; Aditi et al., 2025), 38 

and shifting cultivation (Prasad et al., 2000), residue burning on agricultural land is primarily 39 

conducted to clear fields, fertilize soil, eradicate weeds and pests, and prepare land for the 40 

next crop cycle (Graham et al., 2002; Korontzi et al., 2006; Lan et al., 2022). This practice is 41 

observed across large agricultural regions globally, including China (Streets et al., 2003; Zhang 42 

et al., 2020), South America (Graham et al., 2002), Southeast Asia (Lasko and Vadrevu, 2018; 43 

Yin, 2020), and northwestern India (Singh et al., 2018, 2021; Sarkar et al., 2018). In 44 

northwestern India, extensive residue burning during October to November is a recurring 45 

phenomenon and has been widely examined from multiple perspectives. Previous studies 46 

report that these burning events contribute to severe air-quality degradation in downwind 47 

urban centers (Singh et al., 2018; Jethva et al., 2019), alter aerosol loading and chemistry 48 

(Mhawish et al., 2022), modify aerosol vertical stratification and radiative forcing (Hsu et al., 49 

2003; Vinjamuri et al., 2020; Banerjee et al., 2021), induce adverse health effects (Singh et al., 50 

2021), and may influence regional hydrological processes (Kant et al., 2023). However, limited 51 

attention has been paid to investigate its effect on urban climate, especially on modulating 52 

lower atmospheric thermal budget which has been otherwise strongly evident in case of 53 

forest fire (Liu et al., 2018, 2019). 54 

Across the northwestern India, dual cropping pattern including rice and wheat crop is 55 

predominately practised over roughly 4.1 million ha of land (NAAS, 2017). Such a cropping 56 

pattern leads to generation of huge crop residues that are low in nutrient content and rich in 57 

silica and ash. Typically, residues from rice-wheat cropping system possess limited economic 58 

value, as they are unsuitable for use as alternative fodder, bioenergy feedstock or as raw 59 

material in pulp and paper industry (Shyamsundar et al., 2019; Lan et al., 2022). Besides, with 60 

the introduction of mechanical harvester in the 1980s and enactment of groundwater 61 

preservation act in the late 2000s, in situ burning of agricultural residues has become a 62 

recurrent practice among the local farmers. This practice serves to expedite field clearance 63 

and reduce the turnaround period between rice harvest and the subsequent sowing of the 64 



wheat crop (Balwinder-Singh et al., 2019). India produces an estimated 500 million metric 65 

tonnes (MT) of crop residues annually, of which 20–25% are disposed of through open-field 66 

burning. Crop residue burning is particularly prevalent in northwestern India, where roughly 67 

20-25 MT of residues are set on fire each year (Balwinder-Singh et al., 2019; Lan et al., 2022). 68 

Unregulated residue burning in this region contributes approximately 300 Gg/yr of PM2.5 and 69 

50 Tg of CO2 equivalent green-house gas emission (Singh et al., 2020). Notably, the frequency 70 

of fire incidences has exhibited a persistent upward trend, coinciding with concurrent 71 

increases in vegetation indices and atmospheric aerosol loading (Vadrevu et al., 2019; Jethva 72 

et al., 2019). In addition to atmospheric emissions, fires exert numerous biophysical impacts 73 

on the surrounding ecosystems. Fire induces a cascade of consequential processes, including 74 

modifications to the surface energy balance, redistribution of nutrients, alterations in species 75 

composition, changes in surface albedo, and variations in evapotranspiration rate (Ward et 76 

al., 2012; Liu et al., 2019). Additionally, fire can induce certain biogeochemical and biophysical 77 

stresses on local environment by modifying atmospheric composition and surface properties 78 

(Andela et al., 2017; Aditi et al., 2025). Such transformation of the native landscape, coupled 79 

with excessive release of energy, aerosols and its precursors, may therefore have several 80 

potential implications on the environment.  81 

Most studies on biomass-based fires have focused on identifying land–atmosphere 82 

processes responsible for fire initiation and propagation, quantifying emissions, and 83 

evaluating fire-induced land–atmosphere exchanges (Lasko and Vadrevu, 2018; Jethva et al., 84 

2019; Chuvieco et al., 2021; Aditi et al., 2025). In contrast, there is a paucity of knowledge 85 

regarding how biomass burning contributes to climate feedbacks through modifications of 86 

Earth’s surface radiative budget and land surface temperature (Bowman et al., 2009; Andela 87 

et al., 2017). Plausible explanation to this includes limited observation and associated 88 

uncertainties in estimating key biophysical parameter like surface albedo, land-atmosphere 89 

exchange of sensible heat flux and water vapor, changes in evapotranspiration before and 90 

after fire events. There are instances when global forest fire incidences and size have been 91 

linked with modifications in land surface temperature (LST; Alkama and Cescatti, 2016; Liu et 92 

al., 2018, 2019). Likewise, Liu et al. (2019) noted an enhancement in mean annual LST over 93 

burned forest area in the northern high latitudes. Similar evidence of increase in summertime 94 

surface radiometric temperature over temperate and boreal forests in the Northern 95 



Hemisphere was accounted by Zhao et al. (2024). Alkama and Cescatti (2016) reported 96 

increases in mean and maximum air temperature over arid regions following forest loss, 97 

highlighting the sensitivity of surface temperature to land-cover modification. However, fire-98 

induced thermal forcing is strongly constrained by the fire size (Zhao et al., 2024). Small, short-99 

lived fires, such as those associated with agricultural residue burning, often fail to produce 100 

sufficiently large changes in surface albedo or evapotranspiration, and therefore may not 101 

generate a detectable LST response. Incidence of elevated LST over different provinces in 102 

China due to agricultural residue burning has only recently reported by Zhang et al. (2020). A 103 

spatially heterogeneous increase in LST correlated strongly with fire count, with highest LST 104 

gradient noted at distances of 4–10 km from the central point of crop residue burning and 105 

persisting for 1-3 days. In contrast, the effects of post-harvest fire incidences in northwestern 106 

India on LST remain largely unexplored. This gap introduces considerable uncertainty in 107 

assessing the climate feedback of crop residue burning and highlights the need for a better 108 

understanding of the underlying mechanisms. 109 

This study aims to explore immediate biophysical effect of agricultural residue fire on 110 

surface temperature over northwestern India. By integrating spatially and temporally 111 

consistent satellite observations and reanalysis datasets, including fire counts, fire radiative 112 

power, land surface temperature, aerosols, meteorological covariates, topography, surface 113 

property, and physical environment over intensive fire zone, we sought to quantify time-114 

bound changes in LST in response to variations in fire intensity and aerosol loading. Several 115 

statistical methods were applied to construct the changes in LST with fire severity and 116 

aerosols. Additionally, a space-for-time framework was followed to assess the effects of 117 

recurrent FRP variations on LST and aerosol optical depth (AOD) throughout the fire season. 118 

Specifically, we addressed two key questions: (1) Does LST respond to changes in fire intensity 119 

over northwestern India? and (2) How do local meteorology and aerosol loading modulate 120 

LST variation with respect to space and time? To the best of our knowledge, this is the first 121 

systematic assessment of agricultural residue fire–driven modulations in LST over 122 

northwestern India. By integrating multiple geospatial observations, the analysis offers critical 123 

insights into the biophysical feedbacks of residue-based fire and advances understanding of 124 

