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Abstract. Thawing permafrost in the Arctic threatens to potentially release large amounts of decomposed organic matter as
CO; or CHy4 to the atmosphere. Predicting the ratio of emitted CO- to CHy is imperative for reliable future projections. Here,
we review the recent literature concerning methanogenesis, and its current representation in both land surface models (LSMs)
and the state-of-the-art process-based methane models. We found that the key processes, required to capture the dynamics of the
CO,:CHy4 production ratio, are: fermentation, hydrogenotrophic methanogenesis, and acetoclastic methanogenesis. Commonly
discussed linked processes are Fe(Ill)-reduction and homoacetogenesis. Environmental factors influencing these processes,
as identified in the literature, are: temperature, pH, water table position and alternative electron acceptors. While modern
process-based methane models account for most of these factors and processes, the same is not true for the simplified methane
formulations in many LSMs, which often opt for pre-set parameters that define a constant share of methane production from
anaerobic decomposition. This static approach stands in opposition to the growing amount of lab and in-situ data, which
suggest a high degree of spatio-temporal variability concerning this ratio, thus preventing its accurate prediction in a changing
future Arctic. The challenge lies in upscaling the data as the environmental factors are barely quantified at the pan-Arctic scale.
Additionally, there remains the important challenge of how to model and parameterize the temperature dependence of the
individual underlying processes. Going forward, these challenges need to be overcome in order to reliably project the CO5:CHy
production ratio and methane emissions on larger scales. This will require a more process-based approach of methanogenesis

in LSMs, for which we suggest a baseline concept here.

1 Introduction

Permafrost-affected soils are a significant global carbon pool, storing more carbon than there currently is in the atmosphere
(Hugelius et al., 2014; Mishra et al., 2021; Friedlingstein et al., 2022). This permafrost is already beginning to thaw (Biskaborn
et al., 2019) and large-scale future losses are projected (McGuire et al., 2018) due to climate change and the increased warming

that is expected to occur in the Arctic (IPCC, 2021). Thawing permafrost enables the microbial decomposition of the large
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amounts of carbon stored across the Arctic, potentially releasing considerable amounts of carbon to the atmosphere, thus
creating a self-reinforcing carbon-climate feedback (Beer, 2008; Schuur et al., 2015, 2022).

Of particular interest is the form in which the carbon will be released to the atmosphere, namely as either COy or CHy,
due to the strong difference in climate forcing between the two gases, with methane being the much more potent one (Myhre
et al., 1998). Methane has contributed 11% to the total radiative forcing since 1960, despite its relatively low concentration in
the atmosphere (Canadell et al., 2021). Furthermore, methane emissions have increased nearly 2-fold in the last two centuries
(Canadell et al., 2021) and continue to grow persistently (Saunois et al., 2020), thus garnering much research interest (IPCC,
2021; Canadell et al., 2021; Saunois et al., 2020; Xu et al., 2016; Chandel et al., 2023). The majority of emissions are expected
to occur as CO2 (Miner et al., 2022; Schédel et al., 2016) but recent studies also highlight the importance of CH, emissions
from a thawing Arctic (Knoblauch et al., 2018; Kleinen et al., 2021; Turetsky et al., 2020). This stresses the need for a more
accurately constrained future methane budget, which presently remains uncertain (Ito et al., 2023). Methane production is tied
to anoxic conditions in the soil, which usually occur when the soil becomes waterlogged (van Huissteden, 2021). Since the
future hydrology of the Arctic remains uncertain (Andresen et al., 2020; de Vrese et al., 2023), so does the extent and timing
of Arctic methane emissions (Canadell et al., 2021). This is also the reason for the relative scarcity of model studies on the
topic that involve Earth System Models (ESMs) (de Vrese et al., 2021). In fact, many ESMs do not explicitly model CH4
emissions at all (Schuur et al., 2022). Those who do, often represent methane production in a highly simplified way, frequently
via a certain CO5:CH, production ratio factor (Kleinen et al., 2020; Gasser et al., 2018; Riley et al., 2011). This is despite the
fact that this ratio has been shown to be highly variable in both laboratory (Knoblauch et al., 2018; Heslop et al., 2019) and
in situ studies (Galera et al., 2023). Knoblauch et al. (2018) showed in their long-term incubation study, that methanogenic
communities in permafrost soils need time to establish themselves, resulting in a lag time of multiple years before eventually
a CO4:CHy4 ratio of 0.92+0.18 was reached (Knoblauch et al., 2018). Heslop et al. (2019) reported C-CO-:C-CH,4 production
ratios between 13-134, depending on soil depth, from their incubations. Galera et al. (2023) estimated in situ median CO2:CH,
emission ratios of 12 and 373, depending on the tundra type of polygonal tundra soils, though their values were affected by
methanotrophy and, therefore, the actual production ratios are likely smaller (Galera et al., 2023).

The methane emission calculation does not stop at the methane production, however. For the methane to reach the atmosphere
it needs to be first transported from its production point, through the soil column, to the surface. On its way to the surface,
the methane can be oxidized by methanotrophic microbes in oxic soil layers, which affects the CO5:CH,4 ratio at the surface
(Wania et al., 2010). There exist three important transport mechanisms: diffusion, ebullition, and plant-mediated transport
(aerenchyma) (Walter and Heimann, 2000; Wania et al., 2010; Kaiser et al., 2017). Their relative share is important with
regards to the potential methane oxidation, since plant-mediated transport, e.g., can enable methane to bypass the oxidative
soil layers (Knoblauch et al., 2015). Diffusion describes the methane transport along a concentration gradient and is the slowest
way of transport, thus facilitating methane oxidation (Knoblauch et al., 2015). Ebullition is a rather fast process, describing the
rise of methane gas bubbles through water (Knoblauch et al., 2015). Lastly, plant-mediated transport happens largely through
vascular plants, which possess so called aerenchyma, a type of aerated tissue responsible for supplying O to the roots (Wania

et al., 2010; Knoblauch et al., 2015). That tissue enables methane and CO to be transported through the plant to the atmosphere
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(Wania et al., 2010). Many models account for these three transport ways, including large-scale land surface models (Kaiser
et al., 2017; Wania et al., 2010; Riley et al., 2011; Chinta et al., 2024). In fact, Xu et al. (2016) found that the majority of
methane models in their meta-study represented these three pathways already, albeit to varying degrees of complexity. This
connection between methane release and plants hints at the fact that, aside from hydrological changes, future methane emissions
are also influenced by vegetation changes (Kettunen, 2003). After all, the plant productivity, potentially increasing due to the
CO., fertilization effect, serves as substrate for the methanogens (Kettunen, 2003). This aspect will especially be important in
the Arctic, where large-scale vegetation changes can be expected upon warming (Swann et al., 2010; Chapin et al., 2005; Cho
etal., 2018).

Considering all this, it is worth looking into the recent developments concerning methane modeling. In this study we will
focus on the methanogenesis aspect in particular, since other methane-related processes, e.g., methane transport, have already
been implemented into models in more detail over the years (Wania et al., 2010; Kaiser et al., 2017; Xu et al., 2016). We will first
recap the crucial processes and environmental factors that have been identified to govern methanogenesis and the CO5:CHy
ratio in the literature. We will then examine how methanogenesis is currently modeled in land surface models and state-
of-the-art process-based methane models, and discuss efforts to bridge the divide between laboratory-scale and global-scale
approaches. This will lead to a clear recommendation of a model structure for a methanogenesis module inside a land-surface

model that can predict, process-based, the CO2:CHy4 production ratio.

2 The complexity of methanogenesis

One of the most challenging aspects of studying and modeling CH, production in soils is its high degree of complexity, encom-
passing various different processes, which are, in turn, affected by a multitude of environmental factors ((Xu et al., 2015, 2016;
van Bodegom and Scholten, 2001; Grant, 1998; Song et al., 2020; Sulman et al., 2022)). Among the most important of these
environmental factors are temperature (Yvon-Durocher et al., 2014), soil pH (Sulman et al., 2022), water table depth (Chen
et al., 2021), and soil biogeochemical conditions (Philben et al., 2020). Especially temperature has a profound effect on not
only microbial decomposition processes in general (Kirschbaum, 1995; Hobbie, 1996), but also on the CO5:CHy ratio in par-
ticular (Yvon-Durocher et al., 2014; Roy Chowdhury et al., 2015). This is due to the different temperature sensitivities of
the processes involved (Yvon-Durocher et al., 2014), though generally both CH4 and CO4 production experience an increase
with rising temperature (Treat et al., 2015; Schédel et al., 2016). Yvon-Durocher et al. (2014) showed in their meta-analysis
that methanogenesis as a whole exhibits a higher average temperature dependence than general respiration (0.98 eV vs. 0.65
eV; measured as activation energy) (Yvon-Durocher et al., 2014). In fact, such differences in temperature dependence persist
even down to the finest scale, with temperature determining enzyme kinetics and thermodynamics of the individual methano-
genesis sub-processes (Conrad, 2023). Temperature-induced microbial community changes may lead to changes in the domi-
nant methanogenesis pathway, moving from acetoclastic to hydrogenotrophic with increasing temperatures, thus affecting the
CO,:CHy ratio (Conrad, 2023).



