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Abstract
The biophysical effects of agricultural e-residue burning, driven by the excessive release of
energy and carbonaceous aerosols, remain largelyunaccountedforpoorly quantified at the

global scale. Residue-based fires have the potential to modify regional climate by altering land

surface temperature (LST), highlighting the need for investigation at regional scale. based-fire

regionatclimate—Here, an observation-driven assessment of spatial ehange-variations in LST

due to concurrent release of energy and aerosols has been explered-made over northwestern

India using multiple satellite and reanalysis-based datasets. Year-specific fire pixel density was
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used to delineate an intensive fire zone characterized by medium-to-large residue-based fire.

—GeosSpatial analysis revealed positive eerrelation
association among FRP (fire radiative power), LST and AOD (aerosol optical depth)-acressthe
intensive-firezone. Residue-based-fire-Over intensive fire zone, a space-for-time approach
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revealed

season-overintensivefire zonesignificant increase in both ALST (0.57°C; 95% CI:0.33-0.81°C)

[ Formatted: Font color: Text 1

and AAOD (0.13; 95% Cl:0.08—0.17) due to fire. A~-Random Forest non-linear model was
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employed to regress potential influence of FRP and AOD on LST having several other variables

as confounding factors. FRP consistently emerged as the dominant predictor of LST, followed
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by planetary boundary layer height and aerosols. Randem-Forest-ren-linearmeodelwasused
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followed-by-selarradiation-and-AODB--An increase-significant-enhancement in relative feature
importance of FRP was alse—noted during days having high fire intensity and positive

association against-with LST. Geographically w¥/eighted Rregression further explained spatial
heterogeneity in LST modulation by FRP. Overall, this analysis provides the first empirical
evidenceOuranalysis-therefore providesfirst-empirical-evidence that en-erop-residue-based

fire en—contributes to changes in medifying—regional—climate—by—altering—land surface
temperature._It further highlights that the magnitude of this perturbation is governed by

interannual variations in fire intensity and influenced strongly by prevailing meteorological
conditions.-talso-underinesthatextentof such perturbationis-subject toyear-specific fire

Keywords: Aerosols, Biomass burning, Fire, GWR, Random Forest.

Introduction

Burning agricultural residues is a widespread practice for the rapid removal of post-
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harvest biomass from croplands in many regions of the world (Streets et al., 2003; Singh et

al., 2018; Shyamsundar et al., 2019). While biomass burning is often associated with

deforestation (Chuvieco et al., 2021), forest fires (van der Velde et al., 2021; Aditi et al., 2025),

and shifting cultivation (Prasad et al., 2000), residue burning on agricultural land is primarily

conducted to clear fields, fertilize soil, eradicate weeds and pests, and prepare land for the

next crop cycle (Graham et al., 2002; Korontzi et al., 2006; Lan et al., 2022). This practice is

observed across large agricultural regions globally, including China (Streets et al., 2003; Zhang

et al., 2020), South America (Graham et al., 2002), Southeast Asia (Lasko and Vadrevu, 2018;

Yin, 2020), and northwestern India (Singh et al., 2018, 2021; Sarkar et al., 2018). In

northwestern India, extensive residue burning during October to November is a recurring

phenomenon and has been widely examined from multiple perspectives. Previous studies

report that these burning events contribute to severe air-quality degradation in downwind

urban centers (Singh et al., 2018; Jethva et al., 2019), alter aerosol loading and chemistry

(Mhawish et al., 2022), modify aerosol vertical stratification and radiative forcing (Hsu et al.,

2003; Vinjamuri et al., 2020; Banerjee et al., 2021), induce adverse health effects (Singh et al.,

[Formatted: Font color: Text 1

[ Formatted: Font: 9 pt




65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95

2021), and may influence regional hydrological processes (Kant et al., 2023). Burning

{Kantetal—2023)-However, limited attention has been paid to investigate its effect on urban

climate, especially on modulating lower atmospheric thermal budget which has been

otherwise strongly evident in case of forest fire (Liu et al., 2018, 2019).

Across the northwestern part-ef-India, dual cropping pattern including rice and wheat
crop is predominately practised over roughly 4.1 million ha of land_(NAAS, 2017). Such a
cropping pattern leads to results-in-generationnag of huge crop residues having-that are low
inpeer nutrient content with-and rich inkigh silica and ash-fractions. Typically, residues from
rice-wheat cropping system have—possess limited economic value, ret—beirg—fitted—as
as _they are

unsuitable for use as alternative fodder, bioenergy feedstock or as raw material in pulp and

paper industry (kar-etak2622-Shyamsundar et al., 2019; Lan et al., 2022). Besides, with the
advent-introduction of mechanical harvester in the 1980s and enactment of groundwater

preservation act in the late 2000s, in situ indiseriminate-burning of agriculturale residues has
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been-become athe recurrent eheice-practice among efthe local farmers. This practice serves

to expedite field clearance and reduce the turn-around periodtime between rice harvesting

and the subsequent sowing of the wheat crop (Balwinder-Singh et al., 2019).+ndia-generates
a_India produces an estimated 500 million metric tonnes (MT) of crop residues annually, of

which 20-25% are disposed of through open-field burning.Annualy—tdia—produces—an

fieldtself Crop residue burning is particularly prevalent in northwestern India, where roughly
20-25 MT of residues are set on fire each year —majerity{~20-25 MT/yr)-of such-practised

evernorthwest Gangeticplain-(Balwinder-Singh et al., 2019; Lan et al., 2022;-BalwinderSingh
et-al;2019). Unregulated residue burning in this region contributes Unregulated-burningof

estimated-tocontribute-approximately 300 Gg/yr of PM2s and 50 Tg of CO; equivalent green-

house gas emission (Singh et al., 2020). lnterestinghy—fire—incidences—have—exhibited—a

Notably, the frequency of fire incidences has exhibited a persistent upward trend, coinciding

with concurrent increases in vegetation indices and atmospheric aerosol loading (Vadrevu et

al., 26482019; Jethva et al., 2019). In addition to atmospheric emissions, fires exert numerous

biophysical impacts on the surrounding ecosystems. Fire induces a cascade of consequential

processes, including modifications to the surface energy balance, redistribution of nutrients,

alterations in _species composition, changes in surface albedo, and variations in

evapotranspiration rate Beside—ewissions,—biophysical—effects—offire—on—surrounding

therebyalteringevapetranspirationrate(Ward et al., 2012; Liu et al., 2019). Additionally, fire

eewtd-can alse-induce certain biogeochemical and biophysical stresses on local environment

by modifying atmospheric composition and surface properties (Andela et al., 2017; Aditi et
al., 2025). Such transformation inof the native landscape, coupled with excessive release of
energy,—and—emission—ef aerosols and itstheirits precursors, may therefore; have several

potential implications on the leealenvironment.
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Most studies on biomass-based fires have focused on identifying land—atmosphere

processes responsible for fire initiation and propagation, quantifying emissions, and

evaluating fire-induced land—atmosphere exchanges (Lasko and Vadrevu, 2018; Jethva et al.,

2019; Chuvieco et al., 2021; Aditi et al., 2025). Meststudies-on-biomass-based-fires-have-has

2025)-In contrast, there is a paucity of knowledge regarding how biomass burning contributes

to climate feedbacks through modifications of Earth’s surface radiative budget and land

surface temperatures

altering Earth’s surface radiative budget andland surface temperature(Bowman et al., 2009;

