Response to Reviewer 2

October 20, 2025

Detailed Comments
Responses are marked in blue.

The manuscript presents NN4CAST, a Python framework intended to streamline
seasonal predictability studies with deep learning. The pipeline covers data
preprocessing (region/season selection, anomaly computation, trend removal), model
construction with reqularization, cross-validation and tuning, and interpretation via an
XAl module and EOF analysis. Two case studies are used to illustrate skill: Pacific SST
forcing of tropical North Atlantic (TNA) SST in boreal spring, and Pacific SST forcing of
European autumn precipitation. The overall aim to facilitate testing sources of
predictability and attributing predictions to input regions is very relevant to climate
services, but the manuscript in its current form requires revision before it is suitable for
publication.

General comments

1. The first case study (DJF tropical “Pacific” predictors-> MAM TNA SST) formally
respects the lag, yet the predictor domain extends into the western tropical
Atlantic. Given the well-known persistence of tropical Atlantic SST, even a narrow
DJF Atlantic band can carry substantial memory into MAM and thus contribute to
the high ACC shown in Fig. 2. In that sense, part of the reported skill may reflect
local persistence rather than a Pacific-forced bridge. It would be helpful to clarify
whether masking local Atlantic SST alters the ACC/RMSE/importance patterns.

We sincerely thank the reviewer for this highly relevant and constructive comment. We
fully agree that, as you point out, even a narrow band of DJF SST in the western tropical
Atlantic can carry substantial persistence into MAM, which in turn may artificially inflate
the apparent skill in our first case study (DJF tropical Pacific predictors - MAM TNA
SST).

As also raised by the first reviewer, we addressed this issue by designing an additional
experiment in which we explicitly masked the predictor domain to exclude the
Caribbean/western tropical Atlantic, while at the same time applying a complementary
mask to the predictand field to exclude the Pacific. This setup ensures that there is no
overlap between predictor and predictand regions, and thereby allows us to directly test
to what extent local SST persistence may be influencing the results.

Importantly, this adjustment does not require any modification of the model code, since
the masking can be implemented directly during the preprocessing of the SST fields
prior to entering the prediction pipeline.



The results of this sensitivity experiment show that model skill, measured both in terms
of ACC and RMSE, remains high even after removing the Caribbean band from the
predictor field (Figure R1). We do observe a modest reduction in skill in certain
sub-regions (e.g., around the Gulf of Mexico), but the overall performance and attribution
patterns remain consistent with those reported in the main text.

In the revised manuscript, we have updated the Figure 2 to illustrate these results, and
we have also updated the Zenodo repository with the outputs of this new experiment to
ensure full transparency and reproducibility.
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Figure R1. Predictability of tropical North Atlantic SST variability from tropical Pacific anomalies.
Panels showing model performance metrics over the full period (1901-2019) using a leave-one-out
cross-validation approach for predicting the SST anomaly field of the tropical North Atlantic during MARM,
with Tropical Pacific S5T from DJF as the predictor. The predictions are compared against observed
MAM SST anomalies. Specifically: (a) ACC spatial map, correlating at each grid point the observed and
predicted time series (temporal dimension); (b) Time series of ACC maps, correlating for each year the
observed and predicted spatial patterns (spatial dimension); (c) RMSE spatial map, computed
analogously to (a); and (d) Time series of RMSE maps, computed analogously to (b), all calculated
between predicted and observed fields, The ACC (RMSE) time series show the correlation (eraor)
between predicted and observed global mean 35T anomalies over time. Statistically significant results,
determined using a one-tailed t-test at the 95\% significance level, are indicated by the non-dashed
reqions in panel (a) and values above the dashed line in panel (b).

