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 8 

Abstract 9 

The biophysical effects of agricultural e-residue burning, driven by the excessive release of 10 

energy and carbonaceous aerosols, remain largely unaccounted forpoorly quantified at the 11 

global scale. Residue-based fires have the potential to modify regional climate by altering land 12 

surface temperature (LST), highlighting the need for investigation at regional scale. based fire 13 

through excessive release of energy and carbonaceous aerosols essentially unaccounted 14 

globally. Elucidating climate feedback from residue-based fire however, remain pertinent as 15 

energy released from fire pose potential to modify land surface temperature (LST) thereby, 16 

regional climate. Here, an observation-driven assessment of spatial change variations in LST 17 

due to concurrent release of energy and aerosols has been explored made over northwestern 18 

India using multiple satellite and reanalysis-based datasets. Year-specific fire pixel density was 19 

used to delineate an intensive fire zone characterized by medium-to-large residue-based fire. 20 

Initially, year-specific fire pixel density was computed to identify intensive fire zone 21 

encompassing only medium to large fire. GeosSpatial analysis revealed positive correlation 22 

association among FRP (fire radiative power), LST and AOD (aerosol optical depth) across the 23 

intensive fire zone. Residue-based fire Over intensive fire zone, a space-for-time approach 24 

revealed accounted an increase in LST by 0.48°C and AOD by 0.19 yearly during peak fire 25 

season over intensive fire zone. significant increase in both ΔLST (0.57°C; 95% CI:0.33-0.81°C) 26 

and ΔAOD (0.13; 95% CI:0.08–0.17) due to fire. A Random Forest non-linear model was 27 

employed to regress potential influence of FRP and AOD on LST having several other variables 28 

as confounding factors. FRP consistently emerged as the dominant predictor of LST, followed 29 

by planetary boundary layer height and aerosols. Random Forest non-linear model was used 30 

to regress potential influence of FRP and AOD on LST across. Ttwo pre-constructed defined 31 

scenarios were evaluated to ascertain FRP-AOD-LST nexus. Interestingly, both scenarios 32 

recognized FRP remained as a top dominant predictor to influence LST in both the scenarios, 33 
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followed by solar radiation and AOD. An increase significant enhancement in relative feature 34 

importance of FRP was also noted during days having high fire intensity and positive 35 

association against with LST. Geographically wWeighted Rregression further explained spatial 36 

heterogeneity in LST modulation by FRP. Overall, this analysis provides the first empirical 37 

evidenceOur analysis therefore, provides first empirical evidence that on crop residue-based 38 

fire on contributes to changes in modifying regional climate by altering land surface 39 

temperature. It further highlights that the magnitude of this perturbation is governed by 40 

interannual variations in fire intensity and influenced strongly by prevailing meteorological 41 

conditions. It also underlines that extent of such perturbation is subject to year-specific fire 42 

intensity and govern by meteorology.  43 

Keywords: Aerosols, Biomass burning, Fire, GWR, Random Forest. 44 

 45 

 46 

 47 

Introduction 48 

 Burning agricultural residues is a widespread practice for the rapid removal of post-49 

harvest biomass from croplands in many regions of the world (Streets et al., 2003; Singh et 50 

al., 2018; Shyamsundar et al., 2019). While biomass burning is often associated with 51 

deforestation (Chuvieco et al., 2021), forest fires (van der Velde et al., 2021; Aditi et al., 2025), 52 

and shifting cultivation (Prasad et al., 2000), residue burning on agricultural land is primarily 53 

conducted to clear fields, fertilize soil, eradicate weeds and pests, and prepare land for the 54 

next crop cycle (Graham et al., 2002; Korontzi et al., 2006; Lan et al., 2022). This practice is 55 

observed across large agricultural regions globally, including China (Streets et al., 2003; Zhang 56 

et al., 2020), South America (Graham et al., 2002), Southeast Asia (Lasko and Vadrevu, 2018; 57 

Yin, 2020), and northwestern India (Singh et al., 2018, 2021; Sarkar et al., 2018). In 58 

northwestern India, extensive residue burning during October to November is a recurring 59 

phenomenon and has been widely examined from multiple perspectives. Previous studies 60 

report that these burning events contribute to severe air-quality degradation in downwind 61 

urban centers (Singh et al., 2018; Jethva et al., 2019), alter aerosol loading and chemistry 62 

(Mhawish et al., 2022), modify aerosol vertical stratification and radiative forcing (Hsu et al., 63 

2003; Vinjamuri et al., 2020; Banerjee et al., 2021), induce adverse health effects (Singh et al., 64 

Formatted: Font color: Auto

Formatted: Font color: Text 1

Formatted: Font color: Text 1



3 
 

Formatted: Font: 9 pt

2021), and may influence regional hydrological processes (Kant et al., 2023). Burning 65 

agriculturale residues is a widespread practice for quick removal of post-harvest crop leftover 66 

from the field over many parts of the world (Streets et al., 2003; Singh et al., 2018; 67 

Shyamsundar et al., 2019). While burning biomass is often associated with the practice of 68 

deforestation (Chuvieco et al., 2021), forest fire (van der Velde et al., 2021; Aditi et al., 2025) 69 

and shifting cultivation (Prasad et al., 2000); agriculturale residue burning is more commonly 70 

associated with cleaning farmland, fertilizing soil, eradicating pests and weeds, and making 71 

land suitable for the subsequent crop (Graham et al., 2002; Korontzi et al., 2006; Lan et al., 72 

2022). Agricultureal residue burning is a common practice across the globe as reported in 73 

China (Streets et al., 2003; Zhang et al., 2020), South America (Graham et al., 2002), Southeast 74 

Asia (Lasko and Vadrevu, 2018; Yin, 2020) and from the northwest India (Singh et al., 2018, 75 

2021; Sarkar et al., 2018). Crop residue burning over northwest India has been investigated 76 

widely from diverse perspectives. A widespread intensive burning during October to mid-77 

November is a recurring phenomenon and often associated with poor air quality at 78 

downstream (Jethva et al., 2019; Singh et al., 2018), modifying aerosol loading and chemistry 79 

(Mhawish et al., 2022; Ravindra et al., 2023), influencing aerosol vertical stratification and 80 

radiative forcing (Hsu et al., 2003; Vinjamuri et al., 2020; Banerjee et al., 2021), inducing 81 

negative health impacts (Singh et al., 2021), and possibly shifting regional hydrological cycle 82 

(Kant et al., 2023). However, limited attention has been paid to investigate its effect on urban 83 

climate, especially on modulating lower atmospheric thermal budget which has been 84 

otherwise strongly evident in case of forest fire (Liu et al., 2018, 2019). 85 

Across the northwestern part of India, dual cropping pattern including rice and wheat 86 

crop is predominately practised over roughly 4.1 million ha of land (NAAS, 2017). Such a 87 

cropping pattern leads to results in generationng of huge crop residues having that are low 88 

inpoor nutrient content with and rich inhigh silica and ash fractions. Typically, residues from 89 

rice-wheat cropping system have possess limited economic value, not being fitted as 90 

alternative fodder, biofuel or being procured in pulp and paper industriesas they are 91 

unsuitable for use as alternative fodder, bioenergy feedstock or as raw material in pulp and 92 

paper industry (Lan et al., 2022; Shyamsundar et al., 2019; Lan et al., 2022). Besides, with the 93 

advent introduction of mechanical harvester in the 1980s and enactment of groundwater 94 

preservation act in the late 2000s, in situ indiscriminate burning of agriculturale residues has 95 
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been become athe recurrent choice practice among of the local farmers. This practice serves  96 

to expedite field clearance and reduce the turn-around periodtime between rice harvesting 97 

and the subsequent sowing of the wheat crop (Balwinder-Singh et al., 2019). India generates 98 

a India produces an estimated 500 million metric tonnes (MT) of crop residues annually, of 99 

which 20–25% are disposed of through open-field burning.Annually, India produces an 100 

estimated 500 million metric tonnes (MT) of crop residues, of which approximately 20–25% 101 

are disposed of through open-field burning.pproximately 500 million metric tonnes (MT) of 102 

crop residues per year with roughly 20-25% i.e. 100-120 MT/yr residues usually burn in the 103 

field itself Crop residue burning is particularly prevalent in northwestern India, where roughly 104 

20-25 MT of residues are set on fire each year , majority (~20-25 MT/yr) of such practised 105 

over northwest Gangetic plain (Balwinder-Singh et al., 2019; Lan et al., 2022; Balwinder-Singh 106 

et al., 2019). Unregulated residue burning in this region contributes Unregulated burning of 107 

agriculturale residues across the northwestern part of India usually held responsible foris 108 

estimated to contribute approximately 300 Gg/yr of PM2.5 and 50 Tg of CO2 equivalent green-109 

house gas emission (Singh et al., 2020). Interestingly, fire incidences have exhibited a 110 

consistent increasing trend with concurrent growth in vegetation index and aerosol loading 111 

Notably, the frequency of fire incidences has exhibited a persistent upward trend, coinciding 112 

with concurrent increases in vegetation indices and atmospheric aerosol loading (Vadrevu et 113 

al., 20182019; Jethva et al., 2019). In addition to atmospheric emissions, fires exert numerous 114 

biophysical impacts on the surrounding ecosystems. Fire induces a cascade of consequential 115 

processes, including modifications to the surface energy balance, redistribution of nutrients, 116 

alterations in species composition, changes in surface albedo, and variations in 117 

evapotranspiration rate Beside emissions, biophysical effects of fire on surrounding 118 

ecosystem could be many as fire drives several consequential changes, be it in modifying 119 

surface energy balance, redistributing nutrients and species, modifying surface albedo 120 

thereby, altering evapotranspiration rate (Ward et al., 2012; Liu et al., 2019). Additionally, fire 121 

could can also induce certain biogeochemical and biophysical stresses on local environment 122 

by modifying atmospheric composition and surface properties (Andela et al., 2017; Aditi et 123 

al., 2025). Such transformation inof the native landscape, coupled with excessive release of 124 

energy, and, emission of aerosols and itstheirits precursors, may therefore, have several 125 

potential implications on the local environment.  126 Formatted: English (United States)
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Most studies on biomass-based fires have focused on identifying land–atmosphere 127 

processes responsible for fire initiation and propagation, quantifying emissions, and 128 

evaluating fire-induced land–atmosphere exchanges (Lasko and Vadrevu, 2018; Jethva et al., 129 

2019; Chuvieco et al., 2021; Aditi et al., 2025). Most studies on biomass-based fires have has 130 

focused on identifying the land and atmospheric processes and precursors responsible for fire 131 

initiation and propagation, quantifying emissions, and evaluating land–atmosphere 132 

exchanges (Lasko and Vadrevu, 2018; Jethva et al., 2019; Chuvieco et al., 2021; Aditi et al., 133 

2025). In contrast, there is a paucity of knowledge regarding how biomass burning contributes 134 

to climate feedbacks through modifications of Earth’s surface radiative budget and land 135 

surface temperature. Majority of the researches involving biomass-based fire are dedicated 136 

to recognize land and atmospheric processes and precursors on initiating and propagating 137 

fire, quantifying emissions and evaluating land surface-atmosphere exchange. There is 138 

however, limited understanding on how biomass-based fire induce climate feedback by 139 

altering Earth’s surface radiative budget and land surface temperature (Bowman et al., 2009; 140 

Andela et al., 2017). Plausible explanation to this includes limited observation and associated 141 

uncertainties in estimating key biophysical processes parameter like surface albedo, land-142 

atmosphere exchange of sensible heat flux and water vapor, changes in evapotranspiration 143 

before and after fire eventsevapotranspiration rate during pre- and post-fire events. There 144 

are instances when global forest fire incidences and size have been linked with modifications 145 

in land surface temperature (LST; Alkama and Cescatti, 2016; Liu et al., 2018, 2019). Likewise, 146 

Liu et al. (2019) noted an enhancement in mean annual LST over burned forest area in the 147 

northern high latitudes. Similar evidence of increase in summertime surface radiometric 148 

temperature over temperate and boreal forests in the Northern Hemisphere was accounted 149 

by Zhao et al. (2024). Alkama and Cescatti (2016) reported increases in mean and maximum 150 

air temperature over arid regions following forest loss, highlighting the sensitivity of surface 151 

temperature to land-cover modification. However, fire-induced thermal forcing is strongly 152 

constrained by the fire size (Zhao et al., 2024). Small, short-lived fires, such as those 153 

associated with agricultural residue burning, often fail to produce sufficiently large changes 154 

in surface albedo or evapotranspiration, and therefore may not generate a detectable LST 155 

response. Alkama and Cascatti (2016) evident reported a corresponding increase in mean and 156 

maximum air temperature over the arid zone regions due to the loss of forest cover. However, 157 

fire induced thermal forcing was reported to be constrained by fire size (Zhao et al., 2024) 158 
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and often, relatively small scale burning, particularly involving crop residues on agriculturale 159 

farmland may not be sufficient enough to induce robust change in surface albedo and 160 

evapotranspiration, resulting insignificant variation in LST. Incidence of elevated LST over 161 

different provinces in China due to agriculturale residue burning has only recently reported 162 

by Zhang et al. (2020). A spatially inconsistent heterogeneous increase in LST  correlated well 163 

strongly with fire count, having with highest LST gradient noted at distances of 4–10 km from 164 

the central point of crop residue burning in 4 to 10 km distance from the central point of cop 165 

residue burning and remained validpersisting till for 1-3 days. In contrast, the effects of post-166 

harvest fire incidences in northwestern India on LST remain largely unexplored. This gap 167 

introduces considerable uncertainty in assessing the climate feedback of crop residue burning 168 

and highlights the need for a better understanding of the underlying mechanismsIn contrast, 169 

post-harvest fire incidence over northwest India has not yet explored in terms of its effect on 170 

