

1 Spatial influence of agricultural residue burning and aerosols on land surface
2 temperature

3 Akanksha Pandey¹, Richa Singh¹, Kumari Aditi^{1,2}, Neha Chhillar¹, Tirthankar Banerjee^{1,2*}
4

5 ¹ Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.

6 ²DST-Mahamana Centre of Excellence in Climate Change Research, Banaras Hindu University, Varanasi, India.

7 *Correspondence to: T. Banerjee (tb.iesd@bhu.ac.in; tirthankaronline@gmail.com)

8

9

Abstract

10 The biophysical effects of agricultural residue burning, driven by the excessive release of
11 energy and carbonaceous aerosols, remain largely unaccounted for poorly quantified at the
12 global scale. Residue-based fires have the potential to modify regional climate by altering land
13 surface temperature (LST), highlighting the need for investigation at regional scale. Based fire
14 through excessive release of energy and carbonaceous aerosols essentially unaccounted
15 globally. Elucidating climate feedback from residue-based fire however, remain pertinent as
16 energy released from fire pose potential to modify land surface temperature (LST) thereby,
17 regional climate. Here, an observation-driven assessment of spatial change variations in LST
18 due to concurrent release of energy and aerosols has been explored over northwestern
19 India using multiple satellite and reanalysis-based datasets. Year-specific fire pixel density was
20 used to delineate an intensive fire zone characterized by medium-to-large residue-based fire.
21 Initially, year-specific fire pixel density was computed to identify intensive fire zone
22 encompassing only medium to large fire. Geospatial analysis revealed positive correlation
23 association among FRP (fire radiative power), LST and AOD (aerosol optical depth) across the
24 intensive fire zone. Residue-based fire Over intensive fire zone, a space-for-time approach
25 revealed accounted an increase in LST by 0.48°C and AOD by 0.19 yearly during peak fire
26 season over intensive fire zone. significant increase in both Δ LST (0.57°C; 95% CI:0.33-0.81°C)
27 and Δ AOD (0.13; 95% CI:0.08-0.17) due to fire. A Random Forest non-linear model was
28 employed to regress potential influence of FRP and AOD on LST having several other variables
29 as confounding factors. FRP consistently emerged as the dominant predictor of LST, followed
30 by planetary boundary layer height and aerosols. Random Forest non-linear model was used
31 to regress potential influence of FRP and AOD on LST across. Two pre-constructed defined
32 scenarios were evaluated to ascertain FRP-AOD-LST nexus. Interestingly, both scenarios
33 recognized FRP remained as a top dominant predictor to influence LST in both the scenarios.

Formatted: Font color: Text 1

34 followed by solar radiation and AOD. An increase significant enhancement in relative feature
35 importance of FRP was also noted during days having high fire intensity and positive
36 association against with LST. Geographically weighted regression further explained spatial
37 heterogeneity in LST modulation by FRP. Overall, this analysis provides the first empirical
38 evidence Our analysis therefore, provides first empirical evidence that on crop residue-based
39 fire on contributes to changes in modifying regional climate by altering land surface
40 temperature. It further highlights that the magnitude of this perturbation is governed by
41 interannual variations in fire intensity and influenced strongly by prevailing meteorological
42 conditions. It also underlines that extent of such perturbation is subject to year specific fire
43 intensity and govern by meteorology.

Formatted: Font color: Auto

44 **Keywords:** Aerosols, Biomass burning, Fire, GWR, Random Forest.

45

46

47

48 Introduction

49 Burning agricultural residues is a widespread practice for the rapid removal of post-
50 harvest biomass from croplands in many regions of the world (Streets et al., 2003; Singh et
51 al., 2018; Shyamsundar et al., 2019). While biomass burning is often associated with
52 deforestation (Chuvieco et al., 2021), forest fires (van der Velde et al., 2021; Aditi et al., 2025),
53 and shifting cultivation (Prasad et al., 2000), residue burning on agricultural land is primarily
54 conducted to clear fields, fertilize soil, eradicate weeds and pests, and prepare land for the
55 next crop cycle (Graham et al., 2002; Korontzi et al., 2006; Lan et al., 2022). This practice is
56 observed across large agricultural regions globally, including China (Streets et al., 2003; Zhang
57 et al., 2020), South America (Graham et al., 2002), Southeast Asia (Lasko and Vadrevu, 2018;
58 Yin, 2020), and northwestern India (Singh et al., 2018, 2021; Sarkar et al., 2018). In
59 northwestern India, extensive residue burning during October to November is a recurring
60 phenomenon and has been widely examined from multiple perspectives. Previous studies
61 report that these burning events contribute to severe air-quality degradation in downwind
62 urban centers (Singh et al., 2018; Jethva et al., 2019), alter aerosol loading and chemistry
63 (Mhawish et al., 2022), modify aerosol vertical stratification and radiative forcing (Hsu et al.,
64 2003; Vinjamuri et al., 2020; Banerjee et al., 2021), induce adverse health effects (Singh et al.,

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: 9 pt

65 2021), and may influence regional hydrological processes (Kant et al., 2023). Burning
66 agricultural residues is a widespread practice for quick removal of post-harvest crop leftover
67 from the field over many parts of the world (Streets et al., 2003; Singh et al., 2018;
68 Shyamsundar et al., 2019). While burning biomass is often associated with the practice of
69 deforestation (Chuvieco et al., 2021), forest fire (van der Velde et al., 2021; Aditi et al., 2025)
70 and shifting cultivation (Prasad et al., 2000); agricultural residue burning is more commonly
71 associated with cleaning farmland, fertilizing soil, eradicating pests and weeds, and making
72 land suitable for the subsequent crop (Graham et al., 2002; Korontzi et al., 2006; Lan et al.,
73 2022). Agricultural residue burning is a common practice across the globe as reported in
74 China (Streets et al., 2003; Zhang et al., 2020), South America (Graham et al., 2002), Southeast
75 Asia (Lasko and Vadrevu, 2018; Yin, 2020) and from the northwest India (Singh et al., 2018,
76 2021; Sarkar et al., 2018). Crop residue burning over northwest India has been investigated
77 widely from diverse perspectives. A widespread intensive burning during October to mid-
78 November is a recurring phenomenon and often associated with poor air quality at
79 downstream (Jethva et al., 2019; Singh et al., 2018), modifying aerosol loading and chemistry
80 (Mhawish et al., 2022; Ravindra et al., 2023), influencing aerosol vertical stratification and
81 radiative forcing (Hsu et al., 2003; Vinjamuri et al., 2020; Banerjee et al., 2021), inducing
82 negative health impacts (Singh et al., 2021), and possibly shifting regional hydrological cycle
83 (Kant et al., 2023). However, limited attention has been paid to investigate its effect on urban
84 climate, especially on modulating lower atmospheric thermal budget which has been
85 otherwise strongly evident in case of forest fire (Liu et al., 2018, 2019).

86 Across the northwest ~~ern part of~~ India, dual cropping pattern including rice and wheat
87 crop is predominately practised over roughly 4.1 million ha of land (NAAS, 2017). Such a
88 cropping pattern ~~leads to results in generation~~ ~~ng of~~ huge crop residues ~~having that are low~~
89 ~~in~~ ~~poor~~ nutrient content ~~with and rich in~~ ~~high~~ silica and ash ~~fractions~~. Typically, residues from
90 rice-wheat cropping system ~~have possess~~ limited economic value, ~~not being fitted as~~
91 ~~alternative fodder, biofuel or being procured in pulp and paper industries as they are~~
92 ~~unsuitable for use as alternative fodder, bioenergy feedstock or as raw material in pulp and~~
93 ~~paper industry~~ (Lan et al., 2022; Shyamsundar et al., 2019; Lan et al., 2022). Besides, with the
94 ~~advent introduction~~ of mechanical harvester in ~~the~~ 1980s and enactment of groundwater
95 preservation act in ~~the~~ late 2000s, in situ ~~indiscriminate~~ burning of agricultural residues has

Formatted: Font: 9 pt

96 ~~been become at the~~ recurrent choice practice among of the local farmers. This practice serves
97 to expedite field clearance and reduce the turn-around period time between rice harvesting
98 and the subsequent sowing of the wheat crop (Balwinder-Singh et al., 2019). India generates
99 a India produces an estimated 500 million metric tonnes (MT) of crop residues annually, of
100 which 20–25% are disposed of through open-field burning. Annually, India produces an
101 estimated 500 million metric tonnes (MT) of crop residues, of which approximately 20–25%
102 are disposed of through open field burning. Approximately 500 million metric tonnes (MT) of
103 crop residues per year with roughly 20–25% i.e. 100–120 MT/yr residues usually burn in the
104 field itself. Crop residue burning is particularly prevalent in northwestern India, where roughly
105 20–25 MT of residues are set on fire each year, majority (~20–25 MT/yr) of such practised
106 over northwest Gangetic plain (Balwinder-Singh et al., 2019; Lan et al., 2022; Balwinder Singh
107 et al., 2019). Unregulated residue burning in this region contributes Unregulated burning of
108 agricultural residues across the northwestern part of India usually held responsible for is
109 estimated to contribute approximately 300 Gg/yr of PM_{2.5} and 50 Tg of CO₂ equivalent green-
110 house gas emission (Singh et al., 2020). Interestingly, fire incidences have exhibited a
111 consistent increasing trend with concurrent growth in vegetation index and aerosol loading
112 Notably, the frequency of fire incidences has exhibited a persistent upward trend, coinciding
113 with concurrent increases in vegetation indices and atmospheric aerosol loading (Vadrevu et
114 al., 2018; 2019; Jethva et al., 2019). In addition to atmospheric emissions, fires exert numerous
115 biophysical impacts on the surrounding ecosystems. Fire induces a cascade of consequential
116 processes, including modifications to the surface energy balance, redistribution of nutrients,
117 alterations in species composition, changes in surface albedo, and variations in
118 evapotranspiration rate. Beside emissions, biophysical effects of fire on surrounding
119 ecosystem could be many as fire drives several consequential changes, be it in modifying
120 surface energy balance, redistributing nutrients and species, modifying surface albedo
121 thereby, altering evapotranspiration rate (Ward et al., 2012; Liu et al., 2019). Additionally, fire
122 could can also induce certain biogeochemical and biophysical stresses on local environment
123 by modifying atmospheric composition and surface properties (Andela et al., 2017; Aditi et
124 al., 2025). Such transformation in of the native landscape, coupled with excessive release of
125 energy and emission of aerosols and its their its precursors, may therefore, have several
126 potential implications on the local environment.

Formatted: English (United States)

Formatted: Font: 9 pt

127 Most studies on biomass-based fires have focused on identifying land-atmosphere
128 processes responsible for fire initiation and propagation, quantifying emissions, and
129 evaluating fire-induced land-atmosphere exchanges (Lasko and Vadrevu, 2018; Jethva et al.,
130 2019; Chuvieco et al., 2021; Aditi et al., 2025). Most studies on biomass-based fires have has
131 focused on identifying the land and atmospheric processes and precursors responsible for fire
132 initiation and propagation, quantifying emissions, and evaluating land-atmosphere
133 exchanges (Lasko and Vadrevu, 2018; Jethva et al., 2019; Chuvieco et al., 2021; Aditi et al.,
134 2025). In contrast, there is a paucity of knowledge regarding how biomass burning contributes
135 to climate feedbacks through modifications of Earth's surface radiative budget and land
136 surface temperature. Majority of the researches involving biomass-based fire are dedicated
137 to recognize land and atmospheric processes and precursors on initiating and propagating
138 fire, quantifying emissions and evaluating land surface-atmosphere exchange. There is
139 however, limited understanding on how biomass-based fire induce climate feedback by
140 altering Earth's surface radiative budget and land surface temperature (Bowman et al., 2009;
141 Andela et al., 2017). Plausible explanation to this includes limited observation and associated
142 uncertainties in estimating key biophysical processes-parameter like surface albedo, land-
143 atmosphere exchange of sensible heat flux and water vapor, changes in evapotranspiration
144 before and after fire eventsevapotranspiration rate during pre- and post-fire events. There
145 are instances when global forest fire incidences and size have been linked with modifications
146 in land surface temperature (LST; Alkama and Cescatti, 2016; Liu et al., 2018, 2019). Likewise,
147 Liu et al. (2019) noted an enhancement in mean annual LST over burned forest area in the
148 northern high latitudes. Similar evidence of increase in summertime surface radiometric
149 temperature over temperate and boreal forests in the Northern Hemisphere was accounted
150 by Zhao et al. (2024). Alkama and Cescatti (2016) reported increases in mean and maximum
151 air temperature over arid regions following forest loss, highlighting the sensitivity of surface
152 temperature to land-cover modification. However, fire-induced thermal forcing is strongly
153 constrained by the fire size (Zhao et al., 2024). Small, short-lived fires, such as those
154 associated with agricultural residue burning, often fail to produce sufficiently large changes
155 in surface albedo or evapotranspiration, and therefore may not generate a detectable LST
156 response. Alkama and Cascatti (2016) evident reported a corresponding increase in mean and
157 maximum air temperature over the arid zone regions due to the loss of forest cover. However,
158 fire induced thermal forcing was reported to be constrained by fire size (Zhao et al., 2024)

Formatted: Font: 9 pt

159 and often, relatively small scale burning, particularly involving crop residues on agricultural
160 farmland may not be sufficient enough to induce robust change in surface albedo and
161 evapotranspiration, resulting in significant variation in LST. Incidence of elevated LST over
162 different provinces in China due to agricultural residue burning has only recently reported
163 by Zhang *et al.* (2020). A spatially inconsistent heterogeneous increase in LST correlated well
164 strongly with fire count, having with highest LST gradient noted at distances of 4–10 km from
165 the central point of crop residue burning in 4 to 10 km distance from the central point of crop
166 residue burning and remained valid persisting till for 1–3 days. In contrast, the effects of post-
167 harvest fire incidences in northwestern India on LST remain largely unexplored. This gap
168 introduces considerable uncertainty in assessing the climate feedback of crop residue burning
169 and highlights the need for a better understanding of the underlying mechanisms. In contrast,
170 post-harvest fire incidence over northwest India has not yet explored in terms of its effect on
171 LST. This induces significant uncertainty in recognizing climate feedback of crop residue
172 burning and warrants a better understanding of the underlying mechanism.

173 This study aims to explore immediate biophysical effect of agricultural crop residue
174 fire on surface temperature over northwestern India. By integrating spatially and temporally
175 consistent satellite observations and reanalysis datasets, including based observations on
176 fire counts, fire radiative power, land surface temperature, aerosols leading, meteorological
177 covariates, topography, surface property, and physical environment and regional
178 meteorology over intensive fire zone, we sought to quantify time-bound changes in LST in
179 relation response to variations in fire intensity and aerosol loading. We tried to establish time-
180 bound changes in LST with concurrent variations in fire strength. Several statistical means
181 methods were explored applied to construct the changes in LST with fire severity and
182 aerosols. Additionally, a space-for-time framework was applied followed to assess the effects
183 of recurrent FRP variations on LST and aerosol optical depth (AOD) throughout the fire
184 season. A space-for-time approach was used to construct changes in LST and AOD due to
185 recurrent changes in FRP over the fire season. Specifically, we addressed two key questions:
186 we tried to investigate two questions, (1) does Does land surface temperature LST respond to
187 changes in fire intensity over northwestern India?, and (2) how How do local meteorology and
188 aerosol loading modulate LST variation with respect to space and time? To the best of our
189 knowledge, this is the first systematic assessment of agricultural residue fire-driven

Formatted: Font: 9 pt

190 modulations in LST over northwestern India no previous study has systematically analyzed
191 agricultural residue burning driven changes in LST over northwestern India. By integrating
192 multiple geospatial observations, the analysis offers critical insights into the biophysical
193 feedbacks of residue-based fire and advances understanding of LST responses to residue
194 burning. Further, it refines estimates of fire-induced perturbations in the regional radiative
195 budget offering valuable representation of biomass-based fire in Earth system models.

Formatted: Font: Font color: Text 1, Ligatures: Standard + Contextual

196 Such an investigation could provide critical insights into the biophysical feedbacks of
197 fire on surface temperature and radiative budget from crop residue burning. To best of our
198 knowledge, such understanding on regulated in LST explored northern could vital evidence
199 on feedback from based fire.

200
201

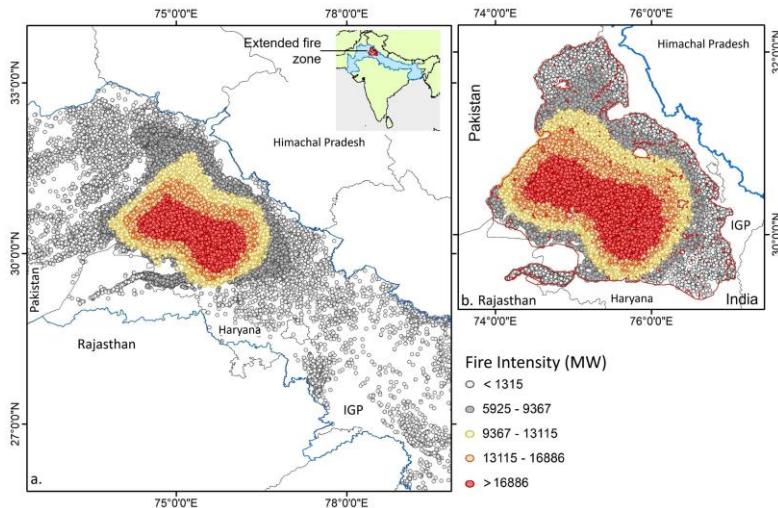
202 2. Dataset and methodology

203 2.1 Study domain

204 Post harvest burning of biomass is mainly practised over the northwest part of the
205 Indo-Gangetic Plain (IGP) of South Asia. The region encompassing the agrarian states of
206 Punjab and Haryana is particularly productive and accounts for a whopping 60–70% of India's
207 food grain generation production. Coupled with increased production of rice and wheat crop,
208 generation of crop residues has been increased multi fold in recent years resulting higher
209 intensity in crop-based fire over the region (Jethva et al., 2019). For this research, the
210 geospatial analysis of LST in continuation with fire activity and aerosol loading has been made
211 over the northwest part of India for the months of October to November between year 2017
212 and 2021. The combination of high agricultural output, extensive biomass burning, and
213 documented increases in fire activity renders this region specifically appropriate for analysing
214 fire dynamics and their environmental consequences. However, instead of pre identifying a
215 fixed research domain, we have retrieved year-wise fire signal across the northwest India
216 constrained by crop land. This led to the selection of core study region differs annually with
217 respect to year-specific fire intensity and spatial trend (as in Fig. S1, in supplementary file),
218 but all eventually bound to 29.2770° to 32.1625° N and 73.8996° to 77.0718° E, as illustrated
219 in Fig. 1b.

Formatted: Font: 9 pt

220



221

222 Fig. 1. Spatial variation in satellite-based fire radiative power across northwest India,
 223 distribution of FRP-based fire intensity (MW/pixel) (a) and domain selected for
 224 retrieval and processing of SNPP VIIRS FRP, AOD and Aqua MODIS LST (b).

225 **NOTE:** The region marked with blue in Fig. 1a subset indicates the Indo-Gangetic Plain (IGP) spanning from Pakistan to Bangladesh through India. The extended fire zone selected for analysis is marked with red within the IGP and has been shown in detail in Fig. 1a with fire pixel density. **The selection criteria of the spatial domain are discussed in section 2.3. The pixel size of VIIRS VNP14IMG is 375x375 m².** India shape file is acquired from Survey of India archive.

226
 227
 228
 229
 230
 231
 232 Post-harvest biomass burning is predominantly practiced across the northwestern
 233 Indo-Gangetic Plain (IGP) of South Asia, particularly in the agrarian states of Punjab and
 234 Haryana, which together contribute nearly 60–70% of India's total food grain production. The
 235 concurrent rise in rice and wheat cultivation has led to a substantial increase in crop residue
 236 generation, resulting in higher fire intensity in recent years (Jethva et al., 2019). In this study,
 237 geospatial analyses of LST, fire activity, and aerosol loading were conducted over
 238 northwestern India during October–November between 2017 and 2021. The combination of
 239 high agricultural output, extensive biomass burning, and increasing fire activity makes this
 240 region particularly suitable for investigating fire dynamics and their environmental

Formatted: Left, Indent: First line: 0 cm

Formatted: Font: 12 pt

Formatted: Line spacing: 1.5 lines

Formatted: Indent: First line: 1.27 cm

Formatted: Font: 9 pt

241 implications. Instead of defining a fixed spatial domain a priori, year-wise fire signals were
242 retrieved across cropland areas in northwestern India. This approach allowed the delineation
243 of a core study region that varied annually according to year-specific fire intensity and spatial
244 trends (as shown in Fig. S2), but all eventually bound to 29.2770° to 32.1625° N and 73.8996°
245 to 77.0718° E, as illustrated in Fig. 1b.

Formatted: Font: Not Bold

246 2.2 Spatial dataset

247 Active fire count data was retrieved from the standard fire product of Visible Infrared
248 Imaging Radiometer Suite (VIIRS) Collection-2 ~~Level 1B~~ (VNP14IMG) available at 6-min L2
249 swath at 375 m resolution. The VIIRS onboard the Suomi National Polar-orbiting Partnership
250 (SNPP) satellite is a cross-track single-angle scanning radiometer which was launched in year
251 2011 under joint operation of NASA and NOAA. The VIIRS fire detection algorithm typically
252 extends well refined and validated MODIS Fire and Thermal Anomalies product (Giglio et al.,
253 2003). The I-band based fire detection algorithm primarily utilizes brightness temperature of
254 Channel I4 on middle infrared spanning from 3.55 to 3.93 μ m, centred at 3.74 μ m.
255 Additionally, to isolate the active fire spots from the fire-free background channel, a single
256 gain I5 at thermal infrared regions (10.5–12.4 μ m) is also considered. Rest of the I-band
257 channels i.e. I1 to I3, covering visible, near and short-wave IR are used to distinguish pixels
258 with cloud, water and sun-glint (Schroeder et al., 2014). The VIIRS fire database was
259 considered due to its superior precision and accuracy in identifying relatively small fire,
260 greater spatial resolution at footprint and pixel saturation temperature (Li et al., 2018;
261 Vadrevu et al., and Lasko, 2018; Li et al., 2018; Aditi et al., 2023). For this experiment, SNPP
262 VIIRS 375 m ~~C2 L21B~~ active fire count data with nominal (fire mask class 8) and high confidence
263 (fire mask class 9), was retrieved over northwestern India from year 2017 to 2021 (all
264 inclusive).

265 Fire radiative power (FRP) quantifies the release of radiative energy from biomass
266 burning integrated at all angles and wavelengths over a spatial scale. Measured in Watt, FRP
267 retrieval quantifies the release of heat energy against time and in many instances linearly
268 associated with the rate of fuel consumption and emission (Ichoku et al., 2008; Nguyen and
269 Wooster, 2020). A detailed description on FRP retrieval and comparison among the sensors
270 are available in Wooster et al. (2003, 2005) and Ichoku et al. (2008). Li et al. (2018) concluded
271 VIIRS FRP as comparable with MODIS FRP in most of fire clusters and ~~very~~ stable across swath.

Formatted: Font: 9 pt

272 Here, FRP (MW) was processed from the SNPP VIIRS C2 Level-2 (L2) 375 m active fire product
273 (VNP14IMG). VIIRS FRP was used as a proxy of fire intensity and potential emission strength
274 from the biomass burning area, and considered as a direct measurement of radiative energy
275 being released from individual fire pixel.