2. In Fig. 3, the comparison between the regression composite for EI Nifio years
(predicted TNA) and the importance composite should be improved. The fact that
the attribution map contains cooling features does not, by itself, demonstrate
added value, like mentioned in L280. It would help to explain how their sign and
placement align with the atmospheric bridge and Wind—Evaporation-SST
mechanism (e.g., stronger trades, surface heat-flux anomalies, wind-stress
curl...), and whether the lead—lag structure supports that interpretation. As
presented, it is difficult to separate a genuine teleconnection signal from
collinearity in the SST field or residual Atlantic persistence. Showing that



attribution hotspots co-locate with observed flux/SLP/wind anomalies, and
repeating the analysis with the Atlantic belt removed from the predictors, would
clarify whether the cooling patterns reflect a physical mechanism or a model
artifact.

We thank the reviewer for this valuable comment. We agree that the attribution patterns
in Fig. 3 must be assessed in terms of their robustness and physical consistency. To
address this concern, we repeated the experiment with the western tropical Atlantic
masked from the predictor field, thereby removing the potential influence of local
persistence, as explained in the previous comment. The results confirm that the central
Pacific remains the dominant attribution hotspot, with only modest reductions in skill in
certain sub-regions of the Atlantic basin, indicating that the cooling features identified in
the attribution maps are not artifacts of Atlantic memory.

In addition, and following the reviewer suggestion, we investigated whether the
attribution hotspots align with established physical mechanisms. We computed
composites of anomalous surface winds, sea level pressure, and geopotential height at
200 hPa, conditioned on Atlantic indices (WTNA and SMSCU) as well as ENSO phases.
In the central Pacific the model highlights regions of pronounced wind convergence and
SST anomalies that lead to a Gill-type atmospheric response in upper levels (2
anomalous anticyclones at both sides of the equator), which projects eastward into the
Atlantic as a Rossby-wave train. This teleconnection produces a negative NAO-like
circulation pattern, characterized by a weakening of the North Atlantic subtropical high
pressure system and associated trade winds, thereby affecting local surface fluxes and
reinforcing SST anomalies in the tropical North Atlantic.

The co-location of attribution hotspots with these observed circulation features supports
the interpretation that the attribution maps capture a physically meaningful
teleconnection signal rather than statistical artifacts or collinearity in the SST field. To
strengthen this point, we also computed analogous composites for negative phases of
WTNA and SMSCU, which show consistent patterns but with opposite signs, further
confirming the robustness of the mechanism.

In the revised manuscript we now present these new composites in Figure R2, while
relocating part of the ENSO-conditioned analysis to the Supplementary Material. This
separation highlights how the attribution patterns remain consistent across different
conditioning approaches, while allowing readers to directly compare ENSO-based and
Atlantic-index—based results.
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Figure R2. Composites of model anomalous SST predictions, predictor fields, and attribution maps for
positive predicted WTNA and SMSCLU, based on 28 and 26 evenls, respectively. Panels a) and c) show
the predicted mean SST anomalies in the Atlantic during MAM together with surface wind anomalies
indicated by arrows. Panels b) and d) show the attribution maps over the predictor fields with SST in
contours and surface winds in arrows. Panels e) and f) display global composites of MAM anomalies in
sea level pressure (shading), 200 hPa geopotential height (contours), and surface winds for positive
WTNA and SMSCU events. Attribution maps indicate the relative contribution of each grid point in the
predictor field to the forecasted value in the target region, with the sum of the values within each map
matching the predicted anomaly in the corresponding index region (i.e., the sum of values in panel
matches the WTNA anomaly within the purple box in panel a).

3. The manuscript often uses the language of “drivers,” yet the analysis is primarily
associational. This matters for teleconnections, where shared low-frequency
covariates can produce strong correlations without isolating a pathway. The
discussion around XAl (e.g., Fig. 3) therefore could be improved. For both
applications, it would be helpful to control for NAO variability and check how
strongly it modulates the two teleconnections, and how this impacts the



attribution maps. The recent literature arguing for causal-inference tools in
teleconnection analysis points in this direction and could be useful (e.g.
https://journals.ametsoc.org/view/journals/bams/102/12/BAMS-D-20-0117.1.xml).