Andela et al., 2017). Plausible explanation to this includes limited observation and associated

uncertainties in estimating key biophysical precesses-parameter like surface albedo, land-
atmosphere exchange of sensible heat flux and water vapor, changes in evapotranspiration

before and after fire eventsevapetranspiration—rate-duringpre—and-post-fire-events. There

are instances when global forest fire incidences and size have been linked with modifications

in land surface temperature (LST; Alkama and Cescatti, 2016; Liu et al., 2018, 2019). Likewise,
Liu et al. (2019) noted an enhancement in mean annual LST over burned forest area in the
northern high latitudes. Similar evidence of increase in summertime surface radiometric
temperature over temperate and boreal forests in the Northern Hemisphere was accounted

by Zhao et al. (2024). Alkama and Cescatti (2016) reported increases in mean and maximum

air temperature over arid regions following forest loss, highlighting the sensitivity of surface

temperature to land-cover modification. However, fire-induced thermal forcing is strongly

constrained by the fire size (Zhao et al., 2024). Small, short-lived fires, such as those

associated with agricultural residue burning, often fail to produce sufficiently large changes

in surface albedo or evapotranspiration, and therefore may not generate a detectable LST
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evapetranspiration—resultinginsignificantvariatien—n+ST—Incidence of elevated LST over

different provinces in China due to agriculturale residue burning has only recently reported

by Zhang et al. (2020). A spatially incensistent-heterogeneous increase in LST -correlated well
strongly with fire count, havirg-with highest LST gradient noted at distances of 4-10 km from

the central point of crop residue burning in-4-te-10-km-distance-from-thecentralpointofcop
residue-burning-and remainred-validpersisting til-for 1-3 days. In contrast, the effects of post-

harvest fire incidences in northwestern India on LST remain largely unexplored. This gap

introduces considerable uncertainty in assessing the climate feedback of crop residue burning

and highlights the need for a better understanding of the underlying mechanismstrcentrast;

This study aims to explore immediate biophysical effect of agriculturale erep-residue

fire on surface temperature over northwestern India. By integrating spatially and temporally
consistent satellite —~observations and reanalysis datasets, including—based-ebservations-on
fire counts, fire radiative power, land surface temperature, aerosols+teading, meteorological

covariates, topography, surface property, and physical environment —and—regional

meteorelogy-over intensive fire zone, we sought to quantify time-bound changes in LST in
relatienresponse to variations in fire intensity and aerosol loadingwe-tried-to-establish-time-

bound-changosin- T ith-coneurrenirariotionsn—fro—strength. Several statistical seans
methods were explered—applied to construct the changes in LST with fire severity_and

aerosols. Additionally, a space-for-time framework was appliedfollowed to assess the effects

of recurrent FRP variations on LST and aerosol optical depth (AOD) throughout the fire

recurrent-changesin-FRP-overthefire-seasen- Specifically, we addressed two key questions:

weo-trled-tetavestizateivre-suesiions(1) decs-Does kmdsuriacotemaeraturelST respond to
changes in fire intensity over northwestern India?; and (2) hew-How do local meteorology and
aerosol loading modulate LST variation with respect to space and time? To the best of our

knowledge, this is the first systematic assessment of agricultural residue fire—driven
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modulations in LST over northwestern Indiane—fprevieus—study-has—systematicallyanalyzed
agricultural residue burning-drivenchangesinLST overnorthwesterntndia. By integrating

multiple geospatial observations, the analysis offers critical insights into the biophysical

feedbacks of residue-based fire and advances understanding of LST responses to residue

burning. Further, it refines estimates of fire-induced perturbations in the regional radiative

budget offering valuable representation of biomass-based fire in Earth system models.

2. Dataset and methodology

2.1 Study domain
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Fig. 1. Spatial variation in satellite-based fire radiative power across northwest India,
distribution of FRP-based fire intensity (MW/pixel) (a) and domain selected for
retrieval and processing of SNPP VIIRS FRP, AOD and Aqua MODIS LST (b).

NOFE-The region marked with blue in Fig. 1a subset indicates the Indo-Gangetic Plain (IGP)«

spanning from Pakistan to Bangladesh through India. The extended fire zone selected
for analysis is marked with red within the IGP and has been shown in detail in Fig. 1a
with fire pixel density. Fhe-selection—eriteria—of-thespatial-domain—arediseussed-in
section—2.3—The pixelsize of VHRS VNPIAHMGis375%x375-m?—India shape file is

acquired from Survey of India archive.

Post-harvest biomass burning is predominantly practiced across the northwestern<—

Indo-Gangetic Plain (IGP) of South Asia, particularly in the agrarian states of Punjab and

Haryana, which together contribute nearly 60—70% of India’s total food grain production. The

concurrent rise in rice and wheat cultivation has led to a substantial increase in crop residue

generation, resulting in higher fire intensity in recent years (Jethva et al., 2019). In this study,

geospatial analyses of LST, fire activity, and aerosol loading were conducted over

northwestern India during October—November between 2017 and 2021. The combination of

high agricultural output, extensive biomass burning, and increasing fire activity makes this

region particularly suitable for investigating fire dynamics and their environmental
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implications. Instead of defining a fixed spatial domain a priori, year-wise fire signals were

retrieved across cropland areas in northwestern India. This approach allowed the delineation

of a core study region that varied annually according to year-specific fire intensity and spatial

trends (as shown in Fig. S2), but all eventually bound to 29.2770° to 32.1625° N and 73.8996°

to 77.0718° E, as illustrated in Fig. 1b.

2.2 Spatial dataset

Active fire count data was retrieved from the standard fire product of Visible Infrared
Imaging Radiometer Suite (VIIRS) Collection-2 Level-1B—(VNP14IMG) available at 6-min L2
swath at 375 m resolution. The VIIRS onboard the Suomi National Polar-orbiting Partnership
(SNPP) satellite is a cross-track single-angle scanning radiometer which was launched in year
2011 under joint operation of NASA and NOAA. The VIIRS fire detection algorithm typically
extends well refined and validated MODIS Fire and Thermal Anomalies product (Giglio et al.,
2003). The I-band based fire detection algorithm primarily utilizes brightness temperature of
Channel 14 on middle infrared spanning from 3.55 to 3.93 um, centred at 3.74 pm.
Additionally, to isolate the active fire spots from the fire-free background channel, a single
gain 15 at thermal infrared regions (10.5-12.4 um) is also considered. Rest of the I-band
channels i.e. I1 to I3, covering visible, near and short-wave IR are used to distinguish pixels
with cloud, water and sun-glint (Schroeder et al., 2014). The VIIRS fire database was
considered due to its superior precision and accuracy in identifying relatively small fire,
greater spatial resolution at footprint and pixel saturation temperature (Li et al., 2018;

Vadrevu etak;and Lasko, 2018; Li-etak—2018;-Aditi et al., 2023). For this experiment, SNPP

VIIRS 375 m £2-L21B active fire count data with nominal (fire mask class 8) and high confidence
(fire mask class 9), was retrieved over northwestern India from year 2017 to 2021 (all

inclusive).

Fire radiative power (FRP) quantifies the release of radiative energy from biomass
burning integrated at all angles and wavelengths over a spatial scale. Measured in Watt, FRP
retrieval quantifies the release of heat energy against time and in many instances linearly
associated with the rate of fuel consumption and emission (Ichoku et al., 2008; Nguyen and
Wooster, 2020). A detailed description on FRP retrieval and comparison among the sensors
are available in Wooster et al. (2003, 2005) and Ichoku et al. (2008). Li et al. (2018) concluded

VIIRS FRP as comparable with MODIS FRP in most of fire clusters and very-stable across swath.

3
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Here, FRP (MW) was processed from the SNPP VIIRS C2 Level-2 (L2) 375 m active fire product
(VNP14IMG). VIIRS FRP was used as a proxy of fire intensity and potential emission strength
from the biomass burning area, and considered as a direct measurement of radiative energy

being released from individual fire pixel.