276 Land surface ~~radiometric~~ temperature (LST, in °C) at 1 km spatial resolution was
277 utilized from Moderate Resolution Imaging Spectroradiometer (MODIS) version 6.1 Land
278 Surface Temperature and Emissivity retrievals product (MYD11A1). Typically, LST indicates
279 thermodynamic temperature of the interface atmospheric layer within soil, plant cover and
280 lower atmosphere, and serves as an indicator of land-atmosphere interaction and exchange
281 (Li et al., 2023). Here, MODIS MYD11A1 radiometric dataset with quality flag '00' was
282 specifically chosen considering its broad swath and wider applicability in estimating land
283 surface temperature. ~~Besides~~, MODIS LST is validated against ground observations on diverse
284 land covers and reported to provide realistic estimate of surface temperature (Wan, 2014)
285 with an uncertainty of ≤ 0.5 K. ~~The dataset includes daytime maximum LST (at 1:30 PM local~~
286 ~~time) and nighttime minimum LST (at 1:30 AM local time). Both daytime maximum and~~
287 ~~nighttime minimum LST approximately at 1:30 PM and 1:30 AM local time respectively, are~~
288 ~~available. However~~ ~~Here, daytime LST dataset were obtained solely from the MODIS sensor~~
289 ~~onboard the Aqua satellite to closely coincide with VIIRS fire count observations at 1:30 PM~~
290 ~~local time, a period when crop residue-based fires are expected to reach at peak, to better~~
291 ~~approximate the timing of VIIRS fire count retrieval at 1:30 PM local time when crop residue-~~
292 ~~based fire presumably remains at peak, surface retrievals of LST was only made from MODIS~~
293 ~~onboard Aqua satellite.~~

294

295 Aerosol optical depth (AOD) from Visible Infrared Imaging Radiometer Suite (VIIRS)
296 sensor on-board SNPP satellite offers accurate estimation of columnar aerosol loading at 550
297 nm over land. Accuracy of VIIRS V1 DB AOD was evaluated extensively over South Asia by Aditi
298 et al. (2023) and reported to provide stable AOD retrieval against AERONET. Sayer et al. (2019)
299 reported an estimated error of $\pm(0.05+20\%)$ in VIIRS Version 1 DB AOD dataset. Here, Deep
300 Blue (DB) Version 1 AOD dataset (AERDB_L2_VIIRS_SNPP Level-2) was used to retrieve AOD
301 with a nominal spatial resolution of 6 km at nadir. Only quality assured AOD (QA ≥ 2) was

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: 9 pt

302 retrieved for the months of October to November ~~for years 2017 to 2021~~ over selected spatial
303 domain.

304 Terra/Aqua MODIS land cover data was used to discriminate crop land against the rest
305 to filter out thermal anomalies exclusively over the agriculture land. To achieve this, MODIS
306 L3 V6.1 Global Land Cover type product (MCD12Q1) was retrieved from LAADS DAAC site for
307 year 2017, available at 0.5 km spatial resolution. MODIS land cover types adopts International
308 Geosphere-Biosphere Programme (IGBP) and other land type classification schemes to
309 classify land cover. Here, land cover type 12 (cropland) was earmarked to isolate the
310 agriculture land from its surrounding (Fig. S~~32~~).

311 Daily composite data on surface and root-zone soil moisture (SM, $m^3 m^{-3}$) available at
312 9 km resolution was obtained from NASA's Soil Moisture Active Passive (SMAP) satellite
313 mission having L-band radar. The Normalized Difference Vegetation Index (NDVI) at 6 km
314 resolution was derived from the VIIRS/SNPP Deep Blue (AERDB L2 TOA NDVI) dataset and
315 was utilized to quantify surface vegetation greenness dynamics. Elevation data at 30 m
316 resolution was retrieved from Copernicus DEM - Global and European Digital Elevation Model
317 dataset for year 2015. Surface albedo data was acquired from MCD43 suite of NASA standard
318 product which integrates both Terra and Aqua retrievals. Here, white-sky version 6.1
319 shortwave albedo data (MCD43A3, Albedo WSA shortwave) at 500 m pixel resolution with
320 daily-time step (quality score: 0) was used.

321
322 Lower surface meteorological data including air temperature (~~A_{AT}~~), total solar
323 radiation flux (~~S_{fSR}~~), precipitation (~~P_{fR}~~) ~~and~~ relative humidity (RH) was procured from
324 European Centre for Medium-Range Weather Forecasts (ECMWF) AgERA5 dataset. The
325 AgERA5 dataset has been generated by Copernicus Climate Change Service (2020) from hourly
326 ECMWF ERA5 dataset for specific agro-ecological based applications. The meteorological data
327 were pre-customized with temporal aggregation aligned to local time zones and spatial
328 enhancement to a 0.1° resolution using grid-based variable-specific regression model. Here,
329 air temperature at 2 meters above the surface, total solar radiation flux received at the surface
330 over a 24-hour time period, and relative humidity at 2 ~~meter~~ height was selectively used over
331 pre-identified intensive crop-based fire zone. Planetary boundary layer height (PBLH) data at
332 0.25° x 0.25° resolution was acquired from ECMWF ERA5 for 13:00-14:00 h local time

Formatted: Font: 9 pt

333 corresponding with VIIRS overpass time. A description of all core datasets used in this analysis
334 and their resolution, version, and quality flags and level of uncertainty is included in Table S1
335 (in supplementary file).

336 ▲
337 **2.3 Spatial analysis for fire-aerosols-LST association**

338 **2.3.1 Selection of intensive fire zone**

339 Post-harvest residue burning typically begins in mid-October and reaches peak
340 intensity by mid-November across northwestern India. Accordingly, all spatial analyses were
341 conducted for October and November for the years 2017–2021. The VIIRS 375 m fire product
342 successfully retrieved active fire pixels across the Indo-Gangetic Plain, capturing substantial
343 spatial heterogeneity. Post-harvest specific crop residue burning typically commences during
344 mid-October and reaches its peak intensity during mid-November, particularly over northwest
345 India. All the spatial analysis was therefore, conducted for the months of October and
346 November for year 2017 to 2021 (all inclusive). The VIIRS 375 m fire product was able to
347 retrieve active fire pixels across the IGP with marked spatial heterogeneity. To ascertain a
348 representative region having predominance of residue-based fire, spatial comparison of fire
349 pixel density was made using daily retrieved VIIRS FRP dataset. FRP was selected instead of
350 fire counts because it directly quantifies the radiative energy released from active burning
351 and therefore provides a more meaningful metric for assessing potential impacts on LST. FRP
352 density was computed on a $1.5 \times 1.5 \text{ km}^2$ grid to characterize spatial variations in fire intensity
353 across northwestern India. Following Giglio et al. (2006), FRP density was estimated as the
354 ratio of total FRP within a grid cell to the grid area. The selection of FRP over fire count as a
355 criterion to isolate intensive fire region was driven by the fact that FRP directly relates energy
356 release from active fire thereby, potentially modulate the spatial change in LST. Pixel density
357 of fire radiative power was assessed at $1.5 \times 1.5 \text{ km}$ grid to compare spatial variations in FRP
358 intensity across northwest India. To compute FRP density, a ratio between FRP and the grid
359 area was computed following the protocol mentioned in Giglio et al. (2006).

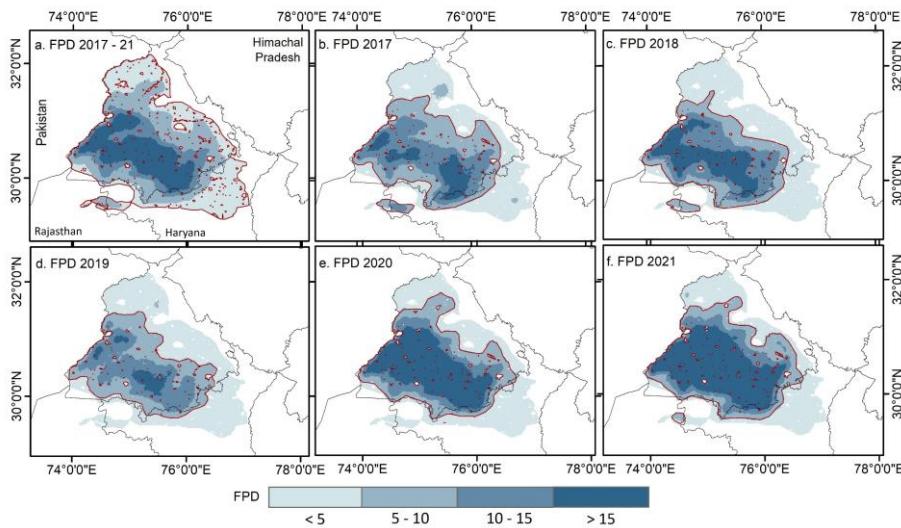
360 Initially, geospatial variations in fire intensity and associated changes in LST and AOD was
361 assessed. Spatial intercomparison between fire intensity with LST and AOD was made over
362 the designated zone shown in Fig. 2a. The zone was earmarked to cover an extended
363 geographical area without imposing any discrimination between low and high FRP density
364 over the northwest India. The zone was henceforth, referred as 'extended geographical

Formatted: Font: 1 pt

Formatted: Superscript

Formatted: Font: 9 pt

365 *region*' as it combines fire intensity across the years and was solely meant to constitute spatial
366 association between the dependent and predictor variables.



367
368 Fig. 2. Selection of high intensity residue-based fire zone based on fire radiative power pixel
369 density (MW 2.25 $\text{km}^{-2} \text{ day}^{-1}$).

370 **NOTE.** Fig. 2a indicates the '*extended geographical region*' demarcating the entire area with
371 varying fire intensity selected for spatial analysis. Rest of the figures classify year-
372 specific '*intensive fire zone*' used to retrieve all the variables for spatiotemporal
373 analysis based on FRP density.

374
375 Initially, geospatial variations in fire intensity and the associated changes in LST and
376 AOD were evaluated. Spatial intercomparison between FRP, LST, and AOD was performed
377 over the region delineated in Fig. 2a. This area was selected to encompass an extended
378 geographical domain without imposing thresholds on low or high FRP density across
379 northwestern India. The region is hereafter referred to as the "extended geographical
380 region," as it integrates fire activity across all years and was used exclusively to establish the
381 spatial association between the predictor (FRP) and dependent variables (LST and AOD).

382 In contrast, to assess the day-to-day influence of fire intensity and aerosol loading on
383 LST, a comparatively high-intensity fire zone was delineated relative to low-intensity areas.
384 To achieve this, the entire crop-residue burning region of northwestern India was mapped
385 using a constraint from low FRP density ($< 5 \text{ MW grid}^{-1}$) to high FRP density ($> 15 \text{ MW grid}^{-1}$).

Formatted: Justified

Formatted: Font: 12 pt

Formatted: Space Before: 3 pt

Formatted: Font: 12 pt, Italic

Formatted: Font: Italic

Formatted: Font: 12 pt, Italic

Formatted: Font: 12 pt

Formatted: Font: 12 pt, Italic

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 9 pt

386 Spatial variations in FRP density were evaluated for each year, and regions with FRP density
387 $>5 \text{ MW grid}^{-1}$ were identified as the “intensive fire zone” (Fig. 2b–f). In contrast, to establish
388 potential effect of day to day variations in fire intensity and aerosol loading on LST,
389 comparatively high intensity fire zone was designated against low intensity zone. To achieve
390 this, entire crop residue burning region of northwest India was earmarked constraining low
391 ($<5 \text{ MW grid}^{-1}$) to high FRP density ($>15 \text{ MW grid}^{-1}$). Spatial variations in FRP density were
392 compared among the selected years and region(s) was identified considering a threshold FRP
393 density $>5 \text{ MW grid}^{-1}$ area (Fig. 2b–f). This threshold ensured a better representation of the
394 effect of medium to large crop-based fire on regional LST as very small-intensity fire deem to
395 extinguish faster while being inconducive to considerably influence surface temperature
396 (Zhao et al., 2024).

397 All subsequent spatial datasets used for evaluating FRP–AOD–LST relationships were
398 retrieved exclusively within the year-specific ‘intensive fire zone’ having FRP density $>5 \text{ MW}$
399 grid^{-1} . Notably, the spatial extent of the high-FRP region remained largely consistent across all
400 years (Fig. 2b–f), with areal estimates summarized in Table S2. All the spatial datasets were
401 subsequently retrieved exclusively within the year wise designated ‘intensive fire zone’ having
402 FRP density $>5 \text{ MW grid}^{-1}$, and included for ascertaining FRP–AOD–LST association. Incidentally,
403 area having high FRP density ($>5 \text{ MW grid}^{-1}$) remained almost consistent as illustrated in Fig.
404 2(b–f) and quantified in Table S1. It is noteworthy, the fire intensive region was pre-filtered
405 based on the Terra/Aqua MODIS land cover data to deselect any FRP pixel that emerged from
406 a non-agricultural/crop land.

407 2.3.2 Selection of temporal window

408 After isolating the region with higher fire pixel density, the next step was to identify
409 the temporal window in which potential associations between fire intensity and other
410 explanatory variables could be examined. The temporal selection was based on two scenarios,
411 as illustrated in Fig. 3. Scenario 1 was designed to quantify the influence of FRP, aerosols, and
412 other parameters on LST during the period when fire activity begins to intensify and remains
413 persistent over the intensive fire zone. Scenario 1 defines the initiation day as the first instance
414 in October when aggregate FRP consistently exceeds 1500 MW and shows at least a 50%
415 increase compared to the previous day. The scenario concludes in November when aggregate
416 FRP decreases by at least 50% relative to the previous day. The selected dates for Scenario 1

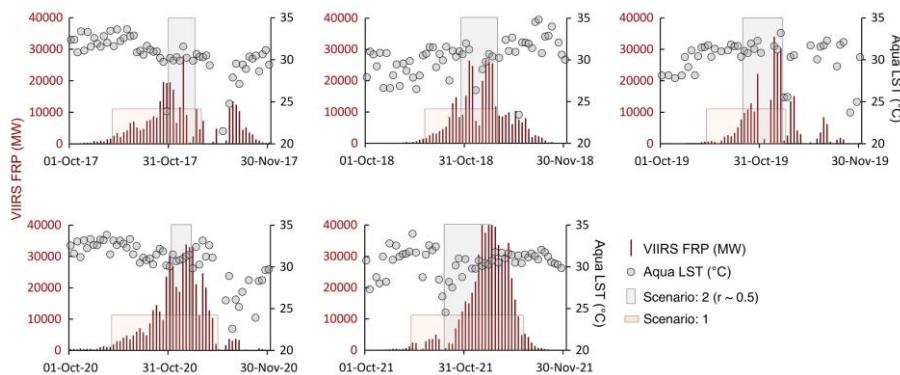
Formatted: Font: (Default) Calibri, Font color: Text 1,
Ligatures: Standard + Contextual

Formatted: Font: (Default) Calibri, Font color: Text 1,
Ligatures: Standard + Contextual

Formatted: Font: 9 pt

417 are listed in Table S3, with two exceptions. As the region with higher fire pixel density was
 418 isolated, our subsequent effort was to identify temporal window to assess potential
 419 association between fire intensity and other explanatory variables on the identified zone.
 420 Selection of temporal window for spatial analysis was based on two scenarios as illustrated in
 421 Fig. 3. Scenario (1) was to quantify the influence of FRP, aerosols and other parameters on LST
 422 when fire intensity starts to build up and remain persistent over the intensive fire zone.
 423 Scenario (1) therefore, considers the day as initiation when FRP starts to build up for the first
 424 time in October and consistently exceeds 1500 MW with a corresponding 50% increase in area
 425 weighted FRP aggregate against its previous day. The Scenario (1) concludes with the same
 426 approximation during November with a 50% decline in aggregate FRP compared to its
 427 previous day. The dates selected for scenario (1) are shown in Table S2 with two exceptions.
 428 First, in year 2018 when a >50% criteria was not met despite having an aggregate FRP >1500
 429 MW and second, in year 2017 when a prior decrease (>50%) in FRP was avoided because of
 430 subsequent rise in fire intensity.

431



432

433 Fig. 3. FRP and LST time series against LST over year-specific intensive fire zone showing the
 434 extent of with marked time frame for both scenarios selected used for geospatial
 435 modelling.

436 ~~NOTE. All the spatial datasets including FRP, fire count, AOD and LST were retrieved exclusively within the year wise designated fire intensive zone having FRP density >5 MW grid⁻¹. Scenario (1) refers extended timeframe to consider entire fire period while scenario (2) select the interlude having high temporal coefficient between FRP and LST.~~

Formatted: Font: 12 pt

Formatted: Indent: Left: 0 cm, Hanging: 1.25 cm, Line spacing: 1.5 lines

Formatted: Font: 9 pt

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

To define Scenario 2, a statistical association was examined between day-specific aggregate FRP and the spatially averaged LST. Pixel-based LST values were averaged over the intensive fire zone and compared against the area-weighted sum of FRP on a day-to-day basis. A temporal window ("Scenario 2" in Fig. 3) was selected using two criteria: (i) the end of the window had to coincide with a period of persistently high FRP, and (ii) the window had to exhibit a strong positive correlation ($r \geq 0.5$) between FRP and regional LST. To constitute scenario (2), statistical association between day specific aggregate FRP and spatially average LST retrievals were examined. Precisely, pixel-based LST was averaged over intensive fire zone and compared against area weighted FRP sum on day to day basis. Here, a temporal window ('Scenario: 2' in Fig. 3) for spatial analysis was identified to fulfilling two criteria; first, the end date of the window should coincide with the day having relatively high FRP and second, the selected window should achieve a robust and positive correlation ($r \geq 0.5$) between FRP and LST. Such restricted criteria were put to ensure that we only select year-specific window(s) when FRP (so the fire count) increases with time and exhibit a strong association with regional LST. Descriptive statistics of both scenarios are included in Table S4. It is noteworthy that selecting multiple windows within a year having coinciding days was avoided while ensuring windows should not contain more than 5% of missing days, irrespective of parameters.

2.4 Spatial correlation between fire, aerosols and LST

To examine the spatial association among FRP, LST, and AOD over the residue-based fire zone, grid-based spatial correlation coefficients were computed, and their statistical significance ($p < 0.05$) was tested across the study domain. Daily FRP (375 m) and LST (1 km) datasets were initially resampled to a $6 \times 6 \text{ km}^2$ resolution to match the VIIRS AOD dataset before subject to spatial correlation analyses among the predictor and dependent variables. This approach facilitated the identification of regions exhibiting strong co-variability in thermal conditions corresponding to variations in fire intensity and columnar aerosol loading. To identify spatial association between FRP, LST and AOD over the crop residue-based fire zone, pixel-based spatial correlation coefficient was computed and its statistical significance ($P < 0.05$) was tested across the study domain. This enables us to identify region having robust co-variability across the thermal conditions with varying fire intensity and columnar aerosol loading.

← Formatted: Indent: Left: 0 cm, Hanging: 1.25 cm

Formatted: English (India)

Formatted: Line spacing: 1.5 lines

Formatted: Superscript

Formatted: Font: 9 pt

471
472 2.5 Hurst Exponent
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

~~The Hurst exponent is a statistical measure used to characterize the properties of a time series without imposing assumptions about its underlying distribution. Originally introduced by Hurst (1951) in hydrological studies and later refined by Markonis and Koutsoyiannis (2016), it has since been widely applied across diverse scientific disciplines to analyse long-term trends and variability. In this study, the Hurst exponent was computed for FRP, AOD, and LST time series to identify long-term statistical persistence in the datasets. To estimate the Hurst exponent at the spatial scale, $6 \times 6 \text{ km}^2$ resampled datasets of FRP, AOD, and LST were used. Adjustment of seasonal cycle was not accounted, as the datasets were retrieved and processed exclusively for a single season across the selected years. The Hurst exponent is a statistical measure used to characterize the properties of a time series without imposing assumptions regarding its statistical distribution. Originally introduced by H.E. Hurst (1951) in the context of hydrological studies and later refined by Markonis and Koutsoyiannis (2016), it has since been widely applied across diverse scientific disciplines for analysing long-term trends and variability. Here, Hurst exponent was computed for FRP, AOD and LST timeseries to recognize long term persistence of the dataset.~~ The main calculation procedures were as follows (Granero et al., 2008):

A time series $x(t)$ is given,

$$(x)_t = 1/\tau \sum_{t=1}^{\tau} x(t) \quad t = 1, 2, 3 \dots \quad (1)$$

The cumulative deviation is determined using Eq. 2:

$$X(t, \tau) = \sum_{u=1}^{\tau} (x(u) - (x)_t), \text{ with a condition of } 1 \leq t \leq \tau. \quad (2)$$

Extreme deviation sequence, is defined as:

$$R(\tau) = \max_{1 \leq t \leq \tau} X(t, \tau) - \min_{1 \leq t \leq \tau} X(t, \tau) \text{ where } \tau = 1, 2, 3 \dots \quad (3)$$

The standard deviation sequence is calculated by Eq. (4):

$$S(\tau) = [1/\tau \sum_{t=1}^{\tau} (x(t) - (X)_\tau)^2]^{1/2} \text{ where } \tau = 1, 2, 3 \dots \quad (4)$$

By considering both extreme deviation sequence and standard deviation sequence,

$$R/S = R(\tau)/S(\tau) \text{ when assuming } (R/S) \propto (\tau/2)^H \quad (5)$$

Formatted: English (United States)

Formatted: Line spacing: 1.5 lines

Formatted: Font: 9 pt

499 The Hurst exponent ranges between 0 and 1. A value of 0.5 indicates that the time series
500 behaves as a purely stochastic process without persistence, implying that future variations are
501 independent of past behaviour. Values greater than 0.5 denote statistical persistence,
502 reflecting a tendency for future changes to follow the same trend as in the past, with higher
503 values corresponding to stronger persistence. Conversely, values below 0.5 indicate anti-
504 persistence, suggesting a tendency for the time series to reverse its trend over time; lower
505 values represent stronger anti-persistence (Peng et al., 2011). Hurst exponent varies between
506 0 and 1. A value of 0.5 signifies that the time series behaves as a stochastic process lacking
507 persistence, indicating that future trends in the series are independent of those observed
508 during the study period. Values exceeding 0.5 denote persistence in the time series, reflecting
509 a tendency for future changes to follow the same trend as in the past; higher values
510 correspond to stronger persistence. Values below 0.5 indicate anti-persistence, meaning the
511 time series exhibits a tendency to reverse its trend over time, with lower values indicating
512 stronger anti-persistence (Peng et al., 2011). To compute Hurst exponent at spatial scale, 6x6
513 km² resampled datasets of FRP, AOD and LST were used.

514

515 2.6 Space-for-time approach

516 A space-for-time approach was employed to assess and compare the spatial
517 heterogeneity changes in LST and AOD with respect to variations in FRP within the extended
518 geographical region experiencing recurrent medium- to largehigh-intensity fire. To ascertain
519 that the ensure that changes in LST and AOD were attributable solely to fire activity, grids with
520 similar characteristics in terms of topography, climate, and physical environment were
521 compared (Liu et al., 2019) was only due to fire, we have adopted the procedure briefed in Liu
522 et al. (2019) where grids exhibiting fire were only compared with control grids having similar
523 characteristics. To achieve this, daily datasets including meteorological covariates (PBLH, AT,
524 SR, RH and PR), physical environment (elevation), vegetation and soil characteristics (NDVI,
525 soil moisture), climatological mean LST and AOD, and surface property (albedo) were
526 extracted over both fire and no-fire grids at a spatial resolution of 10 x 10 km². climatological
527 mean LST and AOD, and systematic land-cover differences (albedo) across the fire and no-fire
528 grids were extracted in multiples of 10x10 km² grid cell and compared. The daily data were
529 retrieved for each grid during Scenario 2, when FRP reached its peak and exhibited a

Formatted: Font: 9 pt

530 positive association with regional LST. Daily LST, AOD and FRP dataset was subsequently
531 retrieved over individual grid for the duration selected under scenario two when FRP remains
532 at its peak and corresponds a both fire and corresponding LST increases with time positive
533 association with regional LST.