We thank the reviewer for raising this important point. We acknowledge that the term
“driver” can be interpreted as implying causality, whereas our analyses are primarily
associational. We will be more careful and use the term potential drivers when
appropriate. In the first application (Pacific SSTs - Atlantic SSTs), our use of “driver”
refers to the Pacific SST anomalies during DJF that precede and are statistically linked
to Atlantic SST variability in the following MAM, indicating in this way a causality.
Because the predictor and predictand are separated by a seasonal lag, the relevant
information comes from the Pacific SSTs, while any NAO-related signal captured by the
model is likely the component externally forced by SST rather than internally generated
variability.

In the second application (Pacific SSTs - European precipitation), there is no lag
between the predictor and the predictand field. Thus, the model primarily identifies
statistical associations rather than direct physical causality. Here, surface atmospheric
circulation is partially embedded in the anomalous behaviour of the SST field, which
explains why attribution maps highlight significant SST contributions from extratropical
regions in addition to the tropical Pacific. We understand that it is important to discuss
the impact of the NAO when explaining precipitation in Europe. To analyze the impact of
the NAO variability, we have explored composites conditioned on positive and negative
NAO phases (Figure R3 for NAO+). They show how the NAO has a more internal
variability in P2 (where no relationship appears with the SST anomalous field), while in
P3 there is a clear association with ENSO.


https://journals.ametsoc.org/view/journals/bams/102/12/BAMS-D-20-0117.1.xml
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Figure R3. Composites of observed anomalous precipitation and dynamical fields, based on positive
observed MAO+ events in western central Europe (index defined as the purple rectangle in a)). Panels
show: (a, c) ocbserved precipitation anomalies in Europe during OND for period P2 [1942-1969] and P3
[1970-2007], respectively; (b, d) global composites of OND anomalies in sea surface temperature and
precipitation (shading), 200 hPa geopotential height (contours), and surface winds for positive events for
periods P2 and P3, respectively.

To explore the ENSO-NAO relationship further, Table R1 identifies the ENSO, NAO and
precipitation cases conditioned, in periods P2 (1940-1969) and P3 (1970-2007) where
we find some predictability in our model.



NAO NAO

Period Index Phase Negative = NAO Neutral Positive Total

Negative 3 4 3 10
Neutral 4 4 4 12

ENSO
Positive 3 1 2 6
Total 10 9 9 28

1942-1969

Negative 4 3 3 10
Neutral 4 4 1"

Precip
Positive 3 2 2 7
Total 10 9 9 28
Negative 5 5 5 15
Neutral 5 3 2 10

ENSO
Positive 3 4 6 13
Total 13 12 13 38

1970-2007

Negative 5 6 1 12
Neutral 5 5 4 14

Precip
Positive 3 1 8 12
Total 13 12 13 38

Table R1. Contingency table of ENS0 and precipitation index phases with NAQ phases for the periods
1942-1969 and 1970-2007.

For P2, we can see that there is no clear relationship between ENSO and NAO, with half
of the NAO events considered ENSO neutral (Table R1). However, for P3, 75% of
NAO-like events were related to an ENSO phase of opposite sign (i.e., positive
(negative) NAO-like is related to El Nifio (La Nifa)). This can be seen more clearly in
Table R2 on conditional probability. In the P2 period, there is greater internal variability of
the NAO, or in other words, more NAOs not associated with ENSO (p=0.42), therefore,
in principle, not forced by SSTs in the tropical Pacific and less predictable in our model.
However, in P3, the probability of finding NAO-like +/— associated with El Nifio/La Nifa
increases significantly compared to neutral years (i.e. 0.45 in P3 vs 0.22 in P2, Table
R2).

Regarding the impact of NAO+ and NAO- on precipitation, First of all, it should be noted
that the precipitation pattern associated with the NAO (Figure R3) is very different from
the first mode of precipitation variability in Europe identified by our model (Figure 5 in the
manuscript). However, central Europe (i.e. the French box) appears to be affected in
both maps.

