

1 **Adaptation of methane oxidising bacteria to environmental 2 changes: implications for coastal methane dynamics**

3
4 Tim R. de Groot¹, Julia C. Engelmann¹, Pierre Ramond^{1,2}, Julia Dorigo¹, Judith van
5 Bleijswijk¹ and Helge Niemann^{1,3,4}

6
7 ¹NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands

8 ²Institute of Marine Sciences (ICM), Department of Marine Biology and Oceanography, CSIC, Barcelona,
9 Catalonia, Spain

10 ³Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands

11 ⁴CAGE – Centre of Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic
12 University of Norway, Tromsø, Norway

13 *Correspondence to:* Julia C. Engelmann (julia.engelmann@nioz.nl) and Helge Niemann
14 (helge.niemann@nioz.nl)

15

16 **Abstract.** Global warming induced alterations in ocean temperature regimes, and precipitation patterns are
17 increasingly impacting coastal ecosystems, leading to shifts in water column properties. These changes may have
18 profound implications for microbial communities such as methane-oxidising bacteria (MOBs), which play a
19 critical role in regulating methane fluxes and ecosystem dynamics. In this study, we investigate the resilience and
20 adaptability of aerobic MOBs in response to changing environmental conditions. Through microcosm incubation
21 experiments with waters from the North Sea and the Wadden Sea collected during different seasons, we explore
22 how variations in methane availability, temperature, and salinity influence the MOB community structure and
23 functional capacity. Our results reveal an increase in the relative abundance of MOBs to up to 57% in experiments
24 with elevated methane concentrations, highlighting the primary role of methane availability for MOB community
25 development. Temperature and salinity variations, on the other hand, exerted lesser effects on MOB composition
26 and relative abundance. A strong effect on MOB community development was furthermore caused by the origin
27 of the inoculum (location and season). Our results thus suggest a functional redundancy in the variable pools of
28 microbial inocula enabling multiple MOB clades to cope with drastic changes in environmental parameters. The
29 adaptability of MOB communities is key to understand their role in mitigating methane emissions from coastal
30 regions in a future ocean with potentially elevated methane, temperature and variable salinity levels.

31

32

33

34

35

36

37

38

39

40

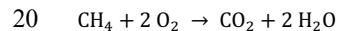
41

42

43

44

45


46

1 **1 Introduction**
2

3 The impacts of global warming are anticipated to manifest in rising water temperatures and shifts in precipitation
4 patterns, leading to fluctuations in salinity levels in the coastal ocean (Masson-Delmotte et al., 2021). Marine
5 heatwaves are projected to increase in frequency, potentially exacerbated by factors such as ocean acidification
6 and hypoxia (Collins et al., 2019). Elevated temperatures can accelerate methanogenesis in sediments,
7 consequently increasing methane (CH₄) availability in both, oxic surface sediments and the water column. Once
8 methane escapes to the atmosphere, it acts as a potent greenhouse gas (Etminan et al., 2016). While the majority
9 of atmospheric methane originates from anthropogenic and natural, terrestrial sources (including inland aquatic
10 systems), the coastal ocean is an important source of methane to the atmosphere, too (Weber et al., 2019; Saunois
11 et al., 2024). Yet, methane serves as the primary carbon source for aerobic methane oxidising bacteria (MOBs;
12 Hanson and Hanson, 1996), which constitute the final sink for methane before its release from the ocean to the
13 atmosphere (Reeburgh, 2007; Steinle et al., 2015; Mao et al., 2022; de Groot et al., 2024). Alterations in methane
14 availability thus substantially influence MOB community dynamics and their ability to retain methane in sediments
15 and the water column in future ocean scenarios (Reeburgh, 2007; Crespo-Medina et al., 2014; Knief, 2015; de
16 Groot et al., 2024).

17 Canonical aerobic methane oxidation (MOx), involves two main steps: methane is firstly converted into methanol
18 by methane monooxygenases and then further oxidised to formaldehyde and finally to CO₂ either via the ribulose
19 monophosphate (RuMP) or the Serine pathway (Hanson and Hanson, 1996; Reeburgh, 2007;).

21 Two primary groups of MOBs were classified: the first are Type I and Type X MOB and consist of taxa from the
22 phylum *Gammaproteobacteria* (Hanson and Hanson, 1996; Dedysh and Knief, 2018; ; Kalyuzhnaya et al., 2019;
23 Kalyuzhnaya et al., 2019). The second group, Type II MOB, is composed of *Alphaproteobacteria* (Hanson and
24 Hanson, 1996; Dedysh and Knief, 2018; ; Kalyuzhnaya et al., 2019; Haque et al., 2020). In addition, some members
25 of the phylum *Verrucomicrobiota* (also referred to as Type III MOB; Dedysh and Knief, 2018) can mediate MOx
26 (Pol et al., 2007). A distinct group, *Candidatus Methyloirabilis*, expresses the canonical MOx pathway but
27 uniquely converts nitric oxide into oxygen and nitrogen before oxidising methane (Ettwig et al., 2009, 2010).

28 In marine ecosystems, the most important MOB are Type I MOBs, represented by taxa such as *Methylococcus* and
29 *Methyloimonas* are generally more dominant than Type II MOBs such as *Methylocystis* and *Methylosinus* (Hanson
30 and Hanson, 1996; He et al., 2012; Knief, 2015; Steinle et al., 2016). The specific mechanisms driving the selection
31 between Type I and Type II MOBs remains unclear. Nevertheless, it has been suggested that Type I MOB are
32 better adapted to low methane levels, while Type II MOB may thrive in environments with high methane
33 concentrations (Hanson and Hanson, 1996). This hypothesis is supported by recent environmental observations
34 (Henckel et al., 2000; Macalady et al., 2002; Bodelier and Laanbroek, 2004; Kessler et al., 2011; He et al., 2012).
35 However, this scenario likely applies primarily to environments already characterized by high methane
36 concentrations. Knief and Dunfield (2005) found that Type II MOBs (belonging to the *Methylocystaceae*)
37 demonstrated a higher potential for remaining active at low methane levels.

38 In addition to methane concentrations, the availability of copper and iron, essential components in the reaction
39 centres of the soluble and particulate methane monooxygenase (sMMO and pMMO) respectively, may also
40 influence enzyme expression, activity, and consequently the community structure of MOBs. For instance, under
41 copper limitation, pMMO expression has been found to decrease compared to sMMO (Murrell, 2010).

42 Other bacterial strains have been classified as potential MOBs due to their close genetic resemblance to canonical
43 MOBs and/or apparent MOx activity. However, their status as obligate or facultative MOB, or potential syntrophic
44 associations with MOBs often remains ambiguous. For instance, a *Methyloceanibacter* strain express sMMO and
45 was found to mediate MOx while other strains exhibit alternative metabolic behaviours (Vekeman et al., 2016).
46 Also, some MOBs belonging to the family *Beijerinckiaceae* were found to metabolise C-compounds other than
47 methane (Knief, 2015; Kox et al., 2019, Haque et al., 2020).

48 The detection and quantification of MOBs in marine environments are challenging due to their typically low
49 abundance and the absence of reliable, MOB-specific molecular markers (Tavormina et al., 2011; Knief, 2015).
50 For example, pMMO-primers were found to miss a substantial fraction of methanotrophs (Tavormina et al., 2011;
51 Ghashghavi et al., 2017). Incubation-based methods, on the other hand, offer means for enriching MOBs, which

1 allows to identify potentially novel MOBs and to determine their ecological roles and metabolic capabilities (Ho
2 et al., 2014; Ho et al., 2018; Li et al., 2021). However, inherent 'bottle effects' (Zobell, 1943, Herlemann et al.,
3 2019) may result in the preferential selection of MOBs that are not representative of the original MOB population.
4 Bottle effects arise from (slight) differences between incubation conditions and environmental parameters in situ,
5 e.g. differences in macro (i.e., methane) and micronutrient levels (e.g. trace metals) as well as physicochemical
6 parameters such as temperature and salinity (Ho et al., 2018; de Groot et al., 2023; Zhang et al., 2023). Also,
7 (small) differences in the microbial community of the inoculate caused by stochastic processes during sampling
8 and aliquoting can affect the abundance/presence/absence of rare organisms disproportionately adding to bottle
9 effects. Nevertheless, such approaches hold great promises in identifying MOBs across ecosystems.

10 The future ocean will undoubtedly be impacted by climate change, but the potential of the ocean's microbiome for
11 adaptation to changing methane dynamics remains unconstrained. In this study, we conducted in vitro microcosm
12 experiments with coastal waters to investigate how MOB communities respond to variations in methane
13 availability, temperature and salinity levels.

14

15 **2 Materials and methods**

16

17 **2.1 Site description and sampling**

18

19 Incubation experiments were conducted using particulate organic matter (POM) suspended in sea water collected
20 from the North Sea and the Wadden Sea. In the North Sea, water column samples were collected at depths of 10
21 m and 35 m during two research cruises with R/V Pelagia, conducted in summer and late autumn, respectively (de
22 Groot et al., 2024). Samples were obtained every 4 hours using McLane in-situ pumps (WTS-LV) equipped with
23 glass fibre filters (142 mm, 0.3 µm nominal mesh size, Advantec MFS), with approximately 100 L of seawater
24 continuously filtered during each sampling event. A total of 24 environmental samples (12 from each depth) were
25 collected in summer, and 22 samples (11 from each depth) were collected in autumn.

26 Similarly, environmental water samples from the Wadden Sea were collected during cruises with R/V Navicula
27 across different seasons: winter, spring, summer, and autumn (de Groot et al., 2023). Sampling was conducted
28 every 4 hours at 1 m and 3 m depths, except during summer when POM was only collected from 1 m depth. Glass
29 fibre filters (142 mm, 0.3 µm nominal mesh size, Advantec MFS) or polycarbonate filters (142 mm, 0.22 µm
30 nominal pore size, Sterlitech) were used for filtration of 3 L sea water per sampling event. A total of 25 water
31 column samples were collected in winter, spring, and autumn, while 12 samples were collected in summer.

32 Following filtration, filters were cut in halves. One half was stored at -80 °C for molecular analysis (de Groot et
33 al., 2023, 2024), while the other half was combined with local seawater in a 5 L canister to concentrate microbial
34 biomass (referred to as 'filter soup'). The filter soups thus contained an enrichment of water column microbes: the
35 concentration was roughly 1:100 for the North Sea and 1:10 for the Wadden Sea. The 'filter soup' was maintained
36 at 4 °C without additional methane amendment and used for setting up lab incubations.