534

535 A space for time approach (Liu et al., 2019) was used to assess and compare
536 heterogeneity in AOD and LST against the variation in FRP within residue-based fire zone.
537 Initially, year specific intensive fire zone was categorically divided in to multiples of $10 \times 10 \text{ km}^2$
538 grid cell, selected on the basis of resolution of VIIRS AOD. Daily LST, AOD and FRP was
539 subsequently retrieved over individual grid for the duration selected under scenario two
540 when both fire and corresponding LST increases with time. After filtering out the grid cells
541 having missing values for either LST or AOD values, remaining grids were classified into
542 two groups: those with one, having zero FRP (no-fire) against all the grids having FRP > 0,
543 indicating presence of fire. Fire and no-fire grids with comparable spatial characteristics were
544 grouped into a single stratum, and a stratified matching technique was applied to generate
545 multiple strata based on combinations of the selected confounders. Grids were retained only
546 when differences in their physical environment, vegetation and soil characteristics, climate
547 and land cover between fire and no-fire conditions were smaller than the defined thresholds
548 (Δ elevation < 50 m; Δ NDVI < 0.05; Δ soil moisture < 0.05; Δ albedo < 0.05; Δ LST < 10.0; Δ AOD
549 < 0.80). Fire and no-fire grids exhibiting comparable spatial characteristics were grouped into
550 a single stratum, and a simple stratified matching technique was applied to generate multiple
551 strata based on combinations of the selected confounders. Comparisons were then made
552 within strata containing grids of similar attributes to ensure that the observed variations in
553 LST and AOD could be attributed solely to fire activity. Comparisons were subsequently made
554 within strata containing grids of similar characteristics to ensure that observed changes in LST
555 and AOD could be attributed solely to fire activity. The difference in LST (Δ LST) among the fire
556 grids (LST_{fire}) and grids exhibiting no-fire ($LST_{no-fire}$) having similar attributes were compared
557 to constitute effect of residue-based fire on LST. the within a strata based fire and having
558 similar attributes. A positive (negative) Δ LST ($LST_{fire} - LST_{no-fire}$) indicates fire-induced warming
559 (cooling) and was used to quantify changes in LST associated with residue burning for the

Formatted: Indent: First line: 1.27 cm

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Not Highlight

Formatted: Font color: Text 1

Formatted: Font: 9 pt

560 selected years. A similar approach was also adopted to evaluate Δ AOD variations using grid-
561 based retrievals.

562 It is noteworthy that the grids were not classified based on meteorological covariates,
563 as only insignificant variations were noted among the grids. The entire northwestern cropland
564 experiences a relatively uniform background climate during October–November, including
565 comparable boundary layer heights, with PBLH standard deviations ranging from ± 10 m to
566 ± 33 m within a single fire season. The climatological mean LST and AOD were computed only
567 for the pre-fire season (September, 2017–2021), during which none of the grids experienced
568 residue-burning activity. Furthermore, grids were not differentiated by slope or aspect, given
569 the minimal topographic variation across the Gangetic Plain. It is noteworthy that all grids
570 exhibited a similar background climate, including comparable boundary layer heights with
571 PBLH standard deviation varied from ± 10 m to ± 33 m within fire season. The climatological
572 mean LST and AOD was included only for pre fire season. Additionally, grids were not
573 differentiated by slope or aspect, as topographic variation across the Gangetic Plain is
574 minimal.

575

576 Subsequently, LST and AOD across all the grids with zero FRP were averaged ($LST_{no\ fire}$) and
577 compared against mean LST (LST_{fire}) computed by averaging the grids exhibiting residue-
578 based fire. A positive (negative) ΔLST ($LST_{fire} - LST_{no\ fire}$) indicates a warming (cooling) induced
579 by fire and was used to assess change in LST due to residue-based fire for the selected years.
580 A similar approach was also used to constitute AOD variations utilizing grid-based retrievals.

581

582 **2.7 Multicollinearity assessment**

583 Multicollinearity, where independent variables are highly correlated, can distort regression
584 model estimates and obscure the true relationships between predictors and the target
585 variable (Graham, 2003). In this study, multicollinearity was assessed by calculating the
586 Variance Inflation Factor (VIF) using the statsmodels library. A VIF value of 1 indicates no
587 multicollinearity, values between 1 and 5 suggest moderate correlation, and values above 5
588 indicate significant multicollinearity (Daoud, 2017). +SR

Formatted: Indent: First line: 1.27 cm

Formatted: Font: 9 pt

589 Multicollinearity, where independent variables are highly correlated, can distort
590 regression estimates and obscure the true contribution of individual predictors (Graham,
591 2003). To assess this, the Variance Inflation Factor (VIF) for all covariates was calculated using
592 the *statsmodels* library. A VIF of 1 indicates no correlation, values between 1 and 5 suggest
593 moderate correlation, and values greater than 5 are generally interpreted as evidence of
594 substantial multicollinearity (Daoud, 2017). All biophysical, land-surface, and meteorological
595 variables met acceptable VIF thresholds, except solar radiation, which was therefore excluded
596 from Random Forest and GWR analysis. Additionally, soil moisture data was removed from
597 ensemble modelling and GWR further analysis due to a high percentage of missing
598 observations (~30%).

Formatted: Not Strikethrough

599 2.8 Random Forest regression (CHECK REFERENCE) + SM

600 Random Forest regression was used to model the relationship between the
601 dependent variable (LST) and predictor variables (AOD, PBLH, AT, RH, SR, PR, NDVI, elevation,
602 albedo, and FRP) within the intensive fire zone. Daily retrievals, averaged over the year-
603 specific intensive fire area, were incorporated into the ensemble framework to capture
604 potential non-linear associations among variables. The selected approach ensures robustness
605 to multicollinearity, minimizes overfitting, and effectively captures complex predictor
606 interactions.

Formatted: Indent: First line: 1.27 cm

607 Random Forest is a non-linear ensemble machine learning algorithm that constructs
608 multiple decision trees from bootstrapped samples of the training data, with a random subset
609 of predictors evaluated at each split. Final predictions are obtained by averaging all trees,
610 improving generalization and reducing overfitting (Breiman, 2001; Puissant et al., 2014). The
611 algorithm was selected due to its strong predictive capability, scalability to large
612 environmental datasets, resilience to correlated inputs, and demonstrated success in
613 previous LST-related studies (Logan et al., 2020; Wang et al., 2022; Zhang et al., 2025). These
614 attributes collectively support Random Forest as an appropriate and interpretable choice for
615 assessing the complex interactions between fire intensity, aerosol loading, and LST dynamics.

616 Random Forest regression was used to model the relationship between the
617 dependent variable (LST) and the predictor variables (AOD, PBLH, AT, RH, SR, PT, NDVI,
618 Elevation, albedo, and FRP). The Random Forest model was applied to daily spatial averages
619 of each dataset to quantify day-to-day changes in surface temperature. Random Forest is a

Formatted: Font: 9 pt

620 ~~non-linear ensemble learning method that constructs multiple decision trees using~~
621 ~~bootstrapped samples of the training data, with a random subset of predictors considered at~~
622 ~~each node split. The final prediction is obtained by averaging the outputs of all trees, which~~
623 ~~enhances generalization performance and reduces overfitting (Breiman, 2001; Puissant et al.,~~
624 ~~2014).~~

625 ~~Random Forest (RF) regression was used to model the relationship between the~~
626 ~~dependent (LST) and the predictor variables (AOD, At, RH, Sr, Pr, FRP). It is noteworthy that RF~~
627 ~~was employed on daily based spatial average of individual dataset to model the change. The~~
628 ~~RF is a non-linear ensemble learning method that constructs multiple decision trees using~~
629 ~~bootstrapped samples of the training data, with random subsets of predictors considered at~~
630 ~~each split. The final prediction is obtained by averaging the outputs of all trees, which~~
631 ~~improves generalization and mitigates overfitting. Due to its ability to model complex non-~~
632 ~~linear relationships and handle multicollinearity and interactions among predictors effectively,~~
633 ~~RF is particularly suited for environmental modelling tasks (Breiman, 2001; Puissant et al.,~~
634 ~~2014).~~

635 ~~Key Random Forest hyperparameters (n estimators, max depth,~~
636 ~~min samples split, min samples leaf, and max features) were optimized using Bayesian~~
637 ~~optimization implemented via BayesSearchCV in scikit-optimize (Snoek et al., 2012; Shahriari~~
638 ~~et al., 2015; Frazier, 2018). This adaptive, probabilistic search strategy efficiently identifies~~
639 ~~near-optimal hyperparameter combinations while minimizing computational cost. To ensure~~
640 ~~robust model evaluation and mitigate temporal dependence, we employed temporal block~~
641 ~~cross-validation using a 3-fold GroupKFold in the scikit-learn library, where all observations~~
642 ~~from a given year were assigned to the same fold. This approach prevented temporal overlap~~
643 ~~between training and validation datasets and reduced information leakage across years. The~~
644 ~~predictive skill of the Random Forest model was evaluated using temporal block cross-~~
645 ~~validation implemented with GroupKFold, where each fold corresponded to a distinct year.~~
646 ~~This approach also minimized temporal autocorrelation and prevented data leakage across~~
647 ~~time periods. Model performance was quantified using cross-validated coefficient of~~
648 ~~determination (R^2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE),~~
649 ~~providing a comprehensive assessment of model accuracy and prediction error. The RF model~~
650 ~~was implemented using Scikit-learn's RandomForestRegressor with 100 trees and a fixed~~

Formatted: Font: 9 pt

651 random seed to ensure reproducibility. A correlation pattern of prime predictor with
652 dependent variable was also plotted through partial dependence plots (PDPs). The dataset
653 was partitioned into training (75%) and testing (25%) subsets, and model performance was
654 assessed using statistical metrics like coefficient of determination (R^2), Root Mean Squared
655 Error (RMSE), and Mean Absolute Error (MAE), allowing a comprehensive evaluation of model
656 accuracy and prediction error.

657 2.9 Assessment of relative feature importance

658 Variable importance was derived from the trained RF model using the mean decrease in
659 impurity method, which quantifies each predictor's relative contribution to reducing variance
660 in model predictions. This approach provides insight into the dominant factors governing the
661 spatial and temporal variability of LST. Feature importance values were extracted and ranked
662 to identify the most influential predictors under different fire intensity scenarios. To enable
663 direct comparison among predictors, the relative contribution of each feature was expressed
664 as its importance score normalized by the sum of all feature importances. As Scikit-learn's
665 RandomForestRegressor.feature_importances_ inherently returns normalized values
666 summing to one, the reported scores directly represent each predictor's proportional
667 influence within the model. Variable importance was computed from the trained RF model
668 using the mean decrease in impurity approach, which quantifies the relative contribution of
669 each predictor variable in reducing variance in the model's prediction. This analysis offers a
670 focused understanding of the dominant variables driving spatial and temporal variability in
671 LST. Feature importance were extracted and ranked to identify the most influential predictors
672 of LST during diverse fire intensity scenarios. To facilitate meaningful comparison across
673 predictors, the relative contribution of each feature was calculated as the ratio of its
674 importance score to the sum of all feature importances. This normalized metric reflects the
675 proportional influence of each predictor within the model. Since Scikit-learn's
676 RandomForestRegressor.feature_importances_ provides these values as normalized
677 contribution summing to 1, the output inherently aligns with the relative contribution.

678 679 2.10 Spatial heterogeneity assessment using GWR

Formatted: Font: 9 pt

680 Spatial heterogeneity in the influence of FRP, AOD, and other spatial predictors on LST
681 within the intensive fire zone was assessed using Geographically weighted regression (GWR)
682 at 1x1 km² grid. GWR is a spatially explicit regression technique designed to quantify how
683 relationships between predictors and a dependent variable vary across geographic space by
684 estimating spatially varying coefficients (Brunsdon et al., 1996). The method applies a
685 distance-based weighting scheme, whereby observations closer to a given location receive
686 higher weights, allowing local parameter estimation that reflects neighbourhood-specific
687 dynamics (Yang et al., 2020). Unlike global regression models that assume spatial stationarity,
688 GWR produces location-specific coefficient estimates, offering a more nuanced
689 understanding of spatially varying associations between LST and its predictors (Fotheringham
690 et al., 2009). Spatial heterogeneity in FRP modulated variations in LST across intensive fire
691 zone was further assessed using Geographically Weighted Regression (GWR). It is an
692 advanced statistical method designed to capture heterogeneity in association across space
693 between predictors and dependent variables by constraining spatially varying coefficient
694 estimates (Brunsdon et al., 1996). The GWR allows regression coefficients to vary locally
695 across geographic space and effectively track these coefficients by using a weight matrix
696 which evaluates the association between kernel and nearby samples (Yang et al., 2020).
697 Unlike global models that assume spatial stationarity, GWR estimates location-specific
698 parameters, thus providing a nuanced understanding of spatially varying relationships
699 between dependent and independent variables (Fotheringham et al., 2009). The GWR model
700 is formally expressed as:

$$701 \quad y_i = \beta_0(u_i, v_i) + \sum_{k=1}^m (\beta_k(u_i, v_i) x_{ik}) + \epsilon_i \quad (6)$$

$$702 \quad y_i = \beta_0(u_i, v_i) + \sum_{k=1}^m \beta_k(u_i, v_i) x_{ik} + \epsilon_i \quad (6)$$

703 where (u_i, v_i) are the coordinates of observation i , $\beta_k(u_i, v_i)$ are spatially varying coefficients,
704 x_{ik} are predictor variables, and ϵ_i denotes random error. In GWR, local parameters are
705 estimated using weighted least squares, where each observation is assigned a weight based
706 on its spatial proximity to the location being evaluated. These weights are determined by a
707 spatial kernel function and a bandwidth parameter that defines the extent of spatial
708 influence. Selecting an optimal bandwidth is therefore essential to balance the trade-off
709 between model bias and variance. In this study, the optimal bandwidth was identified through
710 an iterative optimization procedure that minimizes the corrected Akaike Information

Formatted: Superscript

Formatted: Indent: First line: 1.27 cm

Formatted: Font: 9 pt

711 Criterion (AICc) (Fotheringham et al., 2009). This approach ensures robust estimation of local
712 relationships while effectively accounting for spatial non-stationarity in the dataset. Such a
713 framework is particularly valuable in fire-affected landscapes, where the impacts of fire
714 intensity, aerosol loading, and surface characteristics on LST are inherently heterogeneous
715 and vary substantially across space. Here, local parameter is estimated using a weighted least
716 square in which each observation is weighted according to its spatial proximity to the location
717 being evaluated. The weights are determined by a spatial kernel function and a bandwidth
718 parameter, which controls the degree of spatial influence. Choosing an optimal bandwidth is
719 therefore, critical to balance the trade-off between model bias and variance. In this study, the
720 optimal bandwidth is selected through an iterative optimization process that minimizes the
721 corrected Akaike Information Criterion (Fotheringham et al., 2009). This also ensures robust
722 estimation of local relationships while accounting spatial non-stationarity in the dataset.
723

724 3. Results and discussions

725 3.1 Spatial association between fire, aerosols and LST

726 Spatial variations in FRP, LST and AOD averaged for October to November between 727
727 2017 and 2021 over extended geographical region is shown in Figure 4(a-c). While residue-
728 based FRP did not exhibit a distinct spatial pattern, temporal variations were prominent, with
729 monthly mean FRP in November ($310,188 \text{ MW month}^{-1}$) showing nearly a 100% increase
730 compared to October ($152,616 \text{ MW month}^{-1}$; Table S5). In contrast, the spatial pattern of LST
731 exhibited considerable heterogeneity, with relatively higher temperature observed in the
732 southern parts of the region that gradually declined northward. This north-south gradient
733 may be partially attributed to the proximity of the Himalayan foothills, where the cooler
734 mountainous environment likely offsets fire-induced surface warming. A gradual decline in
735 spatially averaged monthly mean LST was also accounted in November ($29.0 \pm 2.4 \text{ }^{\circ}\text{C}$)
736 compared to October ($31.0 \pm 1.6 \text{ }^{\circ}\text{C}$). A spatially distinct pattern in columnar aerosol loading
737 was evident across the extended geographical region, with elevated AOD (> 0.65) retrieved
738 over the central areas that gradually decreased towards its periphery (< 0.30). Such spatial
739 variability in aerosol loading is likely driven by differences in the intensity of residue-based
740 fires and the associated emissions of aerosols and trace gas precursors. Moreover, the
741 pronounced increase in monthly mean AOD (October: 0.59 ± 0.08 ; November: 0.82 ± 0.12)

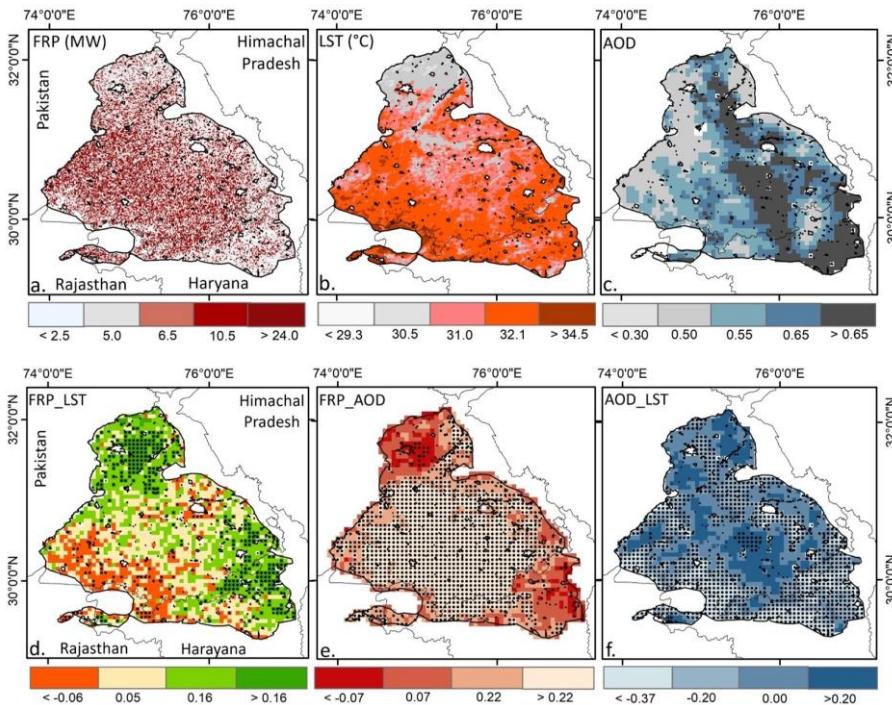
Formatted: Font: Not Bold

Formatted: Indent: First line: 1.27 cm

Formatted: Font: 9 pt

742 likely reflects the intensification of fire during early November, compounded by concurrent
743 meteorological influences, most notably the seasonal decline in boundary layer height
744 (Banerjee et al., 2022).

745



746
747 Fig. 4. Spatial association variations of between predictor (FRP, LST and AOD) and dependent
748 variables (LST), over extended geographical region, 5-year mean FRP (a), LST (b) and
749 AOD (c), and spatial correlation between FRP_LST (d), FRP_AOD (e) and AOD_LST (f)
750 over extended geographical region. To compute spatial correlation,

Formatted: Line spacing: 1.5 lines

751 NOTE. To constitute a spatial association, daily retrievals of FRP, AOD and LST pixels were
752 converted to a common 6x6 km² grid. Spatial correlation between FRP, LST and AOD
753 daily retrievals on selected grid was made computed for the entire duration over
754 extended geographical region and S significant correlation (P<0.05) is shown with black
755 dot.

Formatted: Font: 12 pt

Formatted: Font color: Text 1

Formatted: Font: 12 pt

Formatted: Superscript

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 9 pt

757 Spatial variations in FRP, LST and AOD averaged during for October to November
758 between 2017 and 2021 over extended geographical region without discriminating low to
759 high fire intensity is shown in Figure 4(a-c). While residue-based FRP did not exhibit a distinct
760 spatial pattern, temporal variations were prominent, with monthly mean FRP in November
761 ($310,188 \text{ MW month}^{-1}$) showing nearly a 100% increase compared to October ($152,616 \text{ MW}$
762 month^{-1} ; Table S4). Variations in FRP did not reveal any specific spatial pattern while temporal
763 differences were robust with approximately 100% increase in monthly mean FRP in the month
764 of November ($310,188 \text{ MW month}^{-1}$) compared to October month ($152,616 \text{ MW month}^{-1}$,
765 Table S3). In contrast, the spatial pattern of LST exhibited considerable heterogeneity, with
766 relatively higher temperature observed in the southern parts of the region that gradually
767 declined northward. Spatial pattern in LST however, indicate a marked heterogeneity with
768 comparably high temperature at lower southern region that declined gradually towards
769 north. This north-south gradient may be partially attributed to the proximity of the
770 Himalayan foothills, where the cooler mountainous environment likely offsets fire-induced
771 surface warming. A gradual decline in LST could potentially due to the proximity of
772 mountainous region which partially offset the fire induced elevated LST in the northern part.
773 spatially averaged monthly mean LST was also accounted in November ($29.0 \pm 2.4 \text{ }^{\circ}\text{C}$)
774 compared to October ($31.0 \pm 1.6 \text{ }^{\circ}\text{C}$). Overall, spatially averaged LST monthly mean varied from
775 28 to $32 \text{ }^{\circ}\text{C}$ with slightly higher temperature during October ($31.0 \pm 1.6 \text{ }^{\circ}\text{C}$) compared to
776 November month ($29.0 \pm 2.4 \text{ }^{\circ}\text{C}$). On the contrary, a spatially distinct pattern in columnar
777 aerosol loading was evident across the extended geographical region, with elevated AOD ($>$
778 0.65) retrieved over the central areas that gradually decreased towards its periphery (< 0.30).
779 spatially robust signature in columnar aerosol loading was apparent across the extended
780 geographical region. Comparatively high AOD (> 0.65) was retrieved at the centre that too
781 receded towards its border (< 0.30). Such spatial variability in aerosol loading is likely driven
782 by differences in the intensity of residue-based fires and the associated emissions of aerosols
783 and trace gas precursors. Moreover, the pronounced increase in monthly mean AOD
784 (October: 0.59 ± 0.08 ; November: 0.82 ± 0.12) likely reflects the intensification of fire during
785 early November, compounded by concurrent meteorological influences, most notably the
786 seasonal decline in boundary layer height. Such spatially robust variation in columnar aerosols
787 potentially influenced by the varying intensities of fire associated emission of aerosols and
788 trace gas precursors. (Banerjee et al., 2022) A strong deviation in monthly mean AOD

Formatted: Font: 9 pt

789 ~~(October: 0.59 ±0.08; November: 0.82±0.12) was also accounted which either influenced by~~
790 ~~November specific increase in fire intensity and/or meteorological variables, especially due~~
791 ~~to the decline in planetary boundary layer height (Banerjee et al., 2022).~~

792 Spatial associations among VIIRS-derived FRP, MODIS LST, and VIIRS-based AOD daily
793 retrievals were assessed over the extended geographical region (Fig. 4d–f). Spatial association
794 between VIIRS FRP against MODIS LST and VIIRS driven AOD daily retrieval was also assessed
795 over pre-identified geographical region (Fig. 4d–f). Spatial correlation between pixel-based
796 FRP against LST reveals positive but a spatially heterogenous positive association across most
797 parts of the study area, except in the southern region ever major portion of the area except
798 southern part. A statistically significant relationship (P < 0.05) between FRP and LST
799 underscores the potential influence of crop residue burning on surface temperature.
800 Similarly, a significant association between FRP and AOD was observed across the central
801 region, where fire intensity was notably higher than in surrounding areas. This spatial
802 covariation between fire intensity and columnar aerosol loading further reinforces the
803 influence of biomass-burning-induced emissions of aerosols and their precursors on
804 atmospheric aerosol abundance. A statistically significant association (P<0.05) between FRP
805 and LST indicates potential influence of crop-based fire on surface temperature. FRP and AOD
806 also accounts a statistically significant association across the central part where fire intensity
807 was considerably high compared to its outskirts. Such spatial covariation between fire
808 intensity and columnar aerosol loading reemphasize the possible influence of incremental
809 aerosols and its precursors' emission from biomass burning on columnar aerosols. Biomass-
810 burning aerosols, predominantly composed of carbonaceous soot particles, are known to
811 modulate the thermal budget of the lower atmosphere (Freychet et al., 2019; Xu et al., 2021).
812 The spatial association between AOD and LST further supports the existence of a fire–aerosol–
813 surface temperature nexus over northwestern India. A comparatively weak yet statistically
814 significant positive correlation between AOD and LST likely reflects lower-atmospheric
815 warming induced by smoke aerosols, consistent with the similar warming effect over western
816 United States during 2017 California wildfire (Gomez et al., 2024).

