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The manuscript presents NN4CAST, a Python framework intended to streamline 
seasonal predictability studies with deep learning. The pipeline covers data 
preprocessing (region/season selection, anomaly computation, trend removal), model 
construction with regularization, cross-validation and tuning, and interpretation via an 
XAI module and EOF analysis. Two case studies are used to illustrate skill: Pacific SST 
forcing of tropical North Atlantic (TNA) SST in boreal spring, and Pacific SST forcing of 
European autumn precipitation. The overall aim to facilitate testing sources of 
predictability and attributing predictions to input regions is very relevant to climate 
services, but the manuscript in its current form requires revision before it is suitable for 
publication. 

General comments 

1.​ The first case study (DJF tropical “Pacific” predictors-> MAM TNA SST) formally 
respects the lag, yet the predictor domain extends into the western tropical 
Atlantic. Given the well-known persistence of tropical Atlantic SST, even a narrow 
DJF Atlantic band can carry substantial memory into MAM and thus contribute to 
the high ACC shown in Fig. 2. In that sense, part of the reported skill may reflect 
local persistence rather than a Pacific-forced bridge. It would be helpful to clarify 
whether masking local Atlantic SST alters the ACC/RMSE/importance patterns. 

 

We sincerely thank the reviewer for this highly relevant and constructive comment. We 
fully agree that, as you point out, even a narrow band of DJF SST in the western tropical 
Atlantic can carry substantial persistence into MAM, which in turn may artificially inflate 
the apparent skill in our first case study (DJF tropical Pacific predictors - MAM TNA 
SST). 

As also raised by the first reviewer, we addressed this issue by designing an additional 
experiment in which we explicitly masked the predictor domain to exclude the 
Caribbean/western tropical Atlantic, while at the same time applying a complementary 
mask to the predictand field to exclude the Pacific. This setup ensures that there is no 
overlap between predictor and predictand regions, and thereby allows us to directly test 
to what extent local SST persistence may be influencing the results. 

Importantly, this adjustment does not require any modification of the model code, since 
the masking can be implemented directly during the preprocessing of the SST fields 
prior to entering the prediction pipeline. 

 



The results of this sensitivity experiment show that model skill, measured both in terms 
of ACC and RMSE, remains high even after removing the Caribbean band from the 
predictor field (Figure R1). We do observe a modest reduction in skill in certain 
sub-regions (e.g., around the Gulf of Mexico), but the overall performance and attribution 
patterns remain consistent with those reported in the main text. 

In the revised manuscript, we have updated the Figure 2 to illustrate these results, and 
we have also updated the Zenodo repository with the outputs of this new experiment to 
ensure full transparency and reproducibility. 

 

 

 

2.​ In Fig. 3, the comparison between the regression composite for El Niño years 
(predicted TNA) and the importance composite should be improved. The fact that 
the attribution map contains cooling features does not, by itself, demonstrate 
added value, like mentioned in L280. It would help to explain how their sign and 
placement align with the atmospheric bridge and Wind–Evaporation–SST 
mechanism (e.g., stronger trades, surface heat-flux anomalies, wind-stress 
curl…), and whether the lead–lag structure supports that interpretation. As 
presented, it is difficult to separate a genuine teleconnection signal from 
collinearity in the SST field or residual Atlantic persistence. Showing that 



attribution hotspots co-locate with observed flux/SLP/wind anomalies, and 
repeating the analysis with the Atlantic belt removed from the predictors, would 
clarify whether the cooling patterns reflect a physical mechanism or a model 
artifact. 

We thank the reviewer for this valuable comment. We agree that the attribution patterns 
in Fig. 3 must be assessed in terms of their robustness and physical consistency. To 
address this concern, we repeated the experiment with the western tropical Atlantic 
masked from the predictor field, thereby removing the potential influence of local 
persistence, as explained in the previous comment. The results confirm that the central 
Pacific remains the dominant attribution hotspot, with only modest reductions in skill in 
certain sub-regions of the Atlantic basin, indicating that the cooling features identified in 
the attribution maps are not artifacts of Atlantic memory. 