37 During each Wadden Sea cruise, we also collected surface sediments with a box corer at the same site where we
38 collected water column samples (de Groot et al., 2023). Four subsamples of the sediment surface were scraped off
39 with sterile spatulas and frozen at -20 °C until DNA extraction (sediment subsamples were processed individually).
40 Similarly, sediment samples were recovered from the North Sea (de Groot et al., 2024).

41

42 **2.2 Lab incubations**

43

44 The impact of methane levels, temperature, and salinity on the structure of MOB communities was investigated
45 with microcosms, which were established in triplicate for each parameter. Four days after sample collection, we
46 removed the filter halves from the canister and placed them on aluminium foil. Immediately, the filter surface
47 (with remaining microbes) was scraped off with a flamed razor blade and the scraped off material was returned to
48 the canister. After all filters were scraped off, the 'filter soup' was homogenized by stirring and shaking. Then, 60
49 mL of 'filter soup' was dispensed into 160 mL borosilicate glass bottles. These bottles were sealed with black

1 butyl stoppers and crimp-top sealed before adjusting the headspace (HS) methane concentrations, salinity levels,
2 and temperature. All bottles were kept standing during incubations and manipulations to avoid contact of the
3 aqueous phase with the stoppers as this can have adverse effects on methanotrophs (Niemann et al., 2015).

4 For both, North Sea and Wadden Sea incubations, standard conditions consisted of 5 % methane in the HS gas
5 phase, in situ salinity levels for the North Sea (35 psu) or either 15 or 35 psu (according to season, see below) for
6 the Wadden Sea, and 25 °C (Table 1). Variations from these standard conditions included incubations with
7 methane concentrations of 0.1 % and 1 % in the HS at 25 °C, and incubations at different temperatures (15 °C and
8 30 °C) with 5% HS methane. In total, the number of incubation set-ups with 'filter soup' from the North Sea was
9 31 (summer) and 36 (autumn). For setups using Wadden Sea water, the total number of incubations were 24 each
10 for winter, spring and summer and autumn.

11 The higher number of incubations for the Wadden Sea is due to the additional treatments applied, which were
12 designed to explore the effects of different salinity levels (15 psu and 35 psu) at 25 °C. The Wadden Sea salinity
13 can change rapidly due to evaporation, precipitation, and runoff (de Groot et al., 2023). Initially, the salinity of the
14 Wadden Sea inoculum was measured and adjusted with Milli-Q water to establish baseline salinities of 30 psu for
15 summer and spring samples, and 20 psu for winter and autumn samples, closely reflecting in situ salinity conditions
16 (de Groot et al., 2023). Separately, filtered Wadden Sea water (0.3 µm nominal mesh size, Advantec MFS) was
17 subjected to controlled evaporation by boiling on a heater plate until a salinity of 100 psu was reached. To achieve
18 the desired final salinity levels of 15 and 35 psu in a total volume of 60 mL, we mixed specific volumes of brine,
19 Milli-Q water, and inoculum as follows: For a final salinity of 35 psu in spring and summer incubations, 16.5 mL
20 of 100 psu brine were firstly mixed with 28.5 mL of Milli-Q water, and then with 15 mL of the 30 psu inoculum.
21 Similarly, for autumn and winter incubations, 18 mL of 100 psu brine, 27 mL of MilliQ water and 15 ml of the 20
22 psu inoculum were mixed. For a final salinity of 15 psu in spring and summer incubations, 4.5 mL of 100 psu
23 brine, 40.5 mL of milliQ and 15 ml of the 30 psu inoculum were mixed, while for autun and winter, 6 mL of 100
24 psu brine, 39 mL of Milli-Q water, and 15 mL of 20 psu inoculum were mixed.

25 After all incubations were set up, triplicates of microcosms were amended with 5% methane and immediately
26 terminated (t0) to serve as reference points for comparing the community composition at final time points (tn).
27 Note that only single incubations were set up for North Sea summer t0. Headspace methane concentrations were
28 monitored within each incubation using gas chromatography with flame ionization detection as described
29 previously (de Groot et al. 2023). Once headspace methane concentrations were <10% of the initial methane level
30 (typically between 20 and 30 days of incubations), incubations were terminated by opening the vials and filtering
31 the liquid phase over a glass fibre filter (25 mm, 0.3 µm nominal mesh size, Advantec MFS). The filter was then
32 stored at -80 °C for microbial community analysis.

33 **Table 1.** Setup of microcosm incubations from North Sea (NS) and Wadden Sea (WS) samples. All microcosms were setup
34 in triplicates. Note: standard conditions are defined as 25°C, 5 % headspace (HS) methane and salinity levels of 35 psu (NS).
35 In the WS, baseline salinity levels were 20 psu for autumn (A) and Winter (W), and 30 psu for spring (Sp) and summer (Su).
36 For NS incubations, salinity was not a variable parameter.

Microcosm	Location	Variable	T (°C)	sal (psu)	CH ₄ (%)
Standard	NS and WS	N/A	25	NS: 35; WS: 20 (A, W), 30 (Sp, Su)	5
1	NS and WS	T	15	NS: 35; WS: 20 (A, W), 30 (Sp, Su)	5
2	NS and WS	T	30	NS: 35; WS: 20 (A, W), 30 (Sp, Su)	5
3	NS and WS	CH ₄	25	NS: 35; WS: 20 (A, W), 30 (Sp, Su)	1
4	NS and WS	CH ₄	25	NS: 35; WS: 20 (A, W), 30 (Sp, Su)	0.1
5	WS	sal	25		15 5
6	WS	sal	25		35 5

37

38 **2.2 DNA extraction and 16S rRNA gene amplicon library preparation**

39

40 DNA was extracted from particulate organic matter collected on filters and sediment core tops using the DNeasy
41 PowerSoil Pro Kit (Qiagen). DNA extracts were stored at -20 °C until further analysis. SSU V4-V5 region
42 amplification was performed in triplicate in a mix of Phusion polymerase (0.25µL), 5X HF PCR buffer (5µL),
43 BSA (20 mg mL⁻¹: 1 µL), the universal primer pair 515F (CCGYCAATTYMTTTRAGTTT; Parada et al., 2016)
44 and 926R GTGYCAGCMGCCGCGTAA; Quince et al., 2011) targeting the V4 and V5 hypervariable regions

1 (concentrations of either primer was 10 μ M, 1.5 μ L added), dNTPs (2.5 μ M; 2 μ L), DNA extract (1 μ L) and PCR
2 water (12.75 μ L). The PCR program consisted of 5 minutes initial DNA denaturation at 98 °C, followed by 26
3 cycles of 98 °C for 1 minute, 58 °C for 1 minute, 72°C for 2 minutes, with a final elongation of 72 °C for 10 min;
4 after completion samples were stored at 5 °C. The 16S rRNA products (~400 bp including unique Golay barcodes
5 on forward and reverse primers) were gel purified and further library preparation, pooling and Illumina MiSeq 2
6 \times 300 sequencing was done as described previously (Vaksmaa et al., 2021).

7 The newly obtained 16S rRNA gene amplicon sequences from incubation experiments and environmental samples,
8 along with previously published environmental sequences from the North Sea and Wadden Sea cruises (ENA
9 project PRJEB76184; de Groot et al., 2024), were analysed collectively using the NIOZ in-house pipeline Cascabel
10 (Abdala Asbun et al., 2020). In short, prior to ASV identification, reads were truncated to 260bp and 200bp for
11 forward and reverse reads, respectively. ASV designation was done using DADA2 v.1.19.1 (Callahan et al., 2016).
12 Identification by consensus across samples was used to identify chimeras, and sequence variants identified as
13 chimeric were removed. Taxonomies were assigned using DADA2's native implementation of the naïve Bayesian
14 classifier method RDP using the Silva v138.1 release as reference database and a minimum bootstrap value of 50.
15 MOBs were identified based on the taxonomic classifications as reviewed previously (Dedysh and Knief, 2018;
16 Kalyuzhnaya et al., 2019; Haque et al., 2020; see Supplementary Table 1). That is, we considered all genera of the
17 families *Methylomonadaceae*, *Methylococcaceae* and *Methylohalobiaceae* and selected genera of the families
18 *Beijerinckiaceae*, *Methyloligellaceae*, *Methylacidiphilaceae* and *Methylomirabilaceae* as MOBs.

19

20 **2.4 Bioinformatics and statistical analysis**

21

22 **2.4.1 Preprocessing of microbial abundance data**

23

24 ASVs that were taxonomically annotated to organelles, i.e., chloroplast or mitochondrial DNA were removed from
25 the ASV table. ASVs without annotation at the Domain level, and ASVs annotated as Eukaryotic sequences, were
26 also removed. After inspecting negative control samples, we subtracted two counts from each ASV in each sample
27 to account for spurious counts caused by contamination. Singletons, that is ASVs with an abundance lower than
28 2, were excluded from further analyses. We further removed ASVs annotated as common skin microbiome genera:
29 *Enhydrobacter*, *Cutibacterium*, *Staphylococcus*, *Pseudomonas*, *Acinetobacter*, *Corynebacterium*, *Listeria*,
30 *Staphylococcus*, *Escherichia-Shigella*, and members of the Family *Neisseriaceae*. The final dataset consists of
31 27012 ASVs in 318 samples with a sequencing depth of 58690 (mean) or 41805 (median) counts per sample.
32

33 **2.4.2 Nonparametric multidimensional scaling (NMDS)**

34

35 ASVs read counts from incubation and environmental samples were first square root transformed and then
36 standardized with double Wisconsin transformation. To reduce clustering artifacts caused by ASVs with excessive
37 zero values, we included only ASVs that were present (non-zero values) in $\geq 5\%$ of the samples, thereby
38 minimizing the influence of rare or sporadically observed ASVs. A Bray-Curtis dissimilarity matrix was then
39 calculated based on the transformed and filtered abundance data, quantifying the dissimilarities in microbial
40 community composition between samples ('vegdist' function from R package 'vegan'). NMDS analysis was
41 performed on the Bray-Curtis dissimilarity matrix using the metaMDS function from the 'vegan' package version
42 2.6-6.1 (Dixon, 2003). The resulting plot (Figure 3) represents the samples as points in a two-dimensional;
43 coordinate space where the distances between points reflect the extent of dissimilarity in terms of bacterial
44 community composition resembling true dissimilarities as closely as possible. A second NMDS was performed on
45 a subset of ASVs classified as MOBs (Figure 4). For this analysis, we included only ASVs annotated at the genus
46 level. We kept the relative abundances (Wisconsin-standardized counts) of MOB ASVs that were computed based
47 on the whole community, so that the dissimilarity also takes into account the differences in the variability of the
48 total relative abundance of MOBs in the microbial community across samples. The stress values of these two
49 NMDS ranged between 0.09 and 0.16, suggesting that most of the Bray-Curtis dissimilarity could be represented
50 in a two-dimensional ordination plot.