LST. This induces significant uncertainty in recognizing climate feedback of crop residue 171 

burning and warrants a better understanding of the underlying mechanism. 172 

This study aims to explore immediate biophysical effect of agriculturale crop residue 173 

fire on surface temperature over northwestern India. By integrating spatially and temporally 174 

consistent satellite - observations and reanalysis datasets, including- based observations on 175 

fire counts, fire radiative power, land surface temperature, aerosols loading, meteorological 176 

covariates, topography, surface property, and physical environment  and regional 177 

meteorology over intensive fire zone, we sought to quantify time-bound changes in LST in 178 

relationresponse to variations in fire intensity and aerosol loadingwe tried to establish time-179 

bound changes in LST with concurrent variations in fire strength. Several statistical means 180 

methods were explored applied to construct the changes in LST with fire severity and 181 

aerosols. Additionally, a space-for-time framework was appliedfollowed to assess the effects 182 

of recurrent FRP variations on LST and aerosol optical depth (AOD) throughout the fire 183 

season.A space-for-time approach was used to construct changes in LST and AOD due to 184 

recurrent changes in FRP over the fire season. Specifically, we addressed two key questions: 185 

we tried to investigate two questions, (1) does Does land surface temperatureLST respond to 186 

changes in fire intensity over northwestern India?, and (2) how How do local meteorology and 187 

aerosol loading modulate LST variation with respect to space and time? To the best of our 188 

knowledge, this is the first systematic assessment of agricultural residue fire–driven 189 
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modulations in LST over northwestern Indiano previous study has systematically analyzed 190 

agricultural residue burning-driven changes in LST over northwestern India. By integrating 191 

multiple geospatial observations, the analysis offers critical insights into the biophysical 192 

feedbacks of residue-based fire and advances understanding of LST responses to residue 193 

burning. Further, it refines estimates of fire-induced perturbations in the regional radiative 194 

budget offering valuable representation of biomass-based fire in Earth system models. 195 

Such an investigation could provide critical insights into the biophysical feedbacks of 196 

fire on surface temperature and radiative budget from crop residue burning.To best of our 197 

knowledge, such understanding on regulated in LST explorednortherncouldvital evidence 198 

onfeedback from-based fire.  199 

 200 

 201 

2. Dataset and methodology 202 

2.1 Study domain 203 

Post-harvest burning of biomass is mainly practised over the northwest part of the 204 

Indo-Gangetic Plain (IGP) of South Asia. The region encompassing the agrarian states of 205 

Punjab and Haryana is particularly productive and accounts for a whopping 60-70% of India’s 206 

food grain generationproduction. Coupled with increased production of rice and wheat crop, 207 

generation of crop residues has been increased multi-fold in recent years resulting higher 208 

intensity in crop-based fire over the region (Jethva et al., 2019). For this research, the 209 

geospatial analysis of LST in continuation with fire activity and aerosol loading has been made 210 

over the northwest part of India for the months of October to November between year 2017 211 

and 2021. The combination of high agricultural output, extensive biomass burning, and 212 

documented increases in fire activity renders this region specifically appropriate for analysing 213 

fire dynamics and their environmental consequences. However, instead of pre-identifying a 214 

fixed research domain, we have retrieved year-wise fire signal across the northwest India 215 

constrained by crop land. This led to the selection of core-study region differs annually with 216 

respect to year-specific fire intensity and spatial trend (as in Fig. S1, in supplementary file), 217 

but all eventually bound to 29.2770° to 32.1625° N and 73.8996° to 77.0718° E, as illustrated 218 

in Fig. 1b. 219 
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 220 

 221 

Fig. 1. Spatial variation in satellite-based fire radiative power across northwest India, 222 

distribution of FRP-based fire intensity (MW/pixel) (a) and domain selected for 223 

retrieval and processing of SNPP VIIRS FRP, AOD and Aqua MODIS LST (b).  224 

NOTE. The region marked with blue in Fig. 1a subset indicates the Indo-Gangetic Plain (IGP) 225 

spanning from Pakistan to Bangladesh through India. The extended fire zone selected 226 

for analysis is marked with red within the IGP and has been shown in detail in Fig. 1a 227 

with fire pixel density. The selection criteria of the spatial domain are discussed in 228 

section 2.3. The pixel size of VIIRS VNP14IMG is 375x375 m2. India shape file is 229 

acquired from Survey of India archive.  230 

 231 

Post-harvest biomass burning is predominantly practiced across the northwestern 232 

Indo-Gangetic Plain (IGP) of South Asia, particularly in the agrarian states of Punjab and 233 

Haryana, which together contribute nearly 60–70% of India’s total food grain production. The 234 

concurrent rise in rice and wheat cultivation has led to a substantial increase in crop residue 235 

generation, resulting in higher fire intensity in recent years (Jethva et al., 2019). In this study, 236 

geospatial analyses of LST, fire activity, and aerosol loading were conducted over 237 

northwestern India during October–November between 2017 and 2021. The combination of 238 

high agricultural output, extensive biomass burning, and increasing fire activity makes this 239 

region particularly suitable for investigating fire dynamics and their environmental 240 
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implications. Instead of defining a fixed spatial domain a priori, year-wise fire signals were 241 

retrieved across cropland areas in northwestern India. This approach allowed the delineation 242 

of a core study region that varied annually according to year-specific fire intensity and spatial 243 

trends (as shown in Fig. S2), but all eventually bound to 29.2770° to 32.1625° N and 73.8996° 244 

to 77.0718° E, as illustrated in Fig. 1b. 245 

2.2 Spatial dataset  246 

Active fire count data was retrieved from the standard fire product of Visible Infrared 247 

Imaging Radiometer Suite (VIIRS) Collection-2 Level-1B (VNP14IMG) available at 6-min L2 248 

swath at 375 m resolution. The VIIRS onboard the Suomi National Polar-orbiting Partnership 249 

(SNPP) satellite is a cross-track single-angle scanning radiometer which was launched in year 250 

2011 under joint operation of NASA and NOAA. The VIIRS fire detection algorithm typically 251 

extends well refined and validated MODIS Fire and Thermal Anomalies product (Giglio et al., 252 

2003). The I-band based fire detection algorithm primarily utilizes brightness temperature of 253 

Channel I4 on middle infrared spanning from 3.55 to 3.93 μm, centred at 3.74 μm. 254 

Additionally, to isolate the active fire spots from the fire-free background channel, a single 255 

gain I5 at thermal infrared regions (10.5–12.4 μm) is also considered. Rest of the I-band 256 

channels i.e. I1 to I3, covering visible, near and short-wave IR are used to distinguish pixels 257 

with cloud, water and sun-glint (Schroeder et al., 2014). The VIIRS fire database was 258 

considered due to its superior precision and accuracy in identifying relatively small fire, 259 

greater spatial resolution at footprint and pixel saturation temperature (Li et al., 2018; 260 

Vadrevu et al.,and Lasko, 2018; Li et al., 2018; Aditi et al., 2023). For this experiment, SNPP 261 

VIIRS 375 m C2 L21B active fire count data with nominal (fire mask class 8) and high confidence 262 

(fire mask class 9), was retrieved over northwestern India from year 2017 to 2021 (all 263 

inclusive). 264 

Fire radiative power (FRP) quantifies the release of radiative energy from biomass 265 

burning integrated at all angles and wavelengths over a spatial scale. Measured in Watt, FRP 266 

retrieval quantifies the release of heat energy against time and in many instances linearly 267 

associated with the rate of fuel consumption and emission (Ichoku et al., 2008; Nguyen and 268 

Wooster, 2020). A detailed description on FRP retrieval and comparison among the sensors 269 

are available in Wooster et al. (2003, 2005) and Ichoku et al. (2008). Li et al. (2018) concluded 270 

VIIRS FRP as comparable with MODIS FRP in most of fire clusters and very stable across swath. 271 
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Here, FRP (MW) was processed from the SNPP VIIRS C2 Level-2 (L2) 375 m active fire product 272 

(VNP14IMG). VIIRS FRP was used as a proxy of fire intensity and potential emission strength 273 

from the biomass burning area, and considered as a direct measurement of radiative energy 274 

being released from individual fire pixel.  275 

Land surface radiometric temperature (LST, in C) at 1 km spatial resolution was 276 

utilized from Moderate Resolution Imaging Spectroradiometer (MODIS) version 6.1 Land 277 

Surface Temperature and Emissivity retrievals product (MYD11A1). Typically, LST indicates 278 

thermodynamic temperature of the interface atmospheric layer within soil, plant cover and 279 

lower atmosphere, and serves as an indicator of land-atmosphere interaction and exchange 280 

(Li et al., 2023). Here, MODIS MYD11A1 radiometric dataset with quality flag ‘00’ was 281 

specifically chosen considering its broad swath and wider applicability in estimating land 282 

surface temperature. Besides, MODIS LST is validated against ground observations on diverse 283 

land covers and reported to provide realistic estimate of surface temperature (Wan, 2014) 284 

with an uncertainty of ≤0.5 K. The dataset includes daytime maximum LST (at 1:30 PM local 285 

time) and nighttime minimum LST (at 1:30 AM local time).Both daytime maximum and 286 

nighttime minimum LST approximately at 1:30 PM and 1:30 AM local time respectively, are 287 

available. HoweverHere, daytime LST dataset were obtained solely from the MODIS sensor 288 

onboard the Aqua satellite to closely coincide with VIIRS fire count observations at 1:30 PM 289 

local time, a period when crop residue–based fires are expected to reach at peak, to better 290 

approximate the timing of VIIRS fire count retrieval at 1:30 PM local time when crop residue-291 

based fire presumably remains at peak, surface retrievals of LST was only made from MODIS 292 

onboard Aqua satellite. 293 

 294 

Aerosol optical depth (AOD) from Visible Infrared Imaging Radiometer Suite (VIIRS) 295 

sensor on-board SNPP satellite offers accurate estimation of columnar aerosol loading at 550 296 

nm over land. Accuracy of VIIRS V1 DB AOD was evaluated extensively over South Asia by Aditi 297 

et al. (2023) and reported to provide stable AOD retrieval against AERONET. Sayer et al. (2019) 298 

reported an estimated error of ±(0.05+20%) in VIIRS Version 1 DB AOD dataset. Here, Deep 299 

Blue (DB) Version 1 AOD dataset (AERDB_L2_VIIRS_SNPP Level-2) was used to retrieve AOD 300 

with a nominal spatial resolution of 6 km at nadir. Only quality assured AOD (QA ≥ 2) was 301 
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retrieved for the months of October to November for years 2017 to 2021 over selected spatial 302 

domain. 303 

Terra/Aqua MODIS land cover data was used to discriminate crop land against the rest 304 

to filter out thermal anomalies exclusively over the agriculture land. To achieve this, MODIS 305 

L3 V6.1 Global Land Cover type product (MCD12Q1) was retrieved from LAADS DAAC site for 306 

year 2017, available at 0.5 km spatial resolution. MODIS land cover types adopts International 307 

Geosphere-Biosphere Programme (IGBP) and other land type classification schemes to 308 

classify land cover. Here, land cover type 12 (cropland) was earmarked to isolate the 309 

agriculture land from its surrounding (Fig. S32). 310 

Daily composite data on surface and root-zone soil moisture (SM, m³ m⁻³) available at 311 

9 km resolution was obtained from NASA’s Soil Moisture Active Passive (SMAP) satellite 312 

mission having L-band radar. The Normalized Difference Vegetation Index (NDVI) at 6 km 313 

resolution was derived from the VIIRS/SNPP Deep Blue (AERDB_L2_TOA_NDVI) dataset and 314 

was utilized to quantify surface vegetation greenness dynamics. Elevation data at 30 m 315 

resolution was retrieved from Copernicus DEM - Global and European Digital Elevation Model 316 

dataset for year 2015. Surface albedo data was acquired from MCD43 suite of NASA standard 317 

product which integrates both Terra and Aqua retrievals. Here, white-sky version 6.1 318 

shortwave albedo data (MCD43A3, Albedo_WSA_shortwave) at 500 m pixel resolution with 319 

daily-time step (quality score: 0) was used. 320 

 321 

 Lower surface meteorological data including air temperature (AtAT), total solar 322 

radiation flux (SrSR), precipitation (PrR),  and relative humidity (RH) was procured from 323 

European Centre for Medium-Range Weather Forecasts (ECMWF) AgERA5 dataset. The 324 

AgERA5 dataset has been generated by Copernicus Climate Change Service (2020) from hourly 325 

ECMWF ERA5 dataset for specific agro-ecological based applications. The meteorological data 326 

were pre-customized with temporal aggregation aligned to local time zones and spatial 327 

enhancement to a 0.1° resolution using grid-based variable-specific regression model. Here, 328 

air temperature at 2 meters above the surface, total solar radiation flux received at the surface 329 

over a 24-hour time period, and relative humidity at 2 meter height was selectively used over 330 

pre-identified intensive crop-based fire zone. Planetary boundary layer height (PBLH) data at 331 