Land surface radiemetrie-temperature (LST, in °C) at 1 km spatial resolution was
utilized from Moderate Resolution Imaging Spectroradiometer (MODIS) version 6.1 Land
Surface Temperature and Emissivity retrievals product (MYD11A1). Typically, LST indicates
thermodynamic temperature of the interface atmospheric layer within soil, plant cover and
lower atmosphere, and serves as an indicator of land-atmosphere interaction and exchange
(Li et al., 2023). Here, MODIS MYD11A1 radiometric dataset with quality flag ‘00’ was
specifically chosen considering its broad swath and wider applicability in estimating land
surface temperature. Besides-MODIS LST is validated against ground observations on diverse
land covers and reported to provide realistic estimate of surface temperature (Wan, 2014)

with an uncertainty of <0.5 K. The dataset includes daytime maximum LST (at 1:30 PM local

time) and nighttime minimum LST (at 1:30 AM local time).Beth—daytime—maximum—and

h ma minioa e sarexdmatehy 30 PM-and-1:230-AMleea me-respe el a

available: HoweverHere, daytime LST dataset were obtained solely from the MODIS sensor

onboard the Aqua satellite to closely coincide with VIIRS fire count observations at 1:30 PM

local time, a period when crop residue—based fires are expected to reach at peak—te-better

Aerosol optical depth (AOD) from Visible Infrared Imaging Radiometer Suite (VIIRS)

sensor on-board SNPP satellite offers accurate estimation of columnar aerosol loading at 550
nm over land. Accuracy of VIIRS V1 DB AOD was evaluated extensively over South Asia by Aditi
et al. (2023) and reported to provide stable AOD retrieval against AERONET. Sayer et al. (2019)
reported an estimated error of £(0.05+20%) in VIIRS Version 1 DB AOD dataset. Here, Deep
Blue (DB) Version 1 AOD dataset (AERDB_L2_VIIRS_SNPP Level-2) was used to retrieve AOD

with a nominal spatial resolution of 6 km at nadir. Only quality assured AOD (QA > 2) was

A0
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retrieved for the months of October to November foryears2017te-2021-over selected spatial

domain.

Terra/Aqua MODIS land cover data was used to discriminate crop land against the rest
to filter out thermal anomalies exclusively over the agriculture land. To achieve this, MODIS
L3 V6.1 Global Land Cover type product (MCD12Q1) was retrieved from LAADS DAAC site for
year 2017, available at 0.5 km spatial resolution. MODIS land cover types adopts International
Geosphere-Biosphere Programme (IGBP) and other land type classification schemes to
classify land cover. Here, land cover type 12 (cropland) was earmarked to isolate the

agriculture land from its surrounding (Fig. S32).

Daily composite data on surface and root-zone soil moisture (SM, m3 m~3) available at

9 km resolution was obtained from NASA’s Soil Moisture Active Passive (SMAP) satellite

mission having L-band radar. The Normalized Difference Vegetation Index (NDVI) at 6 km

resolution was derived from the VIIRS/SNPP Deep Blue (AERDB L2 TOA NDVI) dataset and

was utilized to quantify surface vegetation greenness dynamics. Elevation data at 30 m

resolution was retrieved from Copernicus DEM - Global and European Digital Elevation Model

dataset for year 2015. Surface albedo data was acquired from MCD43 suite of NASA standard

product which integrates both Terra and Aqua retrievals. Here, white-sky version 6.1

shortwave albedo data (MCD43A3, Albedo WSA shortwave) at 500 m pixel resolution with

daily-time step (quality score: 0) was used.

Lower surface meteorological data including air temperature (AtAT), total solar
radiation flux (S«SR), precipitation (P+R), —and-relative humidity (RH) was procured from
European Centre for Medium-Range Weather Forecasts (ECMWF) AgERAS dataset. The
AgERAS dataset has been generated by Copernicus Climate Change Service (2020) from hourly
ECMWF ERAS dataset for specific agro-ecological based applications. The meteorological data
were pre-customized with temporal aggregation aligned to local time zones and spatial
enhancement to a 0.1° resolution using grid-based variable-specific regression model. Here,
air temperature at 2 meters above the surface, total solar radiation flux received at the surface
over a 24-hour time period, and relative humidity at 2 meter height was selectively used over

pre-identified intensive crop-based fire zone. Planetary boundary layer height (PBLH) data at

0.25° x 0.25° resolution was acquired from ECMWF ERA5 for 13:00-14:00 h local time

Al
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corresponding with VIIRS overpass time. A description of all core datasets used in this analysis

and their resolution, version, and quality flags andlevelefuncertainty-is included in Table S1

(in supplementary file).

A

2.3 Spatial analysis for fire-aerosols-LST association

2.3.1 Selection of intensive fire zone

Post-harvest residue burning typically begins in mid-October and reaches peak

intensity by mid-November across northwestern India. Accordingly, all spatial analyses were

conducted for October and November for the years 2017-2021. The VIIRS 375 m fire product

successfully retrieved active fire pixels across the Indo-Gangetic Plain, capturing substantial

spatial heterogeneity.

representative region having predominance of residue-based fire, spatial comparison of fire

pixel density was made using daily retrieved VIIRS FRP dataset. FRP was selected instead of

fire counts because it directly quantifies the radiative energy released from active burning

and therefore provides a more meaningful metric for assessing potential impacts on LST. FRP

density was computed on a 1.5 x 1.5 km? grid to characterize spatial variations in fire intensity
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across northwestern India. Following Giglio et al. (2006), FRP density was estimated as the

ratio of total FRP within a grid cell to the grid area.Fhe-selection-of FRP-overfire-countasa
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Fig. 2. Selection of high intensity residue-based fire zone based on fire radiative power pixel
density (MW 2.25 kikm2day™?).

/NOTE-Fig. 2a indicates the ‘extended geographical region] demarcating the entire area with<

varying fire intensity selected for spatial analysis. Rest of the figures classify year-
specific ‘intensive fire zone'—used—to—retrieve—allthe—variablesforspatiotemporal
analysis based on FRP density.

Initially, geospatial variations in fire intensity and the associated changes in LST and

AOD were evaluated. Spatial intercomparison between FRP, LST, and AOD was performed
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over the region delineated in Fig. 2a. This area was selected to encompass an extended

geographical domain without imposing thresholds on low or high FRP density across

northwestern India. The region is hereafter referred to as the “extended geographical

region,” as it integrates fire activity across all years and was used exclusively to establish the

spatial association between the predictor (FRP) and dependent variables (LST and AOD).

In contrast, to assess the day-to-day influence of fire intensity and aerosol loading on

LST, a comparatively high-intensity fire zone was delineated relative to low-intensity areas.

To achieve this, the entire crop-residue burning region of northwestern India was mapped

using a constraint from low FRP density (<5 MW grid™") to high FRP density (>15 MW grid™).
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Spatial variations in FRP density were evaluated for each year, and regions with FRP density

>5 MW grid~" were identified as the “intensive fire zone” (Fig. 2b—f). ia-contrastto-establish

density>5-MW-grid*-area{Fig—2b-f}-This threshold ensured a better representation of the

effect of medium to large crop-based fire on regional LST as very-small-intensity fire deem to

extinguish faster while being inconducive to considerably influence surface temperature

(zhao et al., 2024).

All subsequent spatial datasets used for evaluating FRP—AOD-LST relationships were

retrieved exclusively within the year-specific ‘intensive fire zone’ having FRP density >5 MW

grid . Notably, the spatial extent of the high-FRP region remained largely consistent across all

years (Fig. 2b—f), with areal estimates summarized in Table S2. Al-the-spatial-datasetswere

‘ ’

2b-fland-guantfied-inTable-S1-It is noteworthy, the fire-intensive-region was pre-filtered
based on the Terra/Aqua MODIS land cover data to deselect any FRP pixel that emerged from

a non-agricultural/crop land.
2.3.2 Selection of temporal window

After isolating the region with higher fire pixel density, the next step was to identify

the temporal window in which potential associations between fire intensity and other

explanatory variables could be examined. The temporal selection was based on two scenarios,

as illustrated in Fig. 3. Scenario 1 was designed to quantify the influence of FRP, aerosols, and

other parameters on LST during the period when fire activity begins to intensify and remains

persistent over the intensive fire zone. Scenario 1 defines the initiation day as the first instance

in October when aggregate FRP consistently exceeds 1500 MW and shows at least a 50%

increase compared to the previous day. The scenario concludes in November when aggregate

FRP decreases by at least 50% relative to the previous day. The selected dates for Scenario 1

A4
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are listed in Table S3, with two exceptions. As-theregion-with-higherfirepixel-density-was

First, in year 2018 when a >50% criteria was not met despite having an aggregate FRP >1500

MW and second, in year 2017 when a prior decrease (>50%) in FRP was avoided because of

subsequent rise in fire intensity.
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Fig. 3. FRP_and LST time series against-LSTF-over year-specific-intensive fire zone showing the
extent of with—marked—timeframeforbeth-scenarios selected-used for geospatial

modelling.
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To define Scenario 2, a statistical association was examined between day-specific

aggregate FRP and the spatially averaged LST. Pixel-based LST values were averaged over the

intensive fire zone and compared against the area-weighted sum of FRP on a day-to-day basis.

