
 
 

1 

Title: Spatial influence of agriculture residue burning and aerosols on land surface temperature 
MS No.: egusphere-2025-3163 

 

Response to Referee # 2 

Authors are grateful to the reviewer for constructive comments and suggestions. In authors’ response, 
we have responded point-by-point to each comment (reviewer’s comments are in blue and authors’ 
responses are in black), and have included the revisions in the text with track-change.  

 

Pandey et al.’s study "Spatial influence of agriculture residue burning and aerosols on land surface 
temperature" presents an observation-driven study of how crop-residue fires in northwest India influence 
land surface temperature (LST) and aerosol loading. They identify year-specific intensive fire zones using 
VIIRS FRP, retrieve VIIRS AOD and MODIS Aqua daytime LST, and use AgERA5 meteorology to control for 
meteorological context. They apply a space-for-time grid comparison to estimate ΔLST and ΔAOD 
associated with fire, compute Hurst exponents for persistence, and develop two Random-Forest (RF) 
regression scenarios (broad fire season and high-correlation windows) to quantify relative feature 
importance. Finally, they run a Geographically Weighted Regression (GWR) of FRP and LST to map spatial 
heterogeneity. The paper reports an average fire-induced ΔLST ≈ +0.48°C (range −0.55 to 1.69°C) and 
ΔAOD ≈ +0.19 yr-1 during the peak season, and finds FRP is the top RF predictor of LST in both scenarios 
(with much higher RF performance in the "scenario 2" windows). Crop-residue burning in NW India and 
other parts of South Asia has major air-quality and climate implications, this study’s focus on crop-burning 
and LST is important for this region. The use of VIIRS FRP, VIIRS AOD, MODIS LST,  MODIS LC data and 
AgERA5 meteorology enables a multi-angle observational assessment. The space-for-time comparison, 
Hurst analysis, random forest for non-linear attribution, and GWR for spatial heterogeneity form a 
coherent methodological ensemble. However, there are some major concern and queries that needs to 
be properly addressed at this stage: 

 

Thank you for the valuable comments and suggestions. All recommended changes have been 
incorporated, including improvements to the space-for-time methodology, Random Forest analysis, and 
GWR. Additional parameters including meteorological covariates (PBLH, AT, SR, RH, and PR), physical 
environment (elevation), vegetation and soil characteristics (NDVI, soil moisture), climatological mean LST 
and AOD, and surface properties (albedo), were included in the selection of “fire” and “no-fire” grids to 
strengthen the causal attribution of fire to ΔAOD and ΔLST. These parameters were also included in 
Random Forest and GWR. A nonparametric bootstrapping is performed to estimate uncertainty in ΔAOD 
and ΔLST. A new supplementary table (Table S1) summarizing all datasets and a workflow diagram (Figure 
S1) have been added. The interpretation of results has also been revised to improve coherence and 
scientific clarity. 

 

1. LST is strongly influenced by near-surface air temperature, PBL height, soil moisture, recent 
precipitation, cloud cover, surface albedo and vegetation state (NDVI/LAI). Although AgERA5 meteorology 
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(At, Sr, Pr, RH) is included as one of the predictors, the manuscript does not convincingly demonstrate that 
the estimated ΔLST (and RF / GWR results) are not driven by meteorological covariates or systematic land-
cover differences between “fire” and “no-fire” grids. Without stronger control for these confounders, the 
causal attribution “fire to AOD and LST” remains tentative. In the space-for-time comparison, conducting 
matched comparisons, for instance for each fire grid choose one or more no-fire grids matched by NDVI, 
elevation, distance to major urban areas, and climatological mean LST. This reduces bias from non-random 
spatial placement of fires. Propensity-score matching or simple stratified matching would help. Additional 
proxies including but not limited to PBL height, surface soil moisture, and in-situ atmospheric radiative 
impacts induced by the fire-emitted aerosols themselves used in the predictor set may help clarify this 
relationship and strengthen the findings. However, I welcome the authors to instead post a rationale on 
why not including these variables and this suggested approach may still suffice in relationship 
quantification. 