LST responses to residue burning. Further, it refines estimates of fire-induced perturbations 125 



in the regional radiative budget offering valuable representation of biomass-based fire in 126 

Earth system models. 127 

2. Dataset and methodology 128 

2.1 Study domain 129 

 130 

Fig. 1. Spatial variation in satellite-based fire radiative power across northwest India, 131 

distribution of FRP-based fire intensity (MW/pixel) (a) and domain selected for 132 

retrieval and processing of SNPP VIIRS FRP, AOD and Aqua MODIS LST (b). The region 133 

marked with blue in Fig. 1a subset indicates the Indo-Gangetic Plain (IGP) spanning 134 

from Pakistan to Bangladesh through India. The extended fire zone selected for 135 

analysis is marked with red within the IGP and has been shown in detail in Fig. 1a with 136 

fire pixel density. India shape file is acquired from Survey of India archive.  137 

 138 

Post-harvest biomass burning is predominantly practiced across the northwestern 139 

Indo-Gangetic Plain (IGP) of South Asia, particularly in the agrarian states of Punjab and 140 

Haryana, which together contribute nearly 60–70% of India’s total food grain production. The 141 

concurrent rise in rice and wheat cultivation has led to a substantial increase in crop residue 142 

generation, resulting in higher fire intensity in recent years (Jethva et al., 2019). In this study, 143 

geospatial analyses of LST, fire activity, and aerosol loading were conducted over 144 

northwestern India during October–November between 2017 and 2021. The combination of 145 



high agricultural output, extensive biomass burning, and increasing fire activity makes this 146 

region particularly suitable for investigating fire dynamics and their environmental 147 

implications. Instead of defining a fixed spatial domain a priori, year-wise fire signals were 148 

retrieved across cropland areas in northwestern India. This approach allowed the delineation 149 

of a core study region that varied annually according to year-specific fire intensity and spatial 150 

trends (as shown in Fig. S2), but all eventually bound to 29.2770° to 32.1625° N and 73.8996° 151 

to 77.0718° E, as illustrated in Fig. 1b. 152 

2.2 Spatial dataset  153 

Active fire count data was retrieved from the standard fire product of Visible Infrared 154 

Imaging Radiometer Suite (VIIRS) Collection-2 (VNP14IMG) available at 6-min L2 swath at 375 155 

m resolution. The VIIRS onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite 156 

is a cross-track single-angle scanning radiometer which was launched in year 2011 under joint 157 

operation of NASA and NOAA. The VIIRS fire detection algorithm typically extends well refined 158 

and validated MODIS Fire and Thermal Anomalies product (Giglio et al., 2003). The I-band 159 

based fire detection algorithm primarily utilizes brightness temperature of Channel I4 on 160 

middle infrared spanning from 3.55 to 3.93 μm, centred at 3.74 μm. Additionally, to isolate 161 

the active fire spots from the fire-free background channel, a single gain I5 at thermal infrared 162 

regions (10.5–12.4 μm) is also considered. Rest of the I-band channels i.e. I1 to I3, covering 163 

visible, near and short-wave IR are used to distinguish pixels with cloud, water and sun-glint 164 

(Schroeder et al., 2014). The VIIRS fire database was considered due to its superior precision 165 

and accuracy in identifying relatively small fire, greater spatial resolution at footprint and pixel 166 

saturation temperature (Li et al., 2018; Vadrevu and Lasko, 2018; Aditi et al., 2023). For this 167 

experiment, SNPP VIIRS 375 m L2 active fire count data with nominal (fire mask class 8) and 168 

high confidence (fire mask class 9), was retrieved over northwestern India from year 2017 to 169 

2021 (all inclusive). 170 

Fire radiative power (FRP) quantifies the release of radiative energy from biomass 171 

burning integrated at all angles and wavelengths over a spatial scale. Measured in Watt, FRP 172 

retrieval quantifies the release of heat energy against time and in many instances linearly 173 

associated with the rate of fuel consumption and emission (Ichoku et al., 2008; Nguyen and 174 

Wooster, 2020). A detailed description on FRP retrieval and comparison among the sensors 175 

are available in Wooster et al. (2003, 2005) and Ichoku et al. (2008). Li et al. (2018) concluded 176 



VIIRS FRP as comparable with MODIS FRP in most of fire clusters and stable across swath. 177 

Here, FRP (MW) was processed from the SNPP VIIRS C2 Level-2 (L2) 375 m active fire product 178 

(VNP14IMG). VIIRS FRP was used as a proxy of fire intensity and potential emission strength 179 

from the biomass burning area, and considered as a direct measurement of radiative energy 180 

being released from individual fire pixel.  181 

Land surface temperature (LST, in C) at 1 km spatial resolution was utilized from 182 

Moderate Resolution Imaging Spectroradiometer (MODIS) version 6.1 Land Surface 183 

Temperature and Emissivity retrievals product (MYD11A1). Typically, LST indicates 184 

thermodynamic temperature of the interface atmospheric layer within soil, plant cover and 185 

lower atmosphere, and serves as an indicator of land-atmosphere interaction and exchange 186 

(Li et al., 2023). Here, MODIS MYD11A1 radiometric dataset with quality flag ‘00’ was 187 

specifically chosen considering its broad swath and wider applicability in estimating land 188 

surface temperature. MODIS LST is validated against ground observations on diverse land 189 

covers and reported to provide realistic estimate of surface temperature (Wan, 2014) with an 190 

uncertainty of ≤0.5 K. The dataset includes daytime maximum LST (at 1:30 PM local time) and 191 

nighttime minimum LST (at 1:30 AM local time). Here, daytime LST dataset were obtained 192 

solely from the MODIS sensor onboard the Aqua satellite to closely coincide with VIIRS fire 193 

count observations at 1:30 PM local time, a period when crop residue–based fires are 194 

expected to reach at peak. 195 

Aerosol optical depth (AOD) from Visible Infrared Imaging Radiometer Suite (VIIRS) 196 

sensor on-board SNPP satellite offers accurate estimation of columnar aerosol loading at 550 197 

nm over land. Accuracy of VIIRS V1 DB AOD was evaluated extensively over South Asia by Aditi 198 

et al. (2023) and reported to provide stable AOD retrieval against AERONET. Sayer et al. (2019) 199 

reported an estimated error of ±(0.05+20%) in VIIRS Version 1 DB AOD dataset. Here, Deep 200 

Blue (DB) Version 1 AOD dataset (AERDB_L2_VIIRS_SNPP Level-2) was used to retrieve AOD 201 

with a nominal spatial resolution of 6 km at nadir. Only quality assured AOD (QA ≥ 2) was 202 

retrieved for the months of October to November over selected spatial domain. 203 

Terra/Aqua MODIS land cover data was used to discriminate crop land against the rest 204 

to filter out thermal anomalies exclusively over the agriculture land. To achieve this, MODIS 205 

L3 V6.1 Global Land Cover type product (MCD12Q1) was retrieved from LAADS DAAC site for 206 

year 2017, available at 0.5 km spatial resolution. MODIS land cover types adopts International 207 