90

95

100

105

110

115

120

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

Naturally, this level of complexity can hardly be represented in global models. In methane modeling, there exist two common
ways of representing the effect of temperature (Chandel et al., 2023): the Q¢ value and the Arrhenius-type functions (Chandel
et al., 2023). The Q;( parameter expresses the factor by which the reaction rate increases upon a 10 °C change in temperature
(Reichstein and Beer, 2008) and it is ubiquitously used to express temperature dependency across models (Xu et al., 2016).
Although, for microbial models in particular, Chandel et al. (2023) found the Arrhenius functions to be more common. Despite
its widespread use, however, the Q¢ concept is very simple (Reichstein and Beer, 2008) and not without criticism, owing in
parts to the large span of reported values (Wu et al., 2021). Most models put the value for methanogenesis in the range of 1.5-4
(Xu et al., 2016) — often a central value of around 2 is chosen (Riley et al., 2011; Tang et al., 2010) — which lies in the range of
values reported from many lab experiments (Roy Chowdhury et al., 2015; Treat et al., 2015; Inglett et al., 2012; Su et al., 2024;
Lupascu et al., 2012). Despite that, a meta analysis by Hamdi et al. (2013) showed that the entire spectrum of reported Qg
values from lab and field studies has a large range from <2 to >300 (Hamdi et al., 2013). Wu et al. (2021) further criticized
the use of constant Q¢ parameters in models as overly simplistic, even finding that the decomposition rate behaved linearly
rather than exponentially in the 5 °C to 30 °C range in their model experiment (Wu et al., 2021). They argue instead in favor of
a more in-depth biogeochemical model approach that accounts for individual processes (Wu et al., 2021).

As for the second frequently used method, the idea behind Arrhenius functions is to express the temperature sensitivity
through the activation energy of the process in question (Yvon-Durocher et al., 2014; Chen et al., 2021; Chandel et al., 2023;
Li et al., 2023). This approach is based on fitting data to the Boltzmann-Arrhenius function, which, similar to the Q;¢ approach,
assumes an exponential increase of the metabolic rate with increasing temperature (Yvon-Durocher et al., 2014; Chen et al.,
2021). Here, reported values for methanogenesis lie between 0.62 and 0.98 eV (Yvon-Durocher et al., 2014; Chen et al., 2021;
Li et al., 2023). Both Q¢ and activation energy values have been observed to decrease with increasing temperature and vice
versa (Hamdi et al., 2013; Reichstein and Beer, 2008). In models, the Q1 parameter is usually chosen, with different processes
sometimes having their own distinct Qg values (Song et al., 2020). This is still rare, however, with many models settling
on a single Q¢ value for methane production (Riley et al., 2011; Kettunen, 2003; Xu et al., 2015), despite the evidence for
differences in the temperature response between the main pathways (Conrad, 2023). Methanotrophy usually has its own Qg
value in models, which is typically assessed at a slightly lower value than the one for methanogenesis, lying between 1.2-2.4
(Riley et al., 2011; Kettunen, 2003; Zhu et al., 2014; Sabrekov et al., 2016; Murguia-Flores et al., 2018; Grant, 1999). Since
temperature is only a piece of the puzzle, the difficulty of how to accurately represent this factor in models alone hints at the
overarching complexity of methane modeling.

In this discussion it is important to remember that methanogenesis itself is not one simple straight-forward process but
rather an entanglement of various interacting microbial processes in the soil (Xu et al., 2015). The two main pathways are
hydrogenotrophic and acetoclastic methanogenesis, during which hydrogen or acetate are being used as substrate by the mi-
crobes respectively, and methane is produced (Conrad, 1999). A review performed by Xu et al. (2016) found that out of the 40
investigated models only 3 represented these two major pathways. This is significant because the two processes yield differ-
ent products: acetoclastic methanogenesis results in COy and CH,4 production, while hydrogenotrophic methanogenesis only

produces CHy4 (Conrad, 1999). Furthermore, the contribution from each process to total methanogenesis varies strongly be-
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tween different environments (Conrad, 1999), soil depth (Liu et al., 2017), and active layer vs. permafrost layers (Song et al.,
2021), among others. Considering this, the need to distinctly represent these processes in models becomes evident if a realistic
portrayal of the CO5:CH, production ratio wants to be achieved.

Besides these two main pathways, there exist further processes that have an effect on methanogenesis. This can either be
directly through processes like hydrolysis and fermentation, which break down the organic matter and provide the substrate for
methanogenesis (Tang et al., 2016; Grant, 1998), or indirectly through other redox reactions such as Fe(IIl) reduction (Sulman
et al., 2022; Zheng et al., 2019; Philben et al., 2020; Yang et al., 2016; Roy Chowdhury et al., 2015). Especially the interplay
between methanogenesis and Fe(IIl) reduction has been the subject of recent studies and their interactions have started to
be included in models (Sulman et al., 2022; Zheng et al., 2019). Additionally, some soil processes are in competition with
methanogenesis for substrate, like other, energetically more favorable metabolic pathways (Lovley, 1991). Another example
is homoacetogenesis, through which acetate is being produced by the consumption of Hy and CO,. While acetate is the
main substrate for methane production by acetoclastic methanogenesis, homoacetogenesis thereby reduces the substrates for
hydrogenotrophic methanogens (LeeWays et al., 2022; Diekert and Wohlfarth, 1994). Looking at this web of interconnected
process (Xu et al., 2015; Song et al., 2020; Sulman et al., 2022), it becomes evident that by assuming a prescribed CO2:CH,
production ratio in process-based models, the reliability of future methane emission projections from warming Arctic soils and

thawing permafrost is highly limited.

3 Representation of methanogenesis in LSMs

Despite recent efforts to integrate process-based methane production in LSMs (Song et al., 2020), their representation of CH,
production largely remains overly simplified (Chandel et al., 2023). This is also true for the land surface schemes that are a
part of widely used ESMs, such as the ones partaking in the CMIP6 (Coupled Model Intercomparison Project Phase 6) (Eyring
et al., 2016). These models were featured in the current IPCC ARG6 report (Canadell et al., 2021), so it would be desirable if
they were able to simulate methane production from thawing permafrost landscapes in a more realistic fashion that reflects the
seasonality and variability observed in studies (Galera et al., 2023; Knoblauch et al., 2018; Li et al., 2023; Chen et al., 2021).
This dire need to more accurately portray permafrost carbon processes in ESMs has recently been reaffirmed by Schidel et al.
(2024) who concluded that methane emissions are only represented to an "intermediate" degree in ESMs. Tightly connected
aspects such as wetland distribution remain "poorly" represented (Schadel et al., 2024). The latter hints at a larger problem in
regards to accurately modeling methanogenesis in soils. Methanogenesis occurs when soils become waterlogged and oxygen
is eventually depleted (van Huissteden, 2021). Predicting this in models, however, has been a persistent challenge (de Vrese
et al., 2021; Schidel et al., 2024). In models, this limitation of methanogenesis to anoxic conditions is usually realized through
one of two methods: simulating the water-table in a given area or by explicitly modeling and tracking the O» concentration in
the soil layers (Morel et al., 2019). The former case is frequently realized via a TOPMODEL approach (Beven and Kirkby,

1979), which determines the inundated areas in a grid cell (Kleinen et al., 2020). Regardless of the chosen method, the problem
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remains that soil hydrology is subject to a high degree of sub-grid heterogeneity, especially in Arctic permafrost-affected
regions (Beer, 2016; Schuur et al., 2008).

In JSBACH, the land component of MPI-ESM (Max Planck Institute for Meteorology Earth System Model) (Mauritsen
et al., 2019) featured in CMIP6 (Zechlau et al., 2022), methane production has been modeled through a temperature dependent
partition factor which prescribes the faction of carbon released as methane from total anaerobic decomposition (Kleinen et al.,
2021). This is based on the approach in the CLM(4Me) model by Riley et al. (2011), which is used in other CMIP models as
well (Zechlau et al., 2022). The temperature dependence in their model is realized through a Q1 factor (Kleinen et al., 2020),
which leads to an increased share of methane under warming conditions.