51

1 **2.4.3 Differential abundance analysis**

2
3 ASV counts were summed-up at the genus level for differential abundance analysis. ASVs that could not be
4 classified at the genus level were clustered at the most specific taxonomic level available. Differential abundance
5 analysis was then conducted using the 'DESeq2' package version 1.38.1 (Love et al., 2014) within R. After adding
6 a pseudocount of 1, dispersions were estimated using the 'local' fit type. The generalised linear model (glm)
7 included methane (0.1 %, 1 %, 5 %), season (WS: spring, summer, autumn, winter; NS: summer, autumn),
8 temperature (15 °C, 25 °C, 30 °C) and salinity (WS only: 15, 20, 30 and 35 psu). Generalised linear models were
9 computed and analysed separately for the Wadden Sea and North Sea to account for differences in the experimental
10 design. Differential abundance across incubation conditions was tested with the Wald significance test and using
11 the t-distribution as null model. We tested the different incubation settings against 0.1% as reference level for
12 methane, 15 °C for temperature, and summer for the seasons. Methane levels in t0 samples were set to 0.1% as
13 this approximately reflects the in situ conditions. Log2 fold changes were moderated with the 'ashr' method
14 (Stephens, 2016), and the False Discovery Rate (FDR) was used to adjust p-values for multiple testing. We then
15 selected MOB genera and the family *Methylomonadaceae* (*Methylomonadaceae* ASVs without genus taxonomy
16 assignment, see Supplementary Table 1) for downstream analyses. The Base Mean indicates the average
17 abundance of a genus across all incubation samples including t0 samples. Further analyses focused on MOB with
18 a base mean value of at least 10. Genera with an FDR (adjusted p-value) of less than 0.05 were considered to be
19 significantly different in their abundance across conditions.

20

21 **3. Results**

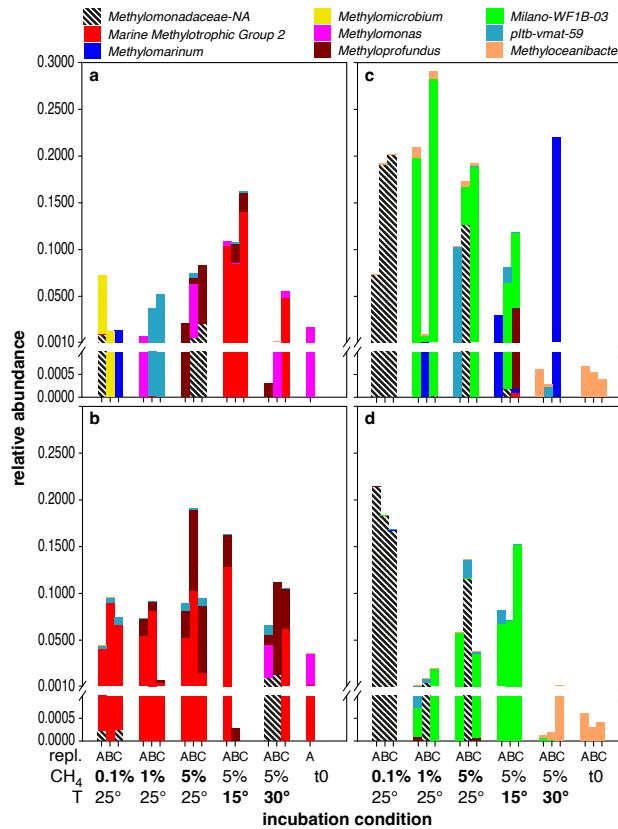
22
23 **3.1 General patterns in MOB diversity and abundance**

24
25 We compared the diversity and abundance of MOBs in incubations of microbial inocula sampled during different
26 seasons and/or water depths, with incubations adjusted for various abiotic parameters. MOBs were consistently
27 detected in environmental seawater samples (Supplementary Figures 1 and 2), except in the North Sea surface
28 waters during summer (de Groot et al., 2024) and several time points during spring in the Wadden Sea. In total,
29 we identified 8 MOB genera and additional members of the *Methylomonadaceae* and *Methylacidiphilaceae* that
30 we could not assign to the genus level (Supplementary Figures 1 and 2). MOBs were also consistently observed at
31 the beginning and end of all incubation experiments regardless of the origin of the inocula (i.e., water depth, season
32 or sampling area) and incubation conditions (Figure 1 and 2). In total, we identified 12 different MOB genera in
33 incubation experiments (all present in WS, 8 present in the NS incubations) and additional members of the
34 *Methylomonadaceae* that we could not assign to the genus level. However, substantial differences were observed
35 in community composition and abundance of MOB genera. While this was in some cases consistent for distinct
36 conditions, we also found notable variation between replicates in other instances (Figure 1, 2), as described below.
37 Furthermore, we frequently detected high abundances of MOB groups at the end of the incubations that were
38 below detection limit at t0.

39

40 **3.2 North Sea**

41
42 **3.2.1 Methanotroph diversity and abundance across seasons and water depth**


43
44 *Summer* – Methanotrophs in North Sea (t0) incubations from summer were predominantly composed of Type I
45 MOB of the *Methylomonas* genus with minor admixtures of *Marine Methylotrophic Group 2 (MMG2)* in
46 incubations with inocula from 35 m water depth (Figure 1). In these incubations, *MMG2* was the most dominant
47 group independently of incubation conditions. Nevertheless, we also detected elevated levels of *Methyloprofundus*
48 in incubations with higher methane levels (5% at 25 °C, 15 °C and 30 °C). MOB diversity was generally higher in
49 incubations with a surface inoculum. In contrast to deep waters, *MMG2* was dominant in incubations carried out
50 at higher methane levels (5%) but only at 15 °C and 30 °C. Surface incubations carried out at low methane levels

1 (0.1%) were heterogenous and either dominated by *Methylomicrobium* or *Methylomarinum*, while incubations at
2 1% headspace methane levels where either dominated by *Methylomonas* or members of the *ptlb-vmat-59* group.
3 At higher methane levels (5%) and at 25 °C, samples were either dominated by *Methyloprofundus* or
4 *Methylomonas*. *Methyloceanibacter* was the only (potential) type II MOB detected, more frequently in deep water
5 samples, but generally at very low relative abundances of typically $<10^{-4}$, though this group was dominating the
6 original water column samples (Supplementary Figure 1).

7 *Autumn* – The composition of the MOB community in autumn was notably different when compared to summer
8 (Figure 1, Table 2). All t0 incubations only contained *Methyloceanibacter* as the sole potential MOB though its
9 abundance was low ranging between 0.05 and 0.1%. Furthermore, we found high abundances of unassigned
10 *Methylomonadaceae* that predominated incubations form both water depth with 0.1% methane headspace levels.
11 Unassigned *Methylomonadaceae* also dominated single replicates in incubations with 5% methane headspace
12 levels at 15 °C. However, the other replicates at these conditions were dominated by members of the *Milano-
13 WF1B-03* group (35 m water depth) or *Milano-WF1B-03* together with *ptlb-vmat-59* (10 m water depth). In
14 incubations with deep water inocula, *Milano-WF1B-03* was also predominant in incubations with 5% methane
15 headspace concentrations; at the surface, only two replicates of this incubation conditions were dominated by
16 *Milano-WF1B-03*, while *Methylomarinum* and *Methyloprofundus* were important genera, too. *Methylomarinum*
17 also dominated one replicate of incubations at 30 °C and 5% methane with surface water inocula, while the
18 remaining two replicates were dominated by members of the *ptlb-vmat-59* group or *Methyloceanibacter*.
19 *Methyloceanibacter* was also dominant in incubations at 30 °C and 5% methane with a deep water inoculum. In
20 general, abundances of unidentified *Methylomonadaceae*, *Methyloceanibacter* and *Milano-WF1B-03* were higher
21 in autumn when compared to summer, while *MMG2*, *Methylomonas*, *Methyloprofundus* and *ptlb-vmat-59* were
22 less abundant (Table 2)

23

24

1 **Figure 1.** Distribution of MOB genera in microcosm incubations with North Sea inocula sampled during summer at depth of
2 10 m (a) and 35 m water depth (b) as well as during autumn at 10 m (c) and 35 m water depth (d). Each set of bars represents
3 microcosm incubations conducted in triplicate (labelled A, B, C) under varying conditions as indicated on the x-axis: starting
4 conditions (t0), methane head space concentrations (%) and temperature (°C). Baseline conditions were set to methane
5 headspace concentrations at 5 % and temperature at 25 °C. Salinity was 35 psu in all incubations. All deviations in methane
6 headspace concentrations or temperature are indicate in bold face type.

7

8 **Table 2.** Differential abundance of MOB genera in incubations with North Sea inocula from autumn and summer samples.
9 'Standard Error (lfSE)' denotes the standard error of the log₂ fold change estimate. 'Adjusted p-values' indicate the False
10 Discovery Rate.

Taxa	Base Mean	Log2 Fold Change	Standard Error (lfSE)	Adjusted p-value
Abundance in autumn higher than in summer				
<i>Methylomonadaceae-NA</i>	794.3	2.68	0.74	< 0.001
<i>Methyloceanbacter</i>	32.1	3.1	0.47	< 0.001
<i>Milano-WF1B-03</i>	870.2	6.24	0.59	< 0.001
Abundance in autumn lower than in summer				
<i>Marine Methylotrophic Group 2</i>	692.6	-9.75	0.59	< 0.001
<i>Methylomonas</i>	109.1	-6.93	0.66	< 0.001
<i>Methyloprofundus</i>	375.2	-5.67	0.66	< 0.001
<i>pltb-vmat-59</i>	213.7	-2.94	0.67	< 0.001

11

12

13 3.2.2 Effects of methane concentrations and temperature on methanotroph communities

14

15 **Methane** – MOB variability within treatments was high across incubations with different methane levels. MOB
16 abundances were typically higher at higher methane concentrations and incubations temperatures <30 °C (Figure
17 1, Table 3, Supplementary Figure 3). The lower MOB abundance in incubations at 30 °C was especially
18 pronounced in incubations with an inoculum from 35 m water depth recovered in autumn (Figure 1). However, no
19 distinct MOB group consistently dominated across all water depths and seasons at a specific methane headspace
20 level.