 

Thank you for this suggestion. Accordingly, authors have considered additional parameters, including 
meteorological covariates (PBLH, AT, SR, RH and PR), physical environment (elevagon), vegetagon and soil 
characterisgcs (NDVI, soil moisture), climatological mean LST and AOD, and surface property (albedo), into 
the selection of “fire” and “no-fire” grids to strengthen the causal attribution of fire in DAOD and DLST. 
As suggested, we also applied a stratified matching technique using combinations of major confounders 
and conducted comparisons within strata to estimate the difference in LST and AOD between fire and no-
fire grids. This refinement substantially strengthened the robustness of our estimates, revealing a 
consistent and statistically meaningful increase in both LST and AOD in every year due to recurrent fire. 

  
Initial results Modified results with additional confounders 

 

A detailed and modified space-for-time approach is now included in section 2.6. Briefly, it states: 

‘…..To ensure that changes in LST and AOD were aXributable solely to fire acZvity, grids with similar 
characterisZcs in terms of topography, climate, and physical environment were compared (Liu et al., 2019). 
To achieve this, daily datasets including meteorological covariates (PBLH, AT, SR, RH and PR), physical 
environment (elevaZon), vegetaZon and soil characterisZcs (NDVI, soil moisture), climatological mean LST 
and AOD, and surface property (albedo) were extracted over both fire and no-fire grids at a spaZal 
resoluZon of 10 × 10 km². ……… Fire and no-fire grids with comparable spatial characteristics were grouped 
into a single stratum, and a stratified matching technique was applied to generate multiple strata based 
on combinations of the selected confounders. Grids were retained only when differences in their physical 
environment, vegetation and soil characteristics, climate and land cover between fire and no-fire 
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conditions were smaller than the defined thresholds (Delevation < 50 m; DNDVI <0.05; Dsoil moisture 
<0.05; Dalbedo <0.05; DLST <10.0; DAOD <0.80). Comparisons were then made within strata containing 
grids of similar attributes to ensure that the observed variations in LST and AOD could be attributed solely 
to fire activity’. 

 

Authors would also like to emphasize that the entire residue-burning zone in northwestern India follows 
similar agronomic practices, with comparable land characteristics, vegetation dynamics, and climatic 
conditions, as it lies within a single composite climatic zone. Consequently, only subtle variations in 
meteorological covariates (At, SR, RH, PT) and PBLH (SD: ±10 m to ±33 m, yearly) were observed across 
the grids. All selected grids were representative of croplands within the extended geographical region; 
therefore, distance from urban centers was not incorporated as an additional constraint. This choice is 
justified by the fact that agricultural emissions overwhelmingly dominate over anthropogenic urban 
sources in the post-monsoon season when major residue burning occurs. Columnar aerosol loading was 
included in the analysis; however, fire-emitted aerosols were not considered separately, as segregating 
fire-derived aerosols from background loading could introduce additional uncertainty. Authors have 
included a rationale on variable selection criteria in section 2.6: 

 

‘It is noteworthy that the grids were not classified based on meteorological covariates, as only insignificant 
variations were noted among the grids. The entire northwestern cropland experiences a relatively uniform 
background climate during October–November, including comparable boundary layer heights, with PBLH 
standard deviations ranging from ±10 m to ±33 m within a single fire season. The climatological mean LST 
and AOD were computed only for the pre-fire season, during which none of the grids experienced residue-
burning activity. Furthermore, grids were not differentiated by slope or aspect, given the minimal 
topographic variation across the Gangetic Plain.’  

 

2. Provide details on RF hyperparameter tuning (max_depth, max_features, min_samples_leaf). The 
manuscript uses n_estimators=100 with a fixed seed — please show whether you tuned parameters (grid 
search / CV) or at least show sensitivity to n_trees and max_features. To further imrpve RF model 
valiadtion, spatial and temporal block cross-validation (e.g., leave-one-year-out, or K-fold blocking by 
contiguous spatial clusters) and report cross-validated R2, RMSE, MAE. This may provide more robust 
predictive skill. 

