
 

Response to Reviewer 1 
 
 

October 20, 2025 
 
Detailed Comments 
Responses are marked in blue. 
 

General Comments: 

The authors provide a tool that may be utilized to research seasonal predictability using 
basic deep learning methods. The code library provides a pipeline to preprocess data, 
train the model, evaluate, and calculate some metrics/attributions, based on a 
user-defined namelist and input files. Although the model will not achieve state-of-the-art 
skill, it does have potential for mechanistic studies through explainable AI. However, I do 
not believe the manuscript in its current state effectively communicates this message. 

1. The analysis of the teleconnection between DJF Pacific tropical SST and MAM 
tropical Atlantic SST and related evaluation of the model is not valid, due to the region of 
the input predictor field, which includes parts of the western tropical Atlantic. Looking 
through the individual Integrated*Gradient attribution samples on Zenodo, it is clear that 
the largest attributions are most often in this area, rather than in the tropical Pacific. This 
is also confirmed by calculating correlations between areal-averaged SST in the target 
WTNA or SMSCU region with the input SST field. This leads to unrealistic, inflated skill 
in Figure 2, which is a result of the inclusion of the west Atlantic in the input fields, rather 
than the Pacific-Atantic teleconnection, as stated in the text (line 266-267). 

We thank the reviewer for this insightful comment. We agree that including the small 
region of the Caribbean in the predictor field could introduce information that is more 
directly related to the persistence of the predictand. To assess the impact of this effect, 
we performed an additional experiment in which the Caribbean region has been masked 
in the predictor field. In addition, a complementary mask has been also applied to the 
predictand field to exclude areas in the Pacific. This allows us to evaluate the model skill 
over the Caribbean without any overlap between predictor and predictand domains. 

Importantly, this adjustment did not require modifications to the core model code, as the 
masking can be applied directly at the preprocessing stage of the SST datasets before 
they are introduced into the model pipeline. 

The results of this experiment show that the model skill is slightly reduced in certain 
areas around 20ºN, such as the Gulf of Mexico, but maintains the spatial structure with 
correlation scores over 0.6-0.7 and similar RMSE (Figure R1) than in the original 
experiment. 

In the revised manuscript we have updated figure 2 to include the results of this new 
experiment instead of the original experiment. In addition, the outputs of the model on 



 

Zenodo have also been updated to incorporate these new simulations, ensuring full 
reproducibility of the results. 

 

 

2. The discussion surrounding XAI in Figure 3 is unconvincing. Although the model 
attribution plot (Fig 3c) shows more spatial variability than the simple regression (Fig 3e), 
this does not necessarily mean there is added value. The work would benefit from 
further exploring the physical mechanisms associated with the Integrated Gradients 
attribution. There is not a clear connection between the spatial variance in Fig 3c and the 
citation of Wade et al. 2023 in the text. 

We are very grateful for these detailed and constructive comments. They have prompted 
us to deepen our analysis and to clarify important points regarding mechanisms, 
robustness, and sample dependence. 

First, concerning Wade et al. (2023): their study shows that SST variability in the 
Senegalese upwelling is connected to Pacific ENSO anomalies, particularly during 
1960–1990 (their Figure 6). This coincides with our results (Figure R1b), where the 
model skill is higher in those decades, and with anomalies in the Pacific having 
maximum values on the central Pacific when the model predicts a warming in the region 
of the upwelling Figure R4d). 



 

 

In addition,  attribution results reveal that areas located in the central (180ºW–150ºW) 
and easternmost equatorial Pacific (110ºW–90ºW) significantly contribute to SST 
anomalies over the SMSCU (Fig. 3c). The reference to Wade et al. (2023) is made 
precisely because they identify this equatorial Pacific signal as a key remote driver of 
Senegalese SST variability (see their Fig. 6). In our case, NN4CAST shows significant 
skill throughout the century, with higher scores during 1960-1990 (Fig. 2b), coinciding 
with the period in which Wade et al. found a strong relation between coastal upwelling 
and central Pacific SSTs (their Fig. 3). The Integrated Gradients attribution, confined 
mainly to this region, therefore confirms the central equatorial Pacific as a key remote 
driver of SST variability in both WTNA and SMSCU. This has been clarified in the new 
version of the manuscript (Lines 272-280). 

Wade, M., Rodríguez-Fonseca, B., Martín-Rey, M., Lazar, A., López-Parages, J., & Gaye, A. T. 
(2023). Interdecadal changes in SST variability drivers in the Senegalese-upwelling: the impact of 
ENSO. Climate Dynamics, 60(3), 667-685. 