21 Analysis of differential MOB abundance revealed significant changes in methanotroph populations in response to
22 varying methane concentrations (Table 3). For instance, abundances of *pltb-vmat-59* and *Milano-WF1B-03* were
23 substantially higher at both 1% and 5% when compared to 0.1% headspace methane levels. In contrast, the
24 abundance of unassigned *Methylomonadaceae* was lower at 1% when compared to 0.1% headspace methane
25 levels.

26

27 **Table 3.** Differential abundance of methanotrophs in incubations with North Sea inocula, comparing the effects of different
28 headspace methane concentrations independent of the season.

Taxa Name	Base Mean	Log2 Fold Change	Standard Error (lfSE)	Adjusted p-value
Abundance in 5% higher than 0.1% CH₄				
<i>Methyloprofundus</i>	375.2	3.86	0.94	< 0.001
<i>pltb-vmat-59</i>	213.7	6.02	0.96	< 0.001
<i>Milano-WF1B-03</i>	870.2	6.68	0.8	< 0.001
Abundance in 5% lower than 0.1% CH₄				
none				
Abundance in 1% higher than 0.1% CH₄				
<i>Milano-WF1B-03</i>	870.2	5.88	0.82	< 0.001

1	<i>pltb-vmat-59</i>	213.7	2.54	1.23	0.008
2	Abundance in 1% lower than 0.1% CH₄				

Methylomonadaceae-NA 794.3 -5.3 1.09 < 0.001

1

2

3 *Temperature* – Differential abundance analysis revealed that 4 distinct MOB genera were significantly affected by
4 temperature (Table 4), however, the effect of temperature on MOBs was highly variable. MOBs generally
5 exhibited lower abundances in incubations at 30 °C, particularly in samples collected in autumn, contrasting with
6 the high abundances of MOBs in incubations at 15 °C and 25 °C using the same inoculum (Figure 1). For instance,
7 *Methyloprofundus* was higher in abundance at 15 °C when compared to 25°C and 30°C (Table 4). In contrast,
8 potential MOBs belonging to the (potential) Type II genus *Methyloceanibacter* showed generally higher
9 abundances at higher incubation temperatures. However, no distinct MOB group consistently dominated across all
10 water depths and seasons at a specific incubation temperature.

11

12 **Table 4.** Differential abundance of genera associated with methanotrophs due to different incubation temperatures. Incubations
13 were started with microbial biomass from the North Sea seawater inoculum.

Taxa Name	Base Mean	Log2 Fold Change	Standard Error (lfcSE)	Adjusted p-value
Abundance higher at 30 °C than at 15 °C				
<i>Methyloceanibacter</i>	32.1	2.29	0.89	0.009
<i>Methylomonadaceae-NA</i>	794.3	5.11	1.24	< 0.001
Abundance lower at 30 °C than at 15 °C				
<i>Milano-WF1B-03</i>	870.2	-4.99	0.93	< 0.001
<i>pltb-vmat-59</i>	213.7	-3.56	1.09	0.002
<i>Methyloprofundus</i>	375.2	-3.12	1.02	0.003
Abundance higher at 25 °C than at 15 °C				
<i>Methyloceanibacter</i>	32.1	3.55	0.77	< 0.001
<i>Methylomonadaceae-NA</i>	794.3	5.48	1.1	< 0.001
Abundance lower at 25 °C than at 15 °C				
<i>Methyloprofundus</i>	375.2	-2.23	1.11	0.02

14

15

16 **3.3 Wadden Sea**

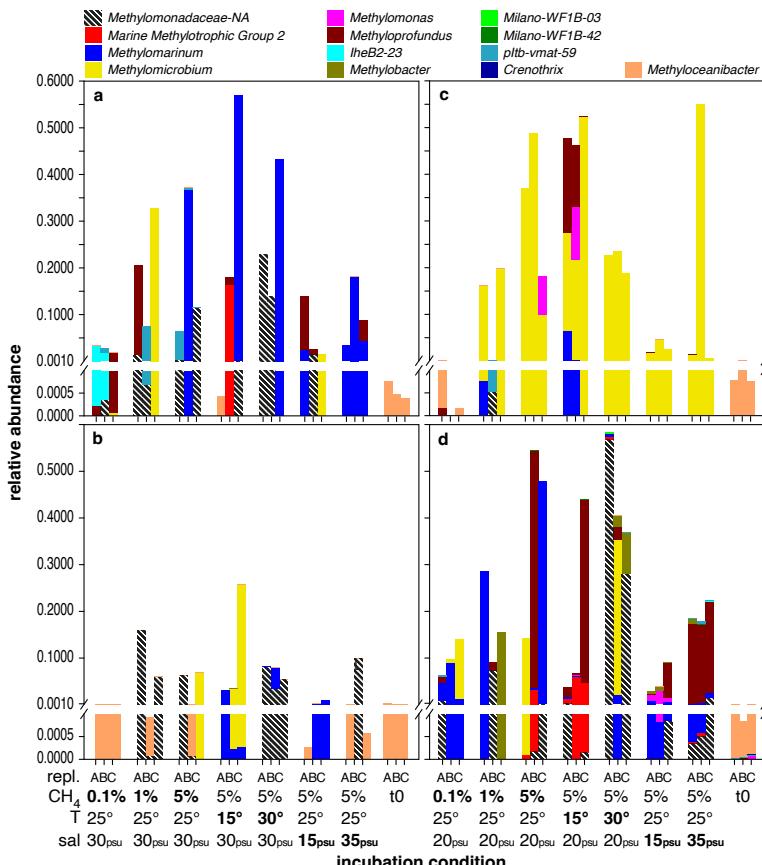
17

18 **3.3.1 Methanotroph diversity and abundance across seasons**

19

20 *Spring* – the MOB community in the spring inoculum was predominantly composed of the potential MOB genus
21 *Methyloceanibacter* at the beginning of the incubation (t0). Independent of season, this pattern was found in all
22 inocula from the Wadden Sea and *Methyloceanibacter* was also a dominant MOB group in the original water
23 column and in sediment samples (Supplementary Figure 2). In contrast to the North Sea incubations, Wadden Sea
24 spring incubations were more variable among replicates and contained a higher degree of unassigned
25 *Methylomonadaceae*. Only incubations with 35 psu salinity (and 5% methane in the headspace, incubated at 25
26 °C) showed a high abundance of *Methylomarinum*. *Methylomarinum* was also dominant in one replicates of all
27 other incubations with 5% methane in the headspace. Other dominant groups in at least one replicate were *IheB2-23*,
28 *Methyloprofundus*, *Methylomicrobium*, *pltb-vmat-59*, *MMG2* and unassigned *Methylomonadaceae*.

29 *Summer* – in contrast to spring, summer incubations showed a higher degree of consistency between replicates.
30 *Methyloceanibacter* did, in addition to t0, also dominate incubations with 0.1% methane in the headspace.
31 *Methylomicrobium* dominated two replicates in incubations with 15 psu salinity and one in incubations with 5%
32 methane in the headspace. *Methylomarinum* was dominant in 2 replicates in incubations with 15 psu salinity.
33 Unassigned *Methylomonadaceae* comprised the majority of MOB in all replicates of incubations conducted at 30


1 °C, and dominated 1 or 2 replicates of incubations with 1% or 5 % methane in the headspace and those conducted
2 at salinity levels of 35 psu.

3 *Autumn* – incubations from autumn were often dominated by *Methylomicrobium* and *Methylomarinum* or
 4 unassigned *Methylomonadaceae*. Similar to spring, incubations with 0.1% methane in the headspace were also
 5 dominated by *Methyloceanibacter* (though overall abundance was low with <0.001).

6 Winter – similar to spring, winter incubations were more variable among replicates and contained a higher degree
 7 of unassigned *Methylomonadaceae*. Only incubations with 35 psu salinity (and 5% methane in the headspace,
 8 incubated at 25°C) showed a dominance of *Methyloprofundus*. Other important MOB groups dominating 1 or 2
 9 replicates were *Methylomarinum*, *Methylomicrobium*, *Methylobacter*, *MMG2* or *Methylomonas*.

10

11

12

12
13

14

15

16

17
18

18

19

19

Figure 2. Distribution of MOB genera in microcosm incubations with Wadden Sea inocula sampled in spring (a), summer (b), autumn (c) and winter (d). Each set of bars represents microcosm incubations conducted in triplicate (labelled A, B, C) under varying conditions as indicated on the x-axis: starting conditions (t0), methane head space concentrations (%), temperature (°C) and salinity (psu). Baseline conditions were 5% methane headspace concentrations, 25 °C and 30 psu (spring, summer) or 20 psu salinity (autumn, winter). All deviations in methane headspace concentrations, temperature or salinity are indicated in bold face type.

1 Seasonal variations were further investigated by means of differential abundance analysis (Table 5). These
2 highlighted significant increases of certain MOB genera in colder conditions (winter and spring) compared to
3 summer, namely *Methyloprofundus* and *pltb-vmat-59*, while members of the *MMG2* and *Methylobacter* genera
4 where in abundance only in spring higher when compared to summer. MOB abundances in winter incubations
5 showed the strongest differences compared to summer incubations, displaying the highest number of more
6 abundant MOB genera, and the highest log2 fold changes. Although autumn incubations were dominated by
7 *Methylomicrobium*, its abundance was not significantly higher in autumn than in summer incubations. Only
8 *Methyloprofundus* and *pltb-vmat-59* were significantly more abundant in autumn than in summer, but with lower
9 log2 fold changes than between winter and summer. With the exception of *MMG2*, autumn incubations exhibited
10 high abundances of the dominant genera found in both summer and winter incubations. Similarly, spring
11 incubations showed microbial abundance profiles that were intermediate between winter and summer.

12

13 **Table 5.** Differential abundance of methanotrophs in incubations of Wadden Sea seawater inoculum generated during summer,
14 autumn winter and spring.