A temporal window (“Scenario 2” in Fig. 3) was selected using two criteria: (i) the end of the

window had to coincide with a period of persistently high FRP, and (ii) the window had to

exhibit a strong positive correlation (r > 0.5) between FRP and regional LST. Te—censtitute

LST-Such restricted criteria were put to ensure that we only select year-specific window(s)

when FRP (so the fire count) increases with time and exhibit a strong association with regional

LST. Descriptive statistics of both scenarios are included in Table S4. It is noteworthy that

selecting multiple windows within a year having coinciding days was avoided while ensuring

windows should not contain more than 5% of missing days, irrespective of parameters.,

2.4 Spatial correlation between fire, aerosols and LST

To examine the spatial association among FRP, LST, and AOD over the residue—based fire zone,«—

grid-based spatial correlation coefficients were computed, and their statistical significance (p

< 0.05) was tested across the study domain. Daily FRP (375 m) and LST (1 km) datasets were

initially resampled to a 6x6 km? resolution to match the VIIRS AOD dataset before subject to

[Formatted: Indent: Left: 0 cm, Hanging: 1.25 cm
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spatial correlation analyses among the predictor and dependent variables. This approach

facilitated the identification of regions exhibiting strong co-variability in thermal conditions

corresponding to variations in fire intensity and columnar aerosol loading Fe-identify-spatial
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W72 2.5 Hurst Exponent “ [Formatted: Line spacing: 1.5 lines

n73 The Hurst exponent is a statistical measure used to characterize the properties of a

A74  time series without imposing assumptions about its underlying distribution. Originally

W75  introduced by Hurst (1951) in hydrological studies and later refined by Markonis and

W76  Koutsoyiannis (2016), it has since been widely applied across diverse scientific disciplines to

W77  analyse long-term trends and variability. In this study, the Hurst exponent was computed for

W78  FRP, AOD, and LST time series to identify long-term statistical persistence in the datasets. To

A79  estimate the Hurst exponent at the spatial scale, 6 x 6 km? resampled datasets of FRP, AOD,

W80  and LST were used. Adjustment of seasonal cycle was not accounted, as the datasets were

81  retrieved and processed exclusively for a single season across the selected years. Fhe-Hurst

A82
A83
184
A85
186
N87  Hmeseriestorecognizetongtermpersistence-ofthe-dataset-The main calculation procedures

488  were as follows (Granero et al., 2008):

489  Atime series x(t) is given,

490 (X)) =1/1¥i-1x(t) t=1,2,3.. (1)
491 The cumulative deviation is determined using Eq. 2:

492 X(t,7) = Yr=1(x(w) — (x)¢), with a conditionof 1 <t<T. (2)
493  Extreme deviation sequence, is defined as:

494 R(7) = max X(t, ) — lrgltlsnt X(t,t) wheret =1,2,3 ... (3)
495  The standard deviation sequence is calculated by Eq. (4):

496 S(1) =[1/1 ¥._ (x(t) — (X))]V? where T =1,2,3 .. (4)
497 By considering both extreme deviation sequence and standard deviation sequence,

498 R/S=R(1)/S (t) when assuming (R/S) o (t/2) " (5)
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The Hurst exponent ranges between 0 and 1. A value of 0.5 indicates that the time series

behaves as a purely stochastic process without persistence, implying that future variations are

independent of past behaviour. Values greater than 0.5 denote statistical persistence,

reflecting a tendency for future changes to follow the same trend as in the past, with higher

values corresponding to stronger persistence. Conversely, values below 0.5 indicate anti-

persistence, suggesting a tendency for the time series to reverse its trend over time; lower

values represent stronger anti-persistence (Peng et al., 2011).Hurst-exponent-varies-between

0-and A\ e of 0 anifiac that tha Hma erias bahava ochaste proce nga

2.6 Space-for-time approach

A space-for-time approach was employed to assess and compare the spatial

heterogeneitychanges inef LST and AOD with respect to variationsin-FRP within the extended

geographical region experiencing recurrent medium- to largehigh--intensity fire. To ascertain

thattheensure that changes in LST and AOD were attributable solely to fire activity, grids with

similar_characteristics in terms of topography, climate, and physical environment were

compared (Liu et al., 2019)w

characteristies. To achieve this, daily datasets including meteorological covariates (PBLH, AT,

SR, RH and PR), physical environment (elevation), vegetation and soil characteristics (NDVI,

soil_moisture), climatological mean LST and AOD, and surface property (albedo) were

extracted over both fire and no-fire grids at a spatial resolution of 10 x 10 km?climatological

grids-were-extractedin-multiples of 10x10 km?-grid-cell and-compared. The daily data were

retrieved for each grid duringunder Scenario 2, when FRP reached its peak and exhibited a

A8
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b41
b42
b43
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b47
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550
b51
b52
b53
b54
b55
b56
b57
558
b59

positive association with regional LST.DalyLST-AODand FRPdataset—was—subsegquently

hen-beth-f d sepdingLSTner it After filtering out the grid cells

havirg-with missing vatuesforeitherLST or AOD values, remaining grids were classified into
two groups;; those with ere-having-zero FRP (no--fire) against at-the grids having FRP > 0,

indicating presence of fire. Fire and no-fire grids with comparable spatial characteristics were

grouped into a single stratum, and a stratified matching technique was applied to generate

multiple strata based on combinations of the selected confounders. Grids were retained only

when differences in their physical environment, vegetation and; soil characteristics, climate

and land cover between fire and no-fire conditions were smaller than the defined thresholds

(Aelevation < 50 m; ANDVI <0.05; Asoil moisture <0.05; Aalbedo <0.05; ALST <10.0; AAOD

<0.80).

strata-based-en—combinations—of-the selected-confeunders—Comparisons were then made

< [Formatted: Indent: First line: 1.27 cm
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(N o

within strata containing grids of similar attributes to ensure that the observed variations in

LST and AOD could be attributed solely to fire activityComparisens-were-subseguently-made

and-AODcould beattributed solely tofireactivity. The difference in LST (ALST) among the fire

grids (LSTsire) and grids exhibiting no-fire (LSTno-fire) having similar attributes were compared
to constitute effect of residue-based fire on LST. thewithina-stratabased-fireand-having
similarattributesA positive (negative) ALST (LSTfire — LSTho-fire) indicates fire-induced warming

(cooling) and was used to quantify changes in LST associated with residue burning for the
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selected years. A similar approach was also adopted to evaluate AAQOD variations using grid-

based retrievals.