0.25° x 0.25° resolution was acquired from ECMWF ERA5 for 13:00-14:00 h local time 332 
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corresponding with VIIRS overpass time. A description of all core datasets used in this analysis 333 

and their resolution, version, and quality flags and level of uncertainty is included in Table S1 334 

(in supplementary file).  335 

 336 

2.3 Spatial analysis for fire-aerosols-LST association 337 

2.3.1 Selection of intensive fire zone 338 

 Post-harvest residue burning typically begins in mid-October and reaches peak 339 

intensity by mid-November across northwestern India. Accordingly, all spatial analyses were 340 

conducted for October and November for the years 2017–2021. The VIIRS 375 m fire product 341 

successfully retrieved active fire pixels across the Indo-Gangetic Plain, capturing substantial 342 

spatial heterogeneity. Post-harvest specific crop residue burning typically commences during 343 

mid-October and reaches its peak intensity during mid-November, particularly over northwest 344 

India. All the spatial analysis was therefore, conducted for the months of October and 345 

November for year 2017 to 2021 (all inclusive). The VIIRS 375 m fire product was able to 346 

retrieve active fire pixels across the IGP with marked spatial heterogeneity. To ascertain a 347 

representative region having predominance of residue-based fire, spatial comparison of fire 348 

pixel density was made using daily retrieved VIIRS FRP dataset. FRP was selected instead of 349 

fire counts because it directly quantifies the radiative energy released from active burning 350 

and therefore provides a more meaningful metric for assessing potential impacts on LST. FRP 351 

density was computed on a 1.5 × 1.5 km2 grid to characterize spatial variations in fire intensity 352 

across northwestern India. Following Giglio et al. (2006), FRP density was estimated as the 353 

ratio of total FRP within a grid cell to the grid area.The selection of FRP over fire count as a 354 

criterion to isolate intensive fire region was driven by the fact that FRP directly relates energy 355 

release from active fire thereby, potentially modulate the spatial change in LST. Pixel density 356 

of fire radiative power was assessed at 1.5 x 1.5 km grid to compare spatial variations in FRP 357 

intensity across northwest India. To compute FRP density, a ratio between FRP and the grid 358 

area was computed following the protocol mentioned in Giglio et al. (2006).  359 

Initially, geospatial variations in fire intensity and associated changes in LST and AOD was 360 

assessed. Spatial intercomparison between fire intensity with LST and AOD was made over 361 

the designated zone shown in Fig. 2a. The zone was earmarked to cover an extended 362 

geographical area without imposing any discrimination between low and high FRP density 363 

over the northwest India. The zone was henceforth, referred as ‘extended geographical 364 
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region’ as it combines fire intensity across the years and was solely meant to constitute spatial 365 

association between the dependent and predictor variables. 366 

 367 

Fig. 2. Selection of high intensity residue-based fire zone based on fire radiative power pixel 368 

density (MW 2.25 kKm-2 day-1).  369 

NOTE. Fig. 2a indicates the ‘extended geographical region’ demarcating the entire area with 370 

varying fire intensity selected for spatial analysis. Rest of the figures classify year-371 

specific ‘intensive fire zone’ used to retrieve all the variables for spatiotemporal 372 

analysis based on FRP density. 373 

 374 

Initially, geospatial variations in fire intensity and the associated changes in LST and 375 

AOD were evaluated. Spatial intercomparison between FRP, LST, and AOD was performed 376 

over the region delineated in Fig. 2a. This area was selected to encompass an extended 377 

geographical domain without imposing thresholds on low or high FRP density across 378 

northwestern India. The region is hereafter referred to as the “extended geographical 379 

region,” as it integrates fire activity across all years and was used exclusively to establish the 380 

spatial association between the predictor (FRP) and dependent variables (LST and AOD). 381 

In contrast, to assess the day-to-day influence of fire intensity and aerosol loading on 382 

LST, a comparatively high-intensity fire zone was delineated relative to low-intensity areas. 383 

To achieve this, the entire crop-residue burning region of northwestern India was mapped 384 

using a constraint from low FRP density (<5 MW grid⁻¹) to high FRP density (>15 MW grid⁻¹). 385 
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Spatial variations in FRP density were evaluated for each year, and regions with FRP density 386 

>5 MW grid⁻¹ were identified as the “intensive fire zone” (Fig. 2b–f). In contrast, to establish 387 

potential effect of day to day variations in fire intensity and aerosol loading on LST, 388 

comparatively high intensity fire zone was designated against low intensity zone. To achieve 389 

this, entire crop-residue burning region of northwest India was earmarked constraining low 390 

(<5 MW grid-1) to high FRP density (>15 MW grid-1). Spatial variations in FRP density were 391 

compared among the selected years and region(s) was identified considering a threshold FRP 392 

density >5 MW grid-1 area (Fig. 2b-f). This threshold ensured a better representation of the 393 

effect of medium to large crop-based fire on regional LST as very small-intensity fire deem to 394 

extinguish faster while being inconducive to considerably influence surface temperature 395 

(Zhao et al., 2024).  396 

All subsequent spatial datasets used for evaluating FRP–AOD–LST relationships were 397 

retrieved exclusively within the year-specific ‘intensive fire zone’ having FRP density >5 MW 398 

grid-1. Notably, the spatial extent of the high-FRP region remained largely consistent across all 399 

years (Fig. 2b–f), with areal estimates summarized in Table S2. All the spatial datasets were 400 

subsequently retrieved exclusively within the year-wise designated ‘intensive fire zone’ having 401 

FRP density >5 MW grid-1, and included for ascertaining FRP-AOD-LST association. Incidentally, 402 

area having high FRP density (>5 MW grid-1) remained almost consistent as illustrated in Fig. 403 

2(b-f) and quantified in Table S1. It is noteworthy, the fire intensive region was pre-filtered 404 

based on the Terra/Aqua MODIS land cover data to deselect any FRP pixel that emerged from 405 

a non-agricultural/crop land. 406 

2.3.2 Selection of temporal window  407 

After isolating the region with higher fire pixel density, the next step was to identify 408 

the temporal window in which potential associations between fire intensity and other 409 

explanatory variables could be examined. The temporal selection was based on two scenarios, 410 

as illustrated in Fig. 3. Scenario 1 was designed to quantify the influence of FRP, aerosols, and 411 

other parameters on LST during the period when fire activity begins to intensify and remains 412 

persistent over the intensive fire zone. Scenario 1 defines the initiation day as the first instance 413 

in October when aggregate FRP consistently exceeds 1500 MW and shows at least a 50% 414 

increase compared to the previous day. The scenario concludes in November when aggregate 415 

FRP decreases by at least 50% relative to the previous day. The selected dates for Scenario 1 416 
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are listed in Table S3, with two exceptions. As the region with higher fire pixel density was 417 

isolated, our subsequent effort was to identify temporal window to assess potential 418 

association between fire intensity and other explanatory variables  on the identified zone. 419 

Selection of temporal window for spatial analysis was based on two scenarios as illustrated in 420 

Fig. 3. Scenario (1) was to quantify the influence of FRP, aerosols and other parameters on LST 421 

when fire intensity starts to build up and remain persistent over the intensive fire zone. 422 

Scenario (1) therefore, considers the day as initiation when FRP starts to build up for the first 423 

time in October and consistently exceeds 1500 MW with a corresponding 50% increase in area 424 

weighted FRP aggregate against its previous day. The Scenario (1) concludes with the same 425 

approximation during November with a 50% decline in aggregate FRP compared to its 426 

previous day. The dates selected for scenario (1) are shown in Table S2 with two exceptions. 427 

First, in year 2018 when a >50% criteria was not met despite having an aggregate FRP >1500 428 

MW and second, in year 2017 when a prior decrease (>50%) in FRP was avoided because of 429 

subsequent rise in fire intensity.  430 

 431 

 432 

Fig. 3. FRP and LST time series against LST over year-specific intensive fire zone showing the 433 

extent of with marked time frame for both scenarios selected used for geospatial 434 

modelling.  435 

NOTE. All the spatial datasets including FRP, fire count, AOD and LST were retrieved 436 

exclusively within the year-wise designated fire intensive zone having FRP density >5 437 

MW grid-1. Scenario (1) refers extended timeframe to consider entire fire period while 438 

scenario (2) select the interlude having high temporal coefficient between FRP and 439 

LST.  440 
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 441 

To define Scenario 2, a statistical association was examined between day-specific 442 

aggregate FRP and the spatially averaged LST. Pixel-based LST values were averaged over the 443 

intensive fire zone and compared against the area-weighted sum of FRP on a day-to-day basis. 444 

A temporal window (“Scenario 2” in Fig. 3) was selected using two criteria: (i) the end of the 445 

window had to coincide with a period of persistently high FRP, and (ii) the window had to 446 

exhibit a strong positive correlation (r ≥ 0.5) between FRP and regional LST. To constitute 447 

scenario (2), statistical association between day-specific aggregate FRP and spatially average 448 

LST retrievals were examined. Precisely, pixel-based LST was averaged over intensive fire zone 449 

and compared against area weighted FRP sum on day-to-day basis. Here, a temporal window 450 

(‘Scenario: 2’ in Fig. 3) for spatial analysis was identified to fulfilling two criteria; first, the end 451 

date of the window should coincide with the day having relatively high FRP and second, the 452 

selected window should achieve a robust and positive correlation (r 0.5) between FRP and 453 

LST. Such restricted criteria were put to ensure that we only select year-specific window(s) 454 

when FRP (so the fire count) increases with time and exhibit a strong association with regional 455 

LST. Descriptive statistics of both scenarios are included in Table S4. It is noteworthy that 456 

selecting multiple windows within a year having coinciding days was avoided while ensuring 457 

windows should not contain more than 5% of missing days, irrespective of parameters. 458 

2.4 Spatial correlation between fire, aerosols and LST 459 

To examine the spatial association among FRP, LST, and AOD over the residue–based fire zone, 460 

grid-based spatial correlation coefficients were computed, and their statistical significance (p 461 

< 0.05) was tested across the study domain. Daily FRP (375 m) and LST (1 km) datasets were 462 

initially resampled to a 6x6 km2 resolution to match the VIIRS AOD dataset before subject to 463 

spatial correlation analyses among the predictor and dependent variables. This approach 464 

facilitated the identification of regions exhibiting strong co-variability in thermal conditions 465 

corresponding to variations in fire intensity and columnar aerosol loading.To identify spatial 466 

association between FRP, LST and AOD over the crop residue-based fire zone, pixel-based 467 

spatial correlation coefficient was computed and its statistical significance (P<0.05) was tested 468 

across the study domain. This enables us to identify region having robust co-variability across 469 

the thermal conditions with varying fire intensity and columnar aerosol loading.  470 
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 471 

2.5 Hurst Exponent 472 

The Hurst exponent is a statistical measure used to characterize the properties of a 473 

time series without imposing assumptions about its underlying distribution. Originally 474 

introduced by Hurst (1951) in hydrological studies and later refined by Markonis and 475 

Koutsoyiannis (2016), it has since been widely applied across diverse scientific disciplines to 476 

analyse long-term trends and variability. In this study, the Hurst exponent was computed for 477 

FRP, AOD, and LST time series to identify long-term statistical persistence in the datasets. To 478 

estimate the Hurst exponent at the spatial scale, 6 × 6 km² resampled datasets of FRP, AOD, 479 

and LST were used. Adjustment of seasonal cycle was not accounted, as the datasets were 480 

retrieved and processed exclusively for a single season across the selected years. The Hurst 481 

exponent is a statistical measure used to characterize the properties of a time series without 482 

imposing assumptions regarding its statistical distribution. Originally introduced by H.E. Hurst 483 

(1951) in the context of hydrological studies and later refined by Markonis and Koutsoyiannis 484 

(2016), it has since been widely applied across diverse scientific disciplines for analysing long-485 

term trends and variability. Here, Hurst exponent was computed for FRP, AOD and LST 486 

timeseries to recognize long term persistence of the dataset. The main calculation procedures 487 

were as follows (Granero et al., 2008): 488 

A time series x(t) is given,  489 

(x)t = 1/𝜏 ∑ 𝑥(𝑡)   𝑡 = 1, 2, 3 …  𝜏
𝑡=1        (1) 490 

The cumulative deviation is determined using Eq. 2: 491 

𝑋(𝑡, 𝜏) = ∑ (𝑥(𝑢) − (x)t)𝜏
𝑢=1 , with a condition of 1 ≤ t ≤ τ.    (2) 492 

Extreme deviation sequence, is defined as: 493 

R(τ)  =  max
1≤t≤τ

X(𝑡, 𝜏) − min
1≤t≤τ

X(𝑡, 𝜏)  𝑤ℎ𝑒𝑟𝑒 𝜏 = 1, 2, 3 …     (3) 494 

The standard deviation sequence is calculated by Eq. (4): 495 

𝑆(𝜏) = [1/𝜏 ∑ (x(t) − (𝑋)𝜏)
𝜏

𝑡=1
2]1/2  𝑤ℎ𝑒𝑟𝑒 𝜏 = 1, 2, 3 …    (4) 496 

By considering both extreme deviation sequence and standard deviation sequence, 497 