Taxa Name	Base Mean	Log2 Fold Change	Standard Error (fcSE)	Adjusted p-value
Abundance in winter higher than in summer				
<i>Marine Methylotrophic Group 2</i>	30.29	3.64	0.68	< 0.001
<i>pltb-vmat-59</i>	26.8	3.78	0.68	< 0.001
<i>Methylobacter</i>	68.8	6.79	0.72	< 0.001
<i>Methyloprofundus</i>	1007	9.01	1.0	< 0.001
Abundance in winter lower than in summer				
none				
Abundance in spring higher than in summer				
<i>pltb-vmat-59</i>	26.75	4.32	0.60	< 0.001
<i>Methyloprofundus</i>	1007	6.18	0.81	< 0.001
Abundance in spring lower than in summer				
<i>Methyloceanibacter</i>	19.5	-3.28	0.48	< 0.001
<i>Methylomicrobium</i>	919.5	-3.46	0.92	0.002
Abundance in autumn higher than in summer				
<i>Methyloprofundus</i>	1007	1.5	1.11	0.044
<i>pltb-vmat-59</i>	26.75	2.12	0.79	0.005
Abundance in autumn lower than in summer				
<i>Methyloceanibacter</i>	19.5	-3.52	0.54	< 0.001
<i>Methylomonadaceae-NA</i>	529.5	-5.36	0.81	< 0.001

15

16

17

18 **3.2.1 Effects of methane concentrations, temperature and salinity on methanotroph communities**
19

20 *Methane* - The relative abundance of MOBs roughly reflected methane concentrations during incubations,
21 independent of season, though overall MOB abundances were lowest in summer incubations. The impact of
22 elevated headspace methane concentrations (5%) had a more pronounced effect on MOB community structure,
23 resulting in a broader range of MOBs exhibiting higher abundance compared to lower methane levels of 0.1%
24 (Supplementary Figure 3). This included *pltb-vmat-59*, *MMG2*, *Methyloprofundus*, *Methylomicrobium* and
25 *Methylomonas* (Table 6, Supplementary Figure 3). However, just as for North Sea incubations, no single MOB
26 genus dominated incubations at specific headspace methane levels across all seasons (Figure 2).

27

1 **Table 6.** Differential abundance of methanotrophs in varying headspace methane concentrations in incubations inoculated
2 with microbial biomass from the Wadden Sea.

Taxa Name	Base Mean	Log2 Fold Change	Standard Error (lfSE)	Adjusted p-value
Abundance higher in 1% vs. 0.1% CH₄				
<i>Methylomicrobium</i>	919.5	6.68	1.19	< 0.001
<i>Methylomonadaceae-NA</i>	529.5	5.28	1.03	< 0.001
Abundance lower in 1% vs. 0.1% CH₄				
none				
Abundance higher in 5% vs. 0.1% CH₄				
<i>pltb-vmat-59</i>	26.8	1.01	0.62	0.044
<i>Marine Methylotrophic Group</i>	30.3	1.1	0.65	0.04
<i>Methyloprofundus</i>	1007	2.72	0.73	< 0.001
<i>Methylomicrobium</i>	919.5	3.25	0.83	< 0.001
<i>Methylomonadaceae-NA</i>	529.5	3.38	0.64	< 0.001
<i>Methylomonas</i>	83.8	3.48	0.64	< 0.001
Abundance lower in 5% vs. 0.1% CH₄				
none				

3
4 *Temperature* – Similar to the North Sea incubations, no distinct MOB group consistently dominated across all
5 seasons at a specific incubation temperature. Differential abundance analysis (Table 7) showed that at 30 °C,
6 compared to 15 °C, several MOB genera were less abundant, including *Methyloprofundus*, *MMG2*,
7 *Methylomicrobium*, and *Methylomonas*. Conversely, unassigned *Methylomonadaceae* showed a higher abundance
8 at 30 °C than at 15 °C. At 25 °C, compared to 15 °C, we observed a similar pattern. The MOB genera *MMG2*,
9 *Methyloprofundus*, and *Methylomicrobium* were less abundant at higher temperature.

10
11 **Table 7.** Differential abundance of methanotrophs due to incubation temperature, in incubations of Wadden Sea inoculum
12 taken in four different seasons.

Taxa Name	Base Mean	Log2 Fold Change	Standard Error (lfSE)	Adjusted p-value
Abundance higher in 30 vs 15 degree				
<i>Methylomonadaceae-NA</i>	529.5	6.87	1.12	< 0.001
Abundance lower in 30 vs 15 degree				
<i>Methyloprofundus</i>	1007	-6.84	1.23	< 0.001
<i>Marine Methylotrophic Group 2</i>	30.3	-5.38	0.85	< 0.001
<i>Methylomicrobium</i>	919.5	-3.3	1.37	0.006
<i>Methylomonas</i>	83.75	-2.89	1.04	0.005
Abundance higher in 25 vs 15 degree				
<i>Methylomonadaceae-NA</i>	529.5	2.93	0.85	< 0.001
<i>pltb-vmat-59</i>	26.75	1.8	0.84	0.015
Abundance lower in 25 vs 15 degree				
<i>Marine Methylotrophic Group 2</i>	30.3	-4.62	0.64	< 0.001
<i>Methyloprofundus</i>	1007	-3.26	0.86	< 0.001
<i>Methylomicrobium</i>	919.5	-2.4	1.11	0.009

1 *Salinity* – Just as for methane concentrations and temperature, we did not find a distinct MOB group consistently
2 dominating across all seasons at a specific salinity. However, MOB abundance was generally higher at baseline
3 incubation conditions, i.e. 5% methane, 25°C and salinity levels of 30 psu (spring/summer) or 25 psu
4 (autumn/winter), but typically lower at either higher or lower salinity. Any of the groups (or combination of
5 groups) dominating incubations at lower or higher salinity also contributed substantially to the MOB community
6 in other incubations. For example, *Methylomarinum* was predominant in all replicates with 35psu from spring but
7 the group was also found in incubations with elevated and decreased temperature (i.e., 15°C and 30°C). Also,
8 differential abundance analysis (Table 8) only identified two genera namely *pltb-vmat-59* and *Methylomonas* that
9 were, respectively, positively and negatively affected by salinity.

10
11

12 **3.4 Comparison with Environmental data**

14 **3.4.1 Total bacterial community**

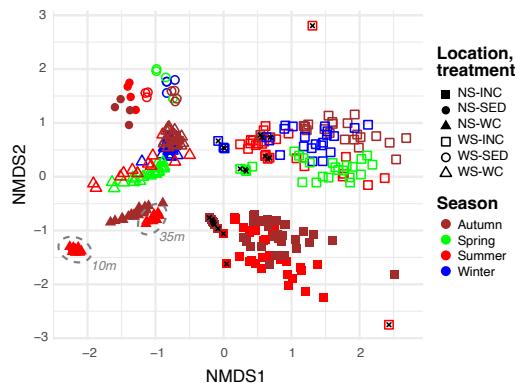
16 Non-metric multidimensional scaling (NMDS) analysis showed that microbial communities from Wadden Sea and
17 North Sea water column incubations were remarkably distinct (Fig. 3) and clearly segregated from environmental
18 water column and sediment microbiomes published previously (de Groot et al., 2024). Notably, t0 incubations
19 more closely resembled their environmental counterparts in the NMDS plot, than the remaining incubation samples
20 (t0 samples mostly cluster in-between environmental and incubation samples). Sediments from both locations
21 formed distinct clusters located on the side of the environmental water column samples considering the horizontal
22 NMDS axis, and appearing more similar to the Wadden Sea than the North Sea samples on the vertical axis. The
23 location of the sediment samples thus seems to have a smaller effect than the location of the water column samples.
24 The environmental water column samples from the Wadden and North Sea furthermore clustered by season, and
25 depth-related differences were apparent for the North Sea summer samples, too. While the NMDS analysis
26 revealed slight seasonal differences for North Sea incubations, such differences were less apparent for Wadden
27 Sea incubations.

28

29 **Table 8.** Differential abundance of methanotrophs due to differences in salinity, in incubations of Wadden Sea inoculum taken
30 in four different seasons.

Taxa Name	Base Mean	Log2 Fold Change	Standard Error (lfcSE)	Adjusted p-value
Abundance higher when salinity is higher				
<i>pltb-vmat-59</i>	26.8	1.50	0.26	< 0.001
Abundance lower when salinity is higher				
<i>Methylomonas</i>	83.8	-2	0.29	< 0.001

31

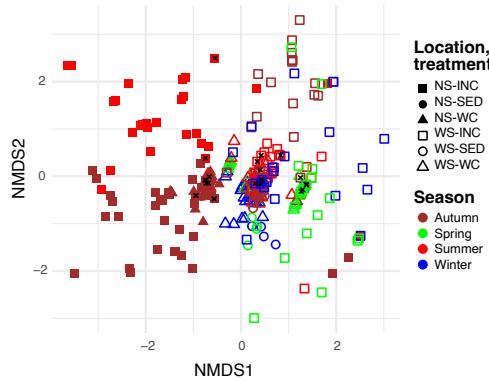

32 **3.4.2 MOB community variability**

33 A second NMDS analysis focused solely on MOB genera, including only ASVs assigned to the genus level (Figure
34 4). Similar to the NMDS analysis of the total bacterial community, this MOB-focused NMDS revealed a
35 segregation between North Sea and Wadden Sea incubations (horizontal axis), with seasonal differences
36 particularly apparent for the North Sea and less pronounced for the Wadden Sea. The MOB community of all
37 environmental samples (both water column and sediment) clustered tightly near the origin. The MOB community
38 in the t0 samples of our incubation experiments also clustered near the environmental samples at the origin of
39 Figure 4, while incubation samples displayed variation from these by scattering further away from the origin.

40
41

1

2 **Figure 3.** Non-metric multidimensional scaling (NMDS, stress = 0.16) plot of microbial taxa in environmental
3 water column (WC) and sediment samples (SED), as well as incubated (INC) water column samples from the
4 North Sea (NS) in summer and autumn, and Wadden Sea (WS) in winter, spring, summer, and autumn. t0 samples
5 are indicated with a black cross and the water depth of environmental communities for summer is highlighted by
6 a dashed grey line.


7

8 **4 Discussion**
9

10 Understanding how MOB communities adapt to environmental changes is crucial for predicting their role in coastal
11 ecosystems amidst climate change. Our study explores the development of MOB communities in microcosms with
12 inoculate from North Sea and Wadden Sea waters collected during different seasons, incubated at various methane
13 concentrations, temperatures, and salinity levels. These factors are critical environmental variables influencing
14 MOB community structure.

15

16

17

18 **Figure 4.** Non-metric multidimensional scaling (NMDS, stress = 0.09) plot of methane oxidising bacteria (MOB) in
19 environmental water column (WC) and sediment samples (SED), as well as incubated (INC) water column samples from the
20 North Sea (NS) in summer and autumn, and Wadden Sea (WS) in winter, spring, summer, and autumn. t0 samples are
21 indicated with a black cross.