817 ~~Biomass burning aerosols primarily being carbonaceous smoke particles are reported~~
818 ~~to modulate lower atmospheric thermal budget (Bond et al., 2013).~~ Spatial association
819 ~~between AOD and LST provide further evidence on possible fire–aerosols–surface temperature~~

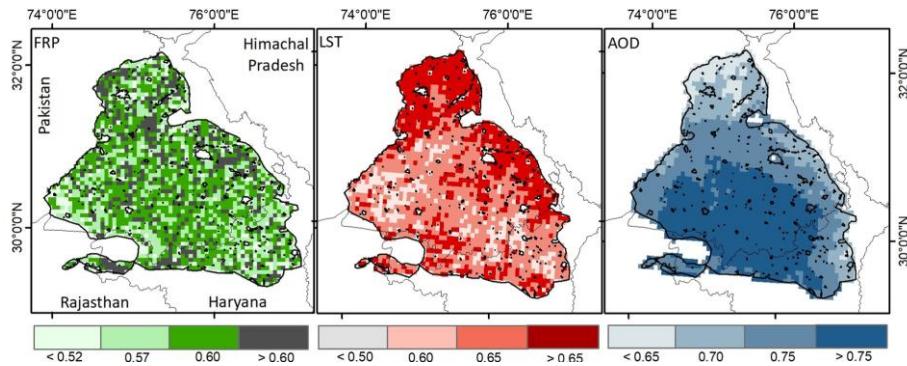
Formatted: Font: 9 pt

820 ~~nexus over northwest India. A comparatively low but significant positive association between~~
821 ~~AOD and LST was possibly the consequence of smoke aerosols induced lower atmospheric~~
822 ~~warming, as was also accounted by Gomez et al. (2024) over western United States during~~
823 ~~2017 California wildfire.~~

824 **3.2 Evaluation of Hurst exponent**

825 ~~The Hurst exponent was evaluated to assess the long-term persistence of fire~~
826 ~~intensity, surface temperature, and aerosol loading time series over the extended~~
827 ~~geographical region. In principle, the Hurst exponent is used to quantitatively distinguish a~~
828 ~~purely stochastic time series ($H = 0.50$) from a persistent ($H > 0.50$) or anti-persistent ($H <$~~
829 ~~0.50)~~ time series of pixel-based FRP, LST, and AOD, following the methodology described in
830 ~~Markonis and Koutsoyiannis (2016) and Chen et al. (2022). Hurst exponent was evaluated to~~
831 ~~ascertain long-term persistence of fire intensity, surface temperature and aerosol loading~~
832 ~~time-series over the intensive fire zone. Principally, Hurst exponent is employed to~~
833 ~~quantitative segregate a stochastic time series ($H = 0.50$) against a sustainable ($H > 0.50$) and~~
834 ~~anti-persistence time series ($H < 0.50$) of pixel-based FRP, LST and AOD following the protocol~~
835 ~~as mentioned in Markonis and Koutsoyiannis (2016) and Chen et al. (2022).~~

836 ~~As shown in Figure 5, nearly the entire extended geographical region of northwestern~~ Formatted: Indent: First line: 1.27 cm
837 ~~India exhibits Hurst exponent values greater than 0.50 for FRP, with relatively higher values~~
838 ~~(0.60–0.70) concentrated toward its central zone. Although variations in Hurst exponent for~~
839 ~~FRP was spatially inconsistent, primarily due to temporal and spatial fluctuations in fire~~
840 ~~intensity, the FRP time series over most of the region indicates statistical persistence.~~
841 ~~Similarly, elevated Hurst exponent values for LST (>0.50) across the region also exhibits~~
842 ~~persistence at long run. Notably, the northern portion of the study region shows slightly~~
843 ~~higher Hurst exponent values compared to the southern part. For regional aerosol loading,~~
844 ~~except few isolated patches, comparatively high Hurst exponent values (>0.75) were~~
845 ~~observed over the central region. Notably, this area also coincides with zones characterized~~
846 ~~by high AOD (>0.65) and a statistically significant FRP–AOD association. Overall, the Hurst~~
847 ~~exponent analysis indicates that the observed FRP, LST, and AOD time series across most of~~
848 ~~the residue-burning region exhibit statistical persistence.~~



849
850

851 Fig. 5. Estimating FRP (MW), LST (°C) and AOD time-series persistence in extended
852 geographical region-.

853

854 It could be seen from Fig. 5 that almost entire 'extended geographical region' over
855 northwest India appears to have a Hurst exponent >0.50 for FRP with relatively high exponent
856 ($0.60-0.70$) at the centre. Although the variations in Hurst exponent was not highly consistent
857 as fire intensity fluctuates with time and space, we note that the accounted FRP time series
858 over major proportion of the region should sustain in longer time period. Similarly, a high
859 exponent for LST (>0.50) across the region entails LST time series too persisted and possibly
860 remain stable in near future. For agriculture land located at the northern part, Hurst exponent
861 appeared to be >0.65 indicating a strong trend in LST time series. For regional aerosol loading,
862 barring few isolated tiny patches, Hurst exponent enhanced with space and time and
863 accounted highest value (>0.75) over the central part. The region also coincides with area
864 having high AOD (>0.65) and statistically significant association for FRP and AOD.

865

866 However, interpretation of the Hurst exponent results should be approached with
867 caution. The five-year dataset used here may not be sufficient to derive statistically robust
868 estimates. For the same reason, trend analysis was not undertaken, as the limited dataset
869 constrains the reliability of such estimates and falls beyond the scope of the present study.
870 Nonetheless, several studies have documented long-term trends in fire dynamics and aerosol
871 loading over northwestern India. It is noteworthy that trend analysis was not undertaken, as
872 such estimation falls beyond the scope of the present study. Moreover, the five-year dataset
873 may not be sufficient to derive statistically robust trends comparable with previous long-term

Formatted: Left, Indent: Left: 0.25 cm, Hanging: 1.25 cm, Space Before: 0 pt, After: 0 pt, Line spacing: 1.5 lines

Formatted: Indent: Left: 0.25 cm, Hanging: 1.25 cm

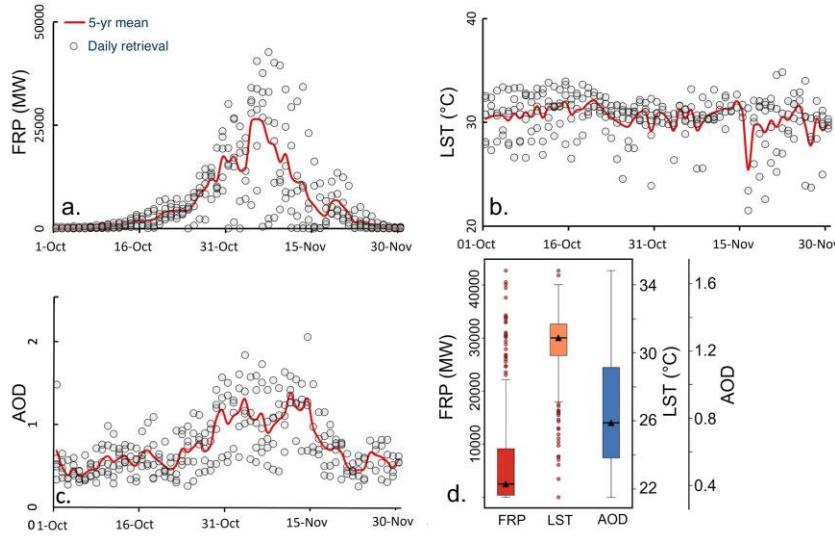
874 ~~assessments. Nonetheless, several studies have documented long-term trends in fire~~
875 ~~dynamics and aerosol loading over northwestern India (e.g., Vadrevu and Lasko, 2018; Jethva~~
876 ~~et al., 2019; Singh et al., 2020). It's noteworthy that we have avoided analysing trend in~~
877 ~~respective time series as such estimation was not within the scope of the present research.~~
878 ~~Besides, a 5-year time period may not result statistically robust trend deemed comparable~~
879 ~~with previous estimates. Long-term trend in fire dynamics and aerosol loading over the~~
880 ~~northwest region has however been reported by several researches, like Vadrevu and Lasko~~
881 ~~(2018), Jethva et al. (2019) and Singh et al. (2020).~~

882

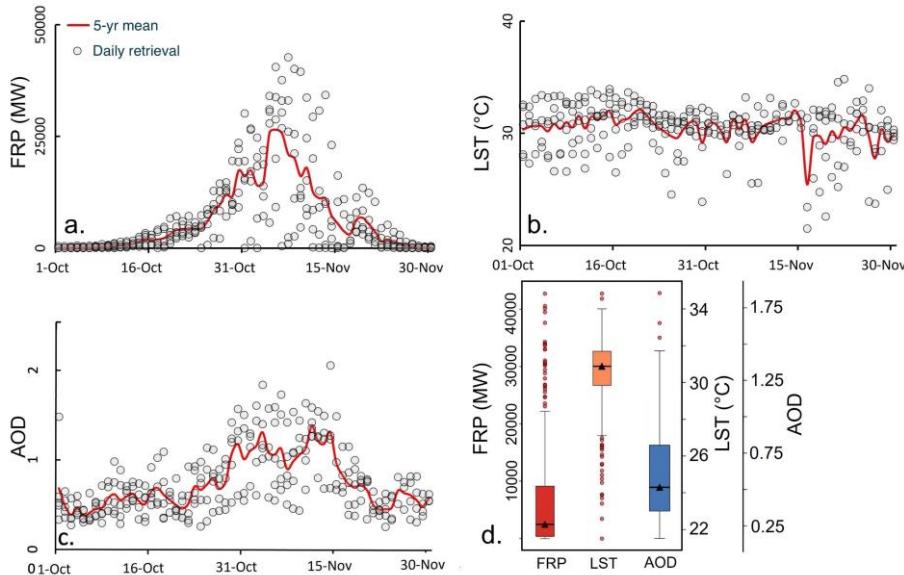
883 **3.3 Surface temperature and aerosols response to fire intensity**

884 Fire intensity in terms of pixel-based FRP, aerosol loading and surface temperature
885 were retrieved to ~~constitute compute corresponding respective~~ daily ~~means~~ and spatial
886 ~~means~~ based on five years ~~of satellite~~ retrievals. It is noteworthy that to account immediate
887 response of fire intensity and aerosol loading on surface temperature, all variables were
888 retrieved exclusively over ~~year-specific wise~~ intensive fire zones~~s~~ having cumulative FRP ≥ 5
889 MW grid $^{-1}$ as illustrated in Fig. 2(b-f).

Formatted: Font: 9 pt



890



891

892 Fig. 6. Time series of five-year mean fire radiative power (FRP, a), land surface temperature
 893 (LST, b) and aerosol optical depth (AOD, c) against daily retrievals, (d) covariation of FRP,
 894 AOD and LST over intensive fire zone.

895 Gray dots show daily retrievals from October to November (2017–2021), with the red line ← Formatted: Line spacing: 1.5 lines
 896 depicting the corresponding 5-year mean. NOTE: Gray dots indicate daily retrievals from

Formatted: Font: 9 pt

897 ~~October to November over the years from 2017 to 2021 while 5-yr mean is the daily~~
898 ~~average based on retrievals from 2017 to 2021, and is indicated with red line.~~

900 A distinct temporal pattern is evident in the FRP time series (Fig. 6a), which corresponds
901 closely with daily variations in fire counts (Fig. S4). Over northwestern India, FRP starts to
902 build-up typically in mid-October, peaks consistently during the first week of November, and
903 declines thereafter by mid-November. In contrast, the temporal pattern of the five-year mean
904 LST time series appears less pronounced, as daily retrievals exhibit substantial variability.
905 Regional LST demonstrates both interannual and intra-annual fluctuations, as illustrated in
906 Fig. S5. Notably, the FRP time series aligns well with the mean columnar aerosol loading,
907 underscoring the potential influence of aerosol and precursor emissions from widespread
908 biomass burning. A robust temporal pattern could be extracted from FRP timeseries (Fig. 6a)
909 which reciprocates well with corresponding daily variations in fire count (Fig. S3). We note
910 FRP initiates during mid-October over northwest India and reaches its peak consistently in the
911 first week of November before reducing mid-November onwards. In contrast, temporal
912 pattern in five-year mean LST timeseries is less intensive as daily retrievals shows extensive
913 range of deviations. Regional LST clearly reflects both inter- and intraannual fluctuations, as
914 shown in Fig. S4. FRP time series however, matches well with mean columnar aerosol loading
915 emphasizing possible effect of emission of aerosols and its precursors from extensive biomass
916 burning. The characteristic rise in AOD during first two weeks of November possibly exhibits
917 the direct response to elevated fire intensity as columnar aerosols consistently surpass 1.00
918 over the intensive fire zone. Interestingly, every year in between October 25 to November 20,
919 90% of daily AOD exceeds 5-yr mean AOD (0.74 ± 0.28) with corresponding 800% rise in
920 average FRP (13085 ± 6825 MW) compared to rest of the period (1148 ± 1478 MW). During this
921 interlude, five-year mean columnar AOD correlates well with 5-yr aggregate FRP ($r: 0.46$) and
922 mean LST (0.41) which was otherwise, not the case for the remaining period (AOD-FRP: 0.18 ;
923 AOD-LST: -0.02).

Formatted: Indent: First line: 1 cm

924 The characteristic rise in AOD during the first two weeks of November likely represents
925 a direct response to intensified fire activity, as columnar AOD values consistently exceed 1.00
926 over the intensive fire zone. Interestingly, between October 25 and November 20 each year,
927 approximately 90% of daily AOD observations surpass the five-year mean (0.74 ± 0.28),

Formatted: Font: 9 pt

928 coinciding with an 800% increase in average FRP ($13,085 \pm 6,825$ MW) compared to the
929 remainder of the season ($1,148 \pm 1,478$ MW). During this interval, the five-year mean
930 columnar AOD exhibits a strong association with the aggregate FRP ($r = 0.46$) and mean LST
931 ($r = 0.41$), whereas these associations weaken considerably outside this period (AOD-FRP: $r =$
932 0.18 ; AOD-LST: $r = -0.02$).

933 The temporal associations among FRP, AOD, and LST clearly demonstrate the immediate
934 response of fire-induced variations in aerosol loading and surface temperature over
935 northwestern India. Accordingly, in the subsequent section, these relationships were
936 modeled using a geospatial tree-based regression framework that integrates
937 concurrent temporal features (e.g., day-specific retrievals) and spatial predictors (e.g.,
938 regional meteorology, aerosol loading, and fire intensity) to quantify and characterize the
939 FRP-AOD-LST nexus within the intensive fire zone. Temporal association between FRP-AOD
940 and LST clearly illustrates the immediate response of fire-associated changes in aerosol
941 loading and surface temperature over the northwest part of India. In the subsequent section,
942 such association was therefore, modelled using a geospatial tree-based regression model
943 using several concurrent temporal (like day-specific retrieval) and spatial features (like
944 regional meteorology, aerosol loading and fire intensity) to construct FRP-AOD-LST nexus over
945 intensive fire zone in northwest India.

946

947 **3.4 Fire induced change in LST and AOD**

948 The effect of crop residue burning on land surface temperature and aerosol loading
949 was assessed. Crop residue burning-induced changes in surface temperature and aerosol
950 loading were quantified using a space-for-time substitution approach by overlaying grid-
951 based VIIRS LST, FRP, and AOD datasets over the northwestern region experiencing recurrent
952 fire. To remove potential confounding effect, Fire and no-fire grids were retained for
953 comparison only when they matched in terms of topography, meteorology, physical
954 environment, vegetation and soil characteristics, climatological mean LST and AOD, and
955 surface property. Comparisons were performed within defined strata containing grids with
956 identical characteristics to ensure that the quantified changes in LST and AOD could be
957 attributed solely to fire activity. A total of 6007489 paired no-fire and fire grids were used
958 between 2017 and 2021 to quantify the relative change in LST and AOD. It is noteworthy that

Formatted: Font: 9 pt

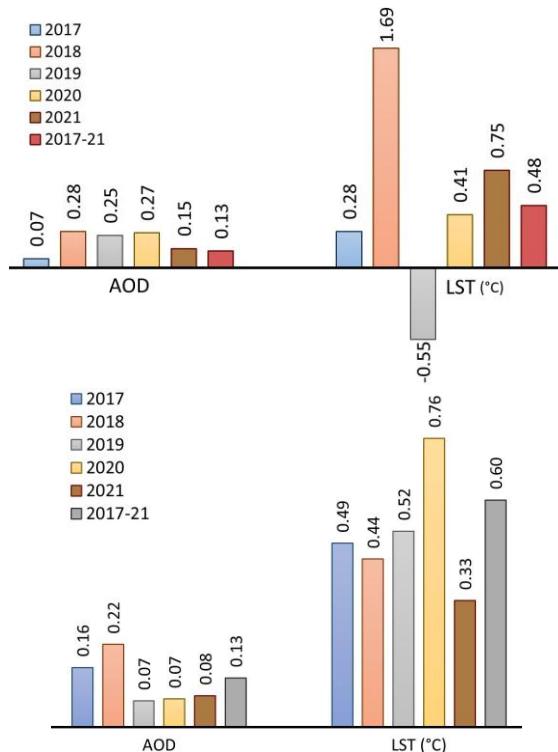
959 all grids, whether exhibiting fire or not, were selected from within the extended geographical
960 region to capture localized variations in temperature and aerosol loading.

961 ————— Crop residue based fire induced changes in surface temperature and aerosol loading wereas quantified using space for time approach, by overlaying grid based VIIRS LST, FRP and AOD at 10x10 km² resolution over year specific intensive fire zone. As illustrated in Fig. 7, and supported by the year specific datasets summarized in Table S5 with year specific dataset included in Table S4, a clear and robust pattern of change in LST and AOD was noted over the areas exhibiting affected by residue based fire against that of no fire zone. The results are presented in terms of anomalies, where positive (negative) LST values indicate regional warming (cooling). Results are reported in terms of anomaly where a positive (negative) ALST indicates reginal warming (cooling). Fire activity induced an average increase of 0.48 °C in LST across fire affected zones during 2017-2021, with notable temporal variability ranging from -0.55 °C to 1.69 °C. Fire induced an increase in LST by 0.48 °C over the fire zone during year 2017 to 2021, with marked temporal heterogeneity in temperature change with a range varying from -0.55 to 1.69 °C. It impliesy that there was instance when fire had cooling effect on surface temperature, as was in year 2019, although a very limited number of grid (2) exhibiting no fire could possibly the reason behind such unanticipated result. Barring this, an increase in LST was accounted in each year averaging 0.72 °C year⁻¹ which could possibly due to reduced evapotranspiration, as was also noted reported during forest fire (Liu et al., 2018, 2019). Similarly, Zhang et al. (2020) asserted an increase in LST by 1-3 °C by agriculture residue based fire in three provinces across China. Results reported in this study are consistent with the findings of Liu et al. (2019), who attributed a 0.15 K rise in surface temperature over burned areas globally to satellite observed forest fires, as well as with Liu et al. (2018), who reported a net warming effect over the Siberian boreal forest. Additional evidence from studies such as Alkama and Cescatti (2016) and Zhao et al. (2024) also indicates a positive linkage between forest fire incidence and intensity with surface temperature. However, the biophysical effects of agricultural residue burning on land surface temperature remain observationally limited, making it challenging to constrain its environmental consequences across diverse landforms. In a recent study, Zhang et al. (2020) reported elevated LST by 1-3 °C over three provinces in China associated with crop residue

Formatted: Indent: First line: 1.27 cm

Formatted: Font: 9 pt

989 burning. Nevertheless, the feedback effect of air temperature on fire occurrence was not
990 considered.



991
992
993 Fig. 7. Crop-residue-based fire induced changes in LST-land surface temperature and
994 aerosol loading AOD over intensive fire zone.
995

996 Formatted: Font: Not Bold
997 Formatted: Font: Not Bold
998 Formatted: Font: Not Bold
999 Formatted: Centered, Space Before: 0 pt

1000 Formatted: Indent: First line: 1.27 cm

1001 As illustrated in Fig. 7, with year specific datasets summarized in Table S5, a
1002 consistent yet temporally dynamic increase in both LST and AOD was observed over regions
1003 affected by residue-based burning compared with no-fire zone. However, the magnitude of
1004 LST and AOD change across the fire zone was spatially heterogeneous. On average, residue-
1005 based burning induced an increase of 0.60 °C in LST during 2017–2021, with interannual
1006 variability ranging from 0.33 °C to 0.76 °C. This indicates that residue burning exerts a
1007 persistent warming influence on land surface temperature, likely driven by reduced
1008 evapotranspiration, enhanced shortwave absorption, increased sensible heat flux, and fire-
1009 induced changes in surface albedo. However, a strong spatial heterogeneity in LST and AOD

1010 Formatted: Font: 9 pt

modulation further indicates the potential influence of key confounding factors and intensity of fire in regulating the change. As illustrated in Fig. 7 with year-specific datasets summarized in Table S5, a consistent pattern of change in LST and AOD was noted over the areas affected by residue-based fire against that of no fire zone. Fire activity induced an average increase of 0.60 °C in LST across fire-affected zones during 2017–2021, with notable temporal variability ranging from 0.33 °C to 0.76 °C. It implies that fire had a consistent warming effect on surface temperature which could possibly due to reduced evapotranspiration and fire-induced changes in surface albedo, as was also reported during forest fire.