 

Thank you for this note and guidance. This has indeed improved model performance and creates a 
statistically rigorous and computationally efficient modelling outcome. 

In the revised manuscript, authors have incorporated additional predictors, including FRP, AOD, regional 
meteorology, surface properties, and vegetation characteristics, into the Random Forest (RF) model to 
establish a non-linear statistical association between LST and multiple predictors. Accordingly, Section 2.8 
(in methods) and Section 3.5 (in results and discussions) have been updated and expanded. 
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Key RF hyperparameters (n_estimators, max_depth, min_samples_split, min_samples_leaf, and 
max_features) were optimized using Bayesian optimization implemented via BayesSearchCV in scikit-
optimize. Bayesian optimization provides an adaptive and probabilistic search strategy that efficiently 
explores high-dimensional hyperparameter spaces, outperforming traditional grid and random search 
approaches in both accuracy and computational efficiency (Snoek et al., 2012; Shahriari et al., 2016; 
Frazier, 2018). 

To ensure robust model evaluation and minimize temporal dependence, authors adopted temporal block 
cross-validation using a 3-fold GroupKFold strategy in scikit-learn, in which all samples from the same year 
were assigned to the same fold, following the blocking principles recommended by Roberts et al. (2017) 
and Valavi et al. (2019) for temporally structured datasets. This approach provides temporally 
independent estimates of predictive skill and mitigates information leakage across folds. 

Following reviewer’s recommendations, cross-validated R², RMSE, and MAE is now reported in manuscript 
(Fig. 8), averaged across folds to provide an unbiased estimate of predictive accuracy. This combined 
framework, Bayesian hyperparameter optimization and temporally independent cross-validation, offers 
a statistically rigorous and computationally efficient modelling strategy. Details of the RF hyperparameter 
tuning procedure are included in Table S6. 

  
Initial results Modified results with RF hyperparameter tuning 

 

3. The GWR model for scenario 2 is using only FRP, SR and AOD as predictor for LST, I do not understand 
the rationale of leaving out other local factors, included but limited to those mentioned in point 1 above. 
Are the authors testing the concept of using these specific variables exclusively in relationship to LST? 
However, I am confused if other meteorological variables and aerosol types (their optical varialbility in 
terms of scattering and absorption, and how these may influence atmospheric heating/radiative forcing 
and near-surface based cooling/radiative forcing (Freychet et al 2019; Tiwari et al. 2023) and surface 
albedo (Hou et al. 2025) when running GWR could bias the local coeffcients. Local coefficients maybe 
absorb the effect of omitted spatially-varying covariates. I am confused why scenario 2 is missing out 
important variables. Adiitionally, please also include bandwidth and kernel details of the AICc minimization 
you mention. 

 

Thank you for this suggestion. In the revised manuscript, all predictor variables used in the Random Forest 
model (AOD, PBLH, AT, RH, SR, PT, NDVI, elevation, albedo, and FRP) were also incorporated into the GWR 
framework. However, aerosol types were not included. Aerosols over South Asia exhibit substantial 
compositional diversity and are influenced by multiple mixed sources, and classifying aerosol type using 
AOD–fine-mode fraction–SSA combinations can introduce considerable uncertainty. Moreover, based on 
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our earlier trials using satellite datasets, carbonaceous smoke aerosols were the only type that could be 
identified with reasonable confidence over the northwestern region during the biomass-burning period. 
Including aerosol type as a predictor would therefore risk adding noise and misleading spatial patterns. 

Accordingly, the local coefficient maps have been updated, the revised FRP–LST and AOD-LST GWR 
outputs for both scenarios are now presented in Fig. 9, while coefficient maps for the remaining predictors 
are provided in Fig. S7. The GWR model exhibited strong explanatory performance, with global R² values 
exceeding 0.74, indicating that the selected predictors effectively captured spatial variability in LST. The 
optimal bandwidth was determined via an iterative optimization procedure that minimizes the corrected 
Akaike Information Criterion (AICc). A new table (Table S8) has been added to the Supplementary 
Material, summarizing the GWR simulation setup, performance metrics, kernel structure, and bandwidth 
parameters used in the AICc minimization. 