Geosphere-Biosphere Programme (IGBP) and other land type classification schemes to 208 

classify land cover. Here, land cover type 12 (cropland) was earmarked to isolate the 209 

agriculture land from its surrounding (Fig. S3). 210 

Daily composite data on surface and root-zone soil moisture (SM, m³ m⁻³) available at 211 

9 km resolution was obtained from NASA’s Soil Moisture Active Passive (SMAP) satellite 212 

mission having L-band radar. The Normalized Difference Vegetation Index (NDVI) at 6 km 213 

resolution was derived from the VIIRS/SNPP Deep Blue (AERDB_L2_TOA_NDVI) dataset and 214 

was utilized to quantify surface vegetation greenness dynamics. Elevation data at 30 m 215 

resolution was retrieved from Copernicus DEM - Global and European Digital Elevation Model 216 

dataset for year 2015. Surface albedo data was acquired from MCD43 suite of NASA standard 217 

product which integrates both Terra and Aqua retrievals. Here, white-sky version 6.1 218 

shortwave albedo data (MCD43A3, Albedo_WSA_shortwave) at 500 m pixel resolution with 219 

daily-time step (quality score: 0) was used. 220 

 Lower surface meteorological data including air temperature (AT), total solar radiation 221 

flux (SR), precipitation (PR), relative humidity (RH) was procured from European Centre for 222 

Medium-Range Weather Forecasts (ECMWF) AgERA5 dataset. The AgERA5 dataset has been 223 

generated by Copernicus Climate Change Service (2020) from hourly ECMWF ERA5 dataset for 224 

specific agro-ecological based applications. The meteorological data were pre-customized 225 

with temporal aggregation aligned to local time zones and spatial enhancement to a 0.1° 226 

resolution using grid-based variable-specific regression model. Here, air temperature at 2 227 

meters above the surface, total solar radiation flux received at the surface over a 24-hour time 228 

period, and relative humidity at 2 m height was selectively used over pre-identified intensive 229 

crop-based fire zone. Planetary boundary layer height (PBLH) data at 0.25° x 0.25° resolution 230 

was acquired from ECMWF ERA5 for 13:00-14:00 h local time corresponding with VIIRS 231 

overpass time. A description of all core datasets used in this analysis and their resolution, 232 

version, and quality flags is included in Table S1 (in supplementary file).  233 

 234 

2.3 Spatial analysis for fire-aerosols-LST association 235 

2.3.1 Selection of intensive fire zone 236 

 Post-harvest residue burning typically begins in mid-October and reaches peak 237 

intensity by mid-November across northwestern India. Accordingly, all spatial analyses were 238 



conducted for October and November for the years 2017–2021. The VIIRS 375 m fire product 239 

successfully retrieved active fire pixels across the Indo-Gangetic Plain, capturing substantial 240 

spatial heterogeneity. To ascertain a representative region having predominance of residue-241 

based fire, spatial comparison of fire pixel density was made using daily retrieved VIIRS FRP 242 

dataset. FRP was selected instead of fire counts because it directly quantifies the radiative 243 

energy released from active burning and therefore provides a more meaningful metric for 244 

assessing potential impact on LST. FRP density was computed on a 1.5 × 1.5 km2 grid to 245 

characterize spatial variations in fire intensity across northwestern India. Following Giglio et 246 

al. (2006), FRP density was estimated as the ratio of total FRP within a grid cell to the grid 247 

area. 248 

 249 

Fig. 2. Selection of high intensity residue-based fire zone based on fire radiative power pixel 250 

density (MW 2.25 km-2 day-1). Fig. 2a indicates the ‘extended geographical region’ 251 

demarcating the entire area with varying fire intensity selected for spatial analysis. Rest 252 

of the figures classify year-specific ‘intensive fire zone’ based on FRP density. 253 

 254 

Initially, geospatial variations in fire intensity and the associated changes in LST and 255 

AOD were evaluated. Spatial intercomparison between FRP, LST, and AOD was performed 256 

over the region delineated in Fig. 2a. This area was selected to encompass an extended 257 

geographical domain without imposing thresholds on low or high FRP density across 258 

northwestern India. The region is hereafter referred to as the “extended geographical 259 



region,” as it integrates fire activity across all years and was used exclusively to establish the 260 

spatial association between the predictor (FRP) and dependent variables (LST and AOD). 261 

In contrast, to assess the day-to-day influence of fire intensity and aerosol loading on 262 

LST, a comparatively high-intensity fire zone was delineated relative to low-intensity areas. 263 

To achieve this, the entire crop-residue burning region of northwestern India was mapped 264 

using a constraint from low FRP density (<5 MW grid⁻¹) to high FRP density (>15 MW grid⁻¹). 265 

Spatial variations in FRP density were evaluated for each year, and regions with FRP density 266 

>5 MW grid⁻¹ were identified as the “intensive fire zone” (Fig. 2b–f). This threshold ensured a 267 

better representation of the effect of medium to large crop-based fire on regional LST as 268 

small-intensity fire deem to extinguish faster while being inconducive to considerably 269 

influence surface temperature (Zhao et al., 2024).  270 

All subsequent spatial datasets used for evaluating FRP–AOD–LST relationships were 271 

retrieved exclusively within the year-specific ‘intensive fire zone’ having FRP density >5 MW 272 

grid-1. Notably, the spatial extent of the high-FRP region remained largely consistent across all 273 

years (Fig. 2b–f), with areal estimates summarized in Table S2. It is noteworthy, the region was 274 

pre-filtered based on the Terra/Aqua MODIS land cover data to deselect any FRP pixel that 275 

emerged from a non-agricultural/crop land. 276 

2.3.2 Selection of temporal window  277 

After isolating the region with higher fire pixel density, the next step was to identify 278 

the temporal window in which potential associations between fire intensity and other 279 

explanatory variables could be examined. The temporal selection was based on two scenarios, 280 

as illustrated in Fig. 3. Scenario 1 was designed to quantify the influence of FRP, aerosols, and 281 

other parameters on LST during the period when fire activity begins to intensify and remains 282 

persistent over the intensive fire zone. Scenario 1 defines the initiation day as the first instance 283 

in October when aggregate FRP consistently exceeds 1500 MW and shows at least a 50% 284 

increase compared to the previous day. The scenario concludes in November when aggregate 285 

FRP decreases by at least 50% relative to the previous day. The selected dates for Scenario 1 286 

are listed in Table S3, with two exceptions. First, in year 2018 when a >50% criteria was not 287 

met despite having an aggregate FRP >1500 MW and second, in year 2017 when a prior 288 

decrease (>50%) in FRP was avoided because of subsequent rise in fire intensity.  289 

 290 



 291 

Fig. 3. FRP and LST time series over intensive fire zone showing the extent of scenarios used 292 

for geospatial modelling.  293 

To define Scenario 2, a statistical association was examined between day-specific 294 

aggregate FRP and the spatially averaged LST. Pixel-based LST values were averaged over the 295 

intensive fire zone and compared against the area-weighted sum of FRP on a day-to-day basis. 296 