 

What is the sample size? There is only a ~100 year record that is being used, with even 
fewer El Niño’s, so I am skeptical of the robustness of model attribution. How much does 
the attribution pattern change with different initial seeds? 

Regarding the sample size: our training period covers approximately 120 years 
(1901–2019). Within this span, there are on the order of 35-40 El Niño and 45-50 La 
Niña events, meaning that the strongest events remain relatively few. However, 100–120 
years of observational record is generally considered sufficient for studies of climate 
variability (e.g., Trenberth (1997); Ray & Giese (2012)). Furthermore, the NN4CAST 
model has been tested against observations to reproduce known teleconnection 
patterns, providing confidence in the robustness of the attribution results. In the revised 
manuscript, the composites are constructed based on the WTNA and SMSCU indices 
rather than directly on ENSO events, which reduces dependence on the relatively few 
strongest ENSO events.  

Concerning variation with initial seeds: we have now conducted ten simulations in which 
the only difference is the random seed (which we have made explicit as a 
hyperparameter in the library; previously it was implicit). Thus, seed variability does not 
appear to compromise the robustness of the main attribution findings. To illustrate the 
spread in the results according to initial seeds, we have computed the longitudinal and 
latitudinal averages of importances across the predictor field for the positive events of 
WNTA for the different initializations (see Figure R2), as well as the spatial average of 
the importance for those positive events across the model initializations (see Figure R3). 
The results show that while small-scale details vary somewhat across seeds, the 
large-scale attribution patterns remain stable. In particular, although there is some 
variability in the sign of attributions in certain regions, in the areas that the models assign 
the highest importance for their predictions, the attributions are consistent across all 



 

initializations. Notably, the central Pacific consistently emerges as an important region 
(Figure R3), in agreement with the previous results (Figure 3). 

 

 

 

Trenberth, K. E. (1997). The definition of el niño. Bulletin of the American Meteorological Society, 
78(12), 2771-2778. 

Ray, S., & Giese, B. S. (2012). Historical changes in El Niño and La Niña characteristics in an ocean 
reanalysis. Journal of Geophysical Research: Oceans, 117(C11). 



 

Have you tried calculating attribution plots, compositing on a warm WTNA or SMSCU, 
rather than ENSO? 

Following your suggestion, we have computed composite maps based on the predicted 
Atlantic indices (WTNA and SMSCU) in addition to the ENSO-based composites 
originally reported. These new composites are presented in Figure R4. In the first 
column of Figure R4 we show composites of the model SST predictions for both indices 
(panels a and c) together with surface wind anomalies for those events in MAM, to 
examine local dynamical changes that may underpin the mechanism. For example, 
SMSCU-positive composites reveal a local strengthening of southwesterly winds, 
blowing along the Senegalese coast, which can contribute to a reduction of the coastal 
upwelling and strong coastal SST warming (Figure R4d). In contrast, the WTNA box 
shows weaker wind anomalies close to the African coast, consistent with the weaker 
predicted SST signal (Figure R4a). To better understand which regions contribute to the 
SST signals in each index, we show both the predictor-field composites and the 
attribution maps. For both WTNA and SMSCU, the central Pacific emerges as an 
important region in the attribution maps, specifically around 170ºE-150°W, indicating that 
the model often leverages Pacific-centered anomalies when predicting these Atlantic 
indices (Figure R4b,d). 

To understand the physical mechanism and atmospheric pathways and to corroborate 
the robustness of the relation found with ENSO, we have generated two additional 
composites of anomalous surface wind, mean sea level pressure (SLP), and 
geopotential height at 200 hPa (Z200) (Figure R4, panels e and f). In these fields, the 
region highlighted by the model in the central Pacific corresponds to an area of 
pronounced wind convergence and an Gill atmospheric response to an equatorial 
warming (Gill, 1980), which is characterized by 2 symmetric anticyclones at both sides of 
the equator in upper levels This tropical atmospheric response is part of a broader wave 
response, which propagates to the extratropics  towards the Atlantic as an extratropical 
Rossby-wave, producing a negative NAO like pattern over the North Atlantic (more clear 
for WNTA events). This associated weakening of the subtropical high pressure system 
during a negative NAO weakens the trade winds over the TNA region (Figure R4g,h). 
This physical mechanism linking central Pacific SST anomalies to the tropical North 
Atlantic indices is in accordance with the literature (Horel & Wallace (1981); Czaja et al. 
(2002)). We have also computed analogous composites for negative phases of WTNA 
and SMSCU with consistent results. These are included in the revised manuscript for 
completeness. In addition to the extratropical Rossby wave, a secondary Gill response 
also appears over the equatorial Atlantic, as a result of the anomalous upper level 
convergence from the anomalous Walker circulation. This signal, which is baroclinic,  
also contributes to the weakening of the trades and upwelling, in agreement with 
García-Serrano et al (2017). The difference between WTAN and MSCU is the extension 
of this  Gill response, which is more regional for the MSCU 