Another example is the UK Earth System Model’s LSM JULES (Sellar et al., 2019), which calculates methane production
from substrate availability, temperature, and the wetland fraction of the gridbox (Clark et al., 2011; Chadburn et al., 2020)
through a multilayered scheme (Comyn-Platt et al., 2018; Burke et al., 2017), using a tuned methane production scaling
factor (Chadburn et al., 2020). The temperature sensitivity is modeled through an Arrhenius function (Chadburn et al., 2020).
Furthermore, Chadburn et al. (2020) showed an altered version of JULES called JULES-microbe, which features a much more
detailed decomposition process including hydrolysis, methanogenic microbial biomass, and microbial activity, though they do
not explicitly model the two main methanogenesis pathways either (Chadburn et al., 2020). Instead they partition the produced
gases equally into CH4 and COs, based on the theoretically assumed 1:1 production ratio of acetoclastic methanogenesis
(Conrad, 1999; Chadburn et al., 2020). Recently, the UKESM has further received an emission-driven fully coupled methane
cycle (Folberth et al., 2022), showing the ongoing research development towards more in-depth methane representation.

The ORCHIDEE model is another commonly used LSM, which over the years has been updated to represent permafrost pro-
cesses and high-latitude peatlands (Guimberteau et al., 2018; Qiu et al., 2019). It has recently received a methane module, based
on the scheme described by Khvorostyanov et al. (2008a, b), which uses the same temperature and soil moisture dependent
function for methanogenesis as for aerobic respiration, albeit with a 10-times lower rate (Salmon et al., 2022; Khvorostyanov
et al., 2008a). Temperature dependence was modeled through a Q1 function, although the relationship is assumed to be linear
instead of exponential at values below 0 °C , reaching zero at -1 °C (Qiu et al., 2019; Koven et al., 2011). Naturally, the model
has only been evaluated with data from peatlands (Salmon et al., 2022). Peatlands, however, are a very specific environment
with unique features and model requirements (Mozafari et al., 2023). This limits the model’s application to these areas even
though Arctic methane emissions from permafrost thaw will arise from other sources as well, such as thermokarst lakes or
simply from thaw and inundation of non-peatland soils (Saunois et al., 2020).

A land-surface model that has seen some recent progress in improving its methane representation is the Energy Exascale
Earth System Model’s (E3SM) land model (ELM) (Ricciuto et al., 2021). Originally, its methane module was based on the
CLM(4Me) (Riley et al., 2011), same as for JSBACH (Kleinen et al., 2021). Since then, there have been attempts to update
the methane module and include a more process-based representation of many methane processes, for example in the ELM-
SPRUCE version with acetoclastic and hydrogenotrophic methanogenesis, based in large parts on the process-based methane
model developed by Xu et al. (2015) (Ricciuto et al., 2021; Xu et al., 2015). This updated module, however, has yet to be
incorporated into the ELM proper for global simulations (Ricciuto et al., 2021). The current version still uses the CO5:CHy
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ratio partition factor as proposed by Riley et al. (2011), as well as a Q¢ parameter for modeling the temperature dependence

of methane production (Chinta et al., 2024).

4 State of process-based methanogenesis models

In contrast to LSMs, there exist smaller process-based methane models on the lab scale that represent many of the processes
related to methane production in much more detail (Xu et al., 2016, 2015; Grant, 1998; van Bodegom and Scholten, 2001).
Indeed, there has been an ongoing effort to refine the modeling of methane over the decades and a plethora of models with
varying complexity have emerged, with process-based models being at the top (Xu et al., 2016). It is these process-based ap-
proaches that are needed to better understand the processes underlying methane dynamics in the soil, which will then enable
more accurate predictions on how these processes and, by extension, the methane budget at large will react to future climate
change (Chandel et al., 2023). It should be noted, however, that many of the past in-depth methane models have been designed
for environments other than permafrost landscapes, with much of the research being focused on (rice) paddy soils (FUMOTO
et al., 2008; van Bodegom and Scholten, 2001) and general wetland areas (Tang et al., 2010; Chadburn et al., 2020; Forbrich
et al., 2024). Permafrost-affected soils constitute a special environment with unique properties and microbial structure (Miner
et al., 2022; Beer et al., 2022; Song et al., 2021) that is only comparable to the aforementioned ecosystems to a limited de-
gree. Masyagina and Menyailo (2020) have shown that the methane emission patterns of permafrost-affected areas differed
significantly to those of non-permafrost areas, highlighting this issue. Nevertheless, since the thorough synthesis conducted by
Xu et al. (2016), this development has only continued further and in recent years some highly sophisticated methane models
have been published. One such state-of-the-art model is the methane module developed by Song et al. (2020) for the IBIS
terrestrial ecosystem model (Song et al., 2020). It is based on microbial functional groups, encompassing acetoclastic and hy-
drogenotrophic methanogenesis, fermentation, homoacetogenesis, and methane oxidation (Song et al., 2020). Mathematically,
these processes are largely realized through formulas based on Michaelis-Menten kinetics (Song et al., 2020), while most of the
parameter values stem from Grant (1998) and Kettunen (2003). In the decomposition cascade, the model starts with dissolved
organic carbon (DOC), which is calculated from the total soil organic carbon pool (SOC) via a temperature and moisture de-
pendent DOC:SOC ratio factor (Song et al., 2020). Acetate, CO, and Hs are then produced through fermentation (Song et al.,
2020). In the next step, these fermentation products act as the substrate for the two main methanogenesis pathways (Conrad,
1999) and homoacetogenesis (Diekert and Wohlfarth, 1994; Song et al., 2020).

One process that has recently started to be included in methane models more frequently is iron reduction (Sulman et al.,
2022; Zheng et al., 2019). It is an energetically more favorable metabolic pathway for microbes, during which Fe(IIl) is
being reduced to Fe(II) under anoxic conditions (Lovley, 1991). Although these processes are in competition with each other
(Lovley, 1991; Sulman et al., 2022), they have been observed to occur concurrently in soils (Roy Chowdhury et al., 2015;
Sulman et al., 2022), thus hinting at a more complicated interplay (Sulman et al., 2022; Zheng et al., 2019). A recent model
that includes this process is the model developed by Sulman et al. (2022). It features largely the same microbial (methane)

processes as the Song et al. (2020) model, minus the homoacetogenesis, in a comparable level of detail. Their model, however,
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adds another level of complexity by explicitly modeling the Fe(III) reduction alongside the methane processes (Sulman et al.,
2022). The methane production is modeled via Monod-type equations and the interactions with Fe(IIl) reduction as well as
the dependence of the methanogenic pathway on pH was represented (Sulman et al., 2022). They found the inclusion of
other terminal electron acceptors to be important for accurate methane predictions, since Fe(Ill) reduction either increased
or decreased CH4 production, depending on how much substrate was available to the microbes (Sulman et al., 2022). These
findings compliment the results from Tang et al. (2016), who also used a process-based model, and found that Fe(III) reduction
positively impacted methanogenesis, by means of raising the pH, when substrate was not limiting (Tang et al., 2016).

Similarly, Zheng et al. (2019) developed a process-based model that uses Monod-type equations to model methanogenesis
(acetoclastic and hydrogenotrophic) and features Fe(III)-reduction and fermentation (Zheng et al., 2019). They further included
a thermodynamic factor to simulate the dynamic between the different redox processes (Zheng et al., 2019). In their model,
hydrolysis of polysaccharides was assumed to be the rate limiting process for methanogenesis under anaerobic conditions
(Zheng et al., 2019; Yang et al., 2016), which aligns with the importance of substrate availability for the methanogenesis-
iron-reduction-system found by Sulman et al. (2022). This connection has further been supported by incubation study results
that also found a correlation between iron reduction, acetate production and methanogenesis (Yang et al., 2016). Fermenters
prefer organic carbon compounds with low-molecular weight and the fermentation products (e.g., acetate) are required for
methanogenesis (Yang et al., 2016). Consequently, this early stage of the anaerobic decomposition appears to have significant
impact on the final methane production rate (Yang et al., 2016; Zheng et al., 2019). The designation of hydrolysis as the rate-
limiting step has, however, been called into question by Conrad (2023), who instead argued in favor of the final steps in the
methanogenesis process as being rate limiting (Conrad, 2023).

The methane model developed by Morel et al. (2019) as a module for the ISBA LSM (Noilhan and Planton, 1989) is another
interesting approach. They model methanogenesis with the same 10-times lower decomposition rate, compared to aerobic
decomposition, from Khvorostyanov et al. (2008a) that is also used in the recent ORCHIDEE module (Salmon et al., 2022).
Aside from the usual temperature and substrate availability dependence, their model also factors in the limitation by oxygen
concentration in each respective soil layer (Morel et al., 2019). Their approach of explicitly modeling Os concentration in the
soil layers and its impact on methanogenesis differs from the more common approach of determining the water table level and
strictly limiting methanogenesis to layers below that level(Morel et al., 2019)—an approach that has previously been criticized
(Yang et al., 2017). Their model, however, does not have a representation of the two main methanogenesis pathways (Morel
et al., 2019), thus reducing its complexity.