The fact that NAO+/- in P3 are more strongly influenced by ENSO also has an impact on
precipitation. The probability of positive precipitation associated with a NAO+ increases
in P3 compared to P2 (i.e. 0.67 vs 0.29; Table R3) — Even so, 10% of precipitation
variability is not explained by NAO (in P2 and P3, 0.29 and 0.30 respectively, probability
of finding anomalous precipitation with neutral NAO). This stronger ENSO-NAO-like and



precipitation consistency in P3 is in line with the predicted precipitation anomalous maps
(in Fig. 6 of the updated manuscript) and for the observed precipitation (Fig. R4). The
composite of positive precipitation patterns in P3 shows a Nifo-forced structure with
negative SLP anomalies over Iberian Peninsula and British Isles (Fig. 6f and Fig. R4d).
This pattern, although not strictly NAO positive, shares pressure anomalies in centres
close to the canonical NAO index (Fig. R3d). However, the pattern in P2 shows a
circumpolar wave that appears to originate in the Maritime continent region (with positive
precipitation anomalies, which can induce an atmospheric wave, as explained in the
text) and which projects onto the North Atlantic in a pattern distinct from the NAO (Fig.
6¢c and Fig. R4b compared with Fig. R3b). We have clarified all this analysis in the
updated manuscript (Lines 361-366).

Conditional probability 1942-1969 1970-2007
p (Nifio | NAO +) 0.22 0.45
p (Nifa | NAO -) 0.30 0.38
p (ENSO neutral |
(NAO + U NAO -)) 0.42 0.29
p (NAO +) 0.32 0.29
p (NAO -) 0.36 0.34

Table R2. Conditional probabilities between NAO and ENSO phases, based on the cases of Table R1.

Conditional probability 1942-1969 1970-2007
p (NAO+ | Pt+) 0.29 0.67
p (NAO- | Pt-) 0.40 0.42
p (NAO neutral |
(Pt+ U Pt-)) 0.29 0.30
p (Pt+) 0.25 0.32
p (Pt-) 0.36 0.32

Table R3. Conditional probabilities between Precipitation index and NAQ phases, based on the cases of
Table R1.



Period 1942-1969

a) Observation Composite

Composite of Dynamical Variables (U10, V10, SST, Z200, Precip)
i) WA e '
N = =

"

¥ NS
N

e
.

__‘,,“ﬁ : i 300

P e

P B A R P . 4 Py .
1 S s oeiilidy. 677 2 e,
- e e RN WA R A A A L N RN S - -

P wmas -

N Yokl e TUORSS Sl
DY v Sl XS
B60°W o°
-30.0 -20.0 -10.0 0.0 10.0 20.0 30.0
[ N | [mm]
700 #0150 150 40 150 [T R .
[mm] 0.9 0.7 0.5 0.3 0.1 0.1 0.3 05 07 09
["C]

Figure R4. Composites of observed anomalous precipitation and dynamical fields. based on positive
observed anomalous precipitation events in western central Eurcpe (index defined as the purple
rectangle in a)). Panels show: (a, c) observed precipitation anomalies in Europe during OND for pericd
P2 [1942-1969] and P3 [1970-2007], respectively; (b, d) global composites of OND anomalies in sea
surface temperature and precipitation (shading), 200 hPa geopotential height {(contours), and surface
winds for positive events for pericds P2 and P3, respectively.

4. The manuscript describes the toolkit as “versatile,” yet for identifying dominant
spatial modes it offers only EOF analysis of model outputs versus observations.
For teleconnection work, this is a narrow diagnostic. At minimum, a versatile layer
would include a menu of spatial-mode tools beyond EOF (e.g. maximal
covariance or canonical correlation analysis for coupled patterns). Please
consider either expanding the diagnostics accordingly or reframing the package
as a DL-first pipeline with basic (EOF-based) spatial diagnostics.