A temporal window (“Scenario 2” in Fig. 3) was selected using two criteria: (i) the end of the 297 

window had to coincide with a period of persistently high FRP, and (ii) the window had to 298 

exhibit a strong positive correlation (r ≥ 0.5) between FRP and regional LST. Such restricted 299 

criteria were put to ensure that we only select year-specific window(s) when FRP (so the fire 300 

count) increases with time and exhibit a strong association with regional LST. Descriptive 301 

statistics of both scenarios are included in Table S4. It is noteworthy that selecting multiple 302 

windows within a year having coinciding days was avoided while ensuring windows should not 303 

contain more than 5% of missing days, irrespective of parameters. 304 

2.4 Spatial correlation between fire, aerosols and LST 305 

To examine the spatial association among FRP, LST, and AOD over the residue–based 306 

fire zone, grid-based spatial correlation coefficients were computed, and their statistical 307 

significance (p < 0.05) was tested across the study domain. Daily FRP (375 m) and LST (1 km) 308 

datasets were initially resampled to a 6x6 km2 resolution to match the VIIRS AOD dataset 309 

before subject to spatial correlation analyses among the predictor and dependent variables. 310 

This approach facilitated the identification of regions exhibiting strong co-variability in thermal 311 

conditions corresponding to variations in fire intensity and columnar aerosol loading. 312 



2.5 Hurst Exponent 313 

The Hurst exponent is a statistical measure used to characterize the properties of a 314 

time series without imposing assumptions about its underlying distribution. Originally 315 

introduced by Hurst (1951) in hydrological studies and later refined by Markonis and 316 

Koutsoyiannis (2016), it has since been widely applied across diverse scientific disciplines to 317 

analyse long-term trends and variability. In this study, the Hurst exponent was computed for 318 

FRP, AOD, and LST time series to identify long-term statistical persistence in the datasets. To 319 

estimate the Hurst exponent at the spatial scale, 6 × 6 km² resampled datasets of FRP, AOD, 320 

and LST were used. Adjustment of seasonal cycle was not accounted, as the datasets were 321 

retrieved and processed exclusively for a single season across the selected years. The main 322 

calculation procedures were as follows (Granero et al., 2008): 323 

A time series x(t) is given,  324 

(x)t = 1/𝜏 ∑ 𝑥(𝑡)   𝑡 = 1, 2, 3 …  𝜏
𝑡=1        (1) 325 

The cumulative deviation is determined using Eq. 2: 326 

𝑋(𝑡, 𝜏) = ∑ (𝑥(𝑢) − (x)t)𝜏
𝑢=1 , with a condition of 1 ≤ t ≤ τ.    (2) 327 

Extreme deviation sequence, is defined as: 328 

R(τ)  =  max
1≤t≤τ

X(𝑡, 𝜏) − min
1≤t≤τ

X(𝑡, 𝜏)  𝑤ℎ𝑒𝑟𝑒 𝜏 = 1, 2, 3 …     (3) 329 

The standard deviation sequence is calculated by Eq. (4): 330 

𝑆(𝜏) = [1/𝜏 ∑ (x(t) − (𝑋)𝜏)
𝜏

𝑡=1
2]1/2  𝑤ℎ𝑒𝑟𝑒 𝜏 = 1, 2, 3 …    (4) 331 

By considering both extreme deviation sequence and standard deviation sequence, 332 

R/S = R (𝜏 )/S (𝜏) when assuming (R/S) ∝ (τ/2) H     (5) 333 

The Hurst exponent ranges between 0 and 1. A value of 0.5 indicates that the time 334 

series behaves as a purely stochastic process without persistence, implying that future 335 

variations are independent of past behaviour. Values greater than 0.5 denote statistical 336 

persistence, reflecting a tendency for future changes to follow the same trend as in the past, 337 

with higher values corresponding to stronger persistence. Conversely, values below 0.5 338 

indicate anti-persistence, suggesting a tendency for the time series to reverse its trend over 339 

time; lower values represent stronger anti-persistence (Peng et al., 2011). 340 



2.6 Space-for-time approach 341 

 A space-for-time approach was employed to assess and compare the changes in LST 342 

and AOD with respect to FRP within the extended geographical region experiencing recurrent 343 

medium- to high-intensity fire. To ensure that changes in LST and AOD were attributable solely 344 

to fire activity, grids with similar characteristics in terms of topography, climate, and physical 345 

environment were compared (Liu et al., 2019). To achieve this, daily datasets including 346 

meteorological covariates (PBLH, AT, SR, RH and PR), physical environment (elevation), 347 

vegetation and soil characteristics (NDVI, soil moisture), climatological mean LST and AOD, 348 

and surface property (albedo) were extracted over both fire and no-fire grids at a spatial 349 

resolution of 10 × 10 km². The daily data were retrieved for each grid under Scenario 2, when 350 

FRP reached its peak and exhibited a positive association with regional LST. 351 

After filtering out the grid cells with missing LST or AOD values, remaining grids were 352 

classified into two groups: those with zero FRP (no-fire) against the grids having FRP > 0, 353 

indicating presence of fire. Fire and no-fire grids with comparable spatial characteristics were 354 

grouped into a single stratum, and a stratified matching technique was applied to generate 355 

multiple strata based on combinations of the selected confounders. Grids were retained only 356 

when differences in their physical environment, vegetation and soil characteristics, climate 357 

and land cover between fire and no-fire conditions were smaller than the defined thresholds 358 

(elevation < 50 m; NDVI <0.05; soil moisture <0.05; albedo <0.05; LST <10.0; AOD 359 

<0.80). Comparisons were then made within strata containing grids of similar attributes to 360 

ensure that the observed variations in LST and AOD could be attributed solely to fire activity. 361 

The difference in LST (LST) among the fire grids (LSTfire) and grids exhibiting no-fire (LSTno-fire) 362 

having similar attributes were compared to constitute effect of residue-based fire on LST. A 363 

positive (negative) LST (LSTfire – LSTno-fire) indicates fire-induced warming (cooling) and was 364 

used to quantify changes in LST associated with residue burning for the selected years. A 365 

similar approach was also adopted to evaluate AOD variations using grid-based retrievals.  366 

It is noteworthy that the grids were not classified based on meteorological covariates, 367 

as only insignificant variations were noted among the grids. The entire northwestern cropland 368 

experiences a relatively uniform background climate during October–November, including 369 

comparable boundary layer heights, with PBLH standard deviations ranging from ±10 m to 370 

±33 m within a single fire season. The climatological mean LST and AOD were computed only 371 



for the pre-fire season (September, 2017-2021), during which none of the grids experienced 372 

residue-burning activity. Furthermore, grids were not differentiated by slope or aspect, given 373 

the minimal topographic variation across the Gangetic Plain. 374 

2.7 Multicollinearity assessment 375 

Multicollinearity, where independent variables are highly correlated, can distort 376 

regression estimates and obscure the true contribution of individual predictors (Graham, 377 