1 **4.1 MOB community adaptation and incubation effects**

2
3 Our investigations reveal a clear distinction between incubations from the North Sea and the Wadden Sea
4 inoculates at both, the levels of the whole microbial community and within the MOB community. This distinction
5 is apparently independent of sampling time or how environmental parameters were experimentally changed during
6 the incubation period. Additionally, we found a disparity in the apparent MOB community composition in
7 environmental samples when compared to microcosms at t0. Environmental samples (water column and
8 sediments) from the North Sea and Wadden Sea were comprised of *Methyloceanibacter*, with lesser contributions
9 from *MMG2*, *Methylprofundus*, *Crenothrix*, and *Methylomarinum* (Supplementary Figures 1 and 2). At t0,
10 *Methyloceanibacter* was also present (except in the summertime North Sea inocula) but other canonical MOB
11 genera such as *MMG2* and *Methylomonas* only contributed minimally to the MOB community (Figures 1 and 2).
12 Furthermore, *MMG2* and *Methylomonas* comprised the majority in summertime inocula from the North Sea,
13 though *Methylomonas* was not detected in the original, environmental North Sea samples (Supplementary Figure
14 1). The apparent scarcity and observed diversity of canonical MOBs in the environmental samples could be due to
15 the detection limit of the molecular methods used here. Nevertheless, as the incubations progressed under
16 manipulated environmental conditions, the initially undetectable MOB communities thrived and, in many cases,
17 became the most abundant microbial groups. This successful enrichment of MOB communities from various
18 ecosystems, including different seasons, depths, and locations, highlights the adaptability and resilience of these
19 microorganisms to diverse environmental conditions. By subjecting natural environmental microbial communities
20 to a range of different conditions such as variations in methane concentration, temperature, and salinity, we were
21 able to observe how these parameters shape community composition, favouring microorganisms that are best
22 suited to thrive under specific conditions.

23 Differences observed in the community composition among individual replicates under the same incubation
24 conditions can be partially attributed to what is commonly referred to as the 'bottle effect' (Zobell, 1943; Massana
25 et al., 2001; Calvo-Díaz et al., 2011). This phenomenon describes the variation between replicates of the same
26 inoculum, resulting in divergent community compositions over time. The 'bottle effect' arises from micro-
27 variations in in-vitro conditions and stochastic processes, leading to slight disparities in cell numbers and
28 composition among replicates of the same inoculum. These subtle variations can substantially influence the growth
29 rates of individual microorganisms. Moreover, stochastic effects play a crucial role in driving community
30 development within microcosms (Haro-Moreno et al., 2019). This is evidenced by instances where three replicates
31 yield three distinct communities, as observed in the case of MOB communities incubated at 15 °C with Wadden
32 Sea winter inoculum (Figure 2). The exact relationship between such stochastic effects and the initial microbial
33 community composition in each individual inoculum added to the bottles, as well as the extent to which slight
34 variations in growth and death rates contribute to the observed results, remains speculative (Hammes et al., 2010,
35 Kalenitchenko et al., 2021; Debray et al., 2022). Despite these challenges, our incubations successfully enriched
36 natural MOB communities from various ecosystems.

37
38 **39 4.2 MOBs in the environment and influence of environmental parameters**

40
41 The versatility of MOBs across ecosystems underscores the wide range of conditions in which MOBs may perform
42 methane oxidation thereby reducing methane liberation from various ecosystems to the atmosphere (Knief, 2015;
43 Bodelier et al., 2019). While type I MOBs seemingly dominate aquatic environments, both type I and type II
44 MOBs inhabit terrestrial systems. In these terrestrial environments, MOBs can exhibit biogeographic patterns that
45 are influenced by abiotic factors, such as temperature, pH, and moisture levels (Knief, 2015; Bodelier et al., 2019).
46 It seems logical that abiotic factors such as methane levels shape marine MOB community composition, too. For
47 instance, *Milano-WF1B-03* is prevalent in temperate and Arctic marine environments, thriving in methane-rich
48 habitats like cold seeps (Mau et al., 2020; Gründger et al., 2021; Sert et al., 2023; Broman et al., 2024). Our study
49 corroborates this, with *Milano-WF1B-03* flourishing in microcosms with high methane concentrations and a North
50 Sea inoculum (Figure 1). Similarly, *Methylprofundus*, common in marine sediments (Tavormina et al., 2015),
51 dominates at high methane concentrations but also seems to become more dominant at elevated temperatures
52 (Gründger et al., 2021; Hirayama et al., 2022; Sert et al., 2023). Type I MOB genera like *Methylomicrobium* and
53 *Methylomarinum* thrive across various regions globally, with *Methylomicrobium* particularly successful in high-

1 salinity environments, as observed in Wadden Sea incubations in autumn (Jensen et al., 2008; Yu et al., 2018;
2 Bodelier et al., 2019; Gründger et al., 2021). Similar to the findings of Knief and Dunfield (2005), our results of
3 high abundances of Type I MOB at high headspace methane levels does not corroborate results from other systems
4 where a dominance of Type II MOB is typically associated with high methane levels (Henckel et al., 2000;
5 Macalady et al., 2002; Bodelier and Laanbroek, 2004; Kessler et al., 2011; He et al., 2012, Steinle et al., 2016).
6 However, we cannot rule out that our incubations might have become depleted in copper or other essential (micro)
7 nutrients for Type II MOB (Murrell, 2010).

8 Our study underscores the influence of environmental parameters on MOB community dynamics, with methane
9 availability emerging as a primary factor shaping microbial community composition (Hanson and Hanson, 1996;
10 Sherry et al., 2016; Li et al., 2021; Yao et al., 2022). While temperature and salinity surprisingly exert less apparent
11 effects, higher methane concentrations led to more diverse and abundant MOB communities (Mau et al., 2013;
12 James et al., 2016; Sherry et al., 2016; Li et al., 2019). Notably, no single MOB group dominated our incubations
13 with high methane conditions, as evidenced by contrasting community compositions in different seasons and
14 locations. For example, in incubations with 5% methane, the MOB community was dominated by
15 *Methyloprofundus* and *MMG2* in summer in the North Sea, while *Milano-WF1B-03* dominated North Sea autumn
16 incubations which is contrasted by a *Methylomicrobium* dominance in the Wadden Sea incubations in autumn.
17 Despite being numerically rare when compared to other microbes, active methane oxidising strains within MOB
18 communities play a crucial role in overall methane consumption (Bodelier et al., 2013). These findings underscore
19 the importance of microbial diversity and traits in regulating global methane budgets and ecosystem functions,
20 emphasizing the need for further research in this field.

21

22 **4.3 The origin effect**

23

24 MOB community composition in incubation samples were strongly dependent on the season in which they were
25 taken. For example, the North Sea summer incubations were dominated by *Methyloprofundus* and *MMG2*, while
26 the autumn incubations were dominated by *Milano-WF1B-03* and other unassigned *Methylomonadaceae*. All
27 known genera of the *Methylomonadaceae* are MOB, hence it seems not unlikely that the unidentified
28 *Methylomonadaceae* comprises (potentially novel) MOB, too. Though we found some variations when comparing
29 surface and bottom waters, the seasonal effect on these incubations was more pronounced. Also, the Wadden Sea
30 incubations showed a clustering of samples by season (rather than with respect to the manipulated conditions);
31 however, these samples were more variable and clusters of samples from different seasons overlapped, while they
32 were more distinct and overlapped only slightly for the North Sea.

33 The composition of the initial inoculum and the environmental conditions to which microbes in the inoculum were
34 exposed apparently exert a profound influence on community development. This origin effect is seemingly
35 influenced by factors such as geographic location and seasonal variations, which coincide with important gradients
36 in environmental conditions (see previous section). Speculating on the true MOB community composition in the
37 collected inocula is challenging due to the limitations of detecting rare community members with DNA sequence-
38 based approaches resulting from e.g. sampling bias, stochastic effects during sample processing and sequencing
39 depth (Leray and Knowlton, 2017; Shirazi et al., 2021). The prevalence of *Methyloceanibacter* as the dominant
40 genus in our environmental samples and at t0 suggests their potential survival, even if undetected by sequencing
41 (Takeuchi et al., 2019, 2021). Despite relatively uniform MOB community patterns observed across origins
42 (environmental water column), the persistent differences within location and season indicate likely distinct initial
43 MOB communities. Our incubations indicate functional redundancy within the variable pool of MOBs, enabling
44 multiple members to cope with drastic changes in environmental parameters such as methane availability,
45 temperature, and salinity. Stochastic effects and historical contingencies may, in addition to abiotic effect and the
46 origin of a sample determine which individual member of a functionally redundant group dominates the
47 community after a certain incubation period (Kalenitchenko et al., 2021; Ramond et al., 2024).

48

49 **Summary and conclusions**

50 In this study, we investigated shifts in the community composition of MOBs in controlled microcosm experiments
51 using water column inocula collected from the North Sea and Wadden Sea during different seasons. Our findings

1 reveal distinct differences primarily driven by the origin of the inoculant, particularly evident in experiments with
2 methane amendments. Interestingly, variations in temperature and salinity exerted a lesser influence on MOB
3 community structure compared to methane availability. These results highlight the remarkable functional
4 redundancy within the MOB microbiome of the Coastal Ocean, contributing to its resilience and adaptability to
5 environmental changes. Our study suggests that multiple MOBs possess the capacity to occupy ecological niches
6 characterized by high methane levels, elevated temperatures, and variable salinity levels, providing insights into
7 potential future scenarios in ocean ecosystems.

8 *Data availability.* All data and scripts as well as the parameter settings of the Cascabel pipeline will be archived
9 and made publicly available in the DAS database (see supplementary information for details). Sequence data for
10 this study have been deposited in the European Nucleotide Archive (ENA) under project numbers **PRJEBxxx**
11 (**incubation experiments, will be made available upon acceptance of the MS**) and PRJEB76184 (environmental
12 sequences from the North Sea and Wadden Sea expeditions).

13
14 *Supplement.* The supplementary information related to this article is available online at: <https://doi.org/xxxx>

15
16 *Acknowledgments.* We are grateful for the support provided by the captains and crews of R/V Pelagia and R/V
17 Navicula. We extend further gratitude to the technical team of the molecular ecology laboratories at NIOZ –
18 Maartje Brouwer, Sanne Vreugdenhil, Harry Witte, Wietse Reitsma, and Alejandro Abdala Asbun - for their
19 instrumental support, which was vital to the success of this study.

20
21 *Author Contributions.* This study was conceptualized and designed by TRdG and HN. Incubation experiments
22 were conducted by TRdG and JD. Bioinformatics analyses were performed by TRdG, PR, JCE, JvB, and HN. The
23 research was supervised by JCE and HN. All authors contributed to writing and revising the manuscript.

24
25 *Competing interests.* Helge Niemann is a member of the editorial board of the journal Biogeosciences.