1013
1014 ~~The results of this study align with Liu et al. (2019), the results reported in this study~~
1015 ~~are consistent with those of Liu et al. (2019), who attributed a 0.15 °C rise in surface~~
1016 ~~temperature over burned areas globally to satellite-observed forest fires, as well as Liu et al.~~
1017 ~~(2018), who documented a net warming effect over the Siberian boreal forest. Additional~~
1018 ~~evidence from Alkama and Cescatti (2016) and Zhao et al. (2024) also indicates a positive~~
1019 ~~linkage between forest fire occurrence, and fire intensity, with land surface temperature. In~~
1020 ~~contrast, the biophysical effects of agricultural residue burning on land surface temperature~~
1021 ~~remain poorly constrained. However, the biophysical effects of agricultural residue burning~~
1022 ~~on land surface temperature remain observationally limited, making it difficult to constrain~~
1023 ~~its environmental consequences across diverse landforms. In a recent study, Zhang et al.~~
1024 ~~(2020) reported elevated LST by 1–3 °C over three provinces in China associated with crop~~
1025 ~~residue burning; however, the feedback effect of air temperature on fire occurrence was not~~
1026 ~~considered. Zhang et al. (2020) reported LST increases of 1–3 °C over three provinces in China~~
1027 ~~associated with crop residue burning. However, the feedback effects of meteorological~~
1028 ~~covariates and systematic land-cover differences on fire occurrence were not accounted for,~~
1029 ~~leading to causal attribution of fire to LST remains tentative.~~

1030
1031
1032 A consistent annual increase in aerosol loading was also observed over the fire-
1033 affected grids over northwestern India affected by fire compared to non-fire grids. Satellite-
1034 based observations revealed a clear upward trend in AOD was noted within across the fire

Formatted: Indent: First line: 1.27 cm

Formatted: Font: 9 pt

1035 zones, with a mean increase of $0.13 \text{ AOD year}^{-1}$ and a range of $0.07\text{--}0.22 \text{ AOD year}^{-1}$. Notably,
1036 thisThe increasechange in columnar aerosol loading, however, was spatially
1037 heterogeneousAOD persisted throughout the monitoring period. Overall, the increase in AOD
1038 from fire-associated emissions of aerosols and their gaseous precursors reinforces the source-
1039 specific contribution of crop residue burning, a phenomenon well documented in previous
1040 studies (Vinjamuri et al., 2020; Mhawish et al., 2022).Overall, the increase in AOD from fire-
1041 associated emissions of aerosols and their gaseous precursors reinforces the source-specific
1042 contribution of crop residue burning, a phenomenon well documented in previous studies
1043 Vinjamuri et al., 2020. A consistent increase in aerosol loading was also observed over grids
1044 affected by fire compared to non fire zones. Satellite based observations revealed a clear
1045 upward trend in AOD over the fire zones, with a mean increase of $0.19 \text{ AOD year}^{-1}$ and a range
1046 of $0.07\text{--}0.28 \text{ AOD year}^{-1}$. Notably, this increase in AOD remained consistent throughout the
1047 monitoring period, reinforcing the link between biomass burning emissions and elevated
1048 aerosol concentrations over the source regions, a relationship well documented in previous
1049 global studies (Mhawish et al., 2022).A consistent increase in aerosol loading was also
1050 accounted over the grids encountered with fire against no fire zone. Satellite based
1051 observation shows a clear trend in increasing AOD over the fire zone with a mean rise of 0.19
1052 AOD year^{-1} with a range 0.07 to $0.28 \text{ AOD year}^{-1}$. Interestingly, increase in AOD was
1053 consistent across the monitoring period which link biomass burning emission with elevated
1054 aerosol emission over the source region, reported in literature across the globe (Mhawish et
1055 al., 2022; Ravindra et al., 2023).

1056 To quantify uncertainty in the estimated differences between fire-affected and non-
1057 fire-affected grid cells, we further computed 95% confidence intervals for ΔLST and ΔAOD
1058 using nonparametric bootstrapping. For each variable, 10,000 bootstrap samples were
1059 generated by resampling grid cells with replacement, and the mean difference was
1060 recalculated for each bootstrap replicate. The 2.5th and 97.5th percentiles of the resulting
1061 sampling distribution were taken as the bounds of the 95% confidence interval (CI).
1062 Nonparametric bootstrapping results into significant increase in both ΔLST (0.57°C ; 95% CI:
1063 $0.33\text{--}0.81^\circ\text{C}$) and ΔAOD (0.13 ; 95% CI: $0.08\text{--}0.17$) in fire-affected regions. Because both CIs
1064 do not overlap zero, these differences are statistically robust and unlikely to be due to
1065 sampling variability.

- Formatted: Font: (Default) +Body (Calibri), 12 pt, Font color: Auto
- Formatted: Indent: First line: 1.27 cm
- Formatted: Font: (Default) +Body (Calibri), 12 pt, Font color: Auto
- Formatted: Superscript
- Formatted: Font: (Default) +Body (Calibri), 12 pt, Font color: Auto
- Formatted: Superscript
- Formatted: Font: (Default) +Body (Calibri), 12 pt, Font color: Auto
- Formatted: Font: (Default) +Body (Calibri), 12 pt, Font color: Auto
- Formatted: Font: (Default) +Body (Calibri), 12 pt, Font color: Auto
- Formatted: Font: Not Bold, Font color: Auto
- Formatted: Font: 9 pt

1066 **3.5 Spatial regression of fire intensity and aerosols on LST**

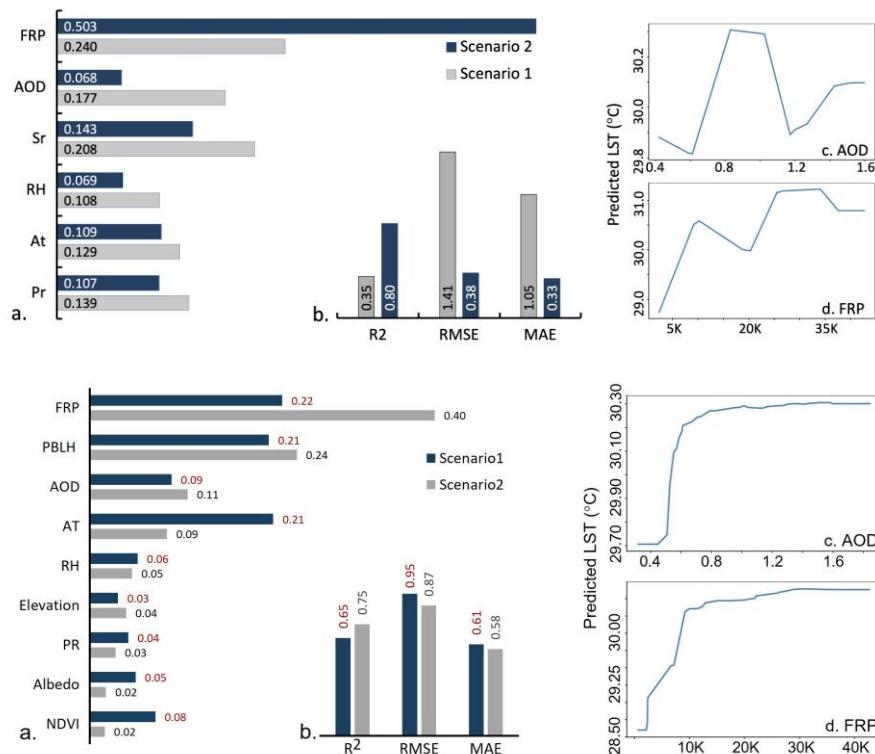
1067 A machine learning algorithm was employed to establish the statistical association
1068 between the dependent variable LST and multiple predictors including, fire radiative power,
1069 aerosol loading, regional meteorology (Fig. S6), surface properties, and vegetation
1070 characteristics, and the dependent variable LST. Relative feature importance (RFI) of all
1071 predictors was first evaluated for the fire season, and the marginal effects of FRP and aerosols
1072 on LST were subsequently quantified. All biophysical parameters, except SR and soil
1073 moisture, retrieved under two pre-defined scenarios, (one) days with moderate-to-high fire
1074 intensity and (two) days with sustained high fire intensity exhibiting a positive association
1075 with regional mean LST, were used to model the FRP–AOD–LST relation. To establish a possible
1076 association between predictors *viz.* fire intensity, aerosols and meteorology on dependent
1077 variable LST, a machine learning algorithm was employed hypothesizing non-linear statistical
1078 association among the variables. The choice of Random Forest (RF) to regress the association
1079 was based on its excellent accuracy, ability to handle large dataset, superior performance and
1080 prior applications on LST-based research (Logan et al., 2020; Wang et al., 2022; Zhang et al.,
1081 2025). Here, relative importance of fire intensity, aerosol loading and meteorological
1082 variables (Fig. S5S6) were assessed to sustain spatial variations in LST across the year
1083 constrained intensive fire zone. Further, relative contributions of each predictors were
1084 quantified and marginal effects of predictor variables on LST have been quantified. Two pre-
1085 specified scenarios (Table S5S6), one, that includes days with extended fire intensity starting
1086 from fire initiation to terminate, and second, days including high intensity fire having strong
1087 positive correlation between FRP and LST were modelled. Such approximation were meant to
1088 evaluate and compare the relative importance of predictor variables both in the cases of high
1089 intensity fire and during entire crop-based fire episode.

1090 Relative feature importance (RFI) of all selected predictors was first evaluated for the
1091 fire season, and the marginal effects of FRP and aerosols on LST were subsequently
1092 quantified. Figure 8(a) presents the normalized RFI values for all predictors under both
1093 scenarios, and the Random Forest hyperparameter tuning procedure is summarized in Table
1094 S6. Figure 8(a) illustrates the normalized RFI of the predictors across the two scenarios. RFI
1095 quantifies the sensitivity of regional LST to each predictor and reflects their partial
1096 contribution to surface temperature variability. Fire radiative power emerged as the

Formatted: Justified, Indent: First line: 1.25 cm

Formatted: Font: 9 pt

1097 dominant predictor under both scenarios, indicating the strong influence of fire-related
 1098 energy release on regional radiative balance, likely through reduced evapotranspiration and
 1099 fire-induced changes in surface albedo (Liu et al., 2018, 2019). Notably, the RFI was
 1100 substantially higher during period of sustained high-intensity burning (Scenario 2; RFI = 0.40)
 1101 compared with days characterized by moderate-to-high fire activity (Scenario 1; RFI = 0.22),
 1102 highlighting the stronger thermal response associated with intensive burning condition.



1103

1104

1105 Fig. 8. Normalized relative feature importance of predictor variables on LST (a), statistical
 1106 cross-validated evaluation of performance of random forest performance for two
 1107 diverse scenarios (b), and partial dependence plots of LST on AOD (c) and FRP (d).
 1108 NOTE. For Fig. 8d, Here, K indicates x1000. The PDP plots are based on scenario 2. Both RMSE
 1109 and MAE have unit °C.

Formatted: Indent: Left: 0 cm, Hanging: 1.28 cm

Formatted: Font: 12 pt

Formatted: Indent: Left: 0 cm, Hanging: 1.28 cm, Space Before: 6 pt, After: 6 pt, Line spacing: 1.5 lines

Formatted: Font: 12 pt

Formatted: Font color: Auto

Formatted: Font: (Default) +Body (Calibri), Font color: Auto

Formatted: Indent: Left: 0 cm, First line: 1.25 cm

Formatted: Font: 9 pt

1111 Figure 8(a) indicate the relative feature importance (RFI) of the selected predictor
1112 variables modelled across the identified scenarios. Next to FRP, PBLH exerted a
1113 significant influence on LST (RFI: 0.21–0.24), followed by atmospheric temperature (RFI: 0.09–
1114 0.21). The strong effect of PBLH on LST can be explained by restricted turbulent mixing during
1115 shallow boundary-layer conditions in post-monsoon season. A relatively low PBLH (mean±SD:
1116 71±29 m) over northwestern India reduces vertical mixing and traps fire-induced heat and
1117 aerosols close to the surface (Vinjamuri et al., 2020). This enhances shortwave absorption,
1118 suppresses evaporative cooling, and limits turbulent heat dissipation, resulting in a stronger
1119 and more persistent increase in LST. Another notable finding was the modification of LST due
1120 to enhanced columnar aerosol loading during fire season. The RFI of AOD varies from 0.09 to
1121 0.11, indicating its influence on regional radiative budget. Residue burning releases aerosols
1122 and their gaseous precursors, which can exert significant radiative impacts and drive rapid
1123 adjustments in both surface and atmospheric temperature (Freychet et al., 2019; Xu et al.,
1124 2021). Fire-generated aerosols influence the energy balance through scattering and
1125 absorption of radiation, alterations in cloud microphysics, and changes in surface albedo via
1126 deposition of carbonaceous particles. However, the magnitude and direction of these
1127 radiative effects remain uncertain at the global scale (Tian et al., 2022).

1128 The partial influence of all other parameters, including meteorological variables, soil and land
1129 characteristics and elevation was less significant (RFI < 0.30).

Formatted: Indent: First line: 0 cm

1130 Variable relative feature importance refers the sensitivity of LST against individual
1131 predictors and serves as an identity about their partial influence in predicting LST. Scenario 1
1132 resulted the strongest influence of FRP (RFI: 0.240) on LST across the intensive fire zone
1133 followed by solar radiation (0.208) and aerosol loading (0.177). The partial influence of other
1134 parameters including meteorological variables were less significant (<0.140).

Formatted: Underline

1135 Interestingly, FRP also emerged as the top feature in modulating LST variation during
1136 scenario 2 with robust RFI of 0.503. This essentially establish the added contribution of
1137 excessive heat energy released during high intensity fire on LST modifications over high
1138 intensity residue based fire zone. The very next contribution on LST variations was due to SR
1139 (RFI: 0.143) and aerosol loading (RFI: 0.068) which emerged to reduce significantly against
1140 scenario 1 when fire intensity spread across over extended time period.

1141

Formatted: Font: 9 pt

1142 The prediction of FRP as the top feature to modulate LST changes during crop residue-based+
1143 fire event is imperative as it hold greater repercussion on the regional climate and human
1144 health. However, the RFI scores for both FRP and SR were comparable indicating their shared
1145 partial influence on LST. Another interesting finding was to attain significant impact of
1146 columnar aerosol loading on LST modification which was otherwise reported by researchers
1147 investigating global fire aerosols and climate (Tian et al., 2022).

Formatted: Indent: First line: 0 cm

1148 It is noteworthy that RF model performance for the scenario 1 records high RMSE (1.41
1149 °C) and MAE (1.05 °C) with comparatively low R^2 (0.35) which translates into some
1150 uncertainties in the prediction.

1151 In contrast, a superior model performance was achieved in case of scenario 2 when
1152 very high coefficient of determination (R^2 : 0.80) was accounted with sufficiently less RMSE
1153 (0.38 °C) and MAE (0.33 °C). This ensured a robust model prediction when high correlation
1154 coefficient between FRP and LST were selectively considered. The predictive skill of the
1155 random forest model was assessed using temporal block cross-validation to minimize
1156 temporal autocorrelation and prevent data leakage. Under both scenarios model
1157 performance was found satisfactory with R^2 varying from 0.65-0.75, marked with relatively
1158 low RMSE (0.87-0.95 °C) and MAE (0.58-0.61 °C). A satisfactory model performance also
1159 ensures that residue burning provide a clear LST response and the RF model was able to
1160 resolve non-linear land-atmosphere interactions, irrespective of the selected scenarios. RA
1161 relatively better performance was however, achieved duringin scenario 2 during the fire days
1162 having better spatial association between FRP and LST. Collectively, this confirms that
1163 moderate-to-high intensity residue burning leaves a measurable and predictable thermal
1164 signature on the land surface over northwestern India.

Formatted: Superscript

1165 Interestingly, FRP also emerged as the top feature in modulating LST variation during
1166 scenario 2 with robust RFI of 0.503. This essentially establish the added contribution of
1167 excessive heat energy released during high intensity fire on LST modifications over high
1168 intensity residue based fire zone. The very next contribution on LST variations was due to SR
1169 (RFI: 0.143) and aerosol loading (RFI: 0.68) which emerged to reduce significantly against
1170 scenario 1 when fire intensity spread across over extended time period.

Formatted: Font: 9 pt

1171 The partial dependence plots (PDPs) in Fig. 8(c–d) illustrate the marginal effects of FRP
1172 and AOD on LST. These plots show the expected change in LST associated with variation in
1173 each predictor while holding all other predictors constant. The estimated effects of both FRP
1174 and AOD exhibit a non-linear, saturating response. LST increases sharply at low-to-moderate
1175 values of each predictor but the effect progressively weakens at higher magnitudes,
1176 approaching an asymptotic limit. This behaviour likely arises from the complex interplay of
1177 radiative and thermodynamic processes associated with biomass-burning emissions. Fire-
1178 originated aerosols exert both direct and indirect radiative effects whose magnitudes and
1179 signs vary with aerosol loading and composition (Freychet et al., 2019; Xu et al., 2021; Tian et
1180 al., 2022). The partial dependence plots (PDPs) illustrating the marginal effects of FRP and
1181 AOD on LST are presented in Fig. 8(c–d). These plots depict the relative change in LST
1182 associated with a unit change in each predictor variable, while keeping other predictors as
1183 constant. The estimated effect of AOD on LST appears non-linear, characterized by an abrupt
1184 reversal in trend when AOD range between 1.00 and 1.20. The non-linear association
1185 between fire-originated aerosols and regional LST likely arise from the complex interplay of
1186 multiple radiative and thermodynamic processes. Fire-emitted aerosols may exert both direct
1187 and indirect radiative effects that vary in magnitude and direction (Bond et al., 2013; Li et al.,
1188 2016). At moderate aerosol loading, UV-absorbing black carbon aerosols may enhance
1189 atmospheric heating and can transiently increase near-surface temperature (Jacobson, 2001).
1190 Fire-induced convective plumes may initially enhance surface temperatures, whereas strong
1191 aerosol build-up can reduce solar transmittance to the ground. Aerosol–cloud interactions
1192 further contribute to non-linearity by modifying cloud microphysics, lifetime, and albedo,
1193 altering the regional radiative balance. Additionally, aerosol-driven changes in boundary-layer
1194 structure, evapotranspiration, and soil moisture introduce additional land–atmosphere
1195 feedbacks. Together, these interacting processes operate across multiple spatial and
1196 temporal scales and do not scale linearly with aerosol loading or fire intensity, producing the
1197 observed non-linear LST response. The RF model therefore provides strong evidence that
1198 both fire intensity and fire-derived aerosols exert measurable and non-linear effects on
1199 regional LST, with potentially important implications for the regional radiative budget.
1200 Alternatively, once sufficient aerosols build-up from fire, strong attenuation of shortwave
1201 radiation substantially declines net LST (Eck et al., 2010). Moreover, fire-induced convective
1202 plumes may initially increase surface temperature while at high aerosol build-up situation

Formatted: Font: 9 pt

1203 may suppresses solar transmittance to surface. Aerosol–cloud interactions further contribute
1204 to this non-linearity by modifying cloud microphysics, lifetime, and albedo, thereby altering
1205 the regional radiation balance (Rosenfeld et al., 2019). Furthermore, aerosol induced changes
1206 in boundary layer, evapotranspiration, and soil moisture create additional land–atmosphere
1207 feedbacks. Collectively, these interdependent processes operate across multiple spatial and
1208 temporal scales and do not scale linearly with aerosol loading or fire intensity, leading to the
1209 observed non-linear LST response in crop residue burning regions. In contrast, the marginal
1210 effect of FRP on LST is more consistent, showing a pronounced positive association in which
1211 increases in regional FRP correspond to higher LST for all observed conditions. The partial
1212 dependence plot (PDP) on the marginal effects of FRP and AOD on LST have been included in
1213 Fig. 8(c–d). This indicates the relative change in LST with corresponding unit change in
1214 predictor variable when other predictors remain stable. The effect estimates of unit increase
1215 in AOD on LST remained inconsistent because of sudden reversal of trend when AOD remain
1216 within 1.00 to 1.20. In contrast, the marginal effect of FRP on LST has been prominent with
1217 an increase in regional FRP resulted in consequent increase in LST for almost all the cases.
1218 The RF model thus provides robust evidence on the effects of crop residue–based fire energy
1219 and aerosol emissions on regional LST, which may have wide-ranging implications for regional
1220 radiative budget.

1221 The RF model therefore, concludes with certainty the implications of crop residue
1222 based fire associated release of energy and aerosols on regional LST which could have diverse
1223 consequences on regional climate, agriculture and human health.

1224 3.6 Geographically weighted regression on LST

1225 A Global Moran's I test was first applied to assess spatial autocorrelation in LST across
1226 the intensive fire zone for the cumulative five-year period. As shown in Table S6, Moran's I
1227 was 0.225, accompanied by a high positive Z-score and a statistically significant p-value (<
1228 0.001), indicating a clustered spatial pattern of LST that is highly unlikely (<1%) to have arisen
1229 by random chance. Given this spatial dependence, GWR was employed to evaluate spatial
1230 heterogeneity in the relationships between LST, FRP, and other predictors. All variables used
1231 in the Random Forest model were incorporated into the GWR framework under both pre-
1232 defined scenarios. Model specifications and performance metrics including bandwidth and
1233 kernel details are mentioned in Table S8.

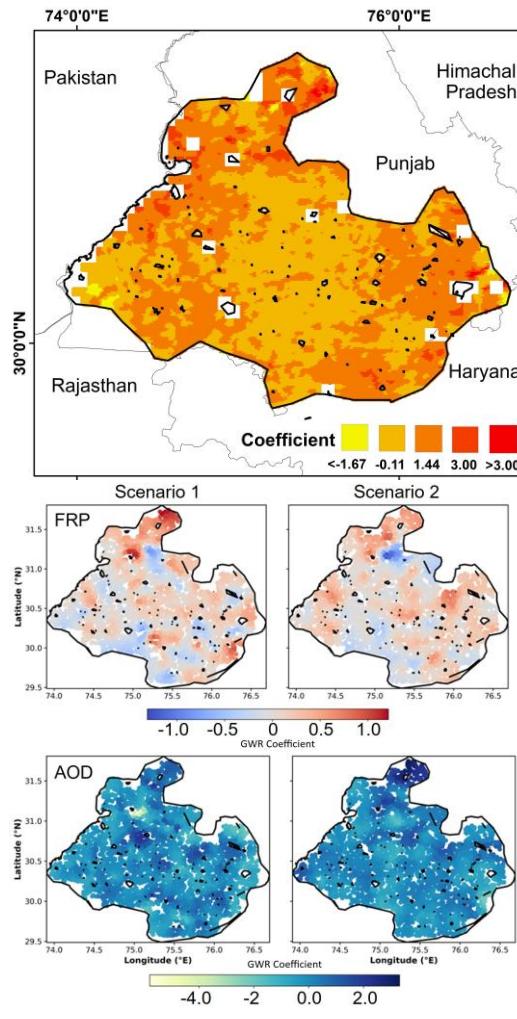
Formatted: Justified, Indent: First line: 1.27 cm

Formatted: Font: 9 pt

1234 Initially, Global Moran's I test was performed to verify spatial autocorrelation in LST
1235 across the intensive fire zone cumulatively for five years. Results, as in Table S6S7, indicate
1236 Moran's I value (0.224) for LST has a high positive Z score and remain spatially significant (p-
1237 value: 0.000). This refers very less possibility (<1%) of the clustered LST pattern could be due
1238 to random chance. Therefore, geographically weighted regression (GWR) was performed to
1239 assess spatial heterogeneity in FRP driven variations on LST across year specific intensive fire
1240 zone over northwestern India. GWR was however, simulated only for the main predictor FRP
1241 against dependent LST for scenario 2 based on prior outcome from RF regression. Figure 9
1242 details the spatial outcome of GWR for the entire duration while model running criteria and
1243 year wise performance is included in Table S7S8. Results indicate spatial heterogeneity in
1244 coefficient estimates with overall positive values over the intensive fire zone. It was however,
1245 predictable as FRP over the intensive fire zone did vary with time and space which potentially
1246 influence LST at a diverse scale. Overall, GWR model clearly imply that higher FRP is primarily
1247 associated with increase in LST over the region which potentially have implications on regional
1248 climate and agriculture.