R/S = R (𝜏 )/S (𝜏) when assuming (R/S) ∝ (τ/2) H     (5) 498 
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The Hurst exponent ranges between 0 and 1. A value of 0.5 indicates that the time series 499 

behaves as a purely stochastic process without persistence, implying that future variations are 500 

independent of past behaviour. Values greater than 0.5 denote statistical persistence, 501 

reflecting a tendency for future changes to follow the same trend as in the past, with higher 502 

values corresponding to stronger persistence. Conversely, values below 0.5 indicate anti-503 

persistence, suggesting a tendency for the time series to reverse its trend over time; lower 504 

values represent stronger anti-persistence (Peng et al., 2011).Hurst exponent varies between 505 

0 and 1. A value of 0.5 signifies that the time series behaves as a stochastic process lacking 506 

persistence, indicating that future trends in the series are independent of those observed 507 

during the study period. Values exceeding 0.5 denote persistence in the time series, reflecting 508 

a tendency for future changes to follow the same trend as in the past; higher values 509 

correspond to stronger persistence. Values below 0.5 indicate anti-persistence, meaning the 510 

time series exhibits a tendency to reverse its trend over time, with lower values indicating 511 

stronger anti-persistence (Peng et al., 2011). To compute Hurst exponent at spatial scale, 6x6 512 

km2 resampled datasets of FRP, AOD and LST were used. 513 

 514 

2.6 Space-for-time approach 515 

 A space-for-time approach was employed to assess and compare the spatial 516 

heterogeneitychanges inof LST and AOD with respect to variations in FRP within the extended 517 

geographical region experiencing recurrent medium- to largehigh- intensity fire. To ascertain 518 

that theensure that changes in LST and AOD were attributable solely to fire activity, grids with 519 

similar characteristics in terms of topography, climate, and physical environment were 520 

compared (Liu et al., 2019)was only due to fire, we have adopted the procedure briefed in Liu 521 

et al. (2019) where grids exhibiting fire were only compared with control grids having similar 522 

characteristics. To achieve this, daily datasets including meteorological covariates (PBLH, AT, 523 

SR, RH and PR), physical environment (elevation), vegetation and soil characteristics (NDVI, 524 

soil moisture), climatological mean LST and AOD, and surface property (albedo) were 525 

extracted over both fire and no-fire grids at a spatial resolution of 10 × 10 km²climatological 526 

mean LST and AOD, and systematic land-cover differences (albedo) across the fire and no-fire 527 

grids were extracted in multiples of 10x10 km2 grid cell and compared. The daily data were 528 

retrieved for each grid duringunder Scenario 2, when FRP reached its peak and exhibited a 529 
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positive association with regional LST.Daily LST, AOD and FRPdataset was subsequently 530 

retrieved over individual grid for the duration selected under scenario two when FRP remains 531 

at its peak and corresponds a both fire and corresponding LST increases with timepositive 532 

association with regional LST. 533 

 534 

 A space-for-time approach (Liu et al., 2019) was used to assess and compare 535 

heterogeneity in AOD and LST against the variation in FRP within residue-based fire zone. 536 

Initially, year specific intensive fire zone was categorically divided in to multiples of 10x10 km2 537 

grid cell, selected on the basis of resolution of VIIRS AOD. Daily LST, AOD and FRP was 538 

subsequently retrieved over individual grid for the duration selected under scenario two 539 

when both fire and corresponding LST increases with time. After filtering out the grid cells 540 

having with missing values for either LST or AOD values, remaining grids were classified into 541 

two groups:, those with one, having zero FRP (no -fire) against all the grids having FRP > 0, 542 

indicating presence of fire. Fire and no-fire grids with comparable spatial characteristics were 543 

grouped into a single stratum, and a stratified matching technique was applied to generate 544 

multiple strata based on combinations of the selected confounders. Grids were retained only 545 

when differences in their physical environment, vegetation and, soil characteristics, climate 546 

and land cover between fire and no-fire conditions were smaller than the defined thresholds  547 

(elevation < 50 m; NDVI <0.05; soil moisture <0.05; albedo <0.05; LST <10.0; AOD 548 

<0.80). Fire and no-fire grids exhibiting comparable spatial characteristics were grouped into 549 

a single stratum, and a simple stratified matching technique was applied to generate multiple 550 

strata based on combinations of the selected confounders. Comparisons were then made 551 

within strata containing grids of similar attributes to ensure that the observed variations in 552 

LST and AOD could be attributed solely to fire activityComparisons were subsequently made 553 

within strata containing grids of similar characteristics to ensure that observed changes in LST 554 

and AOD could be attributed solely to fire activity. The difference in LST (LST) among the fire 555 

grids (LSTfire) and grids exhibiting no-fire (LSTno-fire) having similar attributes were compared 556 

to constitute effect of residue-based fire on LST. thewithin a strata based fire and having 557 

similar attributesA positive (negative) LST (LSTfire – LSTno-fire) indicates fire-induced warming 558 

(cooling) and was used to quantify changes in LST associated with residue burning for the 559 
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selected years. A similar approach was also adopted to evaluate AOD variations using grid-560 

based retrievals.  561 

It is noteworthy that the grids were not classified based on meteorological covariates, 562 

as only insignificant variations were noted among the grids. The entire northwestern cropland 563 

experiences a relatively uniform background climate during October–November, including 564 

comparable boundary layer heights, with PBLH standard deviations ranging from ±10 m to 565 

±33 m within a single fire season. The climatological mean LST and AOD were computed only 566 

for the pre-fire season (September, 2017-2021), during which none of the grids experienced 567 

residue-burning activity. Furthermore, grids were not differentiated by slope or aspect, given 568 

the minimal topographic variation across the Gangetic Plain.It is noteworthy that all grids 569 

exhibited a similar background climate, including comparable boundary layer heights with 570 

PBLH standard deviation varied from ±10 m to ±33 m within fire season. The climatological 571 

mean LST and AOD was included only for pre-fire season. Additionally, grids were not 572 

differentiated by slope or aspect, as topographic variation across the Gangetic Plain is 573 

minimal. 574 

 575 

Subsequently, LST and AOD across all the grids with zero FRP were averaged (LSTno fire) and 576 

compared against mean LST (LSTfire) computed by averaging the grids exhibiting residue-577 

based fire. A positive (negative) LST (LSTfire – LSTno fire) indicates a warming (cooling) induced 578 

by fire and was used to assess change in LST due to residue-based fire for the selected years. 579 

A similar approach was also used to constitute AOD variations utilizing grid-based retrievals.  580 

 581 

2.7 Multicollinearity assessment 582 

Multicollinearity, where independent variables are highly correlated, can distort regression 583 

model estimates and obscure the true relationships between predictors and the target 584 

variable (Graham, 2003). In this study, multicollinearity was assessed by calculating the 585 

Variance Inflation Factor (VIF) using the statsmodels library. A VIF value of 1 indicates no 586 

multicollinearity, values between 1 and 5 suggest moderate correlation, and values above 5 587 

indicate significant multicollinearity (Daoud, 2017). +SR  588 
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Multicollinearity, where independent variables are highly correlated, can distort 589 

regression estimates and obscure the true contribution of individual predictors (Graham, 590 

2003). To assess this, the Variance Inflation Factor (VIF) for all covariates was calculated using 591 

the statsmodels library. A VIF of 1 indicates no correlation, values between 1 and 5 suggest 592 

moderate correlation, and values greater than 5 are generally interpreted as evidence of 593 

substantial multicollinearity (Daoud, 2017). All biophysical, land-surface, and meteorological 594 

variables met acceptable VIF thresholds, except solar radiation, which was therefore excluded 595 

from Random Forest and GWR analysis. Additionally, soil moisture data was removed from 596 

ensemble modelling and GWRfurther analysis due to a high percentage of missing 597 

observations (~30%). 598 

2.8 Random Forest regression (CHECK REFERENCE)+ SM 599 

Random Forest regression was used to model the relationship between the 600 

dependent variable (LST) and predictor variables (AOD, PBLH, AT, RH, SR, PR, NDVI, elevation, 601 

albedo, and FRP) within the intensive fire zone. Daily retrievals, averaged over the year-602 

specific intensive fire area, were incorporated into the ensemble framework to capture 603 

potential non-linear associations among variables. The selected approach ensures robustness 604 

to multicollinearity, minimizes overfitting, and effectively captures complex predictor 605 

interactions. 606 

Random Forest is a non-linear ensemble machine learning algorithm that constructs 607 

multiple decision trees from bootstrapped samples of the training data, with a random subset 608 

of predictors evaluated at each split. Final predictions are obtained by averaging all trees, 609 

improving generalization and reducing overfitting (Breiman, 2001; Puissant et al., 2014). The 610 

algorithm was selected due to its strong predictive capability, scalability to large 611 

environmental datasets, resilience to correlated inputs, and demonstrated success in 612 

previous LST-related studies (Logan et al., 2020; Wang et al., 2022; Zhang et al., 2025). These 613 

attributes collectively support Random Forest as an appropriate and interpretable choice for 614 

assessing the complex interactions between fire intensity, aerosol loading, and LST dynamics. 615 

Random Forest regression was used to model the relationship between the 616 

dependent variable (LST) and the predictor variables (AOD, PBLH, AT, RH, SR, PT, NDVI, 617 

Elevation, albedo, and FRP). The Random Forest model was applied to daily spatial averages 618 

of each dataset to quantify day-to-day changes in surface temperature. Random Forest is a 619 
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non-linear ensemble learning method that constructs multiple decision trees using 620 

bootstrapped samples of the training data, with a random subset of predictors considered at 621 

each node split. The final prediction is obtained by averaging the outputs of all trees, which 622 

enhances generalization performance and reduces overfitting (Breiman, 2001; Puissant et al., 623 

2014).  624 

Random Forest (RF) regression was used to model the relationship between the 625 

dependent (LST) and the predictor variables (AOD, At, RH, Sr, Pr, FRP). It is noteworthy that RF 626 

was employed on daily-based spatial average of individual dataset to model the change. The 627 

RF is a non-linear ensemble learning method that constructs multiple decision trees using 628 

bootstrapped samples of the training data, with random subsets of predictors considered at 629 

each split. The final prediction is obtained by averaging the outputs of all trees, which 630 

improves generalization and mitigates overfitting. Due to its ability to model complex non-631 

linear relationships and handle multicollinearity and interactions among predictors effectively, 632 

RF is particularly suited for environmental modelling tasks (Breiman, 2001; Puissant et al., 633 

2014). 634 

Key Randonm Forest hyperparameters (n_estimators, max_depth, 635 

min_samples_split, min_samples_leaf, and max_features) were optimized using Bayesian 636 

optimization implemented via BayesSearchCV in scikit-optimize (Snoek et al., 2012; Shahriari 637 

et al., 2015; Frazier, 2018). This adaptive, probabilistic search strategy efficiently identifies 638 

near-optimal hyperparameter combinations while minimizing computational cost. To ensure 639 

robust model evaluation and mitigate temporal dependence, we employed temporal block 640 

cross-validation using a 3-fold GroupKFold in the scikit-learn library, where all observations 641 

from a given year were assigned to the same fold. This approach prevented temporal overlap 642 

between training and validation datasets and reduced information leakage across years. The 643 

predictive skill of the Random Forest model was evaluated using temporal block cross-644 

validation implemented with GroupKFold, where each fold corresponded to a distinct year. 645 

This approach also minimized temporal autocorrelation and prevented data leakage across 646 

time periods. Model performance was quantified using cross-validated coefficient of 647 

determination (R²), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), 648 

providing a comprehensive assessment of model accuracy and prediction error.The RF model 649 

was implemented using Scikit-learn’s RandomForestRegressor with 100 trees and a fixed 650 



23 
 

Formatted: Font: 9 pt

random seed to ensure reproducibility. A correlation pattern of prime predictor with 651 

dependent variable was also plotted through partial dependence plots (PDPs). The dataset 652 

was partitioned into training (75%) and testing (25%) subsets, and model performance was 653 

assessed using statistical metrics like coefficient of determination (R²), Root Mean Squared 654 

Error (RMSE), and Mean Absolute Error (MAE), allowing a comprehensive evaluation of model 655 

accuracy and prediction error.  656 

2.9 Assessment of relative feature importance  657 

Variable importance was derived from the trained RF model using the mean decrease in 658 

impurity method, which quantifies each predictor’s relative contribution to reducing variance 659 

in model predictions. This approach provides insight into the dominant factors governing the 660 

spatial and temporal variability of LST. Feature importance values were extracted and ranked 661 

to identify the most influential predictors under different fire intensity scenarios. To enable 662 

direct comparison among predictors, the relative contribution of each feature was expressed 663 

as its importance score normalized by the sum of all feature importances. As Scikit-learn’s 664 

RandomForestRegressor.feature_importances_ inherently returns normalized values 665 

summing to one, the reported scores directly represent each predictor’s proportional 666 

influence within the model.Variable importance was computed from the trained RF model 667 

using the mean decrease in impurity approach, which quantifies the relative contribution of 668 

each predictor variable in reducing variance in the model’s prediction. This analysis offers a 669 

focused understanding of the dominant variables driving spatial and temporal variability in 670 

LST. Feature importance were extracted and ranked to identify the most influential predictors 671 

of LST during diverse fire intensity scenarios. To facilitate meaningful comparison across 672 

predictors, the relative contribution of each feature was calculated as the ratio of its 673 

importance score to the sum of all feature importances. This normalized metric reflects the 674 

proportional influence of each predictor within the model. Since Scikit-learn’s 675 

RandomForestRegressor.feature_importances_ provides these values as normalized 676 

contribution summing to 1, the output inherently aligns with the relative contribution.  677 