2003). To assess this, the Variance Inflation Factor (VIF) for all covariates was calculated using 378 

the statsmodels library. A VIF of 1 indicates no correlation, values between 1 and 5 suggest 379 

moderate correlation, and values greater than 5 are generally interpreted as evidence of 380 

substantial multicollinearity (Daoud, 2017). All biophysical, land-surface, and meteorological 381 

variables met acceptable VIF thresholds, except solar radiation, which was therefore excluded 382 

from Random Forest and GWR analysis. Additionally, soil moisture data was removed from 383 

further analysis due to a high percentage of missing observations (~30%). 384 

2.8 Random Forest regression 385 

Random Forest regression was used to model the relationship between the 386 

dependent variable (LST) and predictor variables (AOD, PBLH, AT, RH, SR, PR, NDVI, elevation, 387 

albedo, and FRP) within the intensive fire zone. Daily retrievals, averaged over the year-388 

specific intensive fire area, were incorporated into the ensemble framework to capture 389 

potential non-linear associations among variables. The selected approach ensures robustness 390 

to multicollinearity, minimizes overfitting, and effectively captures complex predictor 391 

interactions. 392 

Random Forest is a non-linear ensemble machine learning algorithm that constructs 393 

multiple decision trees from bootstrapped samples of the training data, with a random subset 394 

of predictors evaluated at each split. Final predictions are obtained by averaging all trees, 395 

improving generalization and reducing overfitting (Breiman, 2001; Puissant et al., 2014). The 396 

algorithm was selected due to its strong predictive capability, scalability to large 397 

environmental datasets, resilience to correlated inputs, and demonstrated success in 398 

previous LST-related studies (Logan et al., 2020; Wang et al., 2022; Zhang et al., 2025). These 399 

attributes collectively support Random Forest as an appropriate and interpretable choice for 400 

assessing the complex interactions between fire intensity, aerosol loading, and LST dynamics. 401 



Key Random Forest hyperparameters (n_estimators, max_depth, min_samples_split, 402 

min_samples_leaf, and max_features) were optimized using Bayesian optimization 403 

implemented via BayesSearchCV in scikit-optimize (Snoek et al., 2012; Shahriari et al., 2015; 404 

Frazier, 2018). This adaptive, probabilistic search strategy efficiently identifies near-optimal 405 

hyperparameter combinations while minimizing computational cost. To ensure robust model 406 

evaluation and mitigate temporal dependence, we employed temporal block cross-validation 407 

using a 3-fold GroupKFold in the scikit-learn library, where all observations from a given year 408 

were assigned to the same fold. This approach prevented temporal overlap between training 409 

and validation datasets and reduced information leakage across years. This approach also 410 

minimized temporal autocorrelation and prevented data leakage across time periods. Model 411 

performance was quantified using cross-validated coefficient of determination (R²), Root 412 

Mean Squared Error (RMSE), and Mean Absolute Error (MAE), providing a comprehensive 413 

assessment of model accuracy and prediction error. 414 

2.9 Assessment of relative feature importance  415 

Variable importance was derived from the trained RF model using the mean decrease 416 

in impurity method, which quantifies each predictor’s relative contribution to reducing 417 

variance in model predictions. This approach provides insight into the dominant factors 418 

governing the spatial and temporal variability of LST. Feature importance values were 419 

extracted and ranked to identify the most influential predictors under different fire intensity 420 

scenarios. To enable direct comparison among predictors, the relative contribution of each 421 

feature was expressed as its importance score normalized by the sum of all feature 422 

importances. As Scikit-learn’s RandomForestRegressor.feature_importances_ inherently 423 

returns normalized values summing to one, the reported scores directly represent each 424 

predictor’s proportional influence within the model. 425 

2.10 Spatial heterogeneity assessment using GWR 426 

Spatial heterogeneity in the influence of FRP, AOD, and other spatial predictors on LST 427 

within the intensive fire zone was assessed using Geographically weighted regression (GWR) 428 

at 1x1 km2 grid. GWR is a spatially explicit regression technique designed to quantify how 429 

relationships between predictors and a dependent variable vary across geographic space by 430 

estimating spatially varying coefficients (Brunsdon et al., 1996). The method applies a 431 

distance-based weighting scheme, whereby observations closer to a given location receive 432 



higher weights, allowing local parameter estimation that reflects neighbourhood-specific 433 

dynamics (Yang et al., 2020). Unlike global regression models that assume spatial stationarity, 434 

GWR produces location-specific coefficient estimates, offering a more nuanced 435 

understanding of spatially varying associations between LST and its predictors (Fotheringham 436 

et al., 2009). The GWR model is formally expressed as: 437 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ (𝛽𝑘(𝑢𝑖, 𝑣𝑖) 𝑥𝑖𝑘) + 
𝑚

𝑘=1
𝜀𝑖                                                              (6) 438 

where (ui, vi) are the coordinates of observation i, βk(ui, vi) are spatially varying coefficients, 439 

xik are predictor variables, and εi denotes random error. In GWR, local parameters are 440 

estimated using weighted least squares, where each observation is assigned a weight based 441 

on its spatial proximity to the location being evaluated. These weights are determined by a 442 

spatial kernel function and a bandwidth parameter that defines the extent of spatial 443 

influence. Selecting an optimal bandwidth is therefore essential to balance the trade-off 444 

between model bias and variance. In this study, the optimal bandwidth was identified through 445 

an iterative optimization procedure that minimizes the corrected Akaike Information 446 

Criterion (AICc) (Fotheringham et al., 2009). This approach ensures robust estimation of local 447 

relationships while effectively accounting for spatial non-stationarity in the dataset. Such a 448 

framework is particularly valuable in fire-affected landscapes, where the impacts of fire 449 

intensity, aerosol loading, and surface characteristics on LST are inherently heterogeneous 450 

and vary substantially across space. 451 

3. Results and discussions 452 

3.1 Spatial association between fire, aerosols and LST 453 

Spatial variations in FRP, LST and AOD averaged for October to November between 454 

2017 and 2021 over extended geographical region is shown in Figure 4(a-c). While residue-455 

based FRP did not exhibit a distinct spatial pattern, temporal variations were prominent, with 456 

monthly mean FRP in November (310,188 MW month⁻¹) showing nearly a 100% increase 457 

compared to October (152,616 MW month⁻¹; Table S5). In contrast, the spatial pattern of LST 458 

exhibited considerable heterogeneity, with relatively higher temperature observed in the 459 

southern parts of the region that gradually declined northward. This north–south gradient 460 

may be partially attributed to the proximity of the Himalayan foothills, where the cooler 461 

mountainous environment likely offsets fire-induced surface warming. A gradual decline in 462 



spatially averaged monthly mean LST was also accounted in November (29.0±2.4 °C) 463 

compared to October (31.0±1.6 °C).  A spatially distinct pattern in columnar aerosol loading 464 

was evident across the extended geographical region, with elevated AOD (> 0.65) retrieved 465 

over the central areas that gradually decreased towards its periphery (< 0.30). Such spatial 466 

variability in aerosol loading is likely driven by differences in the intensity of residue-based 467 

fires and the associated emissions of aerosols and trace gas precursors. Moreover, the 468 

pronounced increase in monthly mean AOD (October: 0.59 ± 0.08; November: 0.82 ± 0.12) 469 

likely reflects the intensification of fire during early November, compounded by concurrent 470 

meteorological influences, most notably the seasonal decline in boundary layer height  471 

(Banerjee et al., 2022). 472 

 473 

Fig. 4. Spatial variations of FRP, LST and AOD over extended geographical region, 5-year mean 474 

FRP (a), LST (b) and AOD (c), and spatial correlation between FRP_LST (d), FRP_AOD (e) 475 

and AOD_LST (f). To compute spatial correlation, daily retrievals of FRP, AOD and LST 476 

were converted to a common 6x6 km2 grid. Spatial correlation was computed for the 477 

entire duration and significant correlation (P<0.05) is shown with black dot. 478 