The data-constrained process-based model from (Ma et al., 2017) is another example for a methane module incorporated in
a terrestrial ecosystem model (TECO) (Ma et al., 2017). Even though methanogenesis itself is not modeled in as much detail
as other models discussed here—they used an ecosystem-specific CHy-release ratio parameter with no distinction between
pathways—their warming experiment resulted in an increased CH,4:CO- emission ratio (Ma et al., 2017). This makes the study

one of the few who put a focus on the changes of this ratio.
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5 Going forward - bridging the divide between scales

Looking at the discussed small-scale process-based methane models and LSMs side by side, it becomes clear that they differ
profoundly with regard to how detailed methane processes, especially methanogenesis, are being represented. Bridging this
gap and using the process understanding gained in smaller scale process-based models have been identified as major remaining
challenges for making ESMs more reliable and grounded in reality (Zheng et al., 2019; Xu et al., 2016; Chandel et al., 2023;
Ricciuto et al., 2021). This development is needed, if models want to capture the highly variable CO5:CH, production ratios
observed in the field (Galera et al., 2023) and lab (Knoblauch et al., 2018; Heslop et al., 2019). Furthermore, Ma et al. (2021)
have shown the importance of constraining models with in situ observational data, since CH4 and CO4 emissions show distinct
responses to climate change (Ma et al., 2021).

First efforts in this direction are being done, with one example being the inclusion of the aforementioned model by Song
et al. (2020) into a terrestrial ecosystem model. Another case is the model by Ricciuto et al. (2021), which has been included
in the ELM and features a process-based methanogenesis scheme (Xu et al., 2015). Their model reproduced the observed
distinct seasonality of the two main methanogenesis pathways (Ricciuto et al., 2021), showing the advantages of such a detailed
representation, though their model has so far only been run on a site level scale (Ricciuto et al., 2021). These models are focused
on natural wetland (Song et al., 2020) and peatland emissions (Ricciuto et al., 2021) respectively, meaning that the distinct
features of permafrost-affected areas (Masyagina and Menyailo, 2020) are largely not considered in their model composition
and subsequent evaluation with site data (Song et al., 2020; Ricciuto et al., 2021). Still, the ELM has recently received an
improved wetland scheme in ELM-Wet and there are plans to implement the already discussed in-depth methane model by
Sulman et al. (2022) in the future to further improve methanogenesis representation (Yazbeck et al., 2025).

Sulman et al. (2024) have recently performed a similar inclusion of an in-depth biogeochemical model into a LSM, featuring
methanogenesis and methanotrophy among others, but their model study was concerned with and evaluated against data from
coastal wetlands, which are distinct in their own right with, e.g., sulfate dynamics (Sulman et al., 2024). Modeling efforts
like these are direly needed for permafrost-affected soils as well (Schidel et al., 2024), since estimations of the permafrost-
carbon-climate feedback remain uncertain in both their spatiotemporal extent and magnitude (Miner et al., 2022; Nitzbon et al.,
2024). Indeed, the future ratio of CO5:CH,4 emissions is one of the key open questions in that endeavor (Schuur et al., 2022).
Additionally, the representation of permafrost processes in ESMs is generally still severely lacking (Miner et al., 2022; Schadel
et al., 2024), with many of the models informing the most recent IPCC report still not having permafrost processes included
(Canadell et al., 2021).

More complexity or realism, in regards to how certain processes are modeled, might not always be the optimal way however.
Sulman et al. (2018) argued in their meta study, for example, that the ever increasing complexity and amount of processes in
SOC-focused models may in fact add to the already large uncertainty of projections, due to an increase in modeling possibilities
to choose from (Sulman et al., 2018). A more concrete example would be the JULES LSM, which had in the past been
enhanced with a more detailed methane soil-transport and oxidation scheme (McNorton et al., 2016). This scheme was later-on

abandoned due to the overall negligible improvement in terms of making the results more accurate (Comyn-Platt et al., 2018).
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Figure 1. Schematic structure of the suggested core-processes required for modeling the dynamics of the CO2:CHy4 production ratio, with

(1) fermentation, (2) hydrogenotrophic methanogenesis, and (3) acetoclastic methanogenesis.

= _—-
- -
—’-—

Figure 2. Schematic structure of a more complex approach for modeling the dynamics of the CO2:CH4 production ratio, with core-processes

(1) fermentation, (2) hydrogenotrophic methanogenesis, (3) acetoclastic methanogenesis in blue, and closely connected process (4) Ho-

moacetogenesis and (5) Fe(IlI) reduction in green.

In light of many other processes being underrepresented or all out missing in global models, the adequate complexity of each
included process needs to be considered. Abrupt thaw processes, e.g., could lead to an increase in permafrost thaw emissions
by up to 40% if accounted for, yet they are not featured in global models (Turetsky et al., 2020; Schidel et al., 2024). Naturally,
numerical resources are not endless and current ESMs already struggle with their ever-increasing complexity (Schadel et al.,
2024). Considering this, it might be necessary to find a middle ground between the current state of methane representation in
most LSMs and the state-of-the-art smaller scale process-based methane models.

In conclusion, when modeling methane production in soils, the essential processes determining the CO5:CH4 production
ratio appear to be (1) fermentation, which has been identified as a potential rate-limiting step in multiple studies (Zheng et al.,
2019; Sulman et al., 2022; Philben et al., 2020), (2) acetoclastic and (3) hydrogenotrophic methanogenesis and the variable
share between the two (Conrad, 1999). LSMs need to feature at least these three core-processes (see Figure 1) if the dynamics
of the CO45:CH,4 production ratio wants to be represented.

Additionally, these core-processes may be complemented by closely connected processes that either enhance or stand in
competition with methanogenesis, most importantly Fe(IIl) reduction and homoacetogenesis (see Figure 2), something that has
already been achieved in some smaller scale process-based models (Sulman et al., 2022; Zheng et al., 2019; LeeWays et al.,
2022; Diekert and Wohlfarth, 1994). Though it would undoubtedly be preferable to have these ancillary processes featured in

LSMs as well, this would make the task all the more difficult. Previous studies found, for example, Fe(III) reduction to impact
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methanogenesis indirectly through changes to the pH (Sulman et al., 2022; Zheng et al., 2019), meaning that LSMs would
have to both model global soil Fe concentrations and soil pH levels. When considering the current, highly simplified state of
methanogenesis modeling in LSMs, it would be a more realistic first step to focus on the three aforementioned core-processes,
before tackling further connected processes.

These processes are influenced by multiple environmental factors, the most important of which are: temperature (Yvon-
Durocher et al., 2014), pH (Sulman et al., 2022), and oxygen availability (Morel et al., 2019) or water table depth (Chen
et al., 2021). Soil biogeochemical conditions, especially the discussed interplay with Fe(III) reduction, is another important,
albeit more complicated factor that has relatively recently emerged as a focus point in modeling studies on methane (Philben
et al., 2020; Sulman et al., 2022; Zheng et al., 2019; Yang et al., 2016). Despite their importance, many of these factors are
poorly quantified across the Arctic (Stimmler et al., 2023). This is largely due to the scarcity of observational field data in the
vast and remote Arctic areas like Northern Russia (Suleymanov et al., 2024). ESMs, however, require spatial maps of these
soil parameters to accurately portray the soil biogeochemical processes in the Arctic regions. Besides the obvious need for
more field data, there are some recent publications which provide spatial datasets derived from the few data we already have.
(Stimmler et al., 2023; Suleymanov et al., 2024). Stimmler et al. (2023) extrapolated sampling data to create a Pan-Arcitc map
of bioavailable soil elements, including Fe, based on lithology. Another interesting approach is shown in Suleymanov et al.
(2024) who used machine learning algorithms to digitally map soil properties, like soil pH, in Arctic areas with scarce data
availability. These techniques may prove to be important tools to bridge the large gaps in the spatial data. Both still depend on
field data, however, which means that more extensive field studies remain crucial (Suleymanov et al., 2024).

Concerning the temperature dependence, the Q¢ function is arguably the most commonly used method for describing the
temperature sensitivity of methane production in models (Xu et al., 2016), likely due to its simplicity (Reichstein and Beer,
2008). At the same time, the Q1o value has been repeatedly identified as a highly sensitive model parameter (Chinta et al.,
2024; Riley et al., 2011; Song et al., 2020; Ma et al., 2017), making its accurate assessment paramount. Parameter estimations,
however, vary strongly between different models (Xu et al., 2016), owing in large part to the wide range of reported values
from experiments (Roy Chowdhury et al., 2015; Hamdi et al., 2013; Wu et al., 2021). Furthermore, the different temperature
sensitivities of the processes involved in fermentation and methanogenesis (Conrad, 2023) need to be considered and should
be represented in future models. Reducing the uncertainty introduced through the modeling of temperature dependence will be
a crucial step towards improving the overall predictive abilities of methane models.