 678 

2.10 Spatial heterogeneity assessment using GWR 679 
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Spatial heterogeneity in the influence of FRP, AOD, and other spatial predictors on LST 680 

within the intensive fire zone was assessed using Geographically weighted regression (GWR) 681 

at 1x1 km2 grid. GWR is a spatially explicit regression technique designed to quantify how 682 

relationships between predictors and a dependent variable vary across geographic space by 683 

estimating spatially varying coefficients (Brunsdon et al., 1996). The method applies a 684 

distance-based weighting scheme, whereby observations closer to a given location receive 685 

higher weights, allowing local parameter estimation that reflects neighbourhood-specific 686 

dynamics (Yang et al., 2020). Unlike global regression models that assume spatial stationarity, 687 

GWR produces location-specific coefficient estimates, offering a more nuanced 688 

understanding of spatially varying associations between LST and its predictors (Fotheringham 689 

et al., 2009).Spatial heterogeneity in FRP modulated variations in LST across intensive fire 690 

zone was further assessed using Geographically Weighted Regression (GWR). It is an 691 

advanced statistical method designed to capture heterogeneity in association across space 692 

between predictors and dependent variables by constraining spatially-varying coefficient 693 

estimates (Brunsdon et al., 1996). The GWR allows regression coefficients to vary locally 694 

across geographic space and effectively track these coefficients by using a weight matrix 695 

which evaluates the association between kernel and nearby samples (Yang et al., 2020). 696 

Unlike global models that assume spatial stationarity, GWR estimates location-specific 697 

parameters, thus providing a nuanced understanding of spatially varying relationships 698 

between dependent and independent variables (Fotheringham et al., 2009). The GWR model 699 

is formally expressed as: 700 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ (𝛽𝑘(𝑢𝑖, 𝑣𝑖) 𝑥𝑖𝑘) + 
𝑚

𝑘=1
𝜀𝑖                                                              (6) 701 

yi = β0(ui, vi) + ∑k=i  m βk(ui, vi) xik + εi       (6) 702 

where (ui, vi) are the coordinates of observation i, βk(ui, vi) are spatially varying coefficients, 703 

xik are predictor variables, and εi denotes random error. In GWR, local parameters are 704 

estimated using weighted least squares, where each observation is assigned a weight based 705 

on its spatial proximity to the location being evaluated. These weights are determined by a 706 

spatial kernel function and a bandwidth parameter that defines the extent of spatial 707 

influence. Selecting an optimal bandwidth is therefore essential to balance the trade-off 708 

between model bias and variance. In this study, the optimal bandwidth was identified through 709 

an iterative optimization procedure that minimizes the corrected Akaike Information 710 
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Criterion (AICc) (Fotheringham et al., 2009). This approach ensures robust estimation of local 711 

relationships while effectively accounting for spatial non-stationarity in the dataset. Such a 712 

framework is particularly valuable in fire-affected landscapes, where the impacts of fire 713 

intensity, aerosol loading, and surface characteristics on LST are inherently heterogeneous 714 

and vary substantially across space.Here, local parameter is estimated using a weighted least 715 

square in which each observation is weighted according to its spatial proximity to the location 716 

being evaluated. The weights are determined by a spatial kernel function and a bandwidth 717 

parameter, which controls the degree of spatial influence. Choosing an optimal bandwidth is 718 

therefore, critical to balance the trade-off between model bias and variance. In this study, the 719 

optimal bandwidth is selected through an iterative optimization process that minimizes the 720 

corrected Akaike Information Criterion (Fotheringham et al., 2009). This also ensures robust 721 

estimation of local relationships while accounting spatial non-stationarity in the dataset. 722 

 723 

3. Results and discussions 724 

3.1 Spatial association between fire, aerosols and LST 725 

Spatial variations in FRP, LST and AOD averaged for October to November between 726 

2017 and 2021 over extended geographical region is shown in Figure 4(a-c). While residue-727 

based FRP did not exhibit a distinct spatial pattern, temporal variations were prominent, with 728 

monthly mean FRP in November (310,188 MW month⁻¹) showing nearly a 100% increase 729 

compared to October (152,616 MW month⁻¹; Table S5). In contrast, the spatial pattern of LST 730 

exhibited considerable heterogeneity, with relatively higher temperature observed in the 731 

southern parts of the region that gradually declined northward. This north–south gradient 732 

may be partially attributed to the proximity of the Himalayan foothills, where the cooler 733 

mountainous environment likely offsets fire-induced surface warming. A gradual decline in 734 

spatially averaged monthly mean LST was also accounted in November (29.0±2.4 °C) 735 

compared to October (31.0±1.6 °C).  A spatially distinct pattern in columnar aerosol loading 736 

was evident across the extended geographical region, with elevated AOD (> 0.65) retrieved 737 

over the central areas that gradually decreased towards its periphery (< 0.30). Such spatial 738 

variability in aerosol loading is likely driven by differences in the intensity of residue-based 739 

fires and the associated emissions of aerosols and trace gas precursors. Moreover, the 740 

pronounced increase in monthly mean AOD (October: 0.59 ± 0.08; November: 0.82 ± 0.12) 741 
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likely reflects the intensification of fire during early November, compounded by concurrent 742 

meteorological influences, most notably the seasonal decline in boundary layer height  743 

(Banerjee et al., 2022). 744 

 745 

 746 

Fig. 4. SSpatial association variations ofbetween predictor (FRP, LST and AOD) and dependent 747 

variables (LST), over extended geographical region, 5-year mean FRP (a), LST (b) and 748 

AOD (c), and spatial correlation between FRP_LST (d), FRP_AOD (e) and AOD_LST (f) 749 

over extended geographical region. To compute spatial correlation,  750 

NOTE. To constitute a spatial association, ddaily retrievals of FRP, AOD and LST pixels were 751 

converted to a common 6x6 km2 grid. Spatial correlation between FRP, LST and AOD 752 

daily retrievals on selected grid was madecomputed for the entire duration over 753 

extended geographical regionand. S significant correlation (P<0.05) is shown with black 754 

dot. 755 

 756 

Formatted: Line spacing:  1.5 lines

Formatted: Font: 12 pt

Formatted: Font color: Text 1

Formatted: Font: 12 pt

Formatted: Superscript

Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Font: 12 pt



27 
 

Formatted: Font: 9 pt

Spatial variations in FRP, LST and AOD averaged during for October to November 757 

between 2017 and 2021 over extended geographical region without discriminating low to 758 

high fire intensity is shown in Figure 4(a-c). While residue-based FRP did not exhibit a distinct 759 

spatial pattern, temporal variations were prominent, with monthly mean FRP in November 760 

(310,188 MW month⁻¹) showing nearly a 100% increase compared to October (152,616 MW 761 

month⁻¹; Table S4). Variations in FRP did not reveal any specific spatial pattern while temporal 762 

differences were robust with approximately 100% increase in monthly mean FRP in the month 763 

of November (310,188 MW month-1) compared to October month (152,616 MW month-1, 764 

Table S3). ). In contrast, the spatial pattern of LST exhibited considerable heterogeneity, with 765 

relatively higher temperature observed in the southern parts of the region that gradually 766 

declined northward.Spatial pattern in LST however, indicate a marked heterogeneity with 767 

comparably high temperature at lower southern region that declined gradually towards 768 

north. This north–south gradient may be partially attributed to the proximity of the 769 

Himalayan foothills, where the cooler mountainous environment likely offsets fire-induced 770 

surface warming. A gradual decline in This could potentially due to the proximity of 771 

mountainous region which partially offset the fire induced elevated LST in the northern part. 772 

spatially averaged monthly mean LST was also accounted in November (29.0±2.4 °C) 773 

compared to October (31.0±1.6 °C). Overall, spatially averaged LST monthly mean varied from 774 

28 to 32 °C with slightly higher temperature during October (31.0±1.6 °C) compared to 775 

November month (29.0±2.4 °C). On the contrary, a A spatially distinct pattern in columnar 776 

aerosol loading was evident across the extended geographical region, with elevated AOD (> 777 

0.65) retrieved over the central areas that gradually decreased towards its periphery (< 0.30).  778 

spatially robust signature in columnar aerosol loading was apparent across the extended 779 

geographical region. Comparatively high AOD (>0.65) was retrieved at the centre that too 780 

receded towards its border (<0.30). Such spatial variability in aerosol loading is likely driven 781 

by differences in the intensity of residue-based fires and the associated emissions of aerosols 782 

and trace gas precursors. Moreover, the pronounced increase in monthly mean AOD 783 

(October: 0.59 ± 0.08; November: 0.82 ± 0.12) likely reflects the intensification of fire during 784 

early November, compounded by concurrent meteorological influences, most notably the 785 

seasonal decline in boundary layer height  Such spatially robust variation in columnar aerosols 786 

potentially influenced by the varying intensities of fire associated emission of aerosols and 787 

trace gas precursors. (Banerjee et al., 2022)A strong deviation in monthly mean AOD 788 
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(October: 0.59 ±0.08; November: 0.82±0.12) was also accounted which either influenced by 789 

November specific increase in fire intensity and/or meteorological variables, especially due 790 

to the decline in planetary boundary layer height (Banerjee et al., 2022). 791 

Spatial associations among VIIRS-derived FRP, MODIS LST, and VIIRS-based AOD daily 792 

retrievals were assessed over the extended geographical region (Fig. 4d–f). Spatial association 793 

between VIIRS FRP against MODIS LST and VIIRS driven AOD daily retrieval was also assessed 794 

over pre-identified geographical region (Fig. 4d-f). Spatial correlation between pixel-based 795 

FRP against LST reveals positive but a spatially heterogenous positive association across most 796 

parts of the study area, except in the southern regionover major portion of the area except 797 

southern part. A statistically significant relationship (P < 0.05) between FRP and LST 798 

underscores the potential influence of crop residue burning on surface temperature. 799 

Similarly, a significant association between FRP and AOD was observed across the central 800 

region, where fire intensity was notably higher than in surrounding areas. This spatial 801 

covariation between fire intensity and columnar aerosol loading further reinforces the 802 

influence of biomass-burning-induced emissions of aerosols and their precursors on 803 

atmospheric aerosol abundance. A statistically significant association (P<0.05) between FRP 804 

and LST indicates potential influence of crop-based fire on surface temperature. FRP and AOD 805 

also accounts a statistically significant association across the central part where fire intensity 806 

was considerably high compared to its outskirts. Such spatial covariation between fire 807 

intensity and columnar aerosol loading reemphasize the possible influence of incremental 808 

aerosols and its precursors’ emission from biomass burning on columnar aerosols. Biomass-809 

burning aerosols, predominantly composed of carbonaceous soot particles, are known to 810 

modulate the thermal budget of the lower atmosphere (Freychet et al., 2019; Xu et al., 2021). 811 

The spatial association between AOD and LST further supports the existence of a fire–aerosol–812 

surface temperature nexus over northwestern India. A comparatively weak yet statistically 813 

significant positive correlation between AOD and LST likely reflects lower-atmospheric 814 

warming induced by smoke aerosols, consistent with the similar warming effect over western 815 

United States during 2017 California wildfire (Gomez et al., 2024). 816 

Biomass burning aerosols primarily being carbonaceous smoke particles are reported 817 

to modulate lower atmospheric thermal budget (Bond et al., 2013). Spatial association 818 

between AOD and LST provide further evidence on possible fire-aerosols-surface temperature 819 
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nexus over northwest India. A comparatively low but significant positive association between 820 

AOD and LST was possibly the consequence of smoke aerosols induced lower atmospheric 821 

warming, as was also accounted by Gomez et al. (2024) over western United States during 822 

2017 California wildfire. 823 

3.2 Evaluation of Hurst exponent  824 

 The Hurst exponent was evaluated to assess the long-term persistence of fire 825 

intensity, surface temperature, and aerosol loading time series over the extended 826 

geographical region. In principle, the Hurst exponent is used to quantitatively distinguish a 827 

purely stochastic time series (H = 0.50) from a persistent (H > 0.50) or anti-persistent (H < 828 

0.50) time series of pixel-based FRP, LST, and AOD, following the methodology described in 829 

Markonis and Koutsoyiannis (2016) and Chen et al. (2022).Hurst exponent was evaluated to 830 

ascertain long-term persistence of fire intensity, surface temperature and aerosol loading 831 

time-series over the intensive fire zone. Principally, Hurst exponent is employed to 832 

quantitative segregate a stochastic time series (H: 0.50) against a sustainable (H> 0.50) and 833 

anti-persistence time-series (H< 0.50) of pixel-based FRP, LST and AOD following the protocol 834 

as mentioned in Markonis and Koutsoyiannis (2016) and Chen et al. (2022). 835 

As shown in Figure 5, nearly the entire extended geographical region of northwestern 836 

India exhibits Hurst exponent values greater than 0.50 for FRP, with relatively higher values 837 

(0.60–0.70) concentrated toward its central zone. Although variations in Hurst exponent for 838 

FRP was spatially inconsistent, primarily due to temporal and spatial fluctuations in fire 839 

intensity, the FRP time series over most of the region indicates statistical persistence. 840 

Similarly, elevated Hurst exponent values for LST (>0.50) across the region also exhibits 841 

persistence at long run. Notably, the northern portion of the study region shows slightly 842 

higher Hurst exponent values compared to the southern part. For regional aerosol loading, 843 

except few isolated patches, comparatively high Hurst exponent values (>0.75) were 844 

observed over the central region. Notably, this area also coincides with zones characterized 845 

by high AOD (>0.65) and a statistically significant FRP–AOD association. Overall, the Hurst 846 

exponent analysis indicates that the observed FRP, LST, and AOD time series across most of 847 

the residue-burning region exhibit statistical persistence. 848 
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 849 
 850 