 479 

Spatial associations among VIIRS-derived FRP, MODIS LST, and VIIRS-based AOD daily 480 

retrievals were assessed over the extended geographical region (Fig. 4d–f). Spatial correlation 481 

between pixel-based FRP against LST reveals positive but spatially heterogenous association 482 

across most parts of the study area, except in the southern region. A statistically significant 483 

relationship (P < 0.05) between FRP and LST underscores the potential influence of crop 484 

residue burning on surface temperature. Similarly, a significant association between FRP and 485 

AOD was observed across the central region, where fire intensity was notably higher than in 486 

surrounding areas. This spatial covariation between fire intensity and columnar aerosol 487 

loading further reinforces the influence of biomass-burning-induced emissions of aerosols 488 

and their precursors on atmospheric aerosol abundance. Biomass-burning aerosols, 489 

predominantly composed of carbonaceous soot particles, are known to modulate the thermal 490 

budget of the lower atmosphere (Freychet et al., 2019; Xu et al., 2021). The spatial association 491 

between AOD and LST further supports the existence of a fire–aerosol–surface temperature 492 

nexus over northwestern India. A comparatively weak yet statistically significant positive 493 

correlation between AOD and LST likely reflects lower-atmospheric warming induced by 494 

smoke aerosols, consistent with the similar warming effect over western United States during 495 

2017 California wildfire (Gomez et al., 2024). 496 

3.2 Evaluation of Hurst exponent  497 

 The Hurst exponent was evaluated to assess the long-term persistence of fire 498 

intensity, surface temperature, and aerosol loading time series over the extended 499 

geographical region. In principle, the Hurst exponent is used to quantitatively distinguish a 500 

purely stochastic time series (H = 0.50) from a persistent (H > 0.50) or anti-persistent (H < 501 

0.50) time series of pixel-based FRP, LST, and AOD, following the methodology described in 502 

Markonis and Koutsoyiannis (2016) and Chen et al. (2022). 503 

As shown in Figure 5, nearly the entire extended geographical region of northwestern 504 

India exhibits Hurst exponent values greater than 0.50 for FRP, with relatively higher values 505 

(0.60–0.70) concentrated toward its central zone. Although variations in Hurst exponent for 506 

FRP was spatially inconsistent, primarily due to temporal and spatial fluctuations in fire 507 

intensity, the FRP time series over most of the region indicates statistical persistence. 508 

Similarly, elevated Hurst exponent values for LST (>0.50) across the region also exhibits 509 



persistence at long run. Notably, the northern portion of the study region shows slightly 510 

higher Hurst exponent values compared to the southern part. For regional aerosol loading, 511 

except few isolated patches, comparatively high Hurst exponent values (>0.75) were 512 

observed over the central region. Notably, this area also coincides with zones characterized 513 

by high AOD (>0.65) and a statistically significant FRP–AOD association. Overall, the Hurst 514 

exponent analysis indicates that the observed FRP, LST, and AOD time series across most of 515 

the residue-burning region exhibit statistical persistence. 516 

 517 
 518 

Fig. 5. Estimating FRP (MW), LST (C) and AOD time-series persistence in extended 519 

geographical region. 520 

However, interpretation of the Hurst exponent results should be approached with 521 

caution. The five-year dataset used here may not be sufficient to derive statistically robust 522 

estimates. For the same reason, trend analysis was not undertaken, as the limited dataset 523 

constrains the reliability of such estimates and falls beyond the scope of the present study. 524 

Nonetheless, several studies have documented long-term trends in fire dynamics and aerosol 525 

loading over northwestern India (e.g., Vadrevu and Lasko, 2018; Jethva et al., 2019; Singh et 526 

al., 2020). 527 

3.3 Surface temperature and aerosols response to fire intensity  528 

Fire intensity in terms of pixel-based FRP, aerosol loading and surface temperature 529 

were retrieved to compute corresponding daily and spatial means based on five years of 530 

satellite retrievals. It is noteworthy that to account immediate response of fire intensity and 531 

aerosol loading on surface temperature, all variables were retrieved exclusively over year-532 

specific intensive fire zones, having cumulative FRP  5 MW grid-1, as illustrated in Fig. 2(b-f).  533 



 534 

Fig. 6. Time series of five-year mean fire radiative power (FRP, a), land surface temperature 535 

(LST, b) and aerosol optical depth (AOD, c) against daily retrievals, (d) covariation of FRP, 536 

AOD and LST over intensive fire zone. Gray dots show daily retrievals from October to 537 

November (2017–2021), with the red line depicting the corresponding 5-year mean. 538 

A distinct temporal pattern is evident in the FRP time series (Fig. 6a), which corresponds 539 

closely with daily variations in fire counts (Fig. S4). Over northwestern India, FRP starts to 540 

build-up typically in mid-October, peaks consistently during the first week of November, and 541 

declines thereafter by mid-November. In contrast, the temporal pattern of the five-year mean 542 

LST time series appears less pronounced, as daily retrievals exhibit substantial variability. 543 

Regional LST demonstrates both interannual and intra-annual fluctuations, as illustrated in 544 

Fig. S5. Notably, the FRP time series aligns well with the mean columnar aerosol loading, 545 

underscoring the potential influence of aerosol and precursor emissions from widespread 546 

biomass burning. The characteristic rise in AOD during the first two weeks of November likely 547 

represents a direct response to intensified fire activity, as columnar AOD values consistently 548 

exceed 1.00 over the intensive fire zone. Interestingly, between October 25 and November 549 

20 each year, approximately 90% of daily AOD observations surpass the five-year mean (0.74 550 

± 0.28), coinciding with an 800% increase in average FRP (13,085 ± 6,825 MW) compared to 551 



the remainder of the season (1,148 ± 1,478 MW). During this interval, the five-year mean 552 

columnar AOD exhibits a strong association with the aggregate FRP (r = 0.46) and mean LST 553 

(r = 0.41), whereas these associations weaken considerably outside this period (AOD–FRP: r = 554 

0.18; AOD–LST: r = –0.02). 555 

The temporal associations among FRP, AOD, and LST clearly demonstrate the 556 

immediate response of fire-induced variations in aerosol loading and surface temperature 557 

over northwestern India. Accordingly, in the subsequent section, these relationships were 558 

modelled using a geospatial tree-based regression framework that integrates concurrent 559 

temporal features (e.g., day-specific retrievals) and spatial predictors (e.g., regional 560 

meteorology, aerosol loading, and fire intensity) to quantify and characterize the FRP–AOD–561 

LST nexus within the intensive fire zone. 562 

3.4 Fire induced change in LST and AOD 563 

The effect of crop residue burning on land surface temperature and aerosol loading 564 

was assessed using a space-for-time approach by overlaying grid-based VIIRS LST, FRP, and 565 