It is noteworthy that the grids were not classified based on meteorological covariates,

as only insignificant variations were noted among the grids. The entire northwestern cropland

experiences a relatively uniform background climate during October—November, including

comparable boundary layer heights, with PBLH standard deviations ranging from +10 m to

+33 m within a single fire season. The climatological mean LST and AOD were computed only

for the pre-fire season (September, 2017-2021), during which none of the grids experienced

residue-burning activity. Furthermore, grids were not differentiated by slope or aspect, given

the minimal topographic variation across the Gangetic Plain.b—is+notewerthy-thatalgrids

20
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589 Multicollinearity, where independent variables are highly correlated, can distort

590 regression estimates and obscure the true contribution of individual predictors (Graham,

591  2003).To assess this, the Variance Inflation Factor (VIF) for all covariates was calculated using

592  the statsmodels library. A VIF of 1 indicates no correlation, values between 1 and 5 suggest

593  moderate correlation, and values greater than 5 are generally interpreted as evidence of

594  substantial multicollinearity (Daoud, 2017). All biophysical, land-surface, and meteorological

595  variables met acceptable VIF thresholds, except solar radiation, which was therefore excluded

596 from Random Forest and GWR analysis. Additionally, soil moisture data was removed from

597  ensemble—moedelling—and—GWRfurther analysis due to a high percentage of missing [Formatted: Not Strikethrough

598  observations (~30%).

599 2.8 Random Forest regression{CHECK REFERENCE)+SM

600 Random Forest regression was used to model the relationship between the< "'[Formatted:lndent: First line: 1.27 cm

01  dependent variable (LST) and predictor variables (AOD, PBLH, AT, RH, SR, PR, NDV/I, elevation,

02 albedo, and FRP) within the intensive fire zone. Daily retrievals, averaged over the year-

03  specific intensive fire area, were incorporated into the ensemble framework to capture

604  potential non-linear associations among variables. The selected approach ensures robustness

605 to multicollinearity, minimizes overfitting, and effectively captures complex predictor

606 interactions.

607 Random Forest is a non-linear ensemble machine learning algorithm that constructs

608  multiple decision trees from bootstrapped samples of the training data, with a random subset

609  of predictors evaluated at each split. Final predictions are obtained by averaging all trees,

610 improving generalization and reducing overfitting (Breiman, 2001; Puissant et al., 2014). The

11  algorithm was selected due to its strong predictive capability, scalability to large

612 environmental datasets, resilience to correlated inputs, and demonstrated success in

613  previous LST-related studies (Logan et al., 2020; Wang et al., 2022; Zhang et al., 2025). These

614  attributes collectively support Random Forest as an appropriate and interpretable choice for

15  assessing the complex interactions between fire intensity, aerosol loading, and LST dynamics.

616

617

618
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Key Randosm Forest hyperparameters (n_estimators, max_depth,

min_samples split, min _samples leaf, and max features) were optimized using Bayesian

optimization implemented via BayesSearchCV in scikit-optimize (Snoek et al., 2012; Shahriari

et al., 2015; Frazier, 2018). This adaptive, probabilistic search strategy efficiently identifies

near-optimal hyperparameter combinations while minimizing computational cost. To ensure

robust model evaluation and mitigate temporal dependence, we employed temporal block

cross-validation using a 3-fold GroupKFold in the scikit-learn library, where all observations

from a given year were assigned to the same fold. This approach prevented temporal overlap

between training and validation datasets and reduced information leakage across years. Fhe

This approach also minimized temporal autocorrelation and prevented data leakage across

time periods. Model performance was quantified using cross-validated coefficient of

determination (R?), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE),

providing a comprehensive assessment of model accuracy and prediction error.FreRFmedel

[ Formatted: Font: 9 pt



2.9 Assessment of relative feature importance

Variable importance was derived from the trained RF model using the mean decrease in

impurity method, which quantifies each predictor’s relative contribution to reducing variance

in model predictions. This approach provides insight into the dominant factors governing the

spatial and temporal variability of LST. Feature importance values were extracted and ranked

to identify the most influential predictors under different fire intensity scenarios. To enable

direct comparison among predictors, the relative contribution of each feature was expressed

as its importance score normalized by the sum of all feature importances. As Scikit-learn’s

RandomForestRegressor.feature importances inherently returns normalized values

summing to one, the reported scores directly represent each predictor’s proportional

influence within the model.

2.10 Spatial heterogeneity assessment using GWR

23
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680 Spatial heterogeneity in the influence of FRP, AOD, and other spatial predictors on LST

81  within the intensive fire zone was assessed using Geographically weighted regression (GWR)

682  at 1x1 km? grid. GWR is a spatially explicit regression technique designed to quantify how [Formattedz Superscript

b83  relationships between predictors and a dependent variable vary across geographic space by

b84  estimating spatially varying coefficients (Brunsdon et al., 1996). The method applies a

p85  distance-based weighting scheme, whereby observations closer to a given location receive

b86  higher weights, allowing local parameter estimation that reflects neighbourhood-specific

87  dynamics (Yang et al., 2020). Unlike global regression models that assume spatial stationarity,

b88 GWR produces location-specific coefficient estimates, offering a more nuanced

b89  understanding of spatially varying associations between LST and its predictors (Fotheringham

B30 et al., 2009) Spatial-heterogeneitytnFRPrmodulatedvariations—intSTacrossintensivetfire
691 one—was—further—assessed—using—Geo ; . . )

a¥al Alaiahtad Ragra on AR o

692
693
694
695
696
697
698

699

700 is formally expressed as:

701 Vi = Bo(ui, vi) + ¥ (Bk(ui, vi) xik) + &i (6)

702 yi=Boluvil+> P Bkl v} xik+i 6y « [Formatted: Indent: First line: 1.27 cm

703 where (ui, vi) are the coordinates of observation i, Bk(ui, vi) are spatially varying coefficients,

704  xik are predictor variables, and €i denotes random error. In GWR, local parameters are

705  estimated using weighted least squares, where each observation is assigned a weight based

706  on its spatial proximity to the location being evaluated. These weights are determined by a

707  spatial kernel function and a bandwidth parameter that defines the extent of spatial

708 influence. Selecting an optimal bandwidth is therefore essential to balance the trade-off

709  between model bias and variance. In this study, the optimal bandwidth was identified through

710 an _iterative optimization procedure that minimizes the corrected Akaike Information _[Forma“edz Font: 9 pt

24




711
712
713
714
715
716
717
718
719
720
721
722

723

724

725

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

Criterion (AlCc) (Fotheringham et al., 2009). This approach ensures robust estimation of local

relationships while effectively accounting for spatial non-stationarity in the dataset. Such a

framework is particularly valuable in fire-affected landscapes, where the impacts of fire

intensity, aerosol loading, and surface characteristics on LST are inherently heterogeneous

and vary substantially across space.Heretocalparameteris-estimated-usinga-weighted-least

3. Results and discussions

3.1 Spatial association between fire, aerosols and LST

Spatial variations in FRP, LST and AOD averaged for October to November between<

2017 and 2021 over extended geographical region is shown in Figure 4(a-c). While residue-

based FRP did not exhibit a distinct spatial pattern, temporal variations were prominent, with

monthly mean FRP in November (310,188 MW month™") showing nearly a 100% increase

compared to October (152,616 MW month™"; Table S5). In contrast, the spatial pattern of LST

exhibited considerable heterogeneity, with relatively higher temperature observed in the

southern parts of the region that gradually declined northward. This north—south gradient

may be partially attributed to the proximity of the Himalayan foothills, where the cooler

mountainous environment likely offsets fire-induced surface warming. A gradual decline in

spatially averaged monthly mean LST was also accounted in November (29.0+2.4 °C)

compared to October (31.0+1.6 °C). A spatially distinct pattern in columnar aerosol loading

was evident across the extended geographical region, with elevated AOD (> 0.65) retrieved

over the central areas that gradually decreased towards its periphery (< 0.30). Such spatial

variability in aerosol loading is likely driven by differences in the intensity of residue-based

fires and the associated emissions of aerosols and trace gas precursors. Moreover, the

pronounced increase in monthly mean AOD (October: 0.59 + 0.08; November: 0.82 + 0.12)

25
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likely reflects the intensification of fire during early November, compounded by concurrent

meteorological influences, most notably the seasonal decline in boundary layer height

(Banerjee et al., 2022).