In addition, and following the reviewer suggestion, we investigated whether the 
attribution hotspots align with established physical mechanisms. We computed 
composites of anomalous surface winds, sea level pressure, and geopotential height at 
200 hPa, conditioned on Atlantic indices (WTNA and SMSCU) as well as ENSO phases. 
In the central Pacific the model highlights regions of pronounced wind convergence and 
SST anomalies that lead to a Gill-type atmospheric response in upper levels (2 
anomalous anticyclones at both sides of the equator), which projects eastward into the 
Atlantic as a Rossby-wave train. This teleconnection produces a negative NAO-like 
circulation pattern, characterized by a weakening of the North Atlantic subtropical high 
pressure system  and associated trade winds, thereby affecting local surface fluxes and 
reinforcing SST anomalies in the tropical North Atlantic. 

The co-location of attribution hotspots with these observed circulation features supports 
the interpretation that the attribution maps capture a physically meaningful 
teleconnection signal rather than statistical artifacts or collinearity in the SST field. To 
strengthen this point, we also computed analogous composites for negative phases of 
WTNA and SMSCU, which show consistent patterns but with opposite signs, further 
confirming the robustness of the mechanism. 

In the revised manuscript we now present these new composites in Figure R2, while 
relocating part of the ENSO-conditioned analysis to the Supplementary Material. This 
separation highlights how the attribution patterns remain consistent across different 
conditioning approaches, while allowing readers to directly compare ENSO-based and 
Atlantic-index–based results. 



 

 

3.​ The manuscript often uses the language of “drivers,” yet the analysis is primarily 
associational. This matters for teleconnections, where shared low-frequency 
covariates can produce strong correlations without isolating a pathway. The 
discussion around XAI (e.g., Fig. 3) therefore could be improved. For both 
applications, it would be helpful to control for NAO variability and check how 
strongly it modulates the two teleconnections, and how this impacts the 



attribution maps. The recent literature arguing for causal-inference tools in 
teleconnection analysis points in this direction and could be useful (e.g. 
https://journals.ametsoc.org/view/journals/bams/102/12/BAMS-D-20-0117.1.xml). 

 

We thank the reviewer for raising this important point. We acknowledge that the term 
“driver” can be interpreted as implying causality, whereas our analyses are primarily 
associational. We will be more careful and use the term potential drivers when 
appropriate. In the first application (Pacific SSTs - Atlantic SSTs), our use of “driver” 
refers to the Pacific SST anomalies during DJF that precede and are statistically linked 
to Atlantic SST variability in the following MAM, indicating in this way a causality. 
Because the predictor and predictand are separated by a seasonal lag, the relevant 
information comes from the Pacific SSTs, while any NAO-related signal captured by the 
model is likely the component externally forced by SST rather than internally generated 
variability.  

In the second application (Pacific SSTs - European precipitation), there is no lag 
between the predictor and the predictand field. Thus, the model primarily identifies 
statistical associations rather than direct physical causality. Here, surface atmospheric 
circulation is partially embedded in the anomalous behaviour of the SST field, which 
explains why attribution maps highlight significant SST contributions from extratropical 
regions in addition to the tropical Pacific. We understand that it is important to discuss 
the impact of the NAO when explaining precipitation in Europe. To analyze the impact of 
the NAO variability, we have explored composites conditioned on positive and negative 
NAO phases (Figure R3 for NAO+). They show how the NAO has a more internal 
variability in P2 (where no relationship appears with the SST anomalous field), while in 
P3 there is a clear association with ENSO.  

https://journals.ametsoc.org/view/journals/bams/102/12/BAMS-D-20-0117.1.xml


 

 

To explore the ENSO-NAO relationship further, Table R1 identifies the ENSO, NAO  and 
precipitation cases conditioned, in periods P2 (1940-1969) and P3 (1970-2007) where 
we find some predictability in our model.  