AOD datasets over the northwestern region experiencing recurrent fire. To remove potential 566 

confounding effect, fire and no-fire grids were retained for comparison only when they 567 

matched in terms of topography, meteorology, physical environment, vegetation and soil 568 

characteristics, climatological mean LST and AOD, and surface property. Comparisons were 569 

performed within defined strata containing grids with identical characteristics to ensure that 570 

the quantified changes in LST and AOD could be attributed solely to fire. A total of 7489 paired 571 

no-fire and fire grids were used between 2017 and 2021 to quantify the relative change in LST 572 

and AOD. It is noteworthy that all grids, whether exhibiting fire or not, were selected from 573 

within the extended geographical region to capture localized variations in temperature and 574 

aerosol loading. 575 



 576 
Fig. 7. Crop residue-based fire induced changes in land surface temperature and aerosol 577 

loading. 578 

As illustrated in Fig. 7, a consistent yet temporally dynamic increase in both LST and 579 

AOD was observed over regions affected by residue-based burning compared with no-fire 580 

zone. However, the magnitude of LST and AOD change across the fire zone was spatially 581 

heterogeneous. On average, residue-based burning induced an increase of 0.60 °C in LST 582 

during 2017–2021, with interannual variability ranging from 0.33 °C to 0.76 °C. This indicates 583 

that residue burning exerts a persistent warming influence on land surface temperature, likely 584 

driven by reduced evapotranspiration, enhanced shortwave absorption, increased sensible 585 

heat flux, and fire-induced changes in surface albedo. However, a strong spatial heterogeneity 586 

in LST and AOD modulation further indicates the potential influence of key confounding 587 

factors and intensity of fire in regulating the change. The results of this study align with Liu et 588 

al. (2019), who attributed a 0.15 °C rise in surface temperature over burned areas globally to 589 

satellite-observed forest fires, as well as Liu et al. (2018), who documented a net warming 590 

effect over the Siberian boreal forest. Additional evidence from Alkama and Cescatti (2016) 591 

and Zhao et al. (2024) also indicates a positive linkage between forest fire occurrence, fire 592 

intensity, and surface temperature. In contrast, the biophysical effects of agricultural residue 593 

burning on land surface temperature remain poorly constrained. Zhang et al. (2020) reported 594 

LST increases of 1–3 °C over three provinces in China associated with crop residue burning. 595 

However, the feedback effects of meteorological covariates and systematic land-cover 596 

differences on fire occurrence were not accounted for, leading to causal attribution of fire to 597 

LST remains tentative.  598 



A consistent annual increase in aerosol loading was also observed over the fire-599 

affected grids over northwestern India. A clear upward trend in AOD was noted across the 600 

fire zones, with a mean increase of 0.13 AOD year⁻¹ and a range of 0.07–0.22 AOD year⁻¹. The 601 

change in columnar aerosol loading, however, was spatially heterogeneous. Overall, the 602 

increase in AOD from fire-associated emissions of aerosols and their gaseous precursors 603 

reinforces the source-specific contribution of crop residue burning, a phenomenon well 604 

documented in previous studies (Vinjamuri et al., 2020; Mhawish et al., 2022). 605 

To quantify uncertainty in the estimated differences between fire-affected and non-606 

fire-affected grid cells, we further computed 95% confidence intervals for ΔLST and ΔAOD 607 

using nonparametric bootstrapping. For each variable, 10,000 bootstrap samples were 608 

generated by resampling grid cells with replacement, and the mean difference was 609 

recalculated for each bootstrap replicate. The 2.5th and 97.5th percentiles of the resulting 610 

sampling distribution were taken as the bounds of the 95% confidence interval (CI). 611 

Nonparametric bootstrapping results into significant increase in both ΔLST (0.57°C; 95% CI: 612 

0.33–0.81°C) and ΔAOD (0.13; 95% CI: 0.08–0.17) in fire-affected regions. Because both CIs 613 

do not overlap zero, these differences are statistically robust and unlikely to be due to 614 

sampling variability.  615 

3.5 Spatial regression of fire intensity and aerosols on LST  616 

A machine learning algorithm was employed to establish the statistical association 617 

between the dependent variable LST and multiple predictors including fire radiative power, 618 

aerosol loading, regional meteorology (Fig. S6), surface properties, and vegetation 619 

characteristics. All biophysical parameters, except SR and soil moisture, retrieved under two 620 

pre-defined scenarios, (one) days with moderate-to-high fire intensity and (two) days with 621 

sustained high fire intensity exhibiting a positive association with regional mean LST, were 622 

used to model the FRP–AOD–LST relation. Relative feature importance (RFI) of selected 623 

predictors was first evaluated for the fire season, and the marginal effects of FRP and aerosols 624 

on LST were subsequently quantified. Figure 8(a) presents the normalized RFI values for all 625 

predictors under both scenarios, and the Random Forest hyperparameter tuning procedure 626 

is summarized in Table S6. RFI quantifies the sensitivity of regional LST to each predictor and 627 

reflects their partial contribution to surface temperature variability. Fire radiative power 628 

emerged as the dominant predictor under both scenarios, indicating the strong influence of 629 



fire-related energy release on regional radiative balance, likely through reduced 630 

evapotranspiration and fire-induced changes in surface albedo (Liu et al., 2018, 2019). 631 

Notably, the RFI was substantially higher during period of sustained high-intensity burning 632 

(Scenario 2; RFI = 0.40) compared with days characterized by moderate-to-high fire activity 633 

(Scenario 1; RFI = 0.22), highlighting the stronger thermal response associated with intensive 634 

burning condition. 635 

 636 

Fig. 8. Normalized relative feature importance of predictor variables on LST (a), cross-637 

validated evaluation of random forest performance (b), and partial dependence plots 638 

of LST on AOD (c) and FRP (d). Here, K indicates x1000. The PDP plots are based on 639 

scenario 2. Both RMSE and MAE have unit C. 640 

 Next to FRP, PBLH exerted a significant influence on LST (RFI: 0.21–0.24), followed by 641 

atmospheric temperature (RFI: 0.09–0.21). The strong effect of PBLH on LST can be explained 642 

by restricted turbulent mixing during shallow boundary-layer conditions in post-monsoon 643 

season. A relatively low PBLH (mean±SD: 71±29 m) over northwestern India reduces vertical 644 

mixing and traps fire-induced heat and aerosols close to the surface (Vinjamuri et al., 2020). 645 

This enhances shortwave absorption, suppresses evaporative cooling, and limits turbulent 646 

heat dissipation, resulting in a stronger and more persistent increase in LST. Another notable 647 

finding was the modification of LST due to enhanced columnar aerosol loading during fire 648 

season. The RFI of AOD varies from 0.09 to 0.11, indicating its influence on regional radiative 649 

budget. Residue burning releases aerosols and their gaseous precursors, which can exert 650 

significant radiative impacts and drive rapid adjustments in both surface and atmospheric 651 

temperature (Freychet et al., 2019; Xu et al., 2021). Fire-generated aerosols influence the 652 



energy balance through scattering and absorption of radiation, alterations in cloud 653 

microphysics, and changes in surface albedo via deposition of carbonaceous particles. 654 

However, the magnitude and direction of these radiative effects remain uncertain at the 655 

global scale (Tian et al., 2022). The partial influence of all other parameters, including 656 

meteorological variables, land characteristics and elevation was less significant (RFI < 0.30).  657 