For predicting future methane emissions from soils, further processes are required. First, the transport of methane to the
surface through the main three transport ways (Walter and Heimann, 2000; Wania et al., 2010; Kaiser et al., 2017) and, second,
methanotrophy, which has the possibility to drastically reduce methane emissions before they reach the atmosphere (de Vrese
et al., 2021). These processes are, however, already more broadly represented in models (Xu et al., 2016), including LSMs
(Wania et al., 2010; Kaiser et al., 2017; Chinta et al., 2024), compared to methanogenesis. Here it could be interesting to
explore, e.g., the kinetic differences between low-affinity and high-affinity methanogens, the former requiring high methane
concentrations while the latter can function even under atmospheric methane concentrations (Voigt et al., 2023; Dion-Kirschner

et al., 2024), which is yet to be explored in most models.
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Here, we present a framework for a more process-based portrayal of methanogenesis in LSMs and review which processes
and factors need to be considered for capturing the dynamics of the CO5:CHy production ratio. This development becomes a
necessity if research questions such as the prediction of pan-Arctic greenhouse gas fluxes under a changing future hydrology
want to be answered with a higher degree of confidence. In the end, it would also enable more reliable estimates of the carbon-
climate feedback, for which the relative roles of carbon dioxide and methane emissions represent an important factor (Schuur
et al., 2022).

Author contributions. MM and CB designed the study. LK and VB contributed with ideas. MM wrote the manuscript with contributions

from all co-authors.
Competing interests. The authors declare no competing interests.

Acknowledgements. We acknowledge the funding provided by the German Federal Ministry of Research, Technology and Space through the
MOMENT project (03F0931A and 03F0931F).

12



355

360

365

370

375

380

385

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

References

Andresen, C. G., Lawrence, D. M., Wilson, C. J., McGuire, A. D., Koven, C., Schaefer, K., Jafarov, E., Peng, S., Chen, X., Gouttevin, I.,
Burke, E., Chadburn, S., Ji, D., Chen, G., Hayes, D., and Zhang, W.: Soil moisture and hydrology projections of the permafrost region — a
model intercomparison, The Cryosphere, 14, 445-459, https://doi.org/10.5194/tc-14-445-2020, 2020.

Beer, C.: The Arctic carbon count, Nature Geoscience, 1, 569-570, https://doi.org/10.1038/nge0292, 2008.

Beer, C.: Permafrost Sub-grid Heterogeneity of Soil Properties Key for 3-D Soil Processes and Future Climate Projections, Frontiers in Earth
Science, 4, https://doi.org/10.3389/feart.2016.00081, 2016.

Beer, C., Knoblauch, C., Hoyt, A. M., Hugelius, G., Palmtag, J., Mueller, C. W., and Trumbore, S.: Vertical pattern of organic matter
decomposability in cryoturbated permafrost-affected soils, Environmental Research Letters, 17, 104 023, https://doi.org/10.1088/1748-
9326/ac9198, 2022.

Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology / Un modele
a base physique de zone d’appel variable de 1’hydrologie du bassin versant, Hydrological Sciences Bulletin, 24, 43-69,
https://doi.org/10.1080/02626667909491834, 1979.

Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmiiller, B., Grosse,
G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A.,
Konstantinov, P., Kroger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M.,
Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit,
H.: Permafrost is warming at a global scale, Nature Communications, 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.

Burke, E. J., Ekici, A., Huang, Y., Chadburn, S. E., Huntingford, C., Ciais, P., Friedlingstein, P., Peng, S., and Krinner, G.: Quantifying
uncertainties of permafrost carbon—climate feedbacks, Biogeosciences, 14, 3051-3066, https://doi.org/10.5194/bg-14-3051-2017, 2017.

Canadell, J. G., PM.S. Monteiro, M.H. Costa, L. Cotrim Da Cunha, PM. Cox, A.V. Eliseev, S. Henson, M. Ishii, S. Jaccard, C. Koven, A.
Lohila, P.K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle, and K. Zickfeld: Global Carbon and other Biogeochemical Cycles and
Feedbacks: In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change, 2021.

Chadburn, S. E., Aalto, T., Aurela, M., Baldocchi, D., Biasi, C., Boike, J., Burke, E. J., Comyn-Platt, E., Dolman, A. J., Duran-Rojas, C., Fan,
Y., Friborg, T., Gao, Y., Gedney, N., Gockede, M., Hayman, G. D., Holl, D., Hugelius, G., Kutzbach, L., Lee, H., Lohila, A., Parmentier,
F.-J. W, Sachs, T., Shurpali, N. J., and Westermann, S.: Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of
Wetland Methane Emissions, Global Biogeochemical Cycles, 34, https://doi.org/10.1029/2020GB006678, 2020.

Chandel, A. K., Jiang, L., and Luo, Y.: Microbial Models for Simulating Soil Carbon Dynamics: A Review, Journal of Geophysical Research:
Biogeosciences, 128, https://doi.org/10.1029/20231G007436, 2023.

Chapin, F. S., Sturm, M., Serreze, M. C., McFadden, J. P, Key, J. R., Lloyd, A. H., McGuire, A. D., Rupp, T. S., Lynch, A. H., Schimel, J. P,
Beringer, J., Chapman, W. L., Epstein, H. E., Euskirchen, E. S., Hinzman, L. D., Jia, G., Ping, C.-L., Tape, K. D., Thompson, C. D. C.,
Walker, D. A., and Welker, J. M.: Role of land-surface changes in arctic summer warming, Science (New York, N.Y.), 310, 657-660,
https://doi.org/10.1126/science.1117368, 2005.

Chen, H., Xu, X., Fang, C., Li, B., and Nie, M.: Differences in the temperature dependence of wetland CO2 and CH4 emissions vary with
water table depth, Nature Climate Change, 11, 766—771, https://doi.org/10.1038/s41558-021-01108-4, 2021.

13



390

395

400

405

410

415

420

425

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

Chinta, S., Gao, X., and Zhu, Q.: Machine Learning Driven Sensitivity Analysis of E3SM Land Model Parameters for Wetland Methane
Emissions, Journal of Advances in Modeling Earth Systems, 16, https://doi.org/10.1029/2023MS004115, 2024.

Cho, M.-H., Yang, A.-R., Baek, E.-H., Kang, S. M., Jeong, S.-J., Kim, J. Y., and Kim, B.-M.: Vegetation-cloud feedbacks to future vegetation
changes in the Arctic regions, Climate Dynamics, 50, 3745-3755, https://doi.org/10.1007/s00382-017-3840-5, 2018.

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher,
O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description — Part 2:
Carbon fluxes and vegetation dynamics, Geoscientific Model Development, 4, 701-722, https://doi.org/10.5194/gmd-4-701-2011, 2011.

Comyn-Platt, E., Hayman, G., Huntingford, C., Chadburn, S. E., Burke, E. J., Harper, A. B., Collins, W. J., Webber, C. P., Powell, T., Cox,
P. M., Gedney, N., and Sitch, S.: Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks, Nature
Geoscience, 11, 568-573, https://doi.org/10.1038/s41561-018-0174-9, 2018.

Conrad, R.: Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments,
FEMS Microbiology Ecology, 28, 193-202, https://doi.org/10.1111/j.1574-6941.1999.tb00575.x, 1999.

Conrad, R.: Complexity of temperature dependence in methanogenic microbial environments, Frontiers in microbiology, 14, 1232946,
https://doi.org/10.3389/fmicb.2023.1232946, 2023.

de Vrese, P., Stacke, T., Kleinen, T., and Brovkin, V.: Diverging responses of high-latitude CO<sub>2</sub> and CH<sub>4</sub> emissions
in idealized climate change scenarios, The Cryosphere, 15, 1097-1130, https://doi.org/10.5194/tc-15-1097-2021, 2021.

de Vrese, P., Beckebanze, L., Galera, L. d. A., Holl, D., Kleinen, T., Kutzbach, L., Rehder, Z., and Brovkin, V.: Sensitivity of Arctic CH4 emis-
sions to landscape wetness diminished by atmospheric feedbacks, Nature Climate Change, 13, 832-839, https://doi.org/10.1038/s41558-
023-01715-3, 2023.

Diekert, G. and Wohlfarth, G.: Metabolism of homocetogens, Antonie van Leeuwenhoek, 66, 209-221, https://doi.org/10.1007/BF00871640,
1994.