Formatted: Font: 9 pt

1249



1250

Fig. 9. Spatial distribution of FRP and AOD GWR coefficients across intensive fire zone.

1251

GWR model demonstrated strong explanatory power, with global R^2 values exceeding

1252

0.74, confirming that the selected predictors effectively captured spatial variability in LST. FRP

1253

consistently showed a positive and spatially varying association with LST across both

1254

scenarios, underscoring its dominant influence in fire-affected regions. Aerosol loading

1255

demonstrated weak but spatially heterogeneous effects, reflecting localized differences in

1256

aerosol–temperature interactions. Other predictors, including NDVI, RH, AT, PBLH, elevation,

1257

Formatted: Space Before: 6 pt

Formatted: Font: Not Bold

Formatted: Indent: First line: 1.27 cm

Formatted: Font: Not Bold

Formatted: Font: 9 pt

1258 and albedo (Fig. S7), exhibited local coefficients ranging from -0.76 to $+0.23$, indicating spatial
1259 variability but comparatively weaker contributions to LST modulation across the study area.

1260 **Conclusions**

1261 This analysis reveals that physical effect of crop residue-based fire can substantially
1262 affect the regional climate by modifying land surface temperature over an extensive
1263 geographical region in northwest India. However, the magnitude of surface temperature
1264 modification could vary with intensity of fire and associated modulation by regional
1265 meteorology. Results reported here were in line with the findings of Liu et al. (2019) when
1266 satellite-based observations on forest fire was held accountable for 0.15 K rise in surface
1267 temperature over burned area globally, and a net warming over Siberian Boreal Forest (Liu et
1268 al. (2018). There are other evidences too, as in Alkama and Cascatti (2016), Zhao et al. (2024)
1269 when incidences and intensities of forest fire were positively linked with temperature.
1270 However, biophysical effects of agricultural residue-based fire on land surface temperature
1271 are observationally scarce, making it difficult to constrain its environmental consequences
1272 over diverse landforms. In a recent work, Zhang et al. (2020) has found association of elevated
1273 land surface temperature over three different provinces in China due to crop residual burning.
1274 However, feedback of air temperature on fire incidences were not included for consideration.
1275 Our effort in understanding residue-based fire associated changes in surface temperature was
1276 therefore, novel considering the extensive and recurrent fire incidences over northern India
1277 that has been associated with deteriorating air quality in Delhi and its surroundings. The
1278 findings of this study are however, limited with inability to measure counter feedback of the
1279 agriculture system towards limiting changes in land surface temperature, uncertainty
1280 associated with estimating fire radiative power, and accounting aerosols counter feedback on
1281 local meteorology and vice-versa.

1282 The manuscript unfolds by identifying the geospatial variations in crop residue-based fires
1283 and their associated impacts on aerosol loading and land surface temperature across
1284 northwestern India. Based on year-wise, pixel-level fire intensity, the geographical region with
1285 intensive fire activity was initially delineated, and all satellite-derived and reanalysis datasets
1286 were subsequently processed exclusively over the selected zone. A robust and consistent
1287 spatial correlation between FRP, AOD, and LST was observed across multiple years, indicating
1288 potential fire-induced perturbations in LST. The Hurst exponent analysis reaffirmed the long-

Formatted: Font: 9 pt

1289 term persistence of fire intensity, surface temperature, and aerosol loading time series. A
1290 grid-based analysis over the intensive fire zone revealed a significant increase in both LST and
1291 AOD during the peak fire season. The manuscript unfolds with identifying geospatial
1292 variations in crop residue-based fire, associated aerosol loading and land surface temperature
1293 over northern part of India. Based on year wise pixel based fire intensity, geographical region
1294 encompassing intensive fire was earmarked and all satellite-based retrievals and reanalysis
1295 datasets were processed only over the selected zone. A robust spatial variation in FRP
1296 matched well with corresponding AOD and LST, providing first evidence on possible
1297 perturbations of fire on land surface temperature. Hurst exponent reaffirms long-term
1298 persistence of fire intensity, surface temperature and aerosol loading time series. Spatial
1299 correlation established a strong temporal association between predictor and dependent
1300 variables that too constrained with years. A grid-based analysis over the intensive fire zone
1301 concluded a robust increase in LST and AOD during peak fire season.

Formatted: Font color: Text 1

1302
1303 The article further employs the Random Forest (RF) model and Geographically
1304 weighted regression (GWR) to assess the potential influence of FRP and aerosol loading
1305 on LST, while accounting meteorological covariates, physical environment, vegetation
1306 characteristic and surface property as confounding factors for prevailing meteorological
1307 variables within the selected zone. Two contrasting scenarios were hypothesized to examine
1308 the FRP–LST–AOD nexus. Scenario 1 considered spatially aggregated FRP from fire initiation
1309 to subsidence, whereas Scenario 2 focused on days characterized by high-intensity fires
1310 exhibiting a strong positive correlation between FRP and LST. In both the scenarios, the
1311 Random Forest RF regression successfully captured and mapped FRP-induced modulation of
1312 LST, though with varying magnitudes and model performance. A distinct increase in FRP-
1313 induced LST modulation was observed during high-intensity fire events. Both boundary layer
1314 height and solar radiation and columnar aerosol loading also contributed partially, with
1315 aerosols' influence on LST increasing during periods of intense release of fire energy. The
1316 Global Moran's I test indicated significant spatial clustering of LST while GWR results further
1317 confirmed FRP and AOD-modulated LST variations across northwestern India, highlighting
1318 strong spatial heterogeneity in FRP–AOD–LST nexus.

Formatted: Font color: Text 1

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Font color: Text 1

Formatted: English (India)

Formatted: Font: 9 pt

1319 This analysis reveals that the biophysical effects of crop residue-based fires across
1320 northwestern India can substantially influence the regional radiative budget by altering LST.
1321 The magnitude of LST modulation, however, depends on fire intensity and feedbacks from
1322 regional meteorology. This study provides novel insights into residue-based fire induced
1323 surface temperature dynamics in a region where recurrent fires have been historically linked
1324 primarily with deteriorating air quality in Delhi and its surroundings. The observation-driven
1325 analysis offers a comprehensive understanding of LST responses to residue burning and helps
1326 reduce uncertainties in fire-induced modifications of the radiative budget. Nonetheless,
1327 uncertainties remain due to unaccounted agricultural feedbacks, limited temporal coverage,
1328 retrieval uncertainty in geospatial datasets, and the complexity in aerosol-meteorology
1329 interactions. The multifaced influence of fire aerosols and energy on regional climate through
1330 rapid atmospheric and land surface adjustments, remains complicated at the global level. Our
1331 findings underscore the need for Earth system model-based simulations to better quantify
1332 climate feedbacks from crop residue burning. Besides, assessing the underlying mechanisms
1333 of fire-energy-induced changes in evapotranspiration, the radiative effects of aerosols, fire-
1334 aerosol-meteorology feedbacks, and incorporating additional proxies such as boundary layer
1335 height and soil moisture could further reduce the uncertainty in estimating radiative impacts
1336 from residue burning.

Formatted: Font: Not Italic, Font color: Auto

1337 The article further introduces Random Forest model and Geographically Weighted
1338 Regression to ascertain the potential influence of FRP and aerosol loading on LST, taking into
1339 account the existing meteorological variables over the selected zone. Two contrasting
1340 scenarios were hypothesized to regress the FRP-LST-AOD nexus. Scenario one, considered
1341 spatially aggregate FRP from fire initiating days to subside while scenario two accounted for
1342 days with very high intensity fire with strong and positive correlation between FRP and LST.
1343 Interestingly, for both the cases RF regression was able to capture and map the FRP induced
1344 modulation in LST with varying intensities and model performance. A clear increment in FRP
1345 induced LST modulation was noted especially during high intensity fire events. Beside FRP,
1346 both solar radiation and columnar aerosol loading also noted to partially influence the LST
1347 variations although with different intensities. However, the influence of columnar aerosol
1348 loading on LST seems to enhance during days with intense energy release possibly linked to
1349 excessive emission of carbonaceous aerosols from biomass burning. As Global Moran's I test

Formatted: Font color: Auto, English (India)

1350 concludes significant clustering in LST over the intensive fire zone, the interrelationship
1351 between LST and FRP were further assessed using geographically weighted regression. GWR
1352 output put further evidences on FRP modulated LST variations over northwest India although
1353 it appears to vary strongly with respect to space. Our study therefore, provides a
1354 comprehensive insight into the distinctive and persistent LST responses to fire intensity,
1355 emphasizing the importance of recognizing the climate feedback from crop residue based fire
1356 dynamics.

1357

1358 Acknowledgments

1359 Authors acknowledges the fund received from [Climate Change Programme, Department of](#)
1360 [Science and Technology \(DST/CCP/CoE/80/2017-G\)](#) and Banaras Hindu University under
1361 Institute of Eminence grant (6031). Authors also acknowledge open source software like R
1362 (V4.4), Python (V3.7) and QGIS (V3.28) for extracting and plotting the dataset.

1363 Data Availability

1364 [All the data used in this analysis are available freely. VIIRS and MODIS data can be accessed](#)
1365 [via NASA Earthdata \(<https://earthdata.nasa.gov>\) \(last accessed: May 30, 2025\)](#), and AgERAS
1366 [reanalysis data is available from ECMWF Copernicus \(<https://cds.climate.copernicus.eu/>\) \(last](#)
1367 [accessed: May 30, 2025\). All the data used in this analysis are available freely. VIIRS and](#)
1368 [MODIS data can be accessed via NASA Earthdata \(<https://earthdata.nasa.gov>\), and ERA5](#)
1369 [reanalysis data is available from ECMWF Copernicus \(<https://cds.climate.copernicus.eu/>\).](#)
1370 [SMAP Soil moisture data is available at \[https://nsidc.org/data/spl1ctb_e\]\(https://nsidc.org/data/spl1ctb_e\). All dataset were last](#)
1371 [accessed on November 13, 2025. We thank NASA for providing the VIIRS and MODIS data,](#)
1372 [and the Copernicus Climate Change Service \(C3S\) for the ERA5 reanalysis data.](#)

Formatted: Font color: Text 1

1373 [We thank NASA for providing the VIIRS and MODIS data, and the Copernicus Climate Change](#)
1374 [Service \(C3S\) for the AgERAS reanalysis data.](#)

1375 Authors contributions

1376 AP: Data curation, formal analysis and interpretation; RS: Data curation, formal analysis; KA:
1377 Data curation, formal analysis; NC: Data curation, formal analysis; TB: conceptualization,
1378 methodology and interpretation, funding as well as writing and editing manuscript.

1379 **Competing interests.** Authors declare that they have no conflict of interest.

Formatted: Font: 9 pt

1380 **Supporting Information.** The supporting tables (87) and figures (675) are included in
1381 supplementary file.

1382 **Bibliography References**

1383 [Aditi, K., Pandey, A., and Banerjee, T.: Forest fire emission estimates over South Asia using Suomi-NPP](#) Formatted: Space Before: 6 pt, After: 6 pt, Line
1384 [VIIRS-based thermal anomalies and emission inventory, Environ. Pollut., 366, 125441,](#) spacing: single
1385 [https://doi.org/10.1016/j.envpol.2025.125441, 2025.](https://doi.org/10.1016/j.envpol.2025.125441)

1386 [Aditi, K., Singh, A., and Banerjee, T.: Retrieval uncertainty and consistency of Suomi-NPP VIIRS Deep](#)
1387 [Blue and Dark Target aerosol products under diverse aerosol loading scenarios over South Asia,](#)
1388 [Environ. Pollut., 331, 121913, https://doi.org/10.1016/j.envpol.2023.121913, 2023.](#)

1389 [Alkama, R., and Cescatti, A.: Biophysical climate impacts of recent changes in global forest cover,](#)
1390 [Science, 351, 600–604, https://doi.org/10.1126/science.aac8083, 2016.](#)

1391 [Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz,](#)
1392 [G. J., Hanton, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,](#)
1393 [Yue, C., and Randerson, J. T.: A human-driven decline in global burned area, Science, 356, 1356–1362,](#)
1394 [https://doi.org/10.1126/science.aal4108, 2017.](https://doi.org/10.1126/science.aal4108)

1395 [Balwinder-Singh, McDonald, A. J., Srivastava, A. K., Jain, M., and Lobell, D. B.: Trade-offs between](#)
1396 [groundwater conservation and air pollution from agricultural fires in northwest India, Nat. Sustain., 2,](#)
1397 [580–583, https://doi.org/10.1038/s41893-019-0304-4, 2019.](https://doi.org/10.1038/s41893-019-0304-4)

1398 [Banerjee, T., Anchule, A., Sorek-Hamer, M., and Latif, M. T.: Vertical stratification of aerosols over](#)
1399 [South Asian cities, Environ. Pollut., 309, 119776, https://doi.org/10.1016/j.envpol.2022.119776, 2022.](#)

1400 [Banerjee, T., Shitole, A. S., Mhawish, A., Anand, A., Ranjan, R., Khan, M. F., Srithawirat, T., Latif, M. T.,](#)
1401 [and Mall, R. K.: Aerosol climatology over South and Southeast Asia: Aerosol types, vertical profile, and](#)
1402 [source fields, J. Geophys. Res.-Atmos., 126, e2020JD033554, https://doi.org/10.1029/2020JD033554,](#)
1403 [2021.](#)

1404 [Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., et al.: Bounding](#)
1405 [the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res.-Atmos., 118,](#)
1406 [5380–5552, https://doi.org/10.1002/grl.50171, 2013.](https://doi.org/10.1002/grl.50171)

1407 [Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., d'Antonio, C.](#)
1408 [M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A.,](#)
1409 [Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G.](#)
1410 [R., and Pyne, S. J.: Fire in the Earth system, Science, 324, 481–484,](#)
1411 [https://doi.org/10.1126/science.1163886, 2009.](https://doi.org/10.1126/science.1163886)

1412 [Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324,](#)
1413 [2001.](#)

1414 [Brunsdon, C., Fotheringham, A. S., and Charlton, M. E.: Geographically weighted regression: A method](#)
1415 [for exploring spatial nonstationarity, Geogr. Anal., 28, 281–298, https://doi.org/10.1111/j.1538-](#)
1416 [4632.1996.tb00936.x, 1996.](4632.1996.tb00936.x)

1417 [Brunsdon, C., Fotheringham, S., and Charlton, M.: Geographically weighted regression, J. Roy. Stat.](#)
1418 [Soc. Ser. D \(The Statistician\), 47, 431–443, https://doi.org/10.1111/1467-9884.00145, 1998.](#)

1419 [Chen, J., Shao, Z., Huang, X., Zhuang, Q., Dang, C., Cai, B., Zheng, X., and Ding, Q.: Assessing the impact](#)
1420 [of drought-land cover change on global vegetation greenness and productivity, Sci. Total Environ.,](#)
1421 [852, 158499, https://doi.org/10.1016/j.scitotenv.2022.158499, 2022.](852, 158499, https://doi.org/10.1016/j.scitotenv.2022.158499)

Formatted: Space Before: 6 pt, After: 6 pt, Line
spacing: single

Formatted: Font: 9 pt

1422 Chuvieco, E., Pettinari, M. L., Koutsias, N., Forkel, M., Hantson, S., and Turco, M.: Human and climate
1423 drivers of global biomass burning variability, *Sci. Total Environ.*, 779, 146361,
1424 <https://doi.org/10.1016/j.scitotenv.2021.146361>, 2021.

1425 Copernicus Climate Change Service: Agrometeorological indicators from 1979 to present derived from
1426 reanalysis, Copernicus Climate Change Service (C3S) Climate Data Store (CDS),
1427 <https://doi.org/10.24381/cds.6c68c9bb>, accessed: 25 February 2025, 2020.

1428 Daoud, J. I.: Multicollinearity and regression analysis, *J. Phys. Conf. Ser.*, 949, 012009,
1429 <https://doi.org/10.1088/1742-6596/949/1/012009>, 2017.

1430 Eck, T. F., Holben, B. N., Sinyuk, A., Pinker, R. T., Goloub, P., Chen, H., Chatenet, B., Li, Z., Singh, R. P.,
1431 Tripathi, S. N., and Reid, J. S.: Climatological aspects of the optical properties of fine/coarse mode
1432 aerosol mixtures, *J. Geophys. Res. Atmos.*, 115, D19, <https://doi.org/10.1029/2010JD014002>, 2010.

1433 Fotheringham, A. S., Brunsdon, C., and Charlton, M.: Geographically weighted regression, in: *The SAGE*
1434 *Handbook of Spatial Analysis*, SAGE Publications, London, 243–254, 2009.

1435 Freychet, N., Tett, S. F. B., Bollasina, M., Wang, K. C., & Hegerl, G.: The local aerosol emission effect on
1436 surface shortwave radiation and temperatures. *Journal of Advances in Modeling Earth Systems*, 11,
1437 806–817. <https://doi.org/10.1029/2018MS001530>, 2019.

1438 Frazier, P. I.: A tutorial on Bayesian optimization. *arXiv preprint arXiv:1807.02811*, 2018.

1439 Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J.: An enhanced contextual fire detection
1440 algorithm for MODIS, *Remote Sens. Environ.*, 87, 273–282, [https://doi.org/10.1016/S0034-4257\(03\)00184-6](https://doi.org/10.1016/S0034-4257(03)00184-6), 2003.

1441 Gomez, J. L., Allen, R. J., and Li, K. F.: California wildfire smoke contributes to a positive atmospheric
1442 temperature anomaly over the western United States, *Atmos. Chem. Phys.*, 24, 6937–6963,
1443 <https://doi.org/10.5194/acp-24-6937-2024>, 2024.

1444 Graham, M. H.: Confronting multicollinearity in ecological multiple regression, *Ecology*, 84, 2809–
1445 2815, <https://doi.org/10.1890/02-3114>, 2003.

1446 Granero, M. S., Segovia, J. T., and Pérez, J. G.: Some comments on Hurst exponent and the long
1447 memory processes on capital markets, *Physica A*, 387, 5543–5551,
1448 <https://doi.org/10.1016/j.physa.2008.05.064>, 2008.

1449 Graham, M. H., Haynes, R. J., and Meyer, J. H.: Soil organic matter content and quality: Effects of
1450 fertilizer applications, burning, and trash retention on a long-term sugarcane experiment in South
1451 Africa, *Soil Biol. Biochem.*, 34, 93–102, [https://doi.org/10.1016/S0038-0717\(01\)00162-2](https://doi.org/10.1016/S0038-0717(01)00162-2), 2002.

1452 Hurst, H. E.: Long term storage capacity of reservoirs, *Trans. Am. Soc. Civ. Eng.*, 6, 770–799, 1951.

1453 Hsu, N. C., Herman, J. R., and Tsay, S. C.: Radiative impacts from biomass burning in the presence of
1454 clouds during boreal spring in Southeast Asia, *Geophys. Res. Lett.*, 30, 1234,
1455 <https://doi.org/10.1029/2002GL016485>, 2003.

1456 Ichoku, C., Giglio, L., Wooster, M. J., and Remer, L. A.: Global characterization of biomass-burning
1457 patterns using satellite measurements of fire radiative energy, *Remote Sens. Environ.*, 112, 2950–
1458 2962, <https://doi.org/10.1016/j.rse.2008.02.009>, 2008.

1459 Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric
1460 aerosols, *Nature*, 409, 695–697, <https://doi.org/10.1038/35055518>, 2001.

1461 Jethva, H., Torres, O., Field, R. D., Lyapustin, A., Gautam, R., and Kayetha, V.: Connecting crop
1462 productivity, residue fires, and air quality over northern India, *Sci. Rep.*, 9, 16594,
1463 <https://doi.org/10.1038/s41598-019-52799-x>, 2019.

Formatted: Default Paragraph Font, Font: 12 pt, English (India)

Formatted: Space Before: 6 pt, After: 6 pt, Line spacing: single

Formatted: Font: 9 pt

1465 Kant, S., Sarangi, C., and Wilcox, E. M.: *Aerosol processes perturb cloud trends over Bay of Bengal: Observational evidence*, *npj Clim. Atmos. Sci.*, 6, 132, <https://doi.org/10.1038/s41612-023-00442-5>, 2023.

1468 Korontzi, S., McCarty, J., Loboda, T., Kumar, S., and Justice, C. O.: *Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data*, *Glob. Biogeochem. Cycles*, 20, GB2021, <https://doi.org/10.1029/2005GB002529>, 2006.

1471 Lasko, K., and Vadrevu, K.: *Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam*, *Environ. Pollut.*, 236, 795–806, <https://doi.org/10.1016/j.envpol.2018.01.114>, 2018.

1474 Li, F., Zhang, X., Kondragunta, S., and Csiszar, I.: *Comparison of fire radiative power estimates from VIIRS and MODIS observations*, *J. Geophys. Res.-Atmos.*, 123, 4545–4563, <https://doi.org/10.1029/2017JD027823>, 2018.

1477 Li, Z., Lau, W. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., and Fan, J.: *Aerosol and monsoon climate interactions over Asia*, *Rev. Geophys.*, 54, 866–929, <https://doi.org/10.1002/2015RG000500>, 2016.

1480 Li, Z. L., Wu, H., Duan, S. B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., and Sun, Y.: *Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications*, *Rev. Geophys.*, 61, e2022RG000780, <https://doi.org/10.1029/2022RG000780>, 2023.

1483 Liu, Z., Ballantyne, A. P., and Cooper, L. A.: *Increases in land surface temperature in response to fire in Siberian boreal forests and their attribution to biophysical processes*, *Geophys. Res. Lett.*, 45, 6485–6494, <https://doi.org/10.1029/2018GL078283>, 2018.

1486 Liu, Z., Ballantyne, A. P., and Cooper, L. A.: *Biophysical feedback of global forest fires on surface temperature*, *Nat. Commun.*, 10, 214, <https://doi.org/10.1038/s41467-018-08237-z>, 2019.

1488 Logan, T. M., Zaitchik, B., Guikema, S., and Nisbet, A.: *Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature*, *Remote Sens. Environ.*, 247, 111861, <https://doi.org/10.1016/j.rse.2020.111861>, 2020.

1491 Lan, R., Eastham, S. D., Liu, T., Norford, L. K., and Barrett, S. R. H.: *Air quality impacts of crop residue burning in India and mitigation alternatives*, *Nat. Commun.*, 13, 6537, <https://doi.org/10.1038/s41467-022-34284-6>, 2022.

1494 Markonis, Y., and Koutsoyiannis, D.: *Scale-dependence of persistence in precipitation records*, *Nat. Clim. Change*, 6, 399–401, <https://doi.org/10.1038/nclimate2894>, 2016.

1496 Mhawish, A., Sarangi, C., Babu, P., Kumar, M., Bilal, M., and Qiu, Z.: *Observational evidence of elevated smoke layers during crop residue burning season over Delhi: Potential implications on associated heterogeneous PM_{2.5} enhancements*, *Remote Sens. Environ.*, 280, 113167, <https://doi.org/10.1016/j.rse.2022.113167>, 2022.

1500 NAAS (National Academy of Agricultural Sciences): *Innovative viable solution to rice residue burning in rice–wheat cropping system through concurrent use of Super Straw Management System-fitted combines and Turbo Happy Seeder*, National Academy of Agricultural Sciences, New Delhi, India, 2017.