The predictive skill of the random forest model was assessed using temporal block 658 

cross-validation to minimize temporal autocorrelation and prevent data leakage. Under both 659 

scenarios model performance was found satisfactory with R2 varying from 0.65-0.75, marked 660 

with relatively low RMSE (0.87-0.95 C) and MAE (0.58-0.61 C). A satisfactory model 661 

performance also ensures that residue burning provide a clear LST response and the RF model 662 

was able to resolve non-linear land–atmosphere interactions, irrespective of the selected 663 

scenarios. Relatively better performance was however, achieved in scenario 2 during the fire 664 

days having better spatial association between FRP and LST. Collectively, this confirms that 665 

moderate-to-high intensity residue burning leaves a measurable and predictable thermal 666 

signature on the land surface over northwestern India. 667 

The partial dependence plots (PDPs) in Fig. 8(c–d) illustrate the marginal effects of FRP 668 

and AOD on LST. These plots show the expected change in LST associated with variation in 669 

each predictor while holding all other predictors constant. The estimated effects of both FRP 670 

and AOD exhibit a non-linear, saturating response. LST increases sharply at low-to-moderate 671 

values of each predictor but the effect progressively weakens at higher magnitudes, 672 

approaching an asymptotic limit. This behaviour likely arises from the complex interplay of 673 

radiative and thermodynamic processes associated with biomass-burning emissions. Fire-674 

originated aerosols exert both direct and indirect radiative effects whose magnitudes and 675 

signs vary with aerosol loading and composition (Freychet et al., 2019; Xu et al., 2021; Tian et 676 

al., 2022). At moderate aerosol loading, UV-absorbing black carbon aerosols may enhance 677 

atmospheric heating and can transiently increase near-surface temperature (Jacobson, 2001). 678 

Fire-induced convective plumes may initially enhance surface temperatures, whereas strong 679 

aerosol build-up can reduce solar transmittance to the ground. Aerosol–cloud interactions 680 

further contribute to non-linearity by modifying cloud microphysics, lifetime, and albedo, 681 

altering the regional radiative balance. Additionally, aerosol-driven changes in boundary-layer 682 

structure, evapotranspiration, and soil moisture introduce additional land–atmosphere 683 



feedbacks. Together, these interacting processes operate across multiple spatial and 684 

temporal scales and do not scale linearly with aerosol loading or fire intensity, producing the 685 

observed non-linear LST response. The RF model therefore provides strong evidence that 686 

both fire intensity and fire-derived aerosols exert measurable and non-linear effects on 687 

regional LST, with potentially important implications for the regional radiative budget.  688 

3.6 Geographically weighted regression on LST 689 

A Global Moran’s I test was first applied to assess spatial autocorrelation in LST across 690 

the intensive fire zone for the cumulative five-year period. As shown in Table S6, Moran’s I 691 

was 0.225, accompanied by a high positive Z-score and a statistically significant p-value (< 692 

0.001), indicating a clustered spatial pattern of LST that is highly unlikely (<1%) to have arisen 693 

by random chance. Given this spatial dependence, GWR was employed to evaluate spatial 694 

heterogeneity in the relationships between LST, FRP, and other predictors. All variables used 695 

in the Random Forest model were incorporated into the GWR framework under both pre-696 

defined scenarios. Model specifications and performance metrics including bandwidth and 697 

kernel details are mentioned in Table S8. 698 

 699 

Fig. 9. Spatial distribution of FRP and AOD GWR coefficients across intensive fire zone.  700 

GWR model demonstrated strong explanatory power, with global R² values exceeding 701 

0.74, confirming that the selected predictors effectively captured spatial variability in LST. FRP 702 



consistently showed a positive and spatially varying association with LST across both 703 

scenarios, underscoring its dominant influence in fire-affected regions. Aerosol loading 704 

demonstrated weak but spatially heterogeneous effects, reflecting localized differences in 705 

aerosol–temperature interactions. Other predictors, including NDVI, RH, AT, PBLH, elevation, 706 

and albedo (Fig. S7), exhibited local coefficients ranging from −0.76 to +0.23, indicating spatial 707 

variability but comparatively weaker contributions to LST modulation across the study area. 708 

Conclusions 709 

 The manuscript unfolds by identifying the geospatial variations in crop residue–based 710 

fires and their associated impacts on aerosol loading and land surface temperature across 711 

northwestern India. Based on year-wise, pixel-level fire intensity, the geographical region with 712 

intensive fire activity was initially delineated, and all satellite-derived and reanalysis datasets 713 

were subsequently processed exclusively over the selected zone. A robust and consistent 714 

spatial correlation between FRP, AOD, and LST was observed across multiple years, indicating 715 

potential fire-induced perturbations in LST. The Hurst exponent analysis reaffirmed the long-716 

term persistence of fire intensity, surface temperature, and aerosol loading time series. A 717 

grid-based analysis over the intensive fire zone revealed a significant increase in both LST and 718 

AOD during the peak fire season. 719 

The article further employs the Random Forest model and Geographically weighted 720 

regression (GWR) to assess the potential influence of FRP and aerosol loading on LST, while 721 

accounting meteorological covariates, physical environment, vegetation characteristic and 722 

surface property as confounding factors within the selected zone. Two contrasting scenarios 723 

were hypothesized to examine the FRP–LST–AOD nexus. Scenario 1 considered spatially 724 

aggregated FRP from fire initiation to subsidence, whereas Scenario 2 focused on days 725 

characterized by high-intensity fires exhibiting a strong positive correlation between FRP and 726 

LST. In both the scenarios, the Random Forest regression successfully captured and mapped 727 

FRP-induced modulation of LST, though with varying magnitudes. A distinct increase in FRP-728 

induced LST modulation was observed during high-intensity fire events. Both boundary layer 729 

height and columnar aerosol loading also contributed partially, with aerosols’ influence on 730 

LST increasing during periods of intense release of fire energy. The Global Moran’s I test 731 

indicated significant spatial clustering of LST while GWR results further confirmed FRP and 732 



AOD-modulated LST variations across northwestern India, highlighting strong spatial 733 

heterogeneity in FRP-AOD-LST nexus. 734 

This analysis reveals that the biophysical effects of crop residue–based fires across 735 

northwestern India can substantially influence the regional radiative budget by altering LST. 736 

The magnitude of LST modulation, however, depends on fire intensity and feedbacks from 737 

regional meteorology. This study provides novel insights into residue-based fire induced 738 

surface temperature dynamics in a region where recurrent fires have been historically linked 739 

primarily with deteriorating air quality in Delhi and its surroundings. The observation-driven 740 

analysis offers a comprehensive understanding of LST responses to residue burning and helps 741 

reduce uncertainties in fire-induced modifications of the radiative budget. Nonetheless, 742 

uncertainties remain due to unaccounted agricultural feedbacks, limited temporal coverage, 743 

retrieval uncertainty in geospatial datasets, and the complexity in aerosol–meteorology 744 

interactions. The multifaced influence of fire aerosols and energy on regional climate through 745 

rapid atmospheric and land surface adjustments, remains complicated at the global level. Our 746 

findings underscore the need for Earth system model–based simulations to better quantify 747 

climate feedbacks from crop residue burning. Besides, assessing the underlying mechanisms 748 

of fire-energy-induced changes in evapotranspiration, the radiative effects of aerosols, fire–749 

aerosol–meteorology feedbacks, and incorporating additional proxies could further reduce 750 

the uncertainty in estimating radiative impacts from residue burning. 751 
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