Dion-Kirschner, H., Nguyen, N. H., Frankenberg, C., and Fischer, W. W.: Evaluating the contribution of methanotrophy kinetics to uncertainty
in the soil methane sink, Environmental Research Letters, 19, 064 059, https://doi.org/10.1088/1748-9326/ad4c7a, 2024.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9, 1937-1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Folberth, G. A., Staniaszek, Z., Archibald, A. T., Gedney, N., Griffiths, P. T., Jones, C. D., O’Connor, F. M., Parker, R. J., Sellar, A. A., and
Wiltshire, A.: Description and Evaluation of an Emission—Driven and Fully Coupled Methane Cycle in UKESM1, Journal of Advances in
Modeling Earth Systems, 14, https://doi.org/10.1029/2021MS002982, 2022.

Forbrich, 1., Yazbeck, T., Sulman, B., Morin, T. H., Tang, A. C. 1., and Bohrer, G.: Three Decades of Wetland Methane Surface Flux
Modeling by Earth System Models—Advances, Applications, and Challenges, Journal of Geophysical Research: Biogeosciences, 129,
https://doi.org/10.1029/2023JG007915, 2024.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P.,
Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora,
V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely,
R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Giirses, 0., Harris, 1., Hefner, M., Houghton, R. A., Hurtt,
G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. L.,
Landschiitzer, P., Lefevre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro,

14



430

435

440

445

450

455

460

465

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

D. R., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. L., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson,
E., Rodenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, 1., Steinhoff, T., Sun, Q., Sutton,
A.J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P,, Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker,
A. P, Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zachle, S., Zeng, J., and Zheng, B.:
Global Carbon Budget 2022, Earth System Science Data, 14, 48114900, https://doi.org/10.5194/essd-14-4811-2022, 2022.

FUMOTO, T., KOBAYASHI, K., LI, C., YAGI, K., and HASEGAWA, T.: Revising a process—based biogeochemistry model (DNDC) to
simulate methane emission from rice paddy fields under various residue management and fertilizer regimes, Global change biology, 14,
382-402, https://doi.org/10.1111/j.1365-2486.2007.01475.x, 2008.

Galera, L. d. A., Eckhardt, T., Beer, C., Pfeiffer, E.-M., and Knoblauch, C.: Ratio of In Situ CO 2 to CH 4 Production and Its Environmental
Controls in Polygonal Tundra Soils of Samoylov Island, Northeastern Siberia, Journal of Geophysical Research: Biogeosciences, 128,
https://doi.org/10.1029/2022JG006956, 2023.

Gasser, T., Kechiar, M., Ciais, P., Burke, E. J., Kleinen, T., Zhu, D., Huang, Y., Ekici, A., and Obersteiner, M.: Path-dependent reductions in
CO2 emission budgets caused by permafrost carbon release, Nature Geoscience, 11, 830—-835, https://doi.org/10.1038/s41561-018-0227-0,
2018.

Grant, R. F.: Simulation of methanogenesis in the mathematical model ecosys, Soil Biology and Biochemistry, 30, 883-896,
https://doi.org/10.1016/S0038-0717(97)00218-6, 1998.

Grant, R. F: Simulation of methanotrophy in the mathematical model ecosys, Soil Biology and Biochemistry, 31, 287-297,
https://doi.org/10.1016/S0038-0717(98)00119-9, 1999.

Guimberteau, M., Zhu, D., Maignan, F., Huang, Y., Yue, C., Dantec-Nédélec, S., Ottlé, C., Jornet-Puig, A., Bastos, A., Laurent, P., Goll,
D., Bowring, S., Chang, J., Guenet, B., Tifafi, M., Peng, S., Krinner, G., Ducharne, A., Wang, F., Wang, T., Wang, X., Wang, Y., Yin, Z.,
Lauerwald, R., Joetzjer, E., Qiu, C., Kim, H., and Ciais, P.. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model
description and validation, Geoscientific Model Development, 11, 121-163, https://doi.org/10.5194/gmd-11-121-2018, 2018.

Hamdi, S., Moyano, E, Sall, S., Bernoux, M., and Chevallier, T.: Synthesis analysis of the temperature sensitivity of soil respira-
tion from laboratory studies in relation to incubation methods and soil conditions, Soil Biology and Biochemistry, 58, 115-126,
https://doi.org/10.1016/j.s0ilbio.2012.11.012, 2013.

Heslop, J. K., Winkel, M., Walter Anthony, K. M., Spencer, R., Podgorski, D. C., Zito, P., Kholodov, A., Zhang, M., and Liebner, S.: Increas-
ing Organic Carbon Biolability With Depth in Yedoma Permafrost: Ramifications for Future Climate Change, Journal of Geophysical
Research: Biogeosciences, 124, 2021-2038, https://doi.org/10.1029/2018JG004712, 2019.

Hobbie, S. E.: Temperature and Plant Species Control Over Litter Decomposition in Alaskan Tundra, Ecological Monographs, 66, 503-522,
https://doi.org/10.2307/2963492, 1996.

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven,
C.D.,O’Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost
carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573—6593, https://doi.org/10.5194/bg-11-6573-
2014, 2014.

Inglett, K. S., Inglett, P. W., Reddy, K. R., and Osborne, T. Z.: Temperature sensitivity of greenhouse gas production in wetland soils of
different vegetation, Biogeochemistry, 108, 77-90, https://doi.org/10.1007/s10533-011-9573-3, 2012.

IPCC: Climate change 2021: The physical science basis : Working Group I contribution to the Sixth Assessment Report of the Intergovern-

mental Panel on Climate Change, 2021.

15



470

475

480

485

490

495

500

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

Ito, A., Li, T., Qin, Z., Melton, J. R., Tian, H., Kleinen, T., Zhang, W., Zhang, Z., Joos, F., Ciais, P., Hopcroft, P. O., Beerling, D. J., Liu, X.,
Zhuang, Q., Zhu, Q., Peng, C., Chang, K.-Y., Fluet-Chouinard, E., McNicol, G., Patra, P., Poulter, B., Sitch, S., and Riley, W.: Cold—Season
Methane Fluxes Simulated by GCP-CH 4 Models, Geophysical Research Letters, 50, https://doi.org/10.1029/2023GL103037, 2023.

Kaiser, S., Gockede, M., Castro-Morales, K., Knoblauch, C., Ekici, A., Kleinen, T., Zubrzycki, S., Sachs, T., Wille, C., and Beer, C.: Process-
based modelling of the methane balance in periglacial landscapes (JSBACH-methane), Geoscientific Model Development, 10, 333-358,
https://doi.org/10.5194/gmd-10-333-2017, 2017.

Kettunen, A.: Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: A modeling study, Global
Biogeochemical Cycles, 17, https://doi.org/10.1029/2002GB001958, 2003.

Khvorostyanov, D. V., Ciais, P., Krinner, G., Zimov, S. A., Corradi, C., and Guggenberger, G.: Vulnerability of permafrost carbon to global
warming. Part II: sensitivity of permafrost carbon stock to global warming, Tellus B: Chemical and Physical Meteorology, 60, 265,
https://doi.org/10.1111/.1600-0889.2007.00336.x, 2008a.

Khvorostyanov, D. V., Krinner, G., Ciais, P., Heimann, M., and Zimov, S. A.: Vulnerability of permafrost carbon to global warming. Part I:
model description and role of heat generated by organic matter decomposition, Tellus B: Chemical and Physical Meteorology, 60, 250,
https://doi.org/10.1111/.1600-0889.2007.00333.x, 2008b.

Kirschbaum, M. U.: The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C
storage, Soil Biology and Biochemistry, 27, 753-760, https://doi.org/10.1016/0038-0717(94)00242-S, 1995.

Kleinen, T., Mikolajewicz, U., and Brovkin, V.: Terrestrial methane emissions from the Last Glacial Maximum to the preindustrial period,
Climate of the Past, 16, 575-595, https://doi.org/10.5194/cp-16-575-2020, 2020.

Kleinen, T., Gromov, S., Steil, B., and Brovkin, V.: Erratum: Atmospheric methane underestimated in future climate projections (2021
Environ. Res. Lett. 16 094006), Environmental Research Letters, 16, 119 502, https://doi.org/10.1088/1748-9326/ac2f66, 2021.

Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L., and Pfeiffer, E.-M.: Regulation of methane production, oxidation, and emission by
vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra, Journal of Geophysical Research: Biogeosciences,
120, 2525-2541, https://doi.org/10.1002/2015JG003053, 2015.

Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N., and Pfeiffer, E.-M.: Methane production as key to the greenhouse gas budget of
thawing permafrost, Nature Climate Change, 8, 309-312, https://doi.org/10.1038/s41558-018-0095-z, 2018.

Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-
climate feedbacks accelerate global warming, Proceedings of the National Academy of Sciences of the United States of America, 108,
14769-14 774, https://doi.org/10.1073/pnas.1103910108, 2011.