 

4. I am also confused with the descritption of scenario 2, specifically if the reported relative feature 
importance (RFI) is normalized in the right way? As you mention this is a normzalized metric. But for 
scenario 2 FRP was 0.503 SR was 0.143 and Aerosol loading was 0.68. For these three predictors the 
normalized RFI sum more than 1. Is this a typographical error, a misunderstanding on my part, or is there 
some calculation mistake? 

 

The authors apologize for this typographical error. The reported relative feature importance (RFI) values 
were, in fact, normalized.  

In the revised manuscript, the RFI scores have been updated following the inclusion of additional 
parameters, and all reported values have been thoroughly rechecked to ensure accuracy. 

 

5. ΔLST is reported as +0.48°C (mean) with range, but it’s unclear whether this difference is statistically 
significant after accounting for temporal variability and dependence, and how many grid cells underpin 
the estimates. Provide confidence intervals (e.g., bootstrapped CIs) for ΔLST and ΔAOD. Additionally, 
consider how comparison of pre-post events within the same grid for fire vs. similar non-fire grids) could 
help strengthen causual inference. 

 

Thank you for this suggestion. In the revised manuscript, we applied nonparametric bootstrapping to 
assess whether the ΔLST and ΔAOD attributable to fire remained statistically significant after accounting 
for temporal variability and dependence (L606-L615). The grid selection criteria were further refined to 
ensure that the estimated changes in LST and AOD could be attributed solely to fire. A total of 7,489 paired 
fire and no-fire grid cells from 2017–2021 were used to quantify relative differences. All grids, regardless 
of fire status, were selected from within the extended geographical region to capture localized variations 
in surface temperature and aerosol loading. 

To quantify uncertainty, we computed 95% confidence intervals (CIs) for ΔLST and ΔAOD using 
nonparametric bootstrapping. For each variable, 10,000 bootstrap samples were generated by resampling 
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grid pairs with replacement, and the mean difference was recalculated for each iteration. The 2.5th and 
97.5th percentiles of the resulting sampling distribution were used to define the 95% CI. Bootstrapping 
revealed a statistically significant increase in both ΔLST (0.57 °C; 95% CI: 0.33–0.81 °C) and ΔAOD (0.13; 
95% CI: 0.08–0.17) in fire-affected regions. As both confidence intervals exclude zero, the estimated 
differences are statistically robust and unlikely to arise from sampling variability. 

 

6. Justify selection of FRP density threshold (>5 MW grid⁻¹), the 1500 MW threshold and the 50% 
growth/decline rule for scenario 1, and the r >=5 threshold for scenario 2. Add rationale and sensitivity 
checks (e.g., try thresholds (+20%, -20%). 

 

The onset, peak, and duration of post-harvest residue burning vary substantially from year to year, and 
numerous small, intermittent fires occur throughout the harvesting period. Unlike forest fires, residue-
burning events are highly sporadic and exhibit strong spatial and temporal heterogeneity (Fig. S2 and Fig. 
S4) due to fragmented landholdings, where individual fields may experience multiple low-intensity fires. 
Such small fires release insufficient radiative energy to meaningfully alter evapotranspiration or surface 
albedo and therefore have limited impact on LST. However, during peak burning periods, fire intensity 
increases markedly and has the potential to modify the regional radiative balance. 

To examine the temporal dynamics of fire intensity and its implications for regional LST, two scenarios 
were defined using distinct thresholds. Both Scenario 1 and Scenario 2 were used to capture days with 
substantially elevated FRP across the region (Table S5). In Scenario 1, a relatively larger number of fire 
days were selected within each burning season, beginning from the initial rise in FRP and continuing until 
a marked decline in aggregate FRP was observed. All small, sporadic, and low-intensity fires occurring 
during the early and late stages of the burning season were deliberately excluded. Intermittent cases in 
which aggregate FRP increased by ≥50% relative to the preceding day but subsequently declined were 
also omitted. To avoid the inclusion of small-scale fire clusters, an additional criterion of cumulative FRP 
>1500 MW was applied. 