Fig. 5. Estimating FRP (MW), LST (C) and AOD time-series persistence in extended 851 

geographical region . 852 

 853 

It could be seen from Fig. 5 that almost entire ‘extended geographical region’ over 854 

northwest India appears to have a Hurst exponent >0.50 for FRP with relatively high exponent 855 

(0.60-0.70) at the centre. Although the variations in Hurst exponent was not highly consistent 856 

as fire intensity fluctuates with time and space, we note that the accounted FRP time-series 857 

over major proportion of the region should sustain in longer time period. Similarly, a high 858 

exponent for LST (>0.50) across the region entails LST time-series too persisted and possibly 859 

remain stable in near future. For agriculture land located at the northern part, Hurst exponent 860 

appeared to be >0.65 indicating a strong trend in LST time series. For regional aerosol loading, 861 

barring few isolated tiny patches, Hurst exponent enhanced with space and time and 862 

accounted highest value (>0.75) over the central part. The region also coincides with area 863 

having high AOD (>0.65) and statistically significant association for FRP and AOD.  864 

 865 

However, interpretation of the Hurst exponent results should be approached with 866 

caution. The five-year dataset used here may not be sufficient to derive statistically robust 867 

estimates. For the same reason, trend analysis was not undertaken, as the limited dataset 868 

constrains the reliability of such estimates and falls beyond the scope of the present study. 869 

Nonetheless, several studies have documented long-term trends in fire dynamics and aerosol 870 

loading over northwestern India It is noteworthy that trend analysis was not undertaken, as 871 

such estimation falls beyond the scope of the present study. Moreover, the five-year dataset 872 

may not be sufficient to derive statistically robust trends comparable with previous long-term 873 
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assessments. Nonetheless, several studies have documented long-term trends in fire 874 

dynamics and aerosol loading over northwestern India (e.g., Vadrevu and Lasko, 2018; Jethva 875 

et al., 2019; Singh et al., 2020).Its noteworthy that we have avoided analysing trend in 876 

respective time series as such estimation was not within the scope of the present research. 877 

Besides, a 5-year time period may not result statistically robust trend deemed comparable 878 

with previous estimates. Long-term trend in fire dynamics and aerosol loading over the 879 

northwest region has however been reported by several researches, like Vadrevu and Lasko 880 

(2018), Jethva et al. (2019) and Singh et al. (2020). 881 

 882 

3.3 Surface temperature and aerosols response to fire intensity  883 

Fire intensity in terms of pixel-based FRP, aerosol loading and surface temperature 884 

were retrieved to constitute compute corresponding respective daily means and spatial 885 

means based on five years of satellite retrievals. It is noteworthy that to account immediate 886 

response of fire intensity and aerosol loading on surface temperature, all variables were 887 

retrieved exclusively over year-specific  wise intensive fire zones, having cumulative FRP  5 888 

MW grid-1 , as illustrated in Fig. 2(b-f).  889 
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890 

 891 

Fig. 6. Time series of five-year mean fire radiative power (FRP, a), land surface temperature 892 

(LST, b) and aerosol optical depth (AOD, c) against daily retrievals, (d) covariation of FRP, 893 

AOD and LST over intensive fire zone.  894 

Gray dots show daily retrievals from October to November (2017–2021), with the red line 895 

depicting the corresponding 5-year mean.NOTE: Gray dots indicate daily retrievals from 896 
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October to November over the years from 2017 to 2021 while 5-yr mean is the daily 897 

average based on retrievals from 2017 to 2021, and is indicated with red line. 898 

 899 

A distinct temporal pattern is evident in the FRP time series (Fig. 6a), which corresponds 900 

closely with daily variations in fire counts (Fig. S4). Over northwestern India, FRP starts to 901 

build-up typically in mid-October, peaks consistently during the first week of November, and 902 

declines thereafter by mid-November. In contrast, the temporal pattern of the five-year mean 903 

LST time series appears less pronounced, as daily retrievals exhibit substantial variability. 904 

Regional LST demonstrates both interannual and intra-annual fluctuations, as illustrated in 905 

Fig. S5. Notably, the FRP time series aligns well with the mean columnar aerosol loading, 906 

underscoring the potential influence of aerosol and precursor emissions from widespread 907 

biomass burning.A robust temporal pattern could be extracted from FRP timeseries (Fig. 6a) 908 

which reciprocates well with corresponding daily variations in fire count (Fig. S3). We note 909 

FRP initiates during mid-October over northwest India and reaches its peak consistently in the 910 

first week of November before reducing mid-November onwards. In contrast, temporal 911 

pattern in five-year mean LST timeseries is less intensive as daily retrievals shows extensive 912 

range of deviations. Regional LST clearly reflects both inter- and intraannual fluctuations, as 913 

shown in Fig. S4. FRP time series however, matches well with mean columnar aerosol loading 914 

emphasizing possible effect of emission of aerosols and its precursors from extensive biomass 915 

burning. The characteristic rise in AOD during first two weeks of November possibly exhibits 916 

the direct response to elevated fire intensity as columnar aerosols consistently surpass 1.00 917 

over the intensive fire zone. Interestingly, every year in between October 25 to November 20, 918 

90% of daily-AOD exceeds 5-yr mean AOD (0.74±0.28) with corresponding 800% rise in 919 

average FRP (13085±6825 MW) compared to rest of the period (1148±1478 MW). Dring this 920 

interlude, five-year mean columnar AOD corelates well with 5-yr aggregate FRP (r: 0.46) and 921 

mean LST (0.41) which was otherwise, not the case for the remaining period (AOD-FRP: 0.18; 922 

AOD-LST: -0.02).  923 

The characteristic rise in AOD during the first two weeks of November likely represents 924 

a direct response to intensified fire activity, as columnar AOD values consistently exceed 1.00 925 

over the intensive fire zone. Interestingly, between October 25 and November 20 each year, 926 

approximately 90% of daily AOD observations surpass the five-year mean (0.74 ± 0.28), 927 
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coinciding with an 800% increase in average FRP (13,085 ± 6,825 MW) compared to the 928 

remainder of the season (1,148 ± 1,478 MW). During this interval, the five-year mean 929 

columnar AOD exhibits a strong association with the aggregate FRP (r = 0.46) and mean LST 930 

(r = 0.41), whereas these associations weaken considerably outside this period (AOD–FRP: r = 931 

0.18; AOD–LST: r = –0.02). 932 

The temporal associations among FRP, AOD, and LST clearly demonstrate the immediate 933 

response of fire-induced variations in aerosol loading and surface temperature over 934 

northwestern India. Accordingly, in the subsequent section, these relationships were 935 

modeledmodelled using a geospatial tree-based regression framework that integrates 936 

concurrent temporal features (e.g., day-specific retrievals) and spatial predictors (e.g., 937 

regional meteorology, aerosol loading, and fire intensity) to quantify and characterize the 938 

FRP–AOD–LST nexus within the intensive fire zone.Temporal association between FRP-AOD 939 

and LST clearly illustrates the immediate response of fire-associated changes in aerosol 940 

loading and surface temperature over the northwest part of India. In the subsequent section, 941 

such association was therefore, modelled using a geospatial tree-based regression model 942 

using several concurrent temporal (like day-specific retrieval) and spatial features (like 943 

regional meteorology, aerosol loading and fire intensity) to construct FRP-AOD-LST nexus over 944 

intensive fire zone in northwest India. 945 

 946 

3.4 Fire induced change in LST and AOD 947 

The effect of crop residue burning on land surface temperature and aerosol loading 948 

was assessed Crop residue burning–induced changes in surface temperature and aerosol 949 

loading were quantified using a space-for-time substitution approach by overlaying grid-950 

based VIIRS LST, FRP, and AOD datasets over the northwestern region experiencing recurrent 951 

fire. To remove potential confounding effect, Ffire and no-fire grids were retained for 952 

comparison only when they matched in terms of topography, meteorology, physical 953 

environment, vegetation and soil characteristics, climatological mean LST and AOD, and 954 

surface property. Comparisons were performed within defined strata containing grids with 955 

identical characteristics to ensure that the quantified changes in LST and AOD could becould 956 

be attributed solely to fire activity. A total of 6007489 paired no-fire and fire grids were used 957 

between 2017 and 2021 to quantify the relative change in LST and AOD. It is noteworthy that 958 
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all grids, whether exhibiting fire or not, were selected from within the extended geographical 959 

region to capture localized variations in temperature and aerosol loading. 960 

 Crop-residue based fire induced changes in surface temperature and aerosol 961 

loading wereas quantified using space-for-time approach, by overlaying grid-based VIIRS LST, 962 

FRP and AOD at 10x10 km2 resolution over year-specific intensive fire zone. As illustrated in 963 

Fig. 7, and supported by the year-specific datasets summarized in Table S5with year-specific 964 

dataset included in Table S4, a clear and robust pattern of change in LST and AOD was noted 965 

over the areas exhibiting affected by residue-based fire against that of no fire zone. The 966 

results are presented in terms of anomalies, where positive (negative) LST values indicate 967 

regional warming (cooling). Results are reported in terms of anomaly where a positive 968 

(negative) LST indicates reginal warming (cooling). Fire activity induced an average increase 969 

of 0.48 °C in LST across fire-affected zones during 2017–2021, with notable temporal 970 

variability ranging from –0.55 °C to 1.69 °C. Fire induced an increase in LST by 0.48 °C over the 971 

fire zone during year 2017 to 2021, with marked temporal heterogeneity in temperature 972 

change with a range varying from -0.55 to 1.69 °C. It impliesy that there was instance when 973 

fire had cooling effect on surface temperature, as was in year 2019, although a very limited 974 

number of grid (2) exhibiting no fire could possibly the reason behind such unanticipated 975 

result. Barring this, an increase in LST was accounted in each year averaging 0.72 °C year-1 976 

which could possibly due to reduced evapotranspiration, as was also noted reported during 977 

forest fire (Liu et al., 2018, 2019). Similarly, Zhang et al. (2020) asserted an increase in LST by 978 

1-3 °C by agriculture residue-based fire in three provinces across China.Results reported in 979 

this study are consistent with the findings of Liu et al. (2019), who attributed a 0.15 K rise in 980 

surface temperature over burned areas globally to satellite-observed forest fires, as well as 981 

with Liu et al. (2018), who reported a net warming effect over the Siberian boreal forest. 982 

Additional evidence from studies such as Alkama and Cescatti (2016) and Zhao et al. (2024) 983 

also indicates a positive linkage between forest fire incidence and intensity with surface 984 

temperature. However, the biophysical effects of agricultural residue burning on land surface 985 

temperature remain observationally limited, making it challenging to constrain its 986 

environmental consequences across diverse landforms. In a recent study, Zhang et al. (2020) 987 

reported elevated LST by 1-3 °C over three provinces in China associated with crop residue 988 
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burning. Nevertheless, the feedback effect of air temperature on fire occurrence was not 989 

considered. 990 

991 

 992 

Fig. 7. Crop -residue- based fire induced changes in LST land surface temperature and 993 

aerosol loadingAOD over intensive fire zone.. 994 

  995 

As illustrated in Fig. 7, , with year-specific datasets summarized in Table S5, a 996 

consistent yet temporally dynamic increase in both LST and AOD was observed over regions 997 

affected by residue-based burning compared with no-fire zone. However, the magnitude of 998 

LST and AOD change across the fire zone was spatially heterogeneous. On average, residue-999 

based burning induced an increase of 0.60 °C in LST during 2017–2021, with interannual 1000 

variability ranging from 0.33 °C to 0.76 °C. This indicates that residue burning exerts a 1001 

persistent warming influence on land surface temperature, likely driven by reduced 1002 

evapotranspiration, enhanced shortwave absorption, increased sensible heat flux, and fire-1003 

induced changes in surface albedo. However, a strong spatial heterogeneity in LST and AOD 1004 
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modulation further indicates the potential influence of key confounding factors and intensity 1005 

of fire in regulating the change. As illustrated in Fig. 7 with year-specific datasets summarized 1006 

in Table S5, a consistent pattern of change in LST and AOD was noted over the areas affected 1007 

by residue-based fire against that of no-fire zone. Fire activity induced an average increase of 1008 

0.60 °C in LST across fire-affected zones during 2017–2021, with notable temporal variability 1009 

ranging from 0.33 °C to 0.76 °C.  It implies that fire had a consistent warming effect on surface 1010 

temperature which could possibly due to reduced evapotranspiration and fire-induced 1011 

changes in surface albedo, as was also reported during forest fire.  1012 

. 1013 

TThe results of this study align with Liu et al. (2019), he results reported in this study 1014 

are consistent with those of Liu et al. (2019), who attributed a 0.15 °C rise in surface 1015 

temperature over burned areas globally to satellite-observed forest fires, as well as Liu et al. 1016 

(2018), who documented a net warming effect over the Siberian boreal forest. Additional 1017 

evidence from Alkama and Cescatti (2016) and Zhao et al. (2024) also indicates a positive 1018 

linkage between forest fire occurrence, and fire intensity, withand surface temperature. In 1019 

contrast, the biophysical effects of agricultural residue burning on land surface temperature 1020 

remain poorly constrained. However, the biophysical effects of agricultural residue burning 1021 

on land surface temperature remain observationally limited, making it difficult to constrain 1022 

its environmental consequences across diverse landforms. In a recent study, Zhang et al. 1023 