26

27

28

29

30

31

32

33

34

35

36

37

38

39

1 **References**

2

3 Abdala Asbun, A., Besseling, M.A., Balzano, S., Van Bleijswijk, J.D.L., Witte, H.J., Villanueva, L., and
4 Engelmann, J.C. (2020). Cascabel: A Scalable and Versatile Amplicon Sequence Data Analysis Pipeline
5 Delivering Reproducible and Documented Results. *Frontiers in Genetics* 11.

6 Bodelier, P.L., and Laanbroek, H.J. (2004). Nitrogen as a regulatory factor of methane oxidation in soils and
7 sediments. *FEMS microbiology ecology* 47, 265-277.

8 Bodelier, P.L.E., Meima-Franke, M., Hordijk, C.A., Steenbergh, A.K., Hefting, M.M., Bodrossy, L., Von Bergen,
9 M., and Seifert, J. (2013). Microbial minorities modulate methane consumption through niche
10 partitioning. *The ISME Journal* 7, 2214-2228.

11 Bodelier, P.L.E., Pérez, G., Veraart, A.J., and Krause, S.M.B. (2019). "Methanotroph Ecology, Environmental
12 Distribution and Functioning," in *Methanotrophs: Microbiology Fundamentals and Biotechnological
13 Applications*, ed. E.Y. Lee. (Cham: Springer International Publishing), 1-38.

14 Broman, E., Olsson, M., Maciute, A., Donald, D., Humborg, C., Norkko, A., Jilbert, T., Bonaglia, S., and
15 Nascimento, F.J.A. (2024). Biotic interactions between benthic infauna and aerobic methanotrophs
16 mediate methane fluxes from coastal sediments. *The ISME Journal* 18.

17 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P. (2016). DADA2:
18 High-resolution sample inference from Illumina amplicon data. *Nature Methods* 13, 581-583.

19 Calvo-Díaz, A., Díaz-Pérez, L., Suárez, L.Á., Morán, X.a.G., Teira, E., and Marañón, E. (2011). Decrease in the
20 Autotrophic-to-Heterotrophic Biomass Ratio of Picoplankton in Oligotrophic Marine Waters Due to
21 Bottle Enclosure. *Applied and Environmental Microbiology* 77, 5739-5746.

22 Collins, M., Sutherland, M., Bouwer, L., Cheong, S.-M., Frolicher, T., Descombes, H.J., Roxy, M.K., Losada, I.,
23 McInnes, K., and Ratter, B. (2019). Extremes, abrupt changes and managing risk.

24 Crespo-Medina, M., Meile, C.D., Hunter, K.S., Diercks, A.R., Asper, V.L., Orphan, V.J., Tavormina, P.L., Nigro,
25 L.M., Battles, J.J., Chanton, J.P., Shiller, A.M., Joung, D.J., Amon, R.M.W., Bracco, A., Montoya, J.P.,
26 Villareal, T.A., Wood, A.M., and Joye, S.B. (2014). The rise and fall of methanotrophy following a
27 deepwater oil-well blowout. *Nature Geoscience* 7, 423-427.

28 Debray, R., Herbert, R. A., Jaffe, A. L., Crits-Christoph, A., Power, M. E., and Koskella, B. (2022). Priority effects
29 in microbiome assembly, *Nat. Rev. Microbiol.*, 20, 109–121, doi.org/10.1038/s41579-021-00604-w.

30 Dedysh, S. N. and Knief, C. (2018). Diversity and Phylogeny of Described Aerobic Methanotrophs. in (Springer
31 International Publishing, Cham). doi:10.1007/978-3-319-74866-5_2.

32 De Groot, T.R., Mol, A.M., Mesdag, K., Ramond, P., Ndhlovu, R., Engelmann, J.C., Röckmann, T., and Niemann,
33 H. (2023). Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea. *Biogeosciences*
34 20, 3857-3872.

35 De Groot, T. R., Menoud, M., Bleijswijk, J. van, Leeuwen, S. M. van, Molen, J. van der, Hernando-Morales, V.,
36 Czerski, H., Maazallahi, H., Walter, S., Rush, D., Röckmann, T., and Niemann, H. (2024). Tidal and
37 seasonal influence on cold seep activity and methanotroph efficiency in the North Sea, *Commun. Earth
38 Environ.*, 5, 368, https://doi.org/10.1038/s43247-024-01483-8.

39 Dixon, P. (2003). VEGAN, a package of R functions for community ecology. *Journal of Vegetation Science* 14,
40 927-930.

41 Ettwig, K.F., Alen, T.V., Pas-Schoonen, K.T.V.D., Jetten, M.S.M., and Strous, M. (2009). Enrichment and
42 Molecular Detection of Denitrifying Methanotrophic Bacteria of the NC10 Phylum. *Applied and
43 Environmental Microbiology* 75, 3656-3662.

44 Ettwig, K. F., Butler, M. K., Paslier, D. L., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh,
45 B. E., Zedelius, J., Beer, D. de, Gloerich, J., Wessels, H., Alen, T. van, Luesken, F., Wu, M. L., Pas-
46 Schoonen, K. T. van de, Camp, H. den, Janssen-Megens, E. M., Francoijis, K. J., Stunnenberg, H.,
47 Weissenbach, J., Jetten, M. S. M., and Strous, M.: Nitrite-driven anaerobic methane oxidation by
48 oxygenic bacteria, *Nature* 464, 543–548, doi.org/10.1038/nature08883, 2010.

49 Ghashghavi, M., Jetten, M.S.M., and Lüke, C. (2017). Survey of methanotrophic diversity in various ecosystems
50 by degenerate methane monooxygenase gene primers. *AMB Express* 7, 162.

51 Gründger, F., Probandt, D., Knittel, K., Carrier, V., Kalenichenko, D., Silyakova, A., Serov, P., Ferré, B.,
52 Svenning, M.M., and Niemann, H. (2021). Seasonal shifts of microbial methane oxidation in Arctic shelf
53 waters above gas seeps. *Limnology and Oceanography* 66, 1896-1914.

54 Hammes, F., Vital, M., and Egli, T. (2010). Critical Evaluation of the Volumetric "Bottle Effect" on Microbial
55 Batch Growth. *Applied and Environmental Microbiology* 76, 1278-1281.

56 Hanson, R.S., and Hanson, T.E. (1996). Methanotrophic Bacteria. *Microbiological reviews* 60, 439-471.

57 Haque, M. F. U., Xu, H.-J., Murrell, J. C. and Crombie, A. (2020) Facultative methanotrophs – diversity, genetics,
58 molecular ecology and biotechnological potential: a mini-review. *Microbiology* 166, 894–908.

1 Haro-Moreno, J.M., Rodriguez-Valera, F., and López-Pérez, M. (2019). Prokaryotic Population Dynamics and
2 Viral Predation in a Marine Succession Experiment Using Metagenomics. *Frontiers in Microbiology* 10.

3 He, R., Wooller, M.J., Pohlman, J.W., Quensen, J., Tiedje, J.M., and Leigh, M.B. (2012). Shifts in Identity and
4 Activity of Methanotrophs in Arctic Lake Sediments in Response to Temperature Changes. *Applied and
Environmental Microbiology* 78, 4715-4723.

5 Henckel, T., Jäckel, U., Schnell, S., and Conrad, R. (2000). Molecular analyses of novel methanotrophic
6 communities in forest soil that oxidize atmospheric methane. *Applied and environmental microbiology*
7 66, 1801-1808.

8 Herlemann, D. P. R., Markert, S., Meeske, C., Andersson, A. F., Bruijn, I. de, Hentschker, C., Unfried, F., Becher,
9 D., Jürgens, K., and Schweder, T. (2019). Individual Physiological Adaptations Enable Selected Bacterial
10 Taxa To Prevail during Long-Term Incubations, *Appl. Environ. Microbiol.*, 85,
11 doi.org/10.1128/aem.00825-19, 2019.

12 Hirayama, H., Takaki, Y., Abe, M., Imachi, H., Ikuta, T., Miyazaki, J., Tasumi, E., Uematsu, K., Tame, A., Tsuda,
13 M., Tanaka, K., Matsui, Y., Watanabe, H.K., Yamamoto, H., and Takai, K. (2022). Multispecies
14 Populations of Methanotrophic *Methyloprofundus* and Cultivation of a Likely Dominant Species from
15 the Iheya North Deep-Sea Hydrothermal Field. *Applied and Environmental Microbiology* 88, e00758-
16 00721.

17 Ho, A., De Roy, K., Thas, O., De Neve, J., Hoefman, S., Vandamme, P., Heylen, K., and Boon, N. (2014). The
18 more, the merrier: heterotroph richness stimulates methanotrophic activity. *The ISME Journal* 8, 1945-
19 1948.

20 Ho, A., Mo, Y., Lee, H.J., Sauheitl, L., Jia, Z., and Horn, M.A. (2018). Effect of salt stress on aerobic methane
21 oxidation and associated methanotrophs; a microcosm study of a natural community from a non-saline
22 environment. *Soil Biology and Biochemistry* 125, 210-214.

23 James, R.H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer, I., Niemann, H., Ostrovsky, I., Piskozub,
24 J., Rehder, G., Treude, T., Vielstädt, L., and Greinert, J. (2016). Effects of climate change on methane
25 emissions from seafloor sediments in the Arctic Ocean: A review. *Limnology and Oceanography* 61,
26 S283-S299.

27 Jensen, S., Neufeld, J.D., Birkeland, N.-K., Hovland, M., and Murrell, J.C. (2008). Methane assimilation and
28 trophic interactions with marine *Methylomicrobium* in deep-water coral reef sediment off the coast of
29 Norway. *FEMS Microbiology Ecology* 66, 320-330.

30 Kalenitchenko, D., Peru, E., and Galand, P.E. (2021). Historical contingency impacts on community assembly and
31 ecosystem function in chemosynthetic marine ecosystems. *Scientific Reports* 11, 13994.

32 Kalyuzhnaya, M.G., Gomez, O.A., and Murrell, J.C. (2019). "The Methane-Oxidizing Bacteria (Methanotrophs),"
33 in *Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes*, ed. T.J. McGenity.
34 (Cham: Springer International Publishing), 245-278.

35 Kessler, J.D., Valentine, D.L., Redmond, M.C., Du, M., Chan, E.W., Mendes, S.D., Quiroz, E.W., Villanueva,
36 C.J., Shusta, S.S., Werra, L.M., Yvon-Lewis, S.A., and Weber, T.C. (2011). A Persistent Oxygen
37 Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico. *Science* 331, 312-315.