1503 Nguyen, H. M., and Wooster, M. J.: *Advances in the estimation of high spatio-temporal resolution pan-African top-down biomass burning emissions made using geostationary fire radiative power (FRP) and MAIAC aerosol optical depth (AOD) data*, *Remote Sens. Environ.*, 248, 111971, <https://doi.org/10.1016/j.rse.2020.111971>, 2020.

1507 Prasad, A. K., Singh, R. P., and Kafatos, M.: *Influence of coal-based thermal power plants on aerosol optical properties in the Indo-Gangetic Basin*, *Geophys. Res. Lett.*, 33, L05805, <https://doi.org/10.1029/2005GL023801>, 2006.

Formatted: Font: 9 pt

1510 Puissant, A., Rougier, S., & Stumpf, A.: Object-oriented mapping of urban trees using Random
1511 Forest classifiers. *Int. J. Appl. Earth Obs. Geoinf.*, 26, 235–245.
1512 <https://doi.org/10.1016/j.jag.2013.07.002>, 2014.

1513 Ramanathan, V., and Carmichael, G.: Global and regional climate changes due to black carbon, *Nat. Geosci.*, 1, 221–227, <https://doi.org/10.1038/ngeo156>, 2008.

1514 Ramana, M. V., Ramanathan, V., Podgorny, I. A., Pradhan, B. B., and Shrestha, B.: The direct
1516 observations of large aerosol radiative forcing due to black carbon in the Himalayan region, *Geophys.*
1517 *Res. Lett.*, 31, L05111, <https://doi.org/10.1029/2003GL018824>, 2004.

1518 Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R. R., Ichoku, C., Levy,
1519 R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm,
1520 products, and validation, *J. Atmos. Sci.*, 62, 947–973, <https://doi.org/10.1175/JAS3385.1>, 2005.

1521 Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T. and Yu, S.: Aerosol-driven droplet concentrations
1522 dominate coverage and water of oceanic low-level clouds. *Science*, 363(6427), p.eaav0566.
1523 <https://doi.org/10.1126/science.aav0566>, 2019.

1524 Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M. J.: Validation and uncertainty estimates for
1525 MODIS Collection 6 “Deep Blue” aerosol data, *J. Geophys. Res.-Atmos.*, 118, 7864–7872,
1526 <https://doi.org/10.1002/jgrd.50600>, 2013.

1527 Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The new VIIRS 375 m active fire detection data
1528 product: Algorithm description and initial assessment, *Remote Sens. Environ.*, 143, 85–96,
1529 <https://doi.org/10.1016/j.rse.2013.12.008>, 2014.

1530 Seinfeld, J. H., and Pandis, S. N.: *Atmospheric Chemistry and Physics: From Air Pollution to Climate
1531 Change*, John Wiley & Sons, Hoboken, New Jersey, 2016.

1532 Sharma, N., Kaskaoutis, D. G., Singh, R. P., and Singh, S.: Impact of two intense dust storms and
1533 associated mixing with biomass burning aerosols over the Indo-Gangetic Basin, *Atmos. Environ.*, 138,
1534 167–180, <https://doi.org/10.1016/j.atmosenv.2016.05.002>, 2016.

1535 Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N.: Taking the human out of the loop:
1536 A review of Bayesian optimization. *Proceedings of the IEEE*, 104(1), 148–175, 2015.

1537 Shikwambana, L., and Mhangara, P.: Characterization of biomass burning aerosol over southern Africa
1538 using multiple satellite data, *Int. J. Remote Sens.*, 39, 4764–4780,
1539 <https://doi.org/10.1080/01431161.2018.1448481>, 2018.

1540 Shikwambana, L., and Mhangara, P.: Analysis of the impact of biomass burning on tropospheric NO₂
1541 over southern Africa during 2018, *Environ. Pollut.*, 261, 114204,
1542 <https://doi.org/10.1016/j.envpol.2020.114204>, 2020.

1543 Shikwambana, L., and Kganyago, M.: The contribution of biomass burning to carbon monoxide
1544 concentrations in southern Africa: A case study of 2019, *Atmosphere*, 12, 878,
1545 <https://doi.org/10.3390/atmos12070878>, 2021.

1546 Singh, R. P., and Kaskaoutis, D. G.: Crop residue burning: A threat to South Asian air quality, *Eos Trans.
1547 AGU*, 95, 333–334, <https://doi.org/10.1002/2014EO370001>, 2014.

1548 Song, C. H., and Carmichael, G. R.: A three-dimensional modeling investigation of the evolution
1549 processes of dust and carbonaceous aerosols over East Asia, *J. Geophys. Res.-Atmos.*, 106, 18131–
1550 18154, <https://doi.org/10.1029/2000JD900511>, 2001.

1551 Snoek, J., Larochelle, H., and Adams, R.P.: Practical bayesian optimization of machine learning
1552 algorithms. *Advances in neural information processing systems*, 25, 2012.

Formatted: Space Before: 6 pt, After: 6 pt, Line
spacing: single

Formatted: Space Before: 6 pt, After: 6 pt, Line
spacing: single

Formatted: Space Before: 6 pt, After: 6 pt, Line
spacing: single

Formatted: Font: 9 pt

1553 Srivastava, A. K., Singh, S., Pant, P., Dumka, U. C., and Holben, B. N.: Black carbon aerosols over Manora
1554 Peak in the Indian Himalayan foothills: Implications for climate forcing, *Environ. Res. Lett.*, 7, 014002,
1555 <https://doi.org/10.1088/1748-9326/7/1/014002>, 2012.

1556 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT
1557 atmospheric transport and dispersion modeling system, *Bull. Am. Meteorol. Soc.*, 96, 2059–2077,
1558 <https://doi.org/10.1175/BAMS-D-14-00110.1>, 2015.

1559 Tiwari, S., Singh, A. K., Singh, S., and Pervez, S.: Aerosol climatology over Varanasi using MODIS and
1560 MISR satellite data, *Air Qual. Atmos. Health*, 8, 301–309, <https://doi.org/10.1007/s11869-014-0285-8>, 2015.

1561 Tian, C., Yue, X., Zhu, J., Liao, H., Yang, Y., Lei, Y., Zhou, X., Zhou, H., Ma, Y., and Cao, Y.: Fire–climate
1562 interactions through the aerosol radiative effect in a global chemistry–climate–vegetation model,
1563 *Atmos. Chem. Phys.*, 22, 12353–12366, <https://doi.org/10.5194/acp-22-12353-2022>, 2022.

1564

1565

1566 Vadrevu, K. P., Ellicott, E. A., Giglio, L., Badarinath, K. V. S., Vermote, E., Justice, C., and Lau, W. K. M.:
1567 Vegetation fires in the Himalayan region – Aerosol load, black carbon emissions and climate forcing,
1568 *Remote Sens. Environ.*, 123, 324–334, <https://doi.org/10.1016/j.rse.2012.03.021>, 2012.

1569 van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van
1570 Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions
1571 estimates during 1997–2016, *Earth Syst. Sci. Data*, 9, 697–720, <https://doi.org/10.5194/essd-9-697-2017>, 2017.

1572

1573 Vadrevu, K. P., Lasko, K., Giglio, L., and Justice, C.: Analysis of Southeast Asian pollution episode using
1574 satellite remote sensing data, *Atmos. Environ.*, 125, 512–522,
1575 <https://doi.org/10.1016/j.atmosenv.2015.11.032>, 2016.

1576 Vinjamuri, K.S., Mhawish, A., Banerjee, T., Sorek-Hamer, M., Broday, D.M., Mall, R.K. and Latif, M.T.:
1577 Vertical distribution of smoke aerosols over upper Indo-Gangetic Plain. *Environmental pollution*, 257,
1578 [p.113377](https://doi.org/10.113377), 2020.

1579 Wang, J., Christopher, S. A., Nair, U. S., Reid, J. S., Prins, E. M., Szykman, J., and Hand, J. L.: Mesoscale
1580 modeling of Central American smoke transport to the United States: 1. “Top-down” assessment of
1581 emission strength and diurnal variation impacts, *J. Geophys. Res.-Atmos.*, 111, D05S17,
1582 <https://doi.org/10.1029/2005JD006416>, 2006.

1583 Xu, L., Zhu, Q., Riley, W. J., Chen, Y., Wang, H., Ma, P.-L., and Randerson, J. T.: The Influence of Fire-
1584 Aerosols on Surface Climate and Gross Primary Production in the Energy Exascale Earth System Model
1585 (E3SM), *J. Climate*, 34, 7219–7238, <https://doi.org/10.1175/JCLI-D-21-0193.1>, 2021.

1586 Yang, J., and Zhao, Y.: Impacts of forest fires on surface temperature and precipitation in boreal
1587 regions: An observational analysis, *Environ. Res. Lett.*, 15, 124046, <https://doi.org/10.1088/1748-9326/abc123>, 2020.

1588

1589 Zhao, T., Li, J., and Zhang, W.: Long-term changes in land surface temperature associated with
1590 agricultural burning in eastern China, *Remote Sens.*, 13, 1215, <https://doi.org/10.3390/rs13061215>,
1591 2021.

1592 Aditi K. Pandey A, and Banerjee T (2025): Forest fire emission estimates over South Asia using Suomi-
1593 NPP-VIIRS based thermal anomalies and emission inventory, *Environ. Pollut.*, 366, 125441,
1594 <https://doi.org/10.1016/j.envpol.2025.125441>.

1595 Aditi K. Singh A, and Banerjee T (2023): Retrieval uncertainty and consistency of Suomi NPP VIIRS Deep
1596 Blue and Dark Target aerosol products under diverse aerosol loading scenarios over South Asia,
1597 *Environ. Pollut.*, 321, 121912, <https://doi.org/10.1016/j.envpol.2022.121912>.

1598 Alkama R and Cescatti A (2016): Biophysical climate impacts of recent changes in global forest cover,
1599 *Science*, **351**, 600–604, <https://doi.org/10.1126/science.aac8083>.

1600 Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, DeFries RS, Collatz GJ, Hantson
1601 S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton JR, Yue C, and Randerson JT
1602 (2017): A human driven decline in global burned area, *Science*, **356**, 1256–1262,
1603 <https://doi.org/10.1126/science.aal4108>.

1604 Balwinder Singh, McDonald AJ, Srivastava AK, Jain M, and Lobell DB (2019): Trade-offs between
1605 groundwater conservation and air pollution from agricultural fires in northwest India, *Nat. Sustain.*, **2**,
1606 580–583, <https://doi.org/10.1038/s41893-019-0304-4>.

1607 Banerjee T, Anchule A, Sorek-Hamer M, and Latif MT (2022): Vertical stratification of aerosols over
1608 South Asian cities, *Environ. Pollut.*, **309**, 119776, <https://doi.org/10.1016/j.envpol.2022.119776>.

1609 Banerjee T, Shitole AS, Mhawish A, Anand A, Ranjan P, Khan MF, Srithawirat T, Latif MT, and Mall PK
1610 (2021): Aerosol climatology over South and Southeast Asia: Aerosol types, vertical profile, and source
1611 fields, *J. Geophys. Res. Atmos.*, **126**, e2020JD033554, <https://doi.org/10.1029/2020JD033554>.

1612 Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, et al. (2013): Bounding the role
1613 of black carbon in the climate system: A scientific assessment, *J. Geophys. Res. Atmos.*, **118**, 5380–
1614 5552, <https://doi.org/10.1002/2012JD01711>.

1615 Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, d'Antonio CM, DeFries RS,
1616 Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice
1617 IC, Roos CL, Scott AC, Swetnam TW, van der Werf GR, and Pyne SJ (2009): Fire in the Earth system,
1618 *Science*, **324**, 481–484, <https://doi.org/10.1126/science.1163886>.

1619 Breiman L (2001): Random forests, *Mach. Learn.*, **45**, 5–32,
1620 <https://doi.org/10.1023/A:1010933404324>.

1621 Brunsdon C, Fotheringham AS, and Charlton ME (1996): Geographically weighted regression: A
1622 method for exploring spatial nonstationarity, *Geogr. Anal.*, **28**, 281–298,
1623 <https://doi.org/10.1111/j.1538-4632.1996.tb00936.x>.

1624 Brunsdon C, Fotheringham S, and Charlton M (1998): Geographically weighted regression, *J. Roy. Stat.
1625 Soc. Ser. D (The Statistician)*, **47**, 431–443, <https://doi.org/10.1111/1467-9884.00145>.

1626 Chen J, Shao Z, Huang X, Zhuang Q, Dang C, Cai B, Zheng X, and Ding Q (2022): Assessing the impact of
1627 drought land cover change on global vegetation greenness and productivity, *Sci. Total Environ.*, **852**,
1628 158499, <https://doi.org/10.1016/j.scitotenv.2022.158499>.

1629 Chuvieco E, Pettinari ML, Koutsias N, Forkel M, Hantson S, and Turco M (2021): Human and climate
1630 drivers of global biomass burning variability, *Sci. Total Environ.*, **779**, 146361,
1631 <https://doi.org/10.1016/j.scitotenv.2021.146361>.

1632 Copernicus Climate Change Service (2020): Agrometeorological indicators from 1979 to present
1633 derived from reanalysis, *Copernicus Climate Change Service (C3S) Climate Data Store (CDS)*,
1634 <https://doi.org/10.24381/cds.6c68c9bb> (accessed: 25 February 2025).

1635 Daoud JI (2017): Multicollinearity and regression analysis, *J. Phys. Conf. Ser.*, **949**, 012009,
1636 <https://doi.org/10.1088/1742-6596/949/1/012009>.

1637 Fotheringham AS, Brunsdon C, and Charlton M (2009): Geographically weighted regression, in: *The
1638 SAGE Handbook of Spatial Analysis*, SAGE Publications, London, 243–254.

1639 Giglio L, Descloutes J, Justice CO, and Kaufman YJ (2003): An enhanced contextual fire detection
1640 algorithm for MODIS, *Remote Sens. Environ.*, **87**, 273–282, [https://doi.org/10.1016/S0034-4257\(03\)00184-6](https://doi.org/10.1016/S0034-
1641 4257(03)00184-6).

Formatted: Font: 9 pt

1642 Gomez JL, Allen RJ, and Li KF (2024): California wildfire smoke contributes to a positive atmospheric
1643 temperature anomaly over the western United States, *Atmos. Chem. Phys.*, **24**, 6937–6963,
1644 <https://doi.org/10.5194/acp-24-6937-2024>.

1645 Graham MH (2003): Confronting multicollinearity in ecological multiple regression, *Ecology*, **84**, 2809–
1646 2815, <https://doi.org/10.1890/02-3114>.

1647 Graham MH, Haynes RJ, and Meyer JH (2002): Soil organic matter content and quality: Effects of
1648 fertilizer applications, burning, and trash retention on a long term sugarcane experiment in South
1649 Africa, *Soil Biol. Biochem.*, **34**, 93–102, [https://doi.org/10.1016/S0038-0717\(01\)00162-2](https://doi.org/10.1016/S0038-0717(01)00162-2).

1650 Hurst HE (1951): Long term storage capacity of reservoirs, *Trans. Am. Soc. Civ. Eng.*, **6**, 770–799.

1651 Hsu NC, Herman JR, and Tsay SC (2003): Radiative impacts from biomass burning in the presence of
1652 clouds during boreal spring in Southeast Asia, *Geophys. Res. Lett.*, **30**, 1234,
1653 <https://doi.org/10.1029/2002GL016485>.

1654 Ichoku C, Giglio L, Wooster MJ, and Remer LA (2008): Global characterization of biomass burning
1655 patterns using satellite measurements of fire radiative energy, *Remote Sens. Environ.*, **112**, 2950–
1656 2962, <https://doi.org/10.1016/j.rse.2008.02.009>.

1657 Jethva H, Torres O, Field RD, Lyapustin A, Gautam R, and Kayetha V (2019): Connecting crop
1658 productivity, residue fires, and air quality over northern India, *Sci. Rep.*, **9**, 16594,
1659 <https://doi.org/10.1038/s41598-019-52799-x>.

1660 Kant S, Sarangi C, and Wilcox EM (2023): Aerosol processes perturb cloud trends over Bay of Bengal:
1661 Observational evidence, *npj Clim. Atmos. Sci.*, **6**, 132, <https://doi.org/10.1038/s41612-023-00442-5>.

1662 Korontzi S, McCarty J, Loboda T, Kumar S, and Justice CO (2006): Global distribution of agricultural
1663 fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data,
1664 *Glob. Biogeochem. Cycles*, **20**, GB2021, <https://doi.org/10.1029/2005GB002529>.

1665 Lasko K and Vadrevu K (2018): Improved rice residue burning emissions estimates: Accounting for
1666 practice-specific emission factors in air pollution assessments of Vietnam, *Environ. Pollut.*, **236**, 795–
1667 806, <https://doi.org/10.1016/j.envpol.2018.01.114>.

1668 Li F, Zhang X, Kondragunta S, and Csizsar I (2018): Comparison of fire radiative power estimates from
1669 VIIRS and MODIS observations, *J. Geophys. Res. Atmos.*, **123**, 4545–4563,
1670 <https://doi.org/10.1029/2017JD027823>.

1671 Li ZL, Wu H, Duan SB, Zhae W, Ren H, Liu X, Leng P, Tang R, Ye X, Zhu J, and Sun Y (2023): Satellite
1672 remote sensing of global land surface temperature: Definition, methods, products, and applications,
1673 *Rev. Geophys.*, **61**, e2022RG000780, <https://doi.org/10.1029/2022RG000780>.

1674 Liu Z, Ballantyne AP, and Cooper LA (2018): Increases in land surface temperature in response to fire
1675 in Siberian boreal forests and their attribution to biophysical processes, *Geophys. Res. Lett.*, **45**, 6485–
1676 6494, <https://doi.org/10.1029/2018GL078283>.

1677 Liu Z, Ballantyne AP, and Cooper LA (2019): Biophysical feedback of global forest fires on surface
1678 temperature, *Nat. Commun.*, **10**, 214, <https://doi.org/10.1038/s41467-018-08237-z>.

1679 Logan TM, Zaitchik B, Guikema S, and Nisbet A (2020): Night and day: The influence and relative
1680 importance of urban characteristics on remotely sensed land surface temperature, *Remote Sens.*
1681 *Environ.*, **247**, 111861, <https://doi.org/10.1016/j.rse.2020.111861>.

1682 Lan R, Eastham SD, Liu T, Norford LK, and Barrett SRH (2022): Air quality impacts of crop residue
1683 burning in India and mitigation alternatives, *Nat. Commun.*, **13**, 6537,
1684 <https://doi.org/10.1038/s41467-022-34284-6>.

Formatted: Font: 9 pt

1685 Markonis Y and Koutsoyiannis D (2016): Scale-dependence of persistence in precipitation records, *Nat.*
1686 *Clim. Change*, **6**, 399–401, <https://doi.org/10.1038/nclimate2894>.

1687 Mhawish A, Sarangi C, Babu P, Kumar M, Bilal M, and Qiu Z (2022): Observational evidence of elevated
1688 smoke layers during crop residue burning season over Delhi: Potential implications on associated
1689 heterogeneous PM_{2.5} enhancements, *Remote Sens. Environ.*, **280**, 113167,
1690 <https://doi.org/10.1016/j.rse.2022.113167>.

1691 NAAAS (National Academy of Agricultural Sciences) (2017): *Innovative viable solution to rice residue*
1692 *burning in rice–wheat cropping system through concurrent use of Super Straw Management System-*
1693 *fitted combines and Turbo Happy Seeder*, National Academy of Agricultural Sciences, New Delhi, India.

1694 Nguyen HM and Wooster MJ (2020): Advances in the estimation of high spatio-temporal resolution
1695 pan-African top-down biomass burning emissions made using geostationary fire radiative power (FRP)
1696 and MAIAC aerosol optical depth (AOD) data, *Remote Sens. Environ.*, **248**, 111971,
1697 <https://doi.org/10.1016/j.rse.2020.111971>.

1698 Prasad VK, Gupta PK, Sharma C, Sarkar AK, Kant Y, Badarinath KVS, Rajagopal T, and Mitra AP (2000):
1699 NO_x emissions from biomass burning of shifting cultivation areas from tropical deciduous forests of
1700 India – estimates from ground based measurements, *Atmos. Environ.*, **34**, 3271–3280,
1701 [https://doi.org/10.1016/S1352-2310\(99\)00471-0](https://doi.org/10.1016/S1352-2310(99)00471-0).

1702 Peng J, Liu Z, Liu Y, Wu J, and Han Y (2012): Trend analysis of vegetation dynamics in Qinghai-Tibet
1703 Plateau using Hurst exponent, *Ecol. Indic.*, **14**, 28–39, <https://doi.org/10.1016/j.ecolind.2011.08.010>.

1704 Puissant A, Rougier S, and Stumpf A (2014): Object-oriented mapping of urban trees using Random
1705 Forest classifiers, *Int. J. Appl. Earth Obs. Geoinf.*, **26**, 235–245,
1706 <https://doi.org/10.1016/j.jag.2013.07.002>.

1707 Granero MS, Segovia JT, and Pérez JG (2008): Some comments on Hurst exponent and the long
1708 memory processes on capital markets, *Physica A*, **387**, 5543–5551,
1709 <https://doi.org/10.1016/j.physa.2008.05.064>.

1710 Sarkar S, Singh RP, and Chauhan A (2018): Crop residue burning in northern India: Increasing threat to
1711 Greater India, *J. Geophys. Res. Atmos.*, **123**, 6920–6931, <https://doi.org/10.1029/2018JD028428>.

1712 Sayer AM, Hsu NC, Lee J, Kim WV, and Dutcher ST (2019): Validation, stability, and consistency of
1713 MODIS Collection 6.1 and VIIRS Version 1 Deep Blue aerosol data over land, *J. Geophys. Res. Atmos.*,
1714 **124**, 4658–4688, <https://doi.org/10.1029/2018JD029598>.

1715 Schroeder W, Oliva P, Giglio L, and Csiszar IA (2014): The new VIIRS 375 m active fire detection data
1716 product: Algorithm description and initial assessment, *Remote Sens. Environ.*, **143**, 85–96,
1717 <https://doi.org/10.1016/j.rse.2013.12.008>.

1718 Shyamsundar P, Springer NP, Tallis H, Polasky S, Jat ML, Sidhu HS, Krishnapriya PP, Skiba N, Ginn W,
1719 Ahuja V, and Cummins J (2019): Fields on fire: Alternatives to crop residue burning in India, *Science*,
1720 **365**, 536–538, <https://doi.org/10.1126/science.aaw4085>.

1721 Singh N, Banerjee T, Raju MP, Deboudt K, Sorek Hamer M, Singh RS, and Mall RK (2018): Aerosol
1722 chemistry, transport, and climatic implications during extreme biomass burning emissions over the
1723 Indo-Gangetic Plain, *Atmos. Chem. Phys.*, **18**, 14197–14215, <https://doi.org/10.5194/acp-18-14197-2018>.

1725 Singh P, Roy A, Bhasin D, Kapoor M, Ravi S, and Dey S (2021): Crop fires and cardiovascular health – a
1726 study from North India, *SSM Popul. Health*, **14**, 100757,
1727 <https://doi.org/10.1016/j.ssmph.2021.100757>.

Formatted: Font: 9 pt

1728 Singh T, Biswal A, Mor S, Ravindra K, Singh V, and Mor S (2020): A high-resolution emission inventory
1729 of air pollutants from primary crop residue burning over Northern India based on VIIRS thermal
1730 anomalies, *Environ. Pollut.*, **266**, 115132, <https://doi.org/10.1016/j.envpol.2020.115132>.