74°00°E 76°00"E 74°00E 76°00°E 74°00°E 76°00°E
Z [FRP (MW) <~ Himachal z
o | N o
e Pradesh ro
o 8
£ z
] o
P EX
3 8
M T ' }
|la. Rajasthan "™ Haryana {
T T

<25 5.0 6.5 105 >240 <293 30.5 31.0 321 >345 <030 050 0.55 065 >065

74°00°E 76°00°E 74°00'E 76°00°E 74°00°E 76°00°E
Z [FRP_LST Himachal | [FRP_AOD [AOD_LST z
o o
21 Pradesh [ u LS
& 8

Pakistan

30°0'0"N
it
T
30°0'0"N

=<
d. Rajasthan ~ " Harayana
T T

<-0.06 0.05 0.16 >0.16 <-0.07 0.07 0.22 >0.22 <-0.37 -0.20 0.00 >0.20

Fig. 4. SSpatial asseciation-variations ofbetween predictor{FRP, LST and AOD}and-dependents

variables{LST); over extended geographical region, 5-year mean FRP (a), LST (b) and
AOD (c), and spatial correlation between FRP_LST (d), FRP_AOD (e) and AOD_LST (f)

everextended-geographicalregion. To compute spatial correlation,

NOFEToconstituteaspatialasseciationddaily retrievals of FRP, AOD and LST pixels-were

converted to a common 6x6 kmZ grid. Spatial correlation betweenFRP-LSTand-AGD

datby—retrievals—on—selected—grid—was madecomputed for the entire duration ever

extended geographicalregionand-S significant correlation (P<0.05) is shown with black ‘

(
(
N
(
\ { Formatted:
(
(
(

dot.

26

[ Formatted:

Line spacing: 1.5 lines

Formatted

: Font: 12 pt

Formatted:

Font color: Text 1

| Formatted:

Font: 12 pt

| Formatted:

Superscript

Font: 12 pt

Formatted:

Font: 12 pt

| Formatted:

Font: 12 pt

‘| Formatted:

Font: 9 pt

o L A U




757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

[ Formatted: Font: 9 pt



789
790
791

792
793
794
795
796
797
798
799
800
801
802
803
804
805
B06
807
808
809
810
B11
B12
813
814
B15
B16

B17
B18
B19

Spatial associations among VIIRS-derived FRP, MODIS LST, and VIIRS-based AOD daily

retrievals were assessed over the extended geographical region (Fig. 4d—f). Spatial-asseciation

overpre-identified-geographicalregion{Fig—4d-f}—Spatial correlation between pixel-based

FRP against LST reveals positive but a-spatially heterogenous pesitive-association across most

parts of the study area, except in the southern regionevermajorportion-of-the-area-except
seuthern—part. A statistically significant relationship (P _< 0.05) between FRP and LST

underscores the potential influence of crop residue burning on surface temperature.

Similarly, a significant association between FRP and AOD was observed across the central

region, where fire intensity was notably higher than in surrounding areas. This spatial

covariation between fire intensity and columnar aerosol loading further reinforces the

influence of biomass-burning-induced emissions of aerosols and their precursors on

burning aerosols, predominantly composed of carbonaceous soot particles, are known to

modulate the thermal budget of the lower atmosphere (Freychet et al., 2019; Xu et al., 2021).

The spatial association between AOD and LST further supports the existence of a fire—aerosol—

surface temperature nexus over northwestern India. A comparatively weak yet statistically

significant _positive correlation between AOD and LST likely reflects lower-atmospheric

warming induced by smoke aerosols, consistent with the similar warming effect over western

United States during 2017 California wildfire (Gomez et al., 2024).
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3.2 Evaluation of Hurst exponent

The Hurst exponent was evaluated to assess the long-term persistence of fire

intensity, surface temperature, and aerosol loading time series over the extended

geographical region. In principle, the Hurst exponent is used to guantitatively distinguish a

purely stochastic time series (H = 0.50) from a persistent (H > 0.50) or anti-persistent (H <

0.50) time series of pixel-based FRP, LST, and AOD, following the methodology described in
Markonis and Koutsoyiannis (2016) and Chen et al. (2022).Hurst-exponrent-was-evaluated-te

As shown in Figure 5, nearly the entire extended geographical region of northwestern+——

India exhibits Hurst exponent values greater than 0.50 for FRP, with relatively higher values

(0.60—0.70) concentrated toward its central zone. Although variations in Hurst exponent for

FRP was spatially inconsistent, primarily due to temporal and spatial fluctuations in fire

intensity, the FRP time series over most of the region indicates statistical persistence.

Similarly, elevated Hurst exponent values for LST (>0.50) across the region also exhibits

persistence at long run. Notably, the northern portion of the study region shows slightly

higher Hurst exponent values compared to the southern part. For regional aerosol loading,

except few isolated patches, comparatively high Hurst exponent values (>0.75) were

observed over the central region. Notably, this area also coincides with zones characterized

by high AOD (>0.65) and a statistically significant FRP—AQD association. Overall, the Hurst

exponent analysis indicates that the observed FRP, LST, and AOD time series across most of

the residue-burning region exhibit statistical persistence.
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However, interpretation of the Hurst exponent results should be approached with

caution. The five-year dataset used here may not be sufficient to derive statistically robust

estimates. For the same reason, trend analysis was not undertaken, as the limited dataset

constrains the reliability of such estimates and falls beyond the scope of the present study.

Nonetheless, several studies have documented long-term trends in fire dynamics and aerosol

loading over northwestern India #-is-heteworthy-that trend-analysiswas-not undertakenas
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dynamicsandaerosoHoadingovernorthwesteratndia-(e.g., Vadrevu and Lasko, 2018; Jethva
et al.,, 2019; Singh et al., 2020).4s—neteworthy—that-we-have—aveided—analysingtrend—in

3.3 Surface temperature and aerosols response to fire intensity

Fire intensity in terms of pixel-based FRP, aerosol loading and surface temperature

were retrieved to eenstitute-compute corresponding respective-daily means—and spatial

means based on five years of satellite retrievals. It is noteworthy that to account immediate
response of fire intensity and aerosol loading on surface temperature, all variables were
retrieved exclusively over year-specific -wise-intensive fire zones, having cumulative FRP > 5

MW grid -, as illustrated in Fig. 2(b-f).
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Fig. 6. Time series of five-year mean fire radiative power (FRP, a), land surface temperature

Gray dots show daily retrievals from October to November (2017-2021), with the red line+

(LST, b) and aerosol optical depth (AOD, c) against daily retrievals, (d) covariation of FRP,

AOD and LST over intensive fire zone.

depicting the corresponding 5-year mean.NOFE-Gray-dotsindicate-dailyretrievalsfrom

32

o [Formatted: Line spacing: 1.5 lines

[ Formatted: Font: 9 pt



97

98

99
P00
pO1
P02
P03
po4
P05
P06
P07
P08
P09
P10
P11
P12
P13
P14
P15
P16
p17
P18
P19
P20
P21
P22
P23

P24
P25
P26
P27

A distinct temporal pattern is evident in the FRP time series (Fig. 6a), which corresponds+——

closely with daily variations in fire counts (Fig. S4). Over northwestern India, FRP starts to

build-up typically in mid-October, peaks consistently during the first week of November, and

declines thereafter by mid-November. In contrast, the temporal pattern of the five-year mean

LST time series appears less pronounced, as daily retrievals exhibit substantial variability.

Regional LST demonstrates both interannual and intra-annual fluctuations, as illustrated in

Fig. S5. Notably, the FRP time series aligns well with the mean columnar aerosol loading,

underscoring the potential influence of aerosol and precursor emissions from widespread

biomass burning.