These WTNA/SMSCU-based composites are complementary to the ENSO-based 
analysis shown in the previous version of the manuscript. ENSO-conditioned composites 
provide information about  the model performance of the Pacific-Atlantic teleconnection 



 

specifically under ENSO events, whereas the Atlantic-index based composites show 
which remote features the model exploits to predict Atlantic indices independently of 
ENSO. To maintain clarity of presentation, we have focused on the WTNA/SMSCU 
composites in the main text (Figure R4). We agree with the referee that the index-based 
composites provide valuable information about the key predictor regions of SST for 
WTNA and SMSCU. In the revised manuscript, the ENSO-based composites are 
presented in the Supplementary Material, while selected WTNA/SMSCU composites are 
shown in Figure 3, allowing readers to compare ENSO-conditioned and 
Atlantic-index–conditioned attribution results. 
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3. The analysis of European precipitation is useful for showing how the predictability 
varies between different periods. However, the regression analysis in Figure 6 is a little 
confusing, as you could perform the exact same regression with only observational data, 
yielding more faithful results and yielding the same conclusion regarding ENSO and 
European precipitation. Figure 5 shows the model can reproduce some of the same 
trends as observations, but doesn’t reveal any new insights not available from solely 
observations. 

We thank the reviewer for this comment. The primary goal here is to assess whether the 
model can reproduce the variability of European precipitation and its decadal changes, 
including its modulation by ENSO impact. To this end, comparing the regression using 
model predictions with the regression using observations serves as a consistency check: 
it validates the model ability to capture this teleconnection and its temporal evolution 
(non-stationarity behavior). Importantly, the purpose of this figure is not to provide a new 
observational analysis, but to demonstrate that the model itself reliably reproduces these 
patterns under the leave-one-out cross-validation framework. 

 

Similarly to the previous analysis, it does not seem like the model is directly capturing a 
connection between ENSO and European precipitation, based on the individual 
attribution plots on Zenodo, which mostly show the model thinks SST anomalies in the 
extratropical Pacific and Atlantic Ocean are important. What could maybe be useful is to 
look at the attribution plots for precipitation in skillful regions during 1942-1969? Maybe 
there is a change in the background state (e.g. the extratropical jet), which changes the 



 

propagation of the extratropical Rossby wavetrains that affect European precipitation 
and thus predictability? 

We thank the reviewer for this helpful comment. Following the suggestion, we analyzed 
composites of positive and negative events based on a predicted precipitation index over 
western–central Europe (purple box in Fig. R5a), where the model shows significant skill 
(Figure 6 in the previous version of the manuscript) for the periods P2 (1942–1969) and 
P3 (1970–2007) (figure R5). On this basis, we first show composites of European 
predicted precipitation anomalies (Figs. R5a,d and R6a,d), along with global anomalies 
of wind (U10, V10), geopotential height (Z200), SST, and precipitation (Fig. R5c,f and 
R6c,f) to analyze the teleconnection mechanisms associated with the anomalous rainfall 
predicted by the model. We also present the attribution maps (Fig. R5b,e and Fig. 
R6b,e) to assess the regions contributing to the European precipitation signal. 

The results reveal distinct mechanisms between the two periods. During P2 
(1942–1967), a weak La Niña appears to induce enhanced convection and positive 
precipitation anomalies over the Maritime Continent, which act as a source of Rossby 
waves and generate a Gill-type response in the upper troposphere. The circulation 
anomalies suggest the presence of two Rossby wave trains, one propagating westward 
from the eastern Pacific and another emanating from the Maritime Continent region in 
association with the tropical precipitation anomalies (Fig. R5c). In contrast, during P3, a 
strong El Niño event dominates, with a clearer Gill-type response that generates an 
atmospheric extratropical Rossby wave train propagating into the extratropics (Figure 
R5f). An analogous analysis for negative precipitation anomalies yields an approximately 
opposite mechanism (see Fig. R6). 