(2020) reported elevated LST by 1–3 °C over three provinces in China associated with crop 1024 

residue burning; however, the feedback effect of air temperature on fire occurrence was not 1025 

considered.Zhang et al. (2020) reported LST increases of 1–3 °C over three provinces in China 1026 

associated with crop residue burning. However, the feedback effects of meteorological 1027 

covariates and systematic land-cover differences on fire occurrence were not accounted for, 1028 

leading to causal attribution of fire to LST remains tentative.  1029 

 1030 

 1031 

A consistent annual increase in aerosol loading was also observed over the fire-1032 

affected grids over northwestern India affected by fire compared to non-fire grids. Satellite-1033 

based observations revealed aA clear upward trend in AOD was noted withinacross the fire 1034 
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zones, with a mean increase of 0.13 AOD year⁻¹ and a range of 0.07–0.22 AOD year⁻¹. Notably, 1035 

thisThe increasechange in columnar aerosol loading, however, was spatially 1036 

heterogeneousAOD persisted throughout the monitoring period. Overall, the increase in AOD 1037 

from fire-associated emissions of aerosols and their gaseous precursors reinforces the source-1038 

specific contribution of crop residue burning, a phenomenon well documented in previous 1039 

studies (Vinjamuri et al., 2020; Mhawish et al., 2022).Overall, the increase in AOD from fire-1040 

associated emissions of aerosols and their gaseous precursors reinforces the source-specific 1041 

contribution of crop residue burning, a phenomenon well documented in previous studies 1042 

Vinjamuri et al., 2020; A consistent increase in aerosol loading was also observed over grids 1043 

affected by fire compared to non-fire zones. Satellite-based observations revealed a clear 1044 

upward trend in AOD over the fire zones, with a mean increase of 0.19 AOD year⁻¹ and a range 1045 

of 0.07–0.28 AOD year⁻¹. Notably, this increase in AOD remained consistent throughout the 1046 

monitoring period, reinforcing the link between biomass burning emissions and elevated 1047 

aerosol concentrations over the source regions, a relationship well-documented in previous 1048 

global studies (Mhawish et al., 2022).A consistent increase in aerosol loading was also 1049 

accounted over the grids encountered with fire against no fire zone. Satellite based 1050 

observation shows a clear trend in increasing AOD over the fire zone with a mean rise of 0.19 1051 

AOD year-1 with a range 0.07 to 0.28 AOD year-1. Interestingly, increase in AOD was 1052 

consistent across the monitoring period which link biomass burning emission with elevated 1053 

aerosol emission over the source region, reported in literature across the globe (Mhawish et 1054 

al., 2022; Ravindra et al., 2023). 1055 

To quantify uncertainty in the estimated differences between fire-affected and non-1056 

fire-affected grid cells, we further computed 95% confidence intervals for ΔLST and ΔAOD 1057 

using nonparametric bootstrapping. For each variable, 10,000 bootstrap samples were 1058 

generated by resampling grid cells with replacement, and the mean difference was 1059 

recalculated for each bootstrap replicate. The 2.5th and 97.5th percentiles of the resulting 1060 

sampling distribution were taken as the bounds of the 95% confidence interval (CI). 1061 

Nonparametric bootstrapping results into significant increase in both ΔLST (0.57°C; 95% CI: 1062 

0.33–0.81°C) and ΔAOD (0.13; 95% CI: 0.08–0.17) in fire-affected regions. Because both CIs 1063 

do not overlap zero, these differences are statistically robust and unlikely to be due to 1064 

sampling variability.  1065 
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3.5 Spatial regression of fire intensity and aerosols on LST  1066 

A machine learning algorithm was employed to establish the statistical association 1067 

between the dependent variable LST and multiple predictors including, fire radiative power, 1068 

aerosol loading, regional meteorology (Fig. S6), surface properties, and vegetation 1069 

characteristics, and the dependent variable LST. Relative feature importance (RFI) of all 1070 

predictors was first evaluated for the fire season, and the marginal effects of FRP and aerosols 1071 

on LST were subsequently quantified. All Bbiophysical parameters, except SR and soil 1072 

moisture, retrieved under two pre-defined scenarios, (one) days with moderate-to-high fire 1073 

intensity and (two) days with sustained high fire intensity exhibiting a positive association 1074 

with regional mean LST, were used to model the FRP–AOD–LST relation.To establish a possible 1075 

association between predictors viz. fire intensity, aerosols and meteorology on dependent 1076 

variable LST, a machine learning algorithm was employed hypothesizing non-linear statistical 1077 

association among the variables. The choice of Random Forest (RF) to regress the association 1078 

was based on its excellent accuracy, ability to handle large dataset, superior performance and 1079 

prior applications on LST-based research (Logan et al., 2020; Wang et al., 2022; Zhang et al., 1080 

2025). Here, relative importance of fire intensity, aerosol loading and meteorological 1081 

variables (Fig. S5S6) were assessed to sustain spatial variations in LST across the year-1082 

constrained intensive fire zone. Further, relative contributions of each predictors were 1083 

quantified and marginal effects of predictor variables on LST have been quantified. Two pre-1084 

specified scenarios (Table S5S6), one, that includes days with extended fire intensity starting 1085 

from fire initiation to terminate, and second, days including high intensity fire having strong 1086 

positive correlation between FRP and LST were modelled. Such approximation were meant to 1087 

evaluate and compare the relative importance of predictor variables both in the cases of high 1088 

intensity fire and during entire crop-based fire episode. 1089 

 Relative feature importance (RFI) of allselected predictors was first evaluated for the 1090 

fire season, and the marginal effects of FRP and aerosols on LST were subsequently 1091 

quantified. Figure 8(a) presents the normalized RFI values for all predictors under both 1092 

scenarios, and the Random Forest hyperparameter tuning procedure is summarized in Table 1093 

S6. Figure 8(a) illustrates the normalized RFI of the predictors across the two scenarios. RFI 1094 

quantifies the sensitivity of regional LST to each predictor and reflects their partial 1095 

contribution to surface temperature variability. Fire radiative power emerged as the 1096 
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dominant predictor under both scenarios, indicating the strong influence of fire-related 1097 

energy release on regional radiative balance, likely through reduced evapotranspiration and 1098 

fire-induced changes in surface albedo (Liu et al., 2018, 2019). Notably, the RFI was 1099 

substantially higher during period of sustained high-intensity burning (Scenario 2; RFI = 0.40) 1100 

compared with days characterized by moderate-to-high fire activity (Scenario 1; RFI = 0.22), 1101 

highlighting the stronger thermal response associated with intensive burning condition.1102 

 1103 

 1104 

Fig. 8. Normalized r Relative feature importance of predictor variables on LST (a), statistical 1105 

cross-validated evaluation of performance of random forest performance for two 1106 

diverse scenarios (b), and partial dependence plots of LST on AOD (c) and FRP (d).  1107 

NOTE. For Fig. 8d,Here, K indicates x1000. The PDP plots are based on scenario 2. Both RMSE 1108 

and MAE have unit C. 1109 

  1110 
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Figure 8(a) indicate the relative feature importance (RFI) of the selected predictor 1111 

variables modelled across the identified scenariossl regionalNext to FRP, PBLH exerted a 1112 

significant influence on LST (RFI: 0.21–0.24), followed by atmospheric temperature (RFI: 0.09–1113 

0.21). The strong effect of PBLH on LST can be explained by restricted turbulent mixing during 1114 

shallow boundary-layer conditions in post-monsoon season. A relatively low PBLH (mean±SD: 1115 

71±29 m) over northwestern India reduces vertical mixing and traps fire-induced heat and 1116 

aerosols close to the surface (Vinjamuri et al., 2020). This enhances shortwave absorption, 1117 

suppresses evaporative cooling, and limits turbulent heat dissipation, resulting in a stronger 1118 

and more persistent increase in LST. Another notable finding was the modification of LST due 1119 

to enhanced columnar aerosol loading during fire season. The RFI of AOD varies from 0.09 to 1120 

0.11, indicating its influence on regional radiative budget. Residue burning releases aerosols 1121 

and their gaseous precursors, which can exert significant radiative impacts and drive rapid 1122 

adjustments in both surface and atmospheric temperature (Freychet et al., 2019; Xu et al., 1123 

2021). Fire-generated aerosols influence the energy balance through scattering and 1124 

absorption of radiation, alterations in cloud microphysics, and changes in surface albedo via 1125 

deposition of carbonaceous particles. However, the magnitude and direction of these 1126 

radiative effects remain uncertain at the global scale (Tian et al., 2022).  1127 

The partial influence of all other parameters, including meteorological variables, soil and land 1128 

characteristics and elevation was less significant (RFI < 0.30).  1129 

. Variable relative feature importance refers the sensitivity of LST against individual 1130 

predictors and serves as an identity about their partial influence in predicting LST. Scenario 1 1131 

resulted the strongest influence of FRP (RFI: 0.240) on LST across the intensive fire zone 1132 

followed by solar radiation (0.208) and aerosol loading (0.177). The partial influence of other 1133 

parameters including meteorological variables were less significant (<0.140).  1134 

Interestingly, FRP also emerged as the top feature in modulating LST variation during 1135 

scenario 2 with robust RFI of 0.503. This essentially establish the added contribution of 1136 

excessive heat energy released during high intensity fire on LST modifications over high 1137 

intensity residue-based fire zone. The very next contribution on LST variations was due to SR 1138 

(RFI: 0.143) and aerosol loading (RFI: 0.068) which emerged to reduce significantly against 1139 

scenario 1 when fire intensity spread across over extended time period.  1140 

 1141 
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The prediction of FRP as the top feature to modulate LST changes during crop residue-based 1142 

fire event is imperative as it hold greater repercussion on the regional climate and human 1143 

health. However, the RFI scores for both FRP and SR were comparable indicating their shared 1144 

partial influence on LST. Another interesting finding was to attain significant impact of 1145 

columnar aerosol loading on LST modification which was otherwise reported by researchers 1146 

investigating global fire aerosols and climate (Tian et al., 2022).  1147 

It is noteworthy that RF model performance for the scenario 1 records high RMSE (1.41 1148 

C) and MAE (1.05 C) with comparatively low R2 (0.35) which translates into some 1149 

uncertainties in the prediction. 1150 

In contrast, a superior model performance was achieved in case of scenario 2 when 1151 

very high coefficient of determination (R2: 0.80) was accounted with sufficiently less RMSE 1152 

(0.38 C) and MAE (0.33 C). This ensured a robust model prediction when high correlation 1153 

coefficient between FRP and LST were selectively considered. The predictive skill of the 1154 

random forest model was assessed using temporal block cross-validation to minimize 1155 

temporal autocorrelation and prevent data leakage. Under both scenarios model 1156 

performance was found satisfactory with R2 varying from 0.65-0.75, marked with relatively 1157 

low RMSE (0.87-0.95 C) and MAE (0.58-0.61 C). A satisfactory model performance also 1158 

ensures that residue burning provide a clear LST response and the RF model was able to 1159 

resolve non-linear land–atmosphere interactions, irrespective of the selected scenarios. RA 1160 

relatively better performance was however, achieved duringin scenario 2 during the fire days 1161 

having better spatial association between FRP and LST. Collectively, this confirms that 1162 

moderate-to-high intensity residue burning leaves a measurable and predictable thermal 1163 

signature on the land surface over northwestern India. 1164 

Interestingly, FRP also emerged as the top feature in modulating LST variation during 1165 

scenario 2 with robust RFI of 0.503. This essentially establish the added contribution of 1166 

excessive heat energy released during high intensity fire on LST modifications over high 1167 

intensity residue-based fire zone. The very next contribution on LST variations was due to SR 1168 

(RFI: 0.143) and aerosol loading (RFI: 0.68) which emerged to reduce significantly against 1169 

scenario 1 when fire intensity spread across over extended time period.  1170 
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The partial dependence plots (PDPs) in Fig. 8(c–d) illustrate the marginal effects of FRP 1171 

and AOD on LST. These plots show the expected change in LST associated with variation in 1172 

each predictor while holding all other predictors constant. The estimated effects of both FRP 1173 

and AOD exhibit a non-linear, saturating response. LST increases sharply at low-to-moderate 1174 

values of each predictor but the effect progressively weakens at higher magnitudes, 1175 

approaching an asymptotic limit. This behaviour likely arises from the complex interplay of 1176 

radiative and thermodynamic processes associated with biomass-burning emissions. Fire-1177 

originated aerosols exert both direct and indirect radiative effects whose magnitudes and 1178 

signs vary with aerosol loading and composition (Freychet et al., 2019; Xu et al., 2021; Tian et 1179 

al., 2022). The partial dependence plots (PDPs) illustrating the marginal effects of FRP and 1180 

AOD on LST are presented in Fig. 8(c–d). These plots depict the relative change in LST 1181 

associated with a unit change in each predictor variable, while keeping other predictors as 1182 

constant. The estimated effect of AOD on LST appears non-linear, characterized by an abrupt 1183 

reversal in trend when AOD range between 1.00 and 1.20. The non-linear association 1184 

between fire-originated aerosols and regional LST likely arise from the complex interplay of 1185 

multiple radiative and thermodynamic processes. Fire-emitted aerosols may exert both direct 1186 

and indirect radiative effects that vary in magnitude and direction (Bond et al., 2013; Li et al., 1187 