LeeWays, C., McCullough, L. L., Hopple, A. M., Keller, J. K., and Bridgham, S. D.: Homoacetogenesis competes with hydrogenotrophic
methanogenesis for substrates in a peatland experiencing ecosystem warming, Soil Biology and Biochemistry, 172, 108759,
https://doi.org/10.1016/j.s0ilbi0.2022.108759, 2022.

Li, J., Pei, J., Fang, C., Li, B., and Nie, M.: Opposing seasonal temperature dependencies of CO2 and CH4 emissions from wetlands, Global
change biology, 29, 1133-1143, https://doi.org/10.1111/gcb.16528, 2023.

Liu, Y., Conrad, R., Yao, T., Gleixner, G., and Claus, P.: Change of methane production pathway with sediment depth in a lake on the Tibetan
plateau, Palacogeography, Palacoclimatology, Palaecoecology, 474, 279-286, https://doi.org/10.1016/j.palae0.2016.06.021, 2017.

Lovley, D. R.: Dissimilatory Fe(IlI) and Mn(IV) reduction, Microbiological reviews, 55, 259-287, https://doi.org/10.1128/mr.55.2.259-
287.1991, 1991.

16



505

510

515

520

525

530

535

540

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Lupascu, M., Wadham, J. L., Hornibrook, E. R. C., and Pancost, R. D.: Temperature Sensitivity of Methane Production in the Permafrost
Active Layer at Stordalen, Sweden: A Comparison with Non-permafrost Northern Wetlands, Arctic, Antarctic, and Alpine Research, 44,
469-482, https://doi.org/10.1657/1938-4246-44.4.469, 2012.

Ma, S, Jiang, J., Huang, Y., Shi, Z., Wilson, R. M., Ricciuto, D., Sebestyen, S. D., Hanson, P. J., and Luo, Y.: Data—Constrained Projections
of Methane Fluxes in a Northern Minnesota Peatland in Response to Elevated CO 2 and Warming, Journal of Geophysical Research:
Biogeosciences, 122, 2841-2861, https://doi.org/10.1002/2017JG003932, 2017.

Ma, S., Worden, J. R., Bloom, A. A., Zhang, Y., Poulter, B., Cusworth, D. H., Yin, Y., Pandey, S., Maasakkers, J. D., Lu, X., Shen, L., Sheng,
J., Frankenberg, C., Miller, C. E., and Jacob, D. J.: Satellite Constraints on the Latitudinal Distribution and Temperature Sensitivity of
Wetland Methane Emissions, AGU Advances, 2, https://doi.org/10.1029/2021 AV000408, 2021.

Masyagina, O. V. and Menyailo, O. V.: The impact of permafrost on carbon dioxide and methane fluxes in Siberia: A meta-analysis, Envi-
ronmental research, 182, 109 096, https://doi.org/10.1016/j.envres.2019.109096, 2020.

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, 1., Fiedler,
S., Flaschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns,
T., Jimenéz-de-la Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L.,
Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Mobis, B., Miiller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz,
D., Nyawira, S.-S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick,
C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., von
Storch, J.-S., Tian, F,, Voigt, A., Vrese, P., Wieners, K.-H., Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M
Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2, Journal of Advances in Modeling Earth Systems,
11, 998-1038, https://doi.org/10.1029/2018MS001400, 2019.

McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., Jafarov, E., MacDougall, A. H., Marchenko, S., Nicol-
sky, D., Peng, S., Rinke, A., Ciais, P.,, Gouttevin, 1., Hayes, D. J., Ji, D., Krinner, G., Moore, J. C., Romanovsky, V., Schidel, C.,
Schaefer, K., Schuur, E. A. G., and Zhuang, Q.: Dependence of the evolution of carbon dynamics in the northern permafrost region
on the trajectory of climate change, Proceedings of the National Academy of Sciences of the United States of America, 115, 3882-3887,
https://doi.org/10.1073/pnas.1719903115, 2018.

McNorton, J., Gloor, E., Wilson, C., Hayman, G. D., Gedney, N., Comyn-Platt, E., Marthews, T., Parker, R. J., Boesch, H., and
Chipperfield, M. P.: Role of regional wetland emissions in atmospheric methane variability, Geophysical Research Letters, 43,
https://doi.org/10.1002/2016GL0O70649, 2016.

Miner, K. R., Turetsky, M. R., Malina, E., Bartsch, A., Tamminen, J., McGuire, A. D., Fix, A., Sweeney, C., Elder, C. D., and Miller, C. E.:
Permafrost carbon emissions in a changing Arctic, Nature Reviews Earth & Environment, 3, 55-67, https://doi.org/10.1038/s43017-021-
00230-3, 2022.

Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A., Harden, J. W., Jastrow, J. D., Ping, C.-L., Riley, W. J., Schuur, E.
A. G., Matamala, R., Siewert, M., Nave, L. E., Koven, C. D., Fuchs, M., Palmtag, J., Kuhry, P., Treat, C. C., Zubrzycki, S., Hoffman,
F. M., Elberling, B., Camill, P.,, Veremeeva, A., and Orr, A.: Spatial heterogeneity and environmental predictors of permafrost region soil
organic carbon stocks, Science advances, 7, https://doi.org/10.1126/sciadv.aaz5236, 2021.

Morel, X., Decharme, B., Delire, C., Krinner, G., Lund, M., Hansen, B. U., and Mastepanov, M.: A New Process—Based Soil Methane
Scheme: Evaluation Over Arctic Field Sites With the ISBA Land Surface Model, Journal of Advances in Modeling Earth Systems, 11,
293-326, https://doi.org/10.1029/2018MS001329, 2019.

17



545

550

555

560

565

570

575

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

Mozafari, B., Bruen, M., Donohue, S., Renou-Wilson, E., and O’Loughlin, F.: Peatland dynamics: A review of process-based models and
approaches, The Science of the total environment, 877, 162 890, https://doi.org/10.1016/j.scitotenv.2023.162890, 2023.

Murguia-Flores, F., Arndt, S., Ganesan, A. L., Murray-Tortarolo, G., and Hornibrook, E. R. C.: Soil Methanotrophy Model (MeMo v1.0):
a process-based model to quantify global uptake of atmospheric methane by soil, Geoscientific Model Development, 11, 2009-2032,
https://doi.org/10.5194/gmd-11-2009-2018, 2018.

Mpyhre, G., Highwood, E. J., Shine, K. P., and Stordal, F.: New estimates of radiative forcing due to well mixed greenhouse gases, Geophysical
Research Letters, 25, 2715-2718, https://doi.org/10.1029/98GL01908, 1998.

Nitzbon, J., Schneider von Deimling, T., Aliyeva, M., Chadburn, S. E., Grosse, G., Laboor, S., Lee, H., Lohmann, G., Steinert, N. J., Stuenzi,
S. M., Werner, M., Westermann, S., and Langer, M.: No respite from permafrost-thaw impacts in the absence of a global tipping point,
Nature Climate Change, https://doi.org/10.1038/s41558-024-02011-4, 2024.

Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface Processes for Meteorological Models, Monthly Weather Review,
117, 536-549, https://doi.org/10.1175/1520-0493(1989)117%3C0536: ASPOLS %3E2.0.CO;2, 1989.

Philben, M., Zhang, L., Yang, Z., Tas, N., Wullschleger, S. D., Graham, D. E., and Gu, B.: Anaerobic respiration pathways and
response to increased substrate availability of Arctic wetland soils, Environmental science. Processes & impacts, 22, 2070-2083,
https://doi.org/10.1039/d0em00124d, 2020.

Qiu, C., Zhu, D, Ciais, P., Guenet, B., Peng, S., Krinner, G., Tootchi, A., Ducharne, A., and Hastie, A.: Modelling northern peatland area and
carbon dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN r5488), Geoscientific Model Development,
12, 2961-2982, https://doi.org/10.5194/gmd-12-2961-2019, 2019.

Reichstein, M. and Beer, C.: Soil respiration across scales: The importance of a model-data integration framework for data interpretation,
Journal of Plant Nutrition and Soil Science, 171, 344-354, https://doi.org/10.1002/jpIn.200700075, 2008.

Ricciuto, D. M., Xu, X., Shi, X., Wang, Y., Song, X., Schadt, C. W., Griffiths, N. A., Mao, J., Warren, J. M., Thornton, P. E., Chanton, J.,
Keller, J. K., Bridgham, S. D., Gutknecht, J., Sebestyen, S. D., Finzi, A., Kolka, R., and Hanson, P. J.: An Integrative Model for Soil
Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis, Journal of Geophysical Research: Biogeosciences,
126, https://doi.org/10.1029/2019JG005468, 2021.

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., and Hess, P.: Barriers to pre-
dicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM,
Biogeosciences, 8, 1925-1953, https://doi.org/10.5194/bg-8-1925-2011, 2011.