Scenario 2, by contrast, included only periods characterized by persistently high FRP values that exhibited 
a strong positive association with regional mean LST. It represented days with a steady increase in 
aggregate FRP over time, indicating intensifying fire activity and energy release, accompanied by a positive 
correlation with regional mean LST. The requirement of >95% data completeness across FRP, LST, AOD, 
and meteorological variables restricted the number of eligible days per year but improved the robustness 
of the results. 

 

Authors acknowledge that the major conclusions of this study are not sensitive to the exact threshold 
choices or to sensitivity checks. However, variations in thresholds can shift the yearly temporal window, 
leading to differences in the absolute magnitude of LST change across northwestern India. Accordingly, as 
stated in the abstract, both scenarios consistently identify FRP as a dominant driver of LST variability, 
although the precise magnitude of LST perturbation remains sensitive to the domain and the selection of 
fire-affected days. Overall, this analysis provides robust evidence that residue burning across 
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northwestern India significantly influences LST and alters the regional radiative budget. Nevertheless, the 
exact magnitude of fire-induced LST perturbations depends on both the intensity of burning and 
concurrent meteorological conditions. 

 

7. The Hurst exponent computed and interpreted as persistence (> 0.5), is relevant when there is large 
number of data points which are specifically not impacted by seasonal trends, however, in this case, with 
only 5-year dataset and strong seasonality, Rescaled Range (R/S) analysis for Hurst estimation can be 
sensitive to trend and seasonality. This is an important featured previously determined by various 
observational studies in this part of the world where both inter- and intra-annual variability is common 
(Lin et al. 2020; Liu et al. 2024 etc.). Did the authors conduct detrended fluctuation analysis (DFA) or 
remove seasonal cycle before computing Hurst. Furthermore, the author’s interpret values of H > 0.5 as 
indicating persistence and suggest that anomalies may “remain stable in the near future.” While H > 0.5 
indeed indicates statistical persistence or long-term data analysis, this interpretation could overstate the 
predictive implications of the Hurst exponent, especially given the relatively short five-year data record 
and the presence of strong seasonal cycles (such as monsoon and agricultural seasonality) inherent in the 
dataset. I recommend the authors temper the predictive language by replacing claims that anomalies 
“will” persist with the more cautious and appropriate statement that H > 0.5 indicates statistical 
persistence. Additionally, the authors are encouraged to clarify whether seasonal cycles were accounted 
for or removed prior to computing the Hurst exponent, as this can significantly affect estimates derived 
from R/S analysis. 

 

Thank you for this valuable comment. The authors did not apply detrended fluctuation analysis because 
the dataset used to estimate the Hurst exponent represents a single season (October–November) from 
2017 to 2021. All residue-burning events examined in this study occur exclusively during the post-
monsoon period, which exhibits distinct characteristics compared with the monsoon (JJAS) and winter 
(DJF) seasons. Therefore, the retrieval and analysis of FRP, AOD, and LST were based on a single-season 
dataset, and seasonal decomposition was not intended. 

As suggested, the interpretation of the Hurst exponent for LST, FRP, and AOD in Section 3.2 has been 
revised. We no longer refer to “certainty” in predicting anomalies and instead emphasize statistical 
persistence within the dataset. This clarification has been incorporated into the revised manuscript. 

 

8. There are several small typos/grammatical slips (e.g., “Dring” typo of “During” (Page 19), “reginal” typo 
of “regional” (Page 19 3.4), please go through the manuscript carefully and correct these and similar 
mistakes. 

Thank you for this comment. Accordingly, extensive language editing has been made throughout the 
manuscript to improve readability, grammar, and conciseness. 

 

*********** 