The characteristic rise in AOD during the first two weeks of November likely represents

a direct response to intensified fire activity, as columnar AOD values consistently exceed 1.00

over the intensive fire zone. Interestingly, between October 25 and November 20 each year,

approximately 90% of daily AOD observations surpass the five-year mean (0.74 + 0.28),
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coinciding with an 800% increase in average FRP (13,085 * 6,825 MW) compared to the

remainder of the season (1,148 + 1,478 MW). During this interval, the five-year mean

columnar AOD exhibits a strong association with the aggregate FRP (r = 0.46) and mean LST

(r=0.41), whereas these associations weaken considerably outside this period (AOD—FRP: r =

0.18; AOD-LST: r = —0.02).

The temporal associations among FRP, AOD, and LST clearly demonstrate the immediate

response of fire-induced variations in_aerosol loading and surface temperature over

northwestern India. Accordingly, in the subsequent section, these relationships were

modeledmodelled using a geospatial tree-based regression framework that integrates

concurrent temporal features (e.g., day-specific retrievals) and spatial predictors (e.g.,

regional meteorology, aerosol loading, and fire intensity) to quantify and characterize the

FRP—AOD-LST nexus within the intensive fire zone.Femperal-association-betweenFRR-AOD

3.4 Fire induced change in LST and AOD

The effect of crop residue burning on land surface temperature and aerosol loading

was _assessed
loading—were—guantified-using a space-for-time substitutien—approach by overlaying grid-

based VIIRS LST, FRP, and AOD datasets over the northwestern region experiencing recurrent

fire. To remove potential confounding effect, Efire and no-fire grids were retained for

comparison only when they matched in terms of topography, meteorology, physical

environment, vegetation and soil characteristics, climatological mean LST and AOD, and

surface property. Comparisons were performed within defined strata containing grids with

identical characteristics to ensure that the quantified changes in LST and AOD eeutdbecould

be attributed solely to fire-aetivity. A total of 6887489 paired no-fire and fire grids were used

between 2017 and 2021 to quantify the relative change in LST and AOD. It is noteworthy that
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all grids, whether exhibiting fire or not, were selected from within the extended geographical

region to capture localized variations in temperature and aerosol loading.
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As illustrated in Fig. 7, —wi ifi ; : o

consistent yet temporally dynamic increase in both LST and AOD was observed over regions

affected by residue-based burning compared with no-fire zone. However, the magnitude of

LST and AOD change across the fire zone was spatially heterogeneous. On average, residue-

based burning induced an increase of 0.60 °C in LST during 2017-2021, with interannual

variability ranging from 0.33 °C to 0.76 °C. This indicates that residue burning exerts a

persistent warming influence on land surface temperature, likely driven by reduced

evapotranspiration, enhanced shortwave absorption, increased sensible heat flux, and fire-

induced changes in surface albedo. However, a strong spatial heterogeneity in LST and AOD
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modulation further indicates the potential influence of key confounding factors and intensity

of fire in regulating the change. As-ilustrated-in-Fig—7with-year-specific datasets-summarized

FThe results of this study align with Liu et al. (2019), heresultsreported-inthis-study

are—consistent—with—theose—of Liv—etal—{2019},-who attributed a 0.15 °C rise in surface

temperature over burned areas globally to satellite-observed forest fires, as well as Liu et al.

(2018), who documented a net warming effect over the Siberian boreal forest. Additional

evidence from Alkama and Cescatti (2016) and Zhao et al. (2024) also indicates a positive

linkage between forest fire occurrence, and-fire intensity, withand surface temperature. In

contrast, the biophysical effects of agricultural residue burning on land surface temperature

remain poorly constrained. Heweverthe biephysical-effectsof agricultural residue-burning

eensidered.-Zhang et al. (2020) reported LST increases of 1-3 °C over three provinces in China

associated with crop residue burning. However, the feedback effects of meteorological

covariates and systematic land-cover differences on fire occurrence were not accounted for,

leading to causal attribution of fire to LST remains tentative.

“ [ Formatted: Indent: First line: 1.27 cm

A consistent_annual increase in _aerosol loading was also observed over the fire-

affected grids over northwestern India-affected-by-fire-compared-to-non-firegrids. Satellite-
based-observations—revealed-aA clear upward trend in AOD was noted withiracross the fire
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zones, with a mean increase of 0.13 AOD year~" and a range of 0.07-0.22 AOD year™". Netably;

thisThe inereasechange in  columnar aerosol loading, however, was spatially

heterogeneousAOD-persisted-throughoutthemoniteringperied. Overall, the increase in AOD

from fire-associated emissions of aerosols and their gaseous precursors reinforces the source-

specific contribution of crop residue burning, a phenomenon well documented in previous

studies (Vinjamuri et al., 2020; Mhawish et al., 2022).Overalltheinecreasein-AOD-fromfire-
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1066 3.5 Spatial regression of fire intensity and aerosols on LST

67 A machine learning algorithm was employed to establish the statistical association

68 between the dependent variable LST and multiple predictors including; fire radiative power,

69  aerosol loading, regional meteorology (Fig. S6), surface properties, and vegetation

70  characteristics—and—the—dependent—variable—LST. Relative—festure—importa (RELNof ol

71 prodictarc fivet avaliiatod £fartlha £ " ».,-l-a« . »g‘.—\ Laff +g £LDD o ooy |

7

72 a—LSTwere—subseguentlyquantified—All Bbiophysical parameters, except SR and soil

73  moisture, retrieved under two pre-defined scenarios, (one) days with moderate-to-high fire

74  intensity and (two) days with sustained high fire intensity exhibiting a positive association

75  with regional mean LST, were used to model the FRP—AOD-LST relation.Fe-establish-apessible

[ S o S S o S S S S = S = S o S = S o S = S = S o SN = S = S o S = S = S S =
~
o]

1p90 Relative feature importance (RFI) of aliselected predictors was first evaluated for the+ [Formatted:]ustiﬁed, Indent: First line: 1.25 cm
1p91  fire season, and the marginal effects of FRP and aerosols on LST were subsequently

1p92  quantified. Figure 8(a) presents the normalized RFI values for all predictors under both

1p93  scenarios, and the Random Forest hyperparameter tuning procedure is summarized in Table

1094

1p95  quantifies the sensitivity of regional LST to each predictor and reflects their partial

1p96  contribution to surface temperature variability. Fire radiative power emerged as the
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dominant predictor under both scenarios, indicating the strong influence of fire-related

energy release on regional radiative balance, likely through reduced evapotranspiration and

fire-induced changes in surface albedo (Liu et al., 2018, 2019). Notably, the RFI was

substantially higher during period of sustained high-intensity burning (Scenario 2; RFI = 0.40)

compared with days characterized by moderate-to-high fire activity (Scenario 1; RFl = 0.22),

highlighting the stronger thermal response associated with intensive burning condition.
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variables—modeled—across—the-identified-seenariossiregionalNext to FRP, PBLH exerted a

significant influence on LST (RFI: 0.21-0.24), followed by atmospheric temperature (RFI: 0.09—

0.21). The strong effect of PBLH on LST can be explained by restricted turbulent mixing during

shallow boundary-layer conditions in post-monsoon season. A relatively low PBLH (mean+SD:

71429 m) over northwestern India reduces vertical mixing and traps fire-induced heat and

aerosols close to the surface (Vinjamuri et al., 2020). This enhances shortwave absorption,

suppresses evaporative cooling, and limits turbulent heat dissipation, resulting in a stronger

and more persistent increase in LST. Another notable finding was the modification of LST due

to enhanced columnar aerosol loading during fire season. The RFI of AOD varies from 0.09 to

0.11, indicating its influence on regional radiative budget. Residue burning releases aerosols

and their gaseous precursors, which can exert significant radiative impacts and drive rapid

adjustments in both surface and atmospheric temperature (Freychet et al., 2019; Xu et al,,

2021). Fire-generated aerosols influence the energy balance through scattering and

absorption of radiation, alterations in cloud microphysics, and changes in surface albedo via

deposition of carbonaceous particles. However, the magnitude and direction of these

radiative effects remain uncertain at the global scale (Tian et al., 2022).