 

 

 

 

 

 

 

 

 



Period Index Phase 
NAO 

Negative NAO Neutral 
NAO 

Positive Total 

1942–1969 

ENSO 

Negative 3 4 3 10 

Neutral 4 4 4 12 

Positive 3 1 2 6 

Total 10 9 9 28 

Precip 

Negative 4 3 3 10 

Neutral 3 4 4 11 

Positive 3 2 2 7 

Total 10 9 9 28 

1970–2007 

ENSO 

Negative 5 5 5 15 

Neutral 5 3 2 10 

Positive 3 4 6 13 

Total 13 12 13 38 

Precip 

Negative 5 6 1 12 

Neutral 5 5 4 14 

Positive 3 1 8 12 

Total 13 12 13 38 
 

 
 
For P2, we can see that there is no clear relationship between ENSO and NAO, with half 
of the NAO events considered ENSO neutral (Table R1). However, for P3, 75% of 
NAO-like events were related to an ENSO phase of opposite sign (i.e., positive 
(negative) NAO-like is related to El Niño (La Niña)). This can be seen more clearly in 
Table R2 on conditional probability. In the P2 period, there is greater internal variability of 
the NAO, or in other words, more NAOs not associated with ENSO (p=0.42), therefore, 
in principle, not forced by SSTs in the tropical Pacific and less predictable in our model. 
However, in P3, the probability of finding NAO-like +/– associated with El Niño/La Niña 
increases significantly compared to neutral years (i.e. 0.45 in P3 vs 0.22 in P2, Table 
R2).  
 
Regarding the impact of NAO+ and NAO- on precipitation, First of all, it should be noted 
that the precipitation pattern associated with the NAO (Figure R3) is very different from 
the first mode of precipitation variability in Europe identified by our model (Figure 5 in the 
manuscript). However, central Europe (i.e. the French box) appears to be affected in 
both maps. 
 
The fact that NAO+/- in P3 are more strongly influenced by ENSO also has an impact on 
precipitation. The  probability of positive precipitation associated with a NAO+ increases 
in P3 compared to P2 (i.e. 0.67 vs 0.29;  Table R3) – Even so, 10% of precipitation 
variability is not explained by NAO (in P2 and P3, 0.29 and 0.30 respectively, probability 
of finding anomalous precipitation with neutral NAO). This stronger ENSO-NAO-like and 



precipitation consistency in P3 is in line with the predicted precipitation anomalous maps 
(in Fig. 6 of the updated manuscript) and for the observed precipitation (Fig. R4). The 
composite of positive precipitation patterns in P3 shows a Niño-forced structure with 
negative SLP anomalies over Iberian Peninsula and British Isles (Fig. 6f and Fig. R4d). 
This pattern, although not strictly NAO positive, shares pressure anomalies in centres 
close to the canonical NAO index (Fig. R3d). However, the pattern in P2 shows a 
circumpolar wave that appears to originate in the Maritime continent region (with positive 
precipitation anomalies, which can induce an atmospheric wave, as explained in the 
text) and which projects onto the North Atlantic in a pattern distinct from the NAO (Fig. 
6c and Fig. R4b compared with Fig. R3b). We have clarified all this analysis in the 
updated manuscript (Lines 361-366). 
 

 

Conditional probability 1942–1969 1970–2007 

p (Niño | NAO +) 0.22 0.45 

p (Niña | NAO –) 0.30 0.38 

p (ENSO neutral |  
(NAO + ∪ NAO –)) 0.42 0.29 

p (NAO +) 0.32 0.29 

p (NAO –) 0.36 0.34 
 

 
 

Conditional probability 1942–1969 1970–2007 

p (NAO+ | Pt+) 0.29 0.67 

p (NAO- | Pt-) 0.40 0.42 

p (NAO neutral |  
(Pt+ ∪ Pt-)) 0.29 0.30 

p (Pt+) 0.25 0.32 

p (Pt-) 0.36 0.32 

 
 

 
 



 

 

4.​ The manuscript describes the toolkit as “versatile,” yet for identifying dominant 
spatial modes it offers only EOF analysis of model outputs versus observations. 
For teleconnection work, this is a narrow diagnostic. At minimum, a versatile layer 
would include a menu of spatial-mode tools beyond EOF (e.g. maximal 
covariance or canonical correlation analysis for coupled patterns). Please 
consider either expanding the diagnostics accordingly or reframing the package 
as a DL-first pipeline with basic (EOF-based) spatial diagnostics. 