1731 Singh T, Ravindra K, Beig G, and Mor S (2021): Influence of agricultural activities on atmospheric
1732 pollution during post monsoon harvesting seasons at a rural location of Indo-Gangetic Plain, *Sci. Total
1733 Environ.*, **796**, 148903, <https://doi.org/10.1016/j.scitotenv.2021.148903>.

1734 Singh T, Ravindra K, Sreekanth V, Gupta P, Sembhi H, Tripathi SN, and Mor S (2020): Climatological
1735 trends in satellite-derived aerosol optical depth over North India and its relationship with crop residue
1736 burning: Rural-urban contrast, *Sci. Total Environ.*, **740**, 140963,
1737 <https://doi.org/10.1016/j.scitotenv.2020.140963>.

1738 Streets DG, Yarber KF, Woo JH, and Carmichael GR (2003): Biomass burning in Asia: Annual and
1739 seasonal estimates and atmospheric emissions, *Glob. Biogeochem. Cycles*, **17**, 1099,
1740 <https://doi.org/10.1029/2003GB002040>.

1741 Tian C, Yue X, Zhu J, Liao H, Yang Y, Lei Y, Zhou X, Zhou H, Ma Y, and Cao Y (2022): Fire-climate
1742 interactions through the aerosol radiative effect in a global chemistry-climate-vegetation model,
1743 *Atmos. Chem. Phys.*, **22**, 12353–12366, <https://doi.org/10.5194/acp-22-12353-2022>.

1744 Vadrevu K and Lasko K (2018): Intercomparison of MODIS Aqua and VIIRS I-band fires and emissions
1745 in an agricultural landscape – Implications for air pollution research, *Remote Sens.*, **10**, 978,
1746 <https://doi.org/10.3390/rs10070978>.

1747 Vadrevu KP, Lasko K, Giglio L, Schroeder W, Biswas S, and Justice C (2019): Trends in vegetation fires
1748 in South and Southeast Asian countries, *Sci. Rep.*, **9**, 7422, <https://doi.org/10.1038/s41598-019-43940-x>.

1750 Vinjamuri KS, Mhawish A, Banerjee T, Sorek Hamer M, Broday DM, Mall RK, and Latif MT (2020):
1751 Vertical distribution of smoke aerosols over upper Indo-Gangetic Plain, *Environ. Pollut.*, **257**, 113377,
1752 <https://doi.org/10.1016/j.envpol.2019.113377>.

1753 van der Velde IR, van der Werf GR, Houweling S, Eskes HJ, Veefkind JP, Borsdorff T, and Aben I (2020):
1754 Biomass burning combustion efficiency observed from space using measurements of CO and NO₂ by
1755 TROPOMI, *Atmos. Chem. Phys. Discuss.*, **2020**, 1–65, <https://doi.org/10.5194/acp-2020-403>.

1756 Wan Z (2014): New refinements and validation of the Collection-6 MODIS land-surface
1757 temperature/emissivity product, *Remote Sens. Environ.*, **140**, 36–45,
1758 <https://doi.org/10.1016/j.rse.2013.08.027>.

1759 Ward DS, Kloster S, Mahowald NM, Rogers BM, Randerson JT, and Hess PG (2012): The changing
1760 radiative forcing of fires: Global model estimates for past, present and future, *Atmos. Chem. Phys.*, **12**,
1761 10857–10886, <https://doi.org/10.5194/acp-12-10857-2012>.

1762 Wang Q, Wang X, Zhou Y, Liu D, and Wang H (2022): The dominant factors and influence of urban
1763 characteristics on land-surface temperature using random forest algorithm, *Sustain. Cities Soc.*, **79**,
1764 103722, <https://doi.org/10.1016/j.scs.2021.103722>.

1765 Wooster MJ, Roberts G, Perry GLW, and Kaufman YJ (2005): Retrieval of biomass combustion rates
1766 and totals from fire radiative power observations: FRP derivation and calibration relationships
1767 between biomass consumption and fire radiative energy release, *J. Geophys. Res. Atmos.*, **110**,
1768 D24311, <https://doi.org/10.1029/2005JD006318>.

1769 Wooster MJ, Zhukov B, and Oertel D (2003): Fire radiative energy for quantitative study of biomass
1770 burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products,
1771 *Remote Sens. Environ.*, **86**, 83–107, [https://doi.org/10.1016/S0034-4257\(03\)00070-1](https://doi.org/10.1016/S0034-4257(03)00070-1).

Formatted: Font: 9 pt

1772 Yang Q, Yuan Q, Yue L, and Li T (2020): Investigation of the spatially varying relationships of PM_{2.5} with
1773 meteorology, topography, and emissions over China in 2015 by using modified geographically
1774 weighted regression, *Environ. Pollut.*, **262**, 114257, <https://doi.org/10.1016/j.envpol.2020.114257>.

1775 Yin S (2020): Biomass burning spatiotemporal variations over South and Southeast Asia, *Environ. Int.*,
1776 **145**, 106153, <https://doi.org/10.1016/j.envint.2020.106153>.

1777 Zhang Y, Ge J, Bai X, and Wang S (2025): Blue-green space seasonal influence on land surface
1778 temperatures across different urban functional zones: Integrating random forest and geographically
1779 weighted regression, *J. Environ. Manage.*, **374**, 123975,
1780 <https://doi.org/10.1016/j.jenvman.2025.123975>.

1781 Zhang W, Yu M, He Q, Wang T, Lin L, Cao K, Huang W, Fu P, and Chen J (2020): The spatial and temporal
1782 impact of agricultural crop residual burning on local land surface temperature in three provinces
1783 across China from 2015 to 2017, *J. Clean. Prod.*, **275**, 124057,
1784 <https://doi.org/10.1016/j.jclepro.2020.124057>.

1785 Zhao J, Yue C, Wang J, Hantson S, Wang X, He B, Li G, Wang L, Zhao H, and Luyssaert S (2024): Forest
1786 fire size amplifies postfire land surface warming, *Nature*, **633**, 828–834,
1787 <https://doi.org/10.1038/s41586-024-07418-2>. Aditi, K., Pandey, A. and Banerjee, T., 2025. Forest
1788 fire emission estimates over South Asia using Suomi-NPP VIIRS-based thermal anomalies and
1789 emission inventory. *Environmental Pollution*, **366**, p.125441.

1790 Aditi, K., Singh, A. and Banerjee, T., 2023. Retrieval uncertainty and consistency of Suomi-NPP
1791 VIIRS Deep Blue and Dark Target aerosol products under diverse aerosol loading scenarios
1792 over South Asia. *Environmental Pollution*, **331**, p.121913.

1793 Alkama, R. and Cescatti, A., 2016. Biophysical climate impacts of recent changes in global
1794 forest cover. *Science*, **351**(6273), pp.600–604.

1795 Andela, N., Morton, D.C., Giglio, L., Chen, Y., van der Werf, G.R., Kasibhatla, P.S., DeFries, R.S.,
1796 Collatz, G.J., Hantson, S., Kloster, S. and Bachelet, D., 2017. A human-driven decline in global
1797 burned area. *Science*, **356**(6345), pp.1356–1362.

1798 Balwinder Singh, McDonald, A.J., Srivastava, A.K. et al. Tradeoffs between groundwater
1799 conservation and air pollution from agricultural fires in northwest India. *Nat Sustain* **2**, 580–
1800 583 (2019). <https://doi.org/10.1038/s41893-019-0304-4>.

1801 Banerjee, T., Anchule, A., Sorek Hamer, M. and Latif, M.T., 2022. Vertical stratification of
1802 aerosols over South Asian cities. *Environmental Pollution*, **309**, p.119776.

1803 Banerjee, T., Shitole, A.S., Mhawish, A., Anand, A., Ranjan, R., Khan, M.F., Srithawirat, T., Latif,
1804 M.T. and Mall, R.K., 2021. Aerosol climatology over South and Southeast Asia: Aerosol types,
1805 vertical profile, and source fields. *Journal of Geophysical Research: Atmospheres*, **126**(6),
1806 p.e2020JD033554.

1807 Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., De Angelo, B.J., et al., 2013.
1808 Bounding the role of black carbon in the climate system: a scientific assessment. *J. Geophys.
1809 Res.* **118**, 5380e5552.

1810 Bowman, D.M., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., d'Antonio,
1811 C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P. and Johnston, F.H., 2009. Fire in the Earth
1812 system. *science*, **324**(5926), pp.481–484.

1813 Breiman, L. (2001). Random forests. *Machine learning*, **45**, 5–32.

Formatted: Normal (Web), Line spacing: single

1814 Brunsdon, C., Fotheringham, A.S., Charlton, M.E., 1996. Geographically weighted regression:
1815 a method for exploring spatial nonstationarity. *Geogr. Anal.* 28, 281–298.

1816 Brunsdon, C., Fotheringham, S., & Charlton, M. (1998). Geographically weighted regression.
1817 *Journal of the Royal Statistical Society: Series D (The Statistician)*, 47(3), 431–443.

1818 Chen, J., Shao, Z., Huang, X., Zhuang, Q., Dang, C., Cai, B., Zheng, X. and Ding, Q., 2022.
1819 Assessing the impact of drought land cover change on global vegetation greenness and
1820 productivity. *Science of the Total Environment*, 852, p.158499.

1821 Chuvieco, E., Pettinari, M.L., Koutsias, N., Forkel, M., Hantson, S. and Turco, M., 2021. Human
1822 and climate drivers of global biomass burning variability. *Science of the Total
1823 Environment*, 779, p.146361.

1824 Copernicus Climate Change Service (2020). Agrometeorological indicators from 1979 to
1825 present derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store
1826 (CDS). DOI: 10.24381/cds.6e68c9bb (Accessed on February 25, 2025).

1827 Daoud, J. I. (2017, December). Multicollinearity and regression analysis. In *Journal of physics: Conference series* (Vol. 949, No. 1, p. 012009). IOP Publishing.

1828 Fotheringham, A.S., Brunsdon, C., & Charlton, M. (2009). Geographically weighted regression.
1829 *The Sage handbook of spatial analysis*, 1, 243–254.

1830 Giglio, L., Descloitres, J., Justice, C. O., & Kaufman, Y. J. (2003). An enhanced contextual fire
1831 detection algorithm for MODIS. *Remote Sensing of Environment*, 87, 273–282.

1832 Gomez, J.L., Allen, R.J. and Li, K.F., 2024. California wildfire smoke contributes to a positive
1833 atmospheric temperature anomaly over the western United States. *Atmospheric Chemistry
1834 and Physics*, 24(11), pp.6937–6963.

1835 Graham, M. H. (2003). Confronting multicollinearity in ecological multiple
1836 regression. *Ecology*, 84(11), 2809–2815.

1837 Graham, M.H., Haynes, R.J. and Meyer, J.H., 2002. Soil organic matter content and quality:
1838 effects of fertilizer applications, burning and trash retention on a long-term sugarcane
1839 experiment in South Africa. *Soil biology and biochemistry*, 34(1), pp.93–102.

1840 Hurst, H., 1951. Long term storage capacity of reservoirs. *Trans. Am. Soc. Civil Eng.* 6, 770–
1841 799.

1842 Hsu, N.C., Herman, J.R. and Tsay, S.C., 2003. Radiative impacts from biomass burning in the
1843 presence of clouds during boreal spring in southeast Asia. *Geophysical Research Letters*,
1844 30(5).

1845 Ichoku, C., Giglio, L., Wooster, M.J. and Remer, L.A., 2008. Global characterization of biomass-
1846 burning patterns using satellite measurements of fire radiative energy. *Remote sensing of
1847 Environment*, 112(6), pp.2950–2962.

1848 Jethva, H., Torres, O., Field, R. D., Lyapustin, A., Gautam, R., & Kayetha, V. (2019). Connecting
1849 crop productivity, residue fires, and air quality over northern India. *Scientific Reports*, 9(1),
1850 16594.

1851 Kant, S., Sarangi, C. and Wilcox, E.M., 2023. Aerosol processes perturb cloud trends over Bay
1852 of Bengal: observational evidence. *npj Climate and Atmospheric Science*, 6(1), p.132.

1853

Formatted: Font: 9 pt

1854 Kerontzi, S., McCarty, J., Loboda, T., Kumar, S. and Justice, C. (2006). Global distribution of
1855 agricultural fires in croplands from 3 years of Moderate Resolution Imaging
1856 Spectroradiometer (MODIS) data. *Global Biogeochemical Cycles*, 20(2).

1857 Lasko, K. and Vadrevu, K., 2018. Improved rice residue burning emissions estimates:
1858 Accounting for practice specific emission factors in air pollution assessments of
1859 Vietnam. *Environmental pollution*, 236, pp.795-806.

1860 Li, F., Zhang, X., Kondragunta, S., Csiszar, I., 2018. Comparison of fire radiative power
1861 estimates from VIIRS and MODIS observations. *J. Geophys. Res. Atmos.* 123 (9), 4545-4563.

1862 Li, Z.L., Wu, H., Duan, S.B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J. and Sun,
1863 Y., 2023. Satellite remote sensing of global land surface temperature: Definition, methods,
1864 products, and applications. *Reviews of Geophysics*, 61(1).

1865 Liu, Z., Ballantyne, A. P., & Cooper, L. A. (2018). Increases in land surface temperature in
1866 response to fire in Siberian boreal forests and their attribution to biophysical processes.
1867 *Geophysical Research Letters*, 45, 6485-6494. <https://doi.org/10.1029/2018GL078283>.

1868 Liu, Z., Ballantyne, A.P. and Cooper, L.A., 2019. Biophysical feedback of global forest fires on
1869 surface temperature. *Nature communications*, 10(1), p.214.

1870 Logan, T. M., Zaitchik, B., Guikema, S., & Nisbet, A. (2020). Night and day: The influence and
1871 relative importance of urban characteristics on remotely sensed land surface temperature.
1872 *Remote Sensing of Environment*, 247, Article 111861.

1873 Lan, R., Eastham, S.D., Liu, T., Norford, L.K. and Barrett, S.R., 2022. Air quality impacts of crop
1874 residue burning in India and mitigation alternatives. *Nature communications*, 13(1), p.6537.

1875 Markonis, Y., Koutsoyiannis, D., 2016. Scale dependence of persistence in precipitation
1876 records. *Nat. Clim. Chang.* 6, 399-401. <https://doi.org/10.1038/nclimate2894>.

1877 Mhawish, A., Sarangi, C., Babu, P., Kumar, M., Bilal, M. and Qiu, Z., 2022. Observational
1878 evidence of elevated smoke layers during crop residue burning season over Delhi: Potential
1879 implications on associated heterogeneous PM_{2.5} enhancements. *Remote Sensing of
1880 Environment*, 280, p.113167.

1881 Markonis, Y., Koutsoyiannis, D., 2016. Scale dependence of persistence in precipitation
1882 records. *Nat. Clim. Chang.* 6, 399-401. <https://doi.org/10.1038/nclimate2894>

1883 Nguyen, H.M. and Wooster, M.J., 2020. Advances in the estimation of high Spatio-temporal
1884 resolution pan-African top-down biomass burning emissions made using geostationary fire
1885 radiative power (FRP) and MAIAC aerosol optical depth (AOD) data. *Remote Sensing of
1886 Environment*, 248, p.111971.

1887 Prasad, V.K., Gupta, P.K., Sharma, C., Sarkar, A.K., Kant, Y., Badarinath, K.V.S., Rajagopal, T.
1888 and Mitra, A.P., 2000. NO_x emissions from biomass burning of shifting cultivation areas from
1889 tropical deciduous forests of India estimates from ground-based
1890 measurements. *Atmospheric Environment*, 34(20), pp.3271-3280.

1891 Peng, J., Liu, Z., Liu, Y., Wu, J. and Han, Y., 2012. Trend analysis of vegetation dynamics in
1892 Qinghai-Tibet Plateau using Hurst Exponent. *Ecological Indicators*, 14(1), pp.28-39.

Formatted: Font: 9 pt

1893 Puissant, A., Rougier, S., & Stumpf, A. (2014). Object oriented mapping of urban trees using
1894 Random Forest classifiers. *International Journal of Applied Earth Observation and*
1895 *Geoinformation*, 26, 235–245.

1896 Ravindra, K., Singh, T., Singh, V., Chintalapati, S., Beig, G. and Mor, S., 2023. Understanding
1897 the influence of summer biomass burning on air quality in North India: Eight cities field
1898 campaign study. *Science of The Total Environment*, 861, p.160361.

1899 Granero, M.S., Segovia, J.T. and Pérez, J.G., 2008. Some comments on Hurst exponent and the
1900 long-memory processes on capital markets. *Physica A: Statistical Mechanics and its*
1901 *applications*, 387(22), pp.5543–5551.

1902 Sarkar, S., Singh, R.P. and Chauhan, A., 2018. Crop residue burning in northern India:
1903 Increasing threat to Greater India. *Journal of Geophysical Research: Atmospheres*, 123(13),
1904 pp.6920–6934.

1905 Sayer, A.M., Hsu, N.C., Lee, J., Kim, W.V., Dutcher, S.T., 2019. Validation, stability, and
1906 consistency of MODIS collection 6.1 and VIIRS version 1 deep blue aerosol data over land. *J.*
1907 *Geophys. Res. Atmos.* 124, 4658–4688

1908 Schroeder, W., Oliva, P., Giglio, L. and Csizsar, I.A., 2014. The New VIIRS 375 m active fire
1909 detection data product: Algorithm description and initial assessment. *Remote Sensing of*
1910 *Environment*, 143, pp.85–96.

1911 Shyamsundar, P., Springer, N.P., Tallis, H., Polasky, S., Jat, M.L., Sidhu, H.S., Krishnapriya, P.P.,
1912 Skiba, N., Ginn, W., Ahuja, V. and Cummins, J., 2019. Fields on fire: Alternatives to crop residue
1913 burning in India. *Science*, 365(6453), pp.536–538.

1914 Singh, N., Banerjee, T., Raju, M.P., Deboudt, K., Sorek Hamer, M., Singh, R.S. and Mall, R.K.,
1915 2018. Aerosol chemistry, transport, and climatic implications during extreme biomass burning
1916 emissions over the Indo-Gangetic Plain. *Atmospheric Chemistry and Physics*, 18(19),
1917 pp.14197–14215.

1918 Singh, P., Roy, A., Bhasin, D., Kapoor, M., Ravi, S. and Dey, S., 2021. Crop fires and
1919 cardiovascular health: a study from North India. *SSM Population Health*, 14, p.100757.

1920 Singh, T., Biswal, A., Mor, S., Ravindra, K., Singh, V. and Mor, S., 2020. A high resolution
1921 emission inventory of air pollutants from primary crop residue burning over Northern India
1922 based on VIIRS thermal anomalies. *Environmental Pollution*, 266, p.115132.

1923 Singh, T., Ravindra, K., Beig, G. and Mor, S., 2021. Influence of agricultural activities on
1924 atmospheric pollution during post monsoon harvesting seasons at a rural location of Indo-
1925 Gangetic Plain. *Science of The Total Environment*, 796, p.148903.

1926 Singh, T., Ravindra, K., Sreekanth, V., Gupta, P., Sembhi, H., Tripathi, S.N., Mor, S., 2020.
1927 Climatological trends in satellite-derived aerosol optical depth over North India and its
1928 relationship with crop residue burning: Rural-urban contrast. *Sci. Total Environ.*
1929 <https://doi.org/10.1016/j.scitotenv.2020.140963>.

1930 Streets, D.G., Yarber, K.F., Woo, J.H., Carmichael, G.R., 2003. Biomass burning in Asia: annual
1931 and seasonal estimates and atmospheric emissions. *Global Biogeochem. Cycles* 17.

1932 Tian, C., Yue, X., Zhu, J., Liao, H., Yang, Y., Lei, Y., Zhou, X., Zhou, H., Ma, Y. and Cao, Y., 2022.
1933 Fire-climate interactions through the aerosol radiative effect in a global chemistry-climate-
1934 vegetation model. *Atmospheric Chemistry and Physics*, 22(18), pp.12353–12366.

Formatted: Font: 9 pt

1935 Vadrevu, K. and Lasko, K., 2018. Intercomparison of MODIS AQUA and VIIRS I Band fires and
1936 emissions in an agricultural landscape—Implications for air pollution research. *Remote*
1937 *Sensing*, 10(7), p.978.

1938 Vinjamuri, K.S., Mhawish, A., Banerjee, T., Serek Hamer, M., Broday, D.M., Mall, R.K. and Latif,
1939 M.T., 2020. Vertical distribution of smoke aerosols over upper Indo Gangetic Plain.
1940 *Environmental pollution*, 257, p.113377.

1941 van Der Velde, I.R., Van Der Werf, G.R., Houweling, S., Eskes, H.J., Veefkind, J.P., Borsdorff, T.
1942 and Aben, I., 2020. Biomass burning combustion efficiency observed from space using
1943 measurements of CO and NO₂ by TROPOMI. *Atmospheric Chemistry and Physics Discussions*,
1944 2020, pp.1-65.

1945 Wan, Z. (2014). New refinements and validation of the collection 6 MODIS land surface
1946 temperature/emissivity product. *Remote Sensing of Environment*, 140, 36-45.
1947 <https://doi.org/10.1016/j.rse.2013.08.027>

1948 Ward, D.S., Kloster, S., Mahowald, N.M., Rogers, B.M., Randerson, J.T. and Hess, P.G., 2012.
1949 The changing radiative forcing of fires: global model estimates for past, present and
1950 future. *Atmospheric Chemistry and Physics*, 12(22), pp.10857-10886.

1951 Wang, Q., Wang, X., Zhou, Y., Liu, D. and Wang, H., 2022. The dominant factors and influence
1952 of urban characteristics on land surface temperature using random forest algorithm.
1953 *Sustainable Cities and Society*, 79, p.103722.

1954 Wooster, M.J., Roberts, G., Perry, G.L.W. and Kaufman, Y.J., 2005. Retrieval of biomass
1955 combustion rates and totals from fire radiative power observations: FRP derivation and
1956 calibration relationships between biomass consumption and fire radiative energy
1957 release. *Journal of Geophysical Research: Atmospheres*, 110(D24).

1958 Wooster, M.J., Zhukov, B. and Oertel, D., 2003. Fire radiative energy for quantitative study of
1959 biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS
1960 fire products. *Remote Sensing of Environment*, 86(1), pp.83-107.

1961 Yang, Q., Yuan, Q., Yue, L., & Li, T. (2020). Investigation of the spatially varying relationships
1962 of PM_{2.5} with meteorology, topography, and emissions over China in 2015 by using modified
1963 geographically weighted regression. *Environmental Pollution*, 262(4), 114257.

1964 Yin, S., 2020. Biomass burning spatiotemporal variations over South and Southeast
1965 Asia. *Environment International*, 145, p.106153.

1966 Zhang, Y., Ge, J., Bai, X. and Wang, S., 2025. Blue Green space seasonal influence on land
1967 surface temperatures across different urban functional zones: Integrating Random Forest and
1968 geographically weighted regression. *Journal of Environmental Management*, 374, p.123975.

1969 Zhang, W., Yu, M., He, Q., Wang, T., Lin, L., Cao, K., Huang, W., Fu, P. and Chen, J., 2020. The
1970 spatial and temporal impact of agricultural crop residual burning on local land surface
1971 temperature in three provinces across China from 2015 to 2017. *Journal of Cleaner
1972 Production*, 275, p.124057.

1973 Zhao, J., Yue, C., Wang, J., Hantson, S., Wang, X., He, B., Li, G., Wang, L., Zhao, H. and Luyssaert,
1974 S., 2024. Forest fire size amplifies postfire land surface warming. *Nature*, 633(8031), pp.828-
1975 834.

1976

Formatted: Normal (Web)

Formatted: Font: 9 pt