The differences in the mechanisms driving anomalous European precipitation between 
these two periods could be related to changes in the background state (Figure R7). For 
example, Fig. R7b shows that P2 is characterized by a weaker meridional SST gradient 
in both the Pacific and the Atlantic compared to P3, resulting in a weakened and 
southward-displaced extratropical jet.These climatological changes could explain the 
differences in the teleconnection patterns observed in Fig. R5: in P2, the Pacific-Europe 
link is relatively weak, with the apparent Rossby wave source located over the Indochina 
region (due to anomalous convection), whereas in P3, a stronger meridional gradient 
allows a clear tropical Pacific wave source, consistent with a Gill-type response, to 
influence European precipitation 

The attribution maps allow us to clarify the regions contributing to the European 
precipitation signal. In P2, the maps indicate that most of the predictive signal comes 
from an extratropical region around 40°N and 160°E, reflecting the weakening of the 
Aleutian Low. In P3, in addition to this extratropical region, a tropical Pacific contribution 
emerges. As noted previously, to specifically assess the predictability arising from SST 
anomalies alone (rather than from dynamical factors that are indirectly reflected in the 
SST field), the simulations could be repeated with an increased lag between the 
predictor and predictand fields. This approach would allow a clearer separation of the 
SST-driven signal from atmospheric circulation effects. 



 

In the revised manuscript, this analysis has been clarified by not only analyzing the 
dynamics of the mechanisms and its relation with the importances of the model, but also 
highlighting the impact of the changes of the mean state in the teleconnection 
mechanism (Lines 335-366). 

 

 



 

 

 

 

 

 

 



 

4. In the introduction it is stated that “The idea behind NN4CAST is to mitigate the risk of 
treating deep learning methods as “black boxes”, thereby enabling users to identify 
sources of predictability and assess the sensitivity of predictions to variations in the 
training period and/or to the predictor region.” (line 80). However, the current manuscript 
does not really analyze the sensitivity to the training period or predictor region. 

We thank the reviewer for pointing out this issue. We agree that the current wording in 
the introduction may give the impression that the present manuscript directly analyzes 
sensitivities to the training period and predictor regions. To avoid this confusion, we will 
reformulate the text to clarify that these are functionalities that the NN4CAST framework 
enables in general, but that they are not explored in detail in the two case studies 
presented here. The focus of the current manuscript is instead on evaluating model skill 
and attribution patterns, while the broader flexibility of the framework will be emphasized 
more clearly as a potential for future applications. This point is now clarified in the 
revised manuscript (Lines 73-77). 

 

Specific comments:  

1.​ The description of how the ACC is calculated could be a little more clear on what 
dimension is being averaged over, spatially or temporally. For when it is spatial, it 
is also typical that an areal weighting is applied to account for latitudinal 
variations in grid area. 

We thank the reviewer for this comment. In the revised manuscript, the figure 
captions now clarify how the ACC and RMSE are calculated, explicitly indicating 
whether correlations are computed across time (for spatial maps) or across 
space (for temporal series) (Figures 2 and 4). Regarding areal weighting, we 
have not applied it in the current plots. However, the model outputs are provided 
in a format that allows users to apply such weighting a posteriori if desired.  

 

2.​ The different Listing’s showing the python code are probably somewhat 
redundant. It would be more useful to show what architecture is implemented, 
which is not easily derived from the text. For example, there is an option for 
convolutional layers, but how is this implemented alongside the option for dense 
layers? 

We thank the reviewer for the suggestion regarding the description of the network 
architecture, specifically the integration of convolutional layers with dense layers. 
In the revised manuscript, we have clarified this in the hyperparameter table (Tab. 
1). Specifically, we now indicate that if at least one convolutional layer is applied, 
it is added at the input of the network, and its output features are flattened and 
concatenated with the dense layers, ensuring the combination of both 
convolutional and fully connected representations. 



 

Additionally, all the Python listings previously included in the manuscript have 
been moved to the Supplementary Material. The main text now focuses on the 
description of the methodology and hyperparameters, while the Supplementary 
Material provides the detailed code examples for reproducibility. 

 

3.​ Figure 4 and 6 colorbar is not uniformly spaced. Most of the values are near 0 or 
in the 0.2-0.4 range. Would be better to have separate colors for 0.2-0.3 and 
0.3-0.4, to evaluate the skill. 

We thank the reviewer for this suggestion. We have accordingly updated Figures 
4 and 6, adjusting the color scales to better resolve the 0.2–0.4 range and 
improve clarity. 

 

4.​ It is stated that linear statistical models are weakened by limited observational 
record and nonstationarity (line 369). However, it should be clear these are also 
limitations for the deep learning model. 

We thank the reviewer for this comment. We have revised the sentence in the 
manuscript to clarify the advantages of NN4CAST. (Lines 373-378). 

 

5.​ The subpanel titles in figures 3 and 6 are not clear. For example, “Regression 
predicted TNA on Niño years” could be something like “Input SST regressed 
against TNA index during El Niño” 

We thank the reviewer for this suggestion. We have revised the subpanel titles in 
Figures 3 and 6 to make them clearer and more informative. 