We thank the reviewer for this valuable comment. We agree that for the analysis of 
teleconnections, EOFs provide only a narrow diagnostic. Our main objective with this 
toolkit, however, is to enable the modeling of teleconnections through deep learning. The 
EOF analysis is included primarily as a preliminary diagnostic, while a comprehensive 
implementation of additional techniques such as Maximum Covariance Analysis (MCA) 
or Canonical Correlation Analysis (CCA) falls outside the scope of the present work. We 
note that there are existing packages, such as xMCA (Rieger, 2021) ,Xcast (Hall et al., 
2022) or Spy4Cast (Duran et al., 2024), that already offer these functionalities. We 
therefore see NN4CAST as complementary to such tools: outputs from the simulations 



produced by our package can be readily used as inputs to these other libraries for 
further, more specialized, spatial-mode analyses. To avoid overstatement, we will revise 
the wording in the manuscript, with a clearer description that emphasizes this 
complementary role. We have clarified this in the updated version of the manuscript 
(Lines 6-8). 

 

Specific comments:   

L1 (...) with the changes in tropical sea surface temperatures (SST) being (...) 

We have corrected this.  

L8 Please be more specific than writing “(...) performs all the methodological steps”. 

We have specified these steps. (Lines 8–10). 

L27 you already defined SST in the abstract. If you decide to define again, please use 
lower case as in the abstract. 

We have corrected this. 

L75-77 Here you introduce the tool for the first time, after a long introduction on seasonal 
forecasting and ML. I suggest bringing up the goal/what’s new about your paper much 
earlier in the introduction, to help the reader to situate themselves.  

We thank the reviewer for this suggestion. In the revised version of the paper, we have 
substantially reduced the introduction of Artificial Intelligence and Deep Learning, 
streamlining the background so that the reader can reach the goal and novelty of the 
paper much earlier.  

L86 I don’t think bringing up the possibility to combine NN4CAST with ESMValTool in the 
introduction is relevant. I think this could be mentioned in the conclusions/future work. 

Thank you, we have moved this argument to the conclusions.  

L89 Please give an example of such tools written in C/C++. 

Thank you, we have added as an example tool the Climate Data Operator (CDO)  

L92-103 I recommend not giving so many details of the applications to be analysed in 
this final introduction paragraph. Similarly, mentioning GitHub and code availability here 
seems misplaced.   

We thank the reviewer for this comment. In the revised version, we have streamlined the 
final paragraph of the introduction, focusing on the main goal and contributions of 
NN4CAST without including detailed descriptions of the applications or code availability. 



L337 I think the sentence should be rewritten, as significant skill is not found in most of 
the European continent, rather in parts of it.  

We have modified the sentence according to the comment. 

L375 and L380 are repeated 

We have corrected this. 

L380, L395 The authors mention that the tool has a primary application to identify 
windows of opportunity (WoO). However, in the two applications given, there was no 
framing related to WoO. I recommend improving the discussion towards the context of 
WoO. 

We thank the reviewer for this observation. Following the suggestion, we have clarified 
the connection between NN4CAST outputs and the concept of windows of opportunity 
(WoO) in seasonal forecasting. In the European precipitation case study, period P2 
(1942–1969) serves as an example of WoO, where the model shows high skill for 
predicting precipitation. By highlighting this period, NN4CAST can help identify time 
intervals where predictive skill is higher, providing useful insights for seasonal forecast 
applications. (Lines 402–406). 

L388-L389 I suggest to focus on more specific advantages offered by the NN4CAST in 
your conclusions.  “These complementary approaches offer valuable contributions to the 
scientific community and support the improvement of current seasonal forecasting 
systems” seems a bit vague and exaggerated at the same time. In particular for the first 
application, the authors did not go in depth to highlight any new insights concerning the 
teleconnection, rather used it as an example to illustrate what the tool does. 

We thank the reviewer for this comment. Following the suggestion, we have revised the 
conclusion to emphasize the specific advantages of NN4CAST. The tool not only 
provides robust seasonal forecasts through cross-validation, but also systematically 
identifies the predictor regions contributing to target indices, quantifying their relative 
importance using explainable AI techniques. Importantly, the analysis of attribution maps 
allows linking predictive importance to known physical mechanisms, such as ENSO 
teleconnections. (Lines 402–408). 
 