We thank the reviewer for this valuable comment. We agree that for the analysis of
teleconnections, EOFs provide only a narrow diagnostic. Our main objective with this
toolkit, however, is to enable the modeling of teleconnections through deep learning. The
EOF analysis is included primarily as a preliminary diagnostic, while a comprehensive
implementation of additional techniques such as Maximum Covariance Analysis (MCA)
or Canonical Correlation Analysis (CCA) falls outside the scope of the present work. We
note that there are existing packages, such as xXMCA (Rieger, 2021) ,Xcast (Hall et al.,
2022) or Spy4Cast (Duran et al., 2024), that already offer these functionalities. We
therefore see NN4CAST as complementary to such tools: outputs from the simulations



produced by our package can be readily used as inputs to these other libraries for
further, more specialized, spatial-mode analyses. To avoid overstatement, we will revise
the wording in the manuscript, with a clearer description that emphasizes this
complementary role. We have clarified this in the updated version of the manuscript
(Lines 6-8).

Specific comments:

L1 (...) with the changes in tropical sea surface temperatures (SST) being {(...)

We have corrected this.

L8 Please be more specific than writing “(...) performs all the methodological steps”.

We have specified these steps. (Lines 8-10).

L27 you already defined SST in the abstract. If you decide to define again, please use
lower case as in the abstract.

We have corrected this.

L75-77 Here you introduce the tool for the first time, after a long introduction on seasonal
forecasting and ML. | suggest bringing up the goal/what’s new about your paper much
earlier in the introduction, to help the reader to situate themselves.

We thank the reviewer for this suggestion. In the revised version of the paper, we have
substantially reduced the introduction of Artificial Intelligence and Deep Learning,
streamlining the background so that the reader can reach the goal and novelty of the
paper much earlier.

L86 | don'’t think bringing up the possibility to combine NN4CAST with ESMValTool in the
introduction is relevant. | think this could be mentioned in the conclusions/future work.

Thank you, we have moved this argument to the conclusions.
L89 Please give an example of such tools written in C/C++.
Thank you, we have added as an example tool the Climate Data Operator (CDO)

L92-103 | recommend not giving so many details of the applications to be analysed in
this final introduction paragraph. Similarly, mentioning GitHub and code availability here
seems misplaced.

We thank the reviewer for this comment. In the revised version, we have streamlined the
final paragraph of the introduction, focusing on the main goal and contributions of
NN4CAST without including detailed descriptions of the applications or code availability.



L337 | think the sentence should be rewritten, as significant skill is not found in most of
the European continent, rather in parts of it.

We have modified the sentence according to the comment.
L375 and L380 are repeated
We have corrected this.

L380, L395 The authors mention that the tool has a primary application to identify
windows of opportunity (WoO). However, in the two applications given, there was no
framing related to WoO. | recommend improving the discussion towards the context of
WoO.

We thank the reviewer for this observation. Following the suggestion, we have clarified
the connection between NN4CAST outputs and the concept of windows of opportunity
(WoO) in seasonal forecasting. In the European precipitation case study, period P2
(1942—-1969) serves as an example of WoO, where the model shows high skill for
predicting precipitation. By highlighting this period, NN4CAST can help identify time
intervals where predictive skill is higher, providing useful insights for seasonal forecast
applications. (Lines 402—406).

L388-L389 I suggest to focus on more specific advantages offered by the NN4CAST in
your conclusions. “These complementary approaches offer valuable contributions to the
scientific community and support the improvement of current seasonal forecasting
systems” seems a bit vague and exaggerated at the same time. In particular for the first
application, the authors did not go in depth to highlight any new insights concerning the
teleconnection, rather used it as an example to illustrate what the tool does.

We thank the reviewer for this comment. Following the suggestion, we have revised the
conclusion to emphasize the specific advantages of NN4CAST. The tool not only
provides robust seasonal forecasts through cross-validation, but also systematically
identifies the predictor regions contributing to target indices, quantifying their relative
importance using explainable Al techniques. Importantly, the analysis of attribution maps
allows linking predictive importance to known physical mechanisms, such as ENSO
teleconnections. (Lines 402—408).