The partial influence of all other parameters, including meteorological variables, seilare-land«

characteristics and elevation was less significant (RFI < 0.30).
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coefficientbetween—FRRand-LST-were—selectively—considered—The predictive skill of the

random forest model was assessed using temporal block cross-validation to minimize

temporal autocorrelation and prevent data leakage. Under both scenarios model

performance was found satisfactory with R? varying from 0.65-0.75, marked with relatively

I [ Formatted: Indent: First line: 0 cm
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low RMSE (0.87-0.95 °C) and MAE (0.58-0.61 °C). A satisfactory model performance also

ensures that residue burning provide a clear LST response and the RF model was able to

resolve non-linear land—atmosphere interactions, irrespective of the selected scenarios. RA

relatively better performance was however, achieved durirgin scenario 2 during the fire days

having better spatial association between FRP and LST. Collectively, this confirms that

moderate-to-high intensity residue burning leaves a measurable and predictable thermal

signature on the land surface over northwestern India.
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The partial dependence plots (PDPs) in Fig. 8(c—d) illustrate the marginal effects of FRP

and AOD on LST. These plots show the expected change in LST associated with variation in

each predictor while holding all other predictors constant. The estimated effects of both FRP

and AOD exhibit a non-linear, saturating response. LST increases sharply at low-to-moderate

values of each predictor but the effect progressively weakens at higher magnitudes,

approaching an asymptotic limit. This behaviour likely arises from the complex interplay of

radiative and thermodynamic processes associated with biomass-burning emissions. Fire-

originated aerosols exert both direct and indirect radiative effects whose magnitudes and

signs vary with aerosol loading and composition (Freychet et al., 2019; Xu et al., 2021; Tian et

al., 2022).

2016} At moderate aerosol loading, UV-absorbing black carbon aerosols may enhance

atmospheric heating and can transiently increase near-surface temperature (Jacobson, 2001).

Fire-induced convective plumes may initially enhance surface temperatures, whereas strong

aerosol build-up can reduce solar transmittance to the ground. Aerosol—cloud interactions

further contribute to non-linearity by modifying cloud microphysics, lifetime, and albedo,

altering the regional radiative balance. Additionally, aerosol-driven changes in boundary-layer

structure, evapotranspiration, and soil moisture introduce additional land—atmosphere

feedbacks. Together, these interacting processes operate across multiple spatial and

temporal scales and do not scale linearly with aerosol loading or fire intensity, producing the

observed non-linear LST response. The RF model therefore provides strong evidence that

both fire intensity and fire-derived aerosols exert measurable and non-linear effects on

regional LST, with potentially important implications for the regional radiative budget.
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3.6 Geographically weighted regression on LST

A Global Moran’s | test was first applied to assess spatial autocorrelation in LST across+

the intensive fire zone for the cumulative five-year period. As shown in Table S6, Moran’s |

was 0.225, accompanied by a high positive Z-score and a statistically significant p-value (<

0.001), indicating a clustered spatial pattern of LST that is highly unlikely (<1%) to have arisen

by random chance. Given this spatial dependence, GWR was employed to evaluate spatial

heterogeneity in the relationships between LST, FRP, and other predictors. All variables used

in the Random Forest model were incorporated into the GWR framework under both pre-

defined scenarios. Model specifications and performance metrics including bandwidth and

kernel details are mentioned in Table S8.
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Fig. 9. Spatial distribution of FRP and AOD GWR coefficients across intensive fire zone.
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GWR model demonstrated strong explanatory power, with global R? values exceedingf\

0.74, confirming that the selected predictors effectively captured spatial variability in LST. FRP [ Formatted: Indent: First line: 1.27 cm
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(Y

consistently showed a positive and spatially varying association with LST across both

scenarios, underscoring its dominant influence in fire-affected regions. Aerosol loading

demonstrated weak but spatially heterogeneous effects, reflecting localized differences in

aerosol-temperature interactions. Other predictors, including NDVI, RH, AT, PBLH, elevation,
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and albedo (Fig. S7), exhibited local coefficients ranging from -0.76 to +0.23, indicating spatial

variability but comparatively weaker contributions to LST modulation across the study area.

Conclusions

The manuscript unfolds by identifying the geospatial variations in crop residue—based fires

and their associated impacts on aerosol loading and land surface temperature across

northwestern India. Based on year-wise, pixel-level fire intensity, the geographical region with

intensive fire activity was initially delineated, and all satellite-derived and reanalysis datasets

were subsequently processed exclusively over the selected zone. A robust and consistent

spatial correlation between FRP, AOD, and LST was observed across multiple years, indicating

potential fire-induced perturbations in LST. The Hurst exponent analysis reaffirmed the long-
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term persistence of fire intensity, surface temperature, and aerosol loading time series. A

grid-based analysis over the intensive fire zone revealed a significant increase in both LST and

AOD during the peak fire season.—Fhe—manuseript—unfolds—with—identifying—geospatial

The article further employs the Random Forest {RE}-model and Geographically

[Formatted: Font color: Text 1
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wMWeighted rRegression (GWR) to assess the potential influence of FRP and aerosol loading

on LST, while accounting meteorological covariates, physical environment, vegetation

characteristic and surface property as confounding factorsfer—prevaiing—eteorological

variables within the selected zone. Two contrasting scenarios were hypothesized to examine

the FRP—LST—AOD nexus. Scenario 1 considered spatially aggregated FRP from fire initiation

to subsidence, whereas Scenario 2 focused on days characterized by high-intensity fires

Formatted: Font: Not Bold, Font color: Text 1

exhibiting a strong positive correlation between FRP and LST. In both the scenarios, the

Random Forest RE-regression successfully captured and mapped FRP-induced modulation of

LST, though with varying magnitudes—and-medelperformance. A distinct increase in FRP-

induced LST modulation was observed during high-intensity fire events. Both boundary layer

height and Selar—radiation—and—columnar aerosol loading also contributed partially, with

aerosols’ influence on LST increasing during periods of intense release of fire energy. The

Global Moran’s | test indicated significant spatial clustering of LST while GWR results further

confirmed FRP _and AOD-modulated LST variations across northwestern India, highlighting

strong spatial heterogeneity in FRP-AOD-LST nexus.

| Formatted: Font: Not Bold, Font color: Text 1

| Formatted: Font color: Text 1

(
[Formatted: Font color: Text 1
(
(

o )

[Formatted: English (India)

[ Formatted: Font: 9 pt




[ S S S S S S S S = S oS o S = S S = S = S =S =

[ S S S S S S S =S = S S S =

B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36

B37
838
B39
B40
B41
B42
843
B44
B45
B46
B47
B48
B49

This analysis reveals that the biophysical effects of crop residue—based fires across

northwestern India can substantially influence the regional radiative budget by altering LST.

The magnitude of LST modulation, however, depends on fire intensity and feedbacks from

regional meteorology. This study provides novel insights into residue-based fire induced

surface temperature dynamics in a region where recurrent fires hasve been historically linked

primarily with deteriorating air quality in Delhi and its surroundings. The observation-driven

analysis offers a comprehensive understanding of LST responses to residue burning and helps

reduce uncertainties in fire-induced modifications of the radiative budget. Nonetheless,

uncertainties remain due to unaccounted agricultural feedbacks, limited temporal coverage,

retrieval uncertainty in _geospatial datasets, and the complexity in aerosol-meteorology

interactions. The multifaced influence of fire aerosols and energy on regional climate through

rapid atmospheric and land surface adjustments, remains complicated at the global level. Our

findings underscore the need for Earth system model—based simulations to better quantify

climate feedbacks from crop residue burning. Besides, assessing the underlying mechanisms

of fire-energy-induced changes in evapotranspiration, the radiative effects of aerosols, fire—
aerosol-meteorology feedbacks, and incorporating additional proxies such-as-boundarytayer
heightand-seibmeisture-could further reduce the uncertainty in estimating radiative impacts

from residue burning.
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