2016). At moderate aerosol loading, UV-absorbing black carbon aerosols may enhance 1188 

atmospheric heating and can transiently increase near-surface temperature (Jacobson, 2001). 1189 

Fire-induced convective plumes may initially enhance surface temperatures, whereas strong 1190 

aerosol build-up can reduce solar transmittance to the ground. Aerosol–cloud interactions 1191 

further contribute to non-linearity by modifying cloud microphysics, lifetime, and albedo, 1192 

altering the regional radiative balance. Additionally, aerosol-driven changes in boundary-layer 1193 

structure, evapotranspiration, and soil moisture introduce additional land–atmosphere 1194 

feedbacks. Together, these interacting processes operate across multiple spatial and 1195 

temporal scales and do not scale linearly with aerosol loading or fire intensity, producing the 1196 

observed non-linear LST response. The RF model therefore provides strong evidence that 1197 

both fire intensity and fire-derived aerosols exert measurable and non-linear effects on 1198 

regional LST, with potentially important implications for the regional radiative budget. 1199 

Alternatively, once sufficient aerosols build-up from fire, strong attenuation of shortwave 1200 

radiation substantially declines net LST (Eck et al., 2010). Moreover, fire induced convective 1201 

plumes may initially increase surface temperature while at high aerosol build-up situation 1202 
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may suppresses solar transmittance to surface. Aerosol–cloud interactions further contribute 1203 

to this non-linearity by modifying cloud microphysics, lifetime, and albedo, thereby altering 1204 

the regional radiation balance (Rosenfeld et al., 2019). Furthermore, aerosol-induced changes 1205 

in boundary layer, evapotranspiration, and soil moisture create additional land–atmosphere 1206 

feedbacks. Collectively, these interdependent processes operate across multiple spatial and 1207 

temporal scales and do not scale linearly with aerosol loading or fire intensity, leading to the 1208 

observed non-linear LST response in crop residue burning regions. In contrast, the marginal 1209 

effect of FRP on LST is more consistent, showing a pronounced positive association in which 1210 

increases in regional FRP correspond to higher LST for all observed conditions.The partial 1211 

dependence plot (PDP) on the marginal effects of FRP and AOD on LST have been included in 1212 

Fig. 8(c-d). This indicates the relative change in LST with corresponding unit change in 1213 

predictor variable when other predictors remain stable. The effect estimates of unit increase 1214 

in AOD on LST remained inconsistent because of sudden reversal of trend when AOD remain 1215 

within 1.00 to 1.20. In contrast, the marginal effect of FRP on LST has been prominent with 1216 

an increase in regional FRP resulted in consequent increase in LST for almost all the cases.  1217 

TThe RF model thus provides robust evidence on the effects of crop residue–based fire energy 1218 

and aerosol emissions on regional LST, which may have wide-ranging implications for regional 1219 

radiative budget. 1220 

he RF model therefore, concludes with certainty the implications of crop-residue 1221 

based fire associated release of energy and aerosols on regional LST which could have diverse 1222 

consequences on regional climate, agriculture and human health. 1223 

3.6 Geographically weighted regression on LST 1224 

A Global Moran’s I test was first applied to assess spatial autocorrelation in LST across 1225 

the intensive fire zone for the cumulative five-year period. As shown in Table S6, Moran’s I 1226 

was 0.225, accompanied by a high positive Z-score and a statistically significant p-value (< 1227 

0.001), indicating a clustered spatial pattern of LST that is highly unlikely (<1%) to have arisen 1228 

by random chance. Given this spatial dependence, GWR was employed to evaluate spatial 1229 

heterogeneity in the relationships between LST, FRP, and other predictors. All variables used 1230 

in the Random Forest model were incorporated into the GWR framework under both pre-1231 

defined scenarios. Model specifications and performance metrics including bandwidth and 1232 

kernel details are mentioned in Table S8. 1233 
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Initially, Global Moran’ I test was performed to verify spatial autocorrelation in LST 1234 

across the intensive fire zone cumulatively for five years. Results, as in Table S6S7, indicate 1235 

Moran’I value (0.224) for LST has a high positive Z-score and remain spatially significant (p-1236 

value: 0.000). This refers very less possibility (<1%) of the clustered LST pattern could be due 1237 

to random chance. Therefore, geographically weighted regression (GWR) was performed to 1238 

assess spatial heterogeneity in FRP driven variations on LST across year-specific intensive fire 1239 

zone over northwestern India. GWR was however, simulated only for the main predictor FRP 1240 

against dependent LST for scenario 2 based on prior outcome from RF regression. Figure 9 1241 

details the spatial outcome of GWR for the entire duration while model running criteria and 1242 

year-wise performance is included in Table S7S8. Results indicate spatial heterogeneity in 1243 

coefficient estimates with overall positive values over the intensive fire zone. It was however, 1244 

predictable as FRP over the intensive fire zone did vary with time and space which potentially 1245 

influence LST at a diverse scale. Overall, GWR model clearly imply that higher FRP is primarily 1246 

associated with increase in LST over the region which potentially have implications on regional 1247 

climate and agriculture. 1248 
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1249 

 1250 

Fig. 9. Spatial distribution of FRP and AOD GWR coefficients across intensive fire zone.  1251 

GWR model demonstrated strong explanatory power, with global R² values exceeding 1252 

0.74, confirming that the selected predictors effectively captured spatial variability in LST. FRP 1253 

consistently showed a positive and spatially varying association with LST across both 1254 

scenarios, underscoring its dominant influence in fire-affected regions. Aerosol loading 1255 

demonstrated weak but spatially heterogeneous effects, reflecting localized differences in 1256 

aerosol–temperature interactions. Other predictors, including NDVI, RH, AT, PBLH, elevation, 1257 
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and albedo (Fig. S7), exhibited local coefficients ranging from −0.76 to +0.23, indicating spatial 1258 

variability but comparatively weaker contributions to LST modulation across the study area. 1259 

Conclusions 1260 

 This analysis reveals that physical effect of crop- residue- based fire can substantially 1261 

affect the regional climate by modifying land surface temperature over an extensive 1262 

geographical region in northwest India. However, the magnitude of surface temperature 1263 

modification could vary with intensity of fire and associated modulation by regional 1264 

meteorology. Results reported here were in line with the findings of Liu et al. (2019) when 1265 

satellite-based observations on forest fire was held accountable for 0.15 K rise in surface 1266 

temperature over burned area globally, and a net warming over Siberian Boreal Forest (Liu et 1267 

al. (2018). There are other evidences too, as in Alkama and Cascatti (2016), Zhao et al. (2024) 1268 

when incidences and intensities of forest fire were positively linked with temperature. 1269 

However, biophysical effects of agriculturale residue-based fire on land surface temperature 1270 

are observationally scarce, making it difficult to constrain its environmental consequences 1271 

over diverse landforms. In a recent work, Zhang et al. (2020) has found association of elevated 1272 

land surface temperature over three different provinces in China due to crop residual burning. 1273 

However, feedback of air temperature on fire incidences were not included for consideration. 1274 

Our effort in understanding residue-based fire associated changes in surface temperature was 1275 

therefore, novel considering the extensive and recurrent fire incidences over northern India 1276 

that has been associated with deteriorating air quality in Delhi and its surroundings. The 1277 

findings of this study are however, limited with inability to measure counter feedback of the 1278 

agriculture system towards limiting changes in land surface temperature, uncertainty 1279 

associated with estimating fire radiative power, and accounting aerosols counter feedback on 1280 

local meteorology and vice-versa. 1281 

The manuscript unfolds by identifying the geospatial variations in crop residue–based fires 1282 

and their associated impacts on aerosol loading and land surface temperature across 1283 

northwestern India. Based on year-wise, pixel-level fire intensity, the geographical region with 1284 

intensive fire activity was initially delineated, and all satellite-derived and reanalysis datasets 1285 

were subsequently processed exclusively over the selected zone. A robust and consistent 1286 

spatial correlation between FRP, AOD, and LST was observed across multiple years, indicating 1287 

potential fire-induced perturbations in LST. The Hurst exponent analysis reaffirmed the long-1288 
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term persistence of fire intensity, surface temperature, and aerosol loading time series. A 1289 

grid-based analysis over the intensive fire zone revealed a significant increase in both LST and 1290 

AOD during the peak fire season. The manuscript unfolds with identifying geospatial 1291 

variations in crop residue-based fire, associated aerosol loading and land surface temperature 1292 

over northern part of India. Based on year wise pixel-based fire intensity, geographical region 1293 

encompassing intensive fire was earmarked and all satellite-based retrievals and reanalysis 1294 

datasets were processed only over the selected zone. A robust spatial variation in FRP 1295 

matched well with corresponding AOD and LST, providing first evidence on possible 1296 

perturbations of fire on land surface temperature. Hurst exponent reaffirms long-term 1297 

persistence of fire intensity, surface temperature and aerosol loading time-series. Spatial 1298 

correlation established a strong temporal association between predictor and dependent 1299 

variables that too constrained with years. A grid-based analysis over the intensive fire zone 1300 

concluded a robust increase in LST and AOD during peak fire season.  1301 

 1302 

The article further employs the Random Forest (RF) model and Geographically 1303 

wWeighted rRegression (GWR) to assess the potential influence of FRP and aerosol loading 1304 

on LST, while accounting meteorological covariates, physical environment, vegetation 1305 

characteristic and surface property as confounding factorsfor prevailing meteorological 1306 

variables within the selected zone. Two contrasting scenarios were hypothesized to examine 1307 

the FRP–LST–AOD nexus. Scenario 1 considered spatially aggregated FRP from fire initiation 1308 

to subsidence, whereas Scenario 2 focused on days characterized by high-intensity fires 1309 

exhibiting a strong positive correlation between FRP and LST. In both the scenarios, the 1310 

Random Forest RF regression successfully captured and mapped FRP-induced modulation of 1311 

LST, though with varying magnitudes and model performance. A distinct increase in FRP-1312 

induced LST modulation was observed during high-intensity fire events. Both boundary layer 1313 

height and Solar radiation and columnar aerosol loading also contributed partially, with 1314 

aerosols’ influence on LST increasing during periods of intense release of fire energy. The 1315 

Global Moran’s I test indicated significant spatial clustering of LST while GWR results further 1316 

confirmed FRP and AOD-modulated LST variations across northwestern India, highlighting 1317 

strong spatial heterogeneity in FRP-AOD-LST nexus. 1318 
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This analysis reveals that the biophysical effects of crop residue–based fires across 1319 

northwestern India can substantially influence the regional radiative budget by altering LST. 1320 

The magnitude of LST modulation, however, depends on fire intensity and feedbacks from 1321 

regional meteorology. This study provides novel insights into residue-based fire induced 1322 

surface temperature dynamics in a region where recurrent fires hasve been historically linked 1323 

primarily with deteriorating air quality in Delhi and its surroundings. The observation-driven 1324 

analysis offers a comprehensive understanding of LST responses to residue burning and helps 1325 

reduce uncertainties in fire-induced modifications of the radiative budget. Nonetheless, 1326 

uncertainties remain due to unaccounted agricultural feedbacks, limited temporal coverage, 1327 

retrieval uncertainty in geospatial datasets, and the complexity in aerosol–meteorology 1328 

interactions. The multifaced influence of fire aerosols and energy on regional climate through 1329 

rapid atmospheric and land surface adjustments, remains complicated at the global level. Our 1330 

findings underscore the need for Earth system model–based simulations to better quantify 1331 

climate feedbacks from crop residue burning. Besides, assessing the underlying mechanisms 1332 

of fire-energy-induced changes in evapotranspiration, the radiative effects of aerosols, fire–1333 

aerosol–meteorology feedbacks, and incorporating additional proxies such as boundary layer 1334 

height and soil moisture could further reduce the uncertainty in estimating radiative impacts 1335 

from residue burning. 1336 

The article further introduces Random Forest model and Geographically Weighted 1337 

Regression to ascertain the potential influence of FRP and aerosol loading on LST, taking into 1338 

account the existing meteorological variables over the selected zone. Two contrasting 1339 

scenarios were hypothesized to regress the FRP-LST-AOD nexus. Scenario one, considered 1340 

spatially aggregate FRP from fire initiating days to subside while scenario two accounted for 1341 

days with very high intensity fire with strong and positive correlation between FRP and LST. 1342 

Interestingly, for both the cases RF regression was able to capture and map the FRP induced 1343 

modulation in LST with varying intensities and model performance. A clear increment in FRP 1344 

induced LST modulation was noted especially during high intensity fire events. Beside FRP, 1345 

both solar radiation and columnar aerosol loading also noted to partially influence the LST 1346 

variations although with different intensities. However, the influence of columnar aerosol 1347 

loading on LST seems to enhance during days with intense energy release possibly linked to 1348 

excessive emission of carbonaceous aerosols from biomass burning. As Global Moran’ I test 1349 
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concludes significant clustering in LST over the intensive fire zone, the interrelationship 1350 

between LST and FRP were further assessed using geographically weighted regression. GWR 1351 

output put further evidences on FRP modulated LST variations over northwest India although 1352 

it appears to vary strongly with respect to space. Our study therefore, provides a 1353 

comprehensive insight into the distinctive and persistent LST responses to fire intensity, 1354 

emphasizing the importance of recognizing the climate feedback from crop residue-based fire 1355 

dynamics. 1356 
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