38 Knief, C. (2015). Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic
39 Bacteria Evaluated Based on pmoA as Molecular Marker. *Frontier Microbiology* 6, 1346.

40 Kox, M.a.R., Haque, M.F.U., Alen, T.a.V., Crombie, A.T., Jetten, M.S.M., Camp, H.J.M.O.D., Dedysh, S.N.,
41 Kessel, M.a.H.J.V., and Murrell, J.C. (2019). Complete Genome Sequence of the Aerobic Facultative
42 Methanotroph *Methylocella* tundrae Strain T4. *Microbiology Resource Announcements* 8,
43 10.1128/mra.00286-00219.

44 Leray, M. and Knowlton, N. (2017). Random sampling causes the low reproducibility of rare eukaryotic OTUs in
45 Illumina COI metabarcoding. *PeerJ* 5, doi.org/10.7717/peerj.3006, 2017.

46 Li, J., Liu, C., He, X., Santosh, M., Hu, G., Sun, Z., Li, Y., Meng, Q., and Ning, F. (2019). Aerobic microbial
47 oxidation of hydrocarbon gases: Implications for oil and gas exploration. *Marine and Petroleum Geology*
48 103, 76-86.

49 Li, J., Xu, X., Liu, C., Wu, N., Sun, Z., He, X., and Chen, Y. (2021). Active Methanotrophs and Their Response
50 to Temperature in Marine Environments: An Experimental Study. *Journal of Marine Science and
51 Engineering* 9, 1261.

52 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq
53 data with DESeq2. *Genome Biology* 15, 550.

54 Macalady, J.L., McMillan, A.M., Dickens, A.F., Tyler, S.C., and Scow, K.M. (2002). Population dynamics of type
55 I and II methanotrophic bacteria in rice soils. *Environmental Microbiology* 4, 148-157.

56 Mao, S.-H., Zhang, H.-H., Zhuang, G.-C., Li, X.-J., Liu, Q., Zhou, Z., Wang, W.-L., Li, C.-Y., Lu, K.-Y., Liu, X.-
57 T., Montgomery, A., Joye, S. B., Zhang, Y.-Z., and Yang, G.-P. (2022). Aerobic oxidation of methane
58 significantly reduces global diffusive methane emissions from shallow marine waters. *Nat. Commun.*, 13,
59 doi.org/10.1038/s41467-022-35082-y, 2022.

60

1 Massana, R., Pedrós-Alio, Carlos, Casamayor, E.O., and Gasol, J.M. (2001). Changes in marine bacterioplankton
2 phylogenetic composition during incubations designed to measure biogeochemically significant
3 parameters. *Limnology and Oceanography* 46, 1181-1188.

4 Masson-Delmotte, V., P.Z., A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.
5 Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi,
6 R. Yu, Zhou, B., and (Eds.) (2021). *IPCC, 2021: Climate Change 2021: The Physical Science Basis.*
7 *Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on*
8 *Climate Change*. Cambridge University press.

9 Mau, S., Blees, J., Helmke, E., Niemann, H., and Damm, E. (2013). Vertical distribution of methane oxidation and
10 methanotrophic response to elevated methane concentrations in stratified waters of the Arctic fjord
11 Storfjorden (Svalbard, Norway). *Biogeosciences* 10, 6267-6278.

12 Mau, S., Tu, T.-H., Becker, M., Dos Santos Ferreira, C., Chen, J.-N., Lin, L.-H., Wang, P.-L., Lin, S., and
13 Bohrmann, G. (2020). Methane Seeps and Independent Methane Plumes in the South China Sea Offshore
14 Taiwan. *Frontiers in Marine Science* 7.

15 Murrell, J.C. (2010). "The Aerobic Methane Oxidizing Bacteria (Methanotrophs)," in *Handbook of Hydrocarbon*
16 *and Lipid Microbiology*., 1953-1966.

17 Pol, A., Heijmans, K., Harhangi, H.R., Tedesco, D., Jetten, M.S.M., and Op Den Camp, H.J.M. (2007).
18 Methanotrophy below pH 1 by a new *Verrucomicrobia* species. *Nature* 450, 874-878.

19 Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: assessing small subunit rRNA
20 primers for marine microbiomes with mock communities, time series and global field samples.
21 *Environmental Microbiology* 18, 1403–1414. doi.org/10.1111/1462-2920.13023.

22 Quince, C., Lanzen, A., Davenport, R.J., & Turnbaugh, P.J. (2011). Removing noise from pyrosequenced
23 amplicons. *BMC Bioinformatics* 12, doi.org/10.1186/1471-2105-12-38

24 Ramond, P., Galand, P. E., and Logares, R. (2024). Microbial functional diversity and redundancy: moving
25 forward. *FEMS Microbiol. Rev.*, doi.org/10.1093/femsre/fuae031.

26 Reeburgh, W.S. (2007). Oceanic Methane Biogeochemistry. *Chemical Reviews* 107, 486-513.

27 Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A.,
28 Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P.,
29 Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carroll, M., Castaldi, S., Chandra, N.,
30 Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etope, G., Frankenberger, C., Gedney, N., Hegglin,
31 M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M.,
32 Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T.,
33 Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J.,
34 Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters,
35 G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A.,
36 Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N.,
37 Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., Weele, M. van, Werf, G. R. van der, Weiss, R. F.,
38 Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu,
39 Q., and Zhuang, Q. (2020). The Global Methane Budget 2000–2017. *Earth Syst. Sci. Data*, 12, 1561–
40 1623, doi.org/10.5194/essd-12-1561-2020.

41 Sert, M.F., Schweitzer, H.D., De Groot, T.R., Kekäläinen, T., Jänis, J., Bernstein, H.C., Ferré, B., Gründger, F.,
42 Kalenitchenko, D., and Niemann, H. (2023). Elevated methane alters dissolved organic matter
43 composition in the Arctic Ocean cold seeps. *Frontiers in Earth Science* 11.

44 Sherry, A., Osborne, K.A., Sidgwick, F.R., Gray, N.D., and Talbot, H.M. (2016). A temperate river estuary is a
45 sink for methanotrophs adapted to extremes of pH, temperature and salinity. *Environmental Microbiology*
46 *Reports* 8, 122-131.

47 Shirazi, S., Meyer, R. S., and Shapiro, B. (2021). Revisiting the effect of PCR replication and sequencing depth
48 on biodiversity metrics in environmental DNA metabarcoding. *Ecol. Evol.*, 11, 15766–15779,
49 doi.org/10.1002/ee.38239.

50 Steinle, L., Graves, C. A., Treude, T., Ferre, B., Biastoch, A., Bussmann, I., Berndt, C., Krastel, S., James, R. H.,
51 Behrens, E., Boning, C. W., Greinert, J., Sapart, C.-J., Scheinert, M., Sommer, S., Lehmann, M. F., and
52 Niemann, H. (2015). Water column methanotrophy controlled by a rapid oceanographic switch, *Nat
53 Geosci.*, 8, 378–382, doi.org/10.1038/ngeo2420.

54 Steinle, L., Schmidt, M., Bryant, L., Haeckel, M., Linke, P., Sommer, S., Zopfi, J., Lehmann, M. F., Treude, T.,
55 and Niemann, H. (2016). Linked sediment and water-column methanotrophy at a man-made gas blowout
56 in the North Sea: Implications for methane budgeting in seasonally stratified shallow seas, *Limnology*
57 and *Oceanography*, 61, 367–386, 2016.

58 Stephens, M. (2016). False discovery rates: a new deal. *Biostatistics* 18, 275-294.

1 Takeuchi, M., Ozaki, H., Hiraoka, S., Kamagata, Y., Sakata, S., Yoshioka, H., and Iwasaki, W. (2019). Possible
2 cross-feeding pathway of facultative methylotroph *Methyloceanibacter caenitepidi* Gela4 on
3 methanotroph *Methylocaldum marinum* S8. *PLOS ONE* 14, e0213535.

4 Takeuchi, M., Ozaki, H., Hiraoka, S., Kamagata, Y., Sakata, S., Yoshioka, H., and Iwasaki, W. (2021). Correction:
5 Possible cross-feeding pathway of facultative methylotroph *Methyloceanibacter caenitepidi* Gela4 on
6 methanotroph *Methylocaldum marinum* S8. *PLOS ONE* 16, e0251538.

7 Tavormina, P.L., Orphan, V.J., Kalyuzhnaya, M.G., Jetten, M.S., and Klotz, M.G. (2011). A novel family of
8 functional operons encoding methane/ammonia monooxygenase-related proteins in
9 gammaproteobacterial methanotrophs. *Environmental Microbiology Reports* 3, 91-100.

10 Vaksmaa, A., Knittel, K., Abdala Asbun, A., Goudriaan, M., Ellrott, A., Witte, H.J., Vollmer, I., Meirer, F., Lott,
11 C., Weber, M., Engelmann, J.C., and Niemann, H. (2021). Microbial Communities on Plastic Polymers
12 in the Mediterranean Sea. *Frontiers in Microbiology* 12.

13 Vekeman, B., Kerckhof, F.-M., Cremers, G., De Vos, P., Vandamme, P., Boon, N., Op Den Camp, H.J.M., and
14 Heylen, K. (2016). New *Methyloceanibacter* diversity from North Sea sediments includes methanotroph
15 containing solely the soluble methane monooxygenase. *Environmental Microbiology* 18, 4523-4536.

16 Weber, T., Wiseman, N. A., and Kock, A. (2019). Global ocean methane emissions dominated by shallow coastal
17 waters. *Nat. Commun.*, 10, doi.org/10.1038/s41467-019-12541-7.

18 Yao, X., Wang, J., and Hu, B. (2022). How methanotrophs respond to pH: A review of ecophysiology. *Front
19 Microbiol* 13, 1034164.

20 Yu, W.-J., Lee, J.-W., Nguyen, N.-L., Rhee, S.-K., and Park, S.-J. (2018). The characteristics and comparative
21 analysis of methanotrophs reveal genomic insights into *Methylomicrobium* sp. enriched from marine
22 sediments. *Systematic and Applied Microbiology* 41, 415-426.

23 Zhang, S., Yan, L., Cao, J., Wang, K., Luo, Y., Hu, H., Wang, L., Yu, R., Pan, B., Yu, K., Zhao, J., and Bao, Z.
24 (2023). Salinity significantly affects methane oxidation and methanotrophic community in Inner
25 Mongolia lake sediments. *Frontiers in Microbiology* 13.

26 Zobell, C.E. (1943). The effect of solid surfaces upon bacterial activity. *Journal of bacteriology* 46, 39-56.

27