Roy Chowdhury, T., Herndon, E. M., Phelps, T. J., Elias, D. A., Gu, B., Liang, L., Wullschleger, S. D., and Graham, D. E.: Stoichiometry
and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska, Global change
biology, 21, 722—737, https://doi.org/10.1111/gcb.12762, 2015.

Sabrekov, A. E, Glagolev, M. V., Alekseychik, P. K., Smolentsev, B. A., Terentieva, I. E., Krivenok, L. A., and Maksyutov, S. S.: A
process-based model of methane consumption by upland soils, Environmental Research Letters, 11, 075 001, https://doi.org/10.1088/1748-
9326/11/7/075001, 2016.

Salmon, E., Jégou, F., Guenet, B., Jourdain, L., Qiu, C., Bastrikov, V., Guimbaud, C., Zhu, D., Ciais, P., Peylin, P., Gogo, S., Laggoun-
Défarge, F., Aurela, M., Bret-Harte, M. S., Chen, J., Chojnicki, B. H., Chu, H., Edgar, C. W., Euskirchen, E. S., Flanagan, L. B., Fortuniak,
K., Holl, D., Klatt, J., Kolle, O., Kowalska, N., Kutzbach, L., Lohila, A., Merbold, L., Pawlak, W., Sachs, T., and Ziemblinska, K.:
Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020, Geoscientific Model Development, 15, 2813—
2838, https://doi.org/10.5194/gmd-15-2813-2022, 2022.

18



580

585

590

595

600

605

610

615

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S.,
Patra, P. K., Ciais, P.,, Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol,
M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin,
M. I, Hoglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel,
P. B, Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton,
J. R., Morino, 1., Miiller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’'Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P.,
Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, 1. J., Shi, H., Smith, S. J., Steele, L. P.,
Thornton, B. F,, Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf,
G. R., Weiss, R. F.,, Worthy, D., Wunch, D, Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang,
Q.: The Global Methane Budget 2000-2017, Earth System Science Data, 12, 1561-1623, https://doi.org/10.5194/essd-12-1561-2020,
2020.

Schidel, C., Bader, M. K.-F., Schuur, E. A. G., Biasi, C., Bracho, R., éapek, P, de Baets, S., Didkovd, K., Ernakovich, J., Estop-Aragones,
C., Graham, D. E., Hartley, 1. P.,, Iversen, C. M., Kane, E., Knoblauch, C., Lupascu, M., Martikainen, P. J., Natali, S. M., Norby, R. J.,
O’Donnell, J. A., Chowdhury, T. R., Santri¢kovd, H., Shaver, G., Sloan, V. L., Treat, C. C., Turetsky, M. R., Waldrop, M. P., and Wick-
land, K. P.: Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils, Nature Climate Change, 6, 950-953,
https://doi.org/10.1038/nclimate3054, 2016.

Schidel, C., Rogers, B. M., Lawrence, D. M., Koven, C. D., Brovkin, V., Burke, E. J., Genet, H., Huntzinger, D. N., Jafarov, E., McGuire,
A. D., Riley, W. J., and Natali, S. M.: Earth system models must include permafrost carbon processes, Nature Climate Change, 14,
114-116, https://doi.org/10.1038/541558-023-01909-9, 2024.

Schuur, E. A., Abbott, B. W., Commane, R., Ernakovich, J., Euskirchen, E., Hugelius, G., Grosse, G., Jones, M., Koven, C., Leshyk, V.,
Lawrence, D., Loranty, M. M., Mauritz, M., Olefeldt, D., Natali, S., Rodenhizer, H., Salmon, V., Schidel, C., Strauss, J., Treat, C., and
Turetsky, M.: Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic, Annual Review of Environment and
Resources, 47, 343-371, https://doi.org/10.1146/annurev-environ-012220-011847, 2022.

Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C. B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee,
H., Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N., Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov,
S. A.: Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle, BioScience, 58, 701-714,
https://doi.org/10.1641/B580807, 2008.

Schuur, E. A. G., McGuire, A. D., Schidel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence,
D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Climate change and the
permafrost carbon feedback, Nature, 520, 171-179, https://doi.org/10.1038/nature 14338, 2015.

Sellar, A. A., Jones, C. G., Mulcahy, J. P, Tang, Y., Yool, A., Wiltshire, A., O’Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward,
S., de Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. 1., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L., Andrews, M. B.,
Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J., Folberth, G. A., Gedney, N.,
Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern,
O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zerroukat, M.:
UKESM1: Description and Evaluation of the U.K. Earth System Model, Journal of Advances in Modeling Earth Systems, 11, 4513-4558,
https://doi.org/10.1029/2019MS001739, 2019.

19



620

625

630

635

640

645

650

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Song, C., Luan, J., Xu, X., Ma, M., Aurela, M., Lohila, A., Mammarella, ., Alekseychik, P., Tuittila, E.-S., Gong, W., Chen, X., Meng, X.,
and Yuan, W.: A Microbial Functional Group—Based CH 4 Model Integrated Into a Terrestrial Ecosystem Model: Model Structure, Site—
Level Evaluation, and Sensitivity Analysis, Journal of Advances in Modeling Earth Systems, 12, https://doi.org/10.1029/2019MS001867,
2020.

Song, Y., Chen, L., Kang, L., Yang, G., Qin, S., Zhang, Q., Mao, C., Kou, D., Fang, K., Feng, X., and Yang, Y.: Methanogenic Community,
CH4 Production Potential and Its Determinants in the Active Layer and Permafrost Deposits on the Tibetan Plateau, Environmental science
& technology, https://doi.org/10.1021/acs.est.0c07267, 2021.

Stimmler, P, Goeckede, M., Elberling, B., Natali, S., Kuhry, P, Perron, N., Lacroix, F., Hugelius, G., Sonnentag, O., Strauss, J., Min-
ions, C., Sommer, M., and Schaller, J.: Pan-Arctic soil element bioavailability estimations, Earth System Science Data, 15, 1059-1075,
https://doi.org/10.5194/essd-15-1059-2023, 2023.

Su, R., Wu, X., Hu, J., Li, H., Xiao, H., Zhao, J., and Hu, R.: Carbon availability and microbial activity manipulate the temperature sensitivity
of anaerobic degradation in a paddy soil profile, Environmental research, 252, 118453, https://doi.org/10.1016/j.envres.2024.118453,
2024.

Suleymanov, A., Abakumov, E., Alekseev, 1., and Nizamutdinov, T.: Digital mapping of soil properties in the high latitudes of Russia using
sparse data, Geoderma Regional, 36, 00 776, https://doi.org/10.1016/j.geodrs.2024.e00776, 2024.

Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., Sridhar, B., Hartman, M. D., Wang, G., Wieder, W. R,
Bradford, M. A., Luo, Y., Mayes, M. A., Morrison, E., Riley, W. ], Salazar, A., Schimel, J. P, Tang, J., and Classen, A. T.: Multiple models
and experiments underscore large uncertainty in soil carbon dynamics, Biogeochemistry, 141, 109-123, https://doi.org/10.1007/s10533-
018-0509-z, 2018.

Sulman, B. N., Yuan, F., O’Meara, T., Gu, B., Herndon, E. M., Zheng, J., Thornton, P. E., and Graham, D. E.: Simulated Hydrological Dy-
namics and Coupled Iron Redox Cycling Impact Methane Production in an Arctic Soil, Journal of Geophysical Research: Biogeosciences,
127, https://doi.org/10.1029/2021JG006662, 2022.

Sulman, B. N., Wang, J., LaFond-Hudson, S., O’Meara, T. A., Yuan, F., Molins, S., Hammond, G., Forbrich, I., Cardon, Z. G., and Giblin,
A.: Integrating Tide—Driven Wetland Soil Redox and Biogeochemical Interactions Into a Land Surface Model, Journal of Advances in
Modeling Earth Systems, 16, https://doi.org/10.1029/2023MS004002, 2024.

Swann, A. L., Fung, 1. Y., Levis, S., Bonan, G. B., and Doney, S. C.: Changes in Arctic vegetation amplify high-latitude warming
through the greenhouse effect, Proceedings of the National Academy of Sciences of the United States of America, 107, 1295-1300,
https://doi.org/10.1073/pnas.0913846107, 2010.

Tang, G., Zheng, J.,, Xu, X., Yang, Z., Graham, D. E., Gu, B., Painter, S. L., and Thornton, P. E.: Biogeochemical model-
ing of CO<sub>2</sub> and CH<sub>4</sub> production in anoxic Arctic soil microcosms, Biogeosciences, 13, 5021-5041,
https://doi.org/10.5194/bg-13-5021-2016, 2016.

Tang, J., Zhuang, Q., Shannon, R. D., and White, J. R.: Quantifying wetland methane emissions with process-based models of different
complexities, Biogeosciences, 7, 3817-3837, https://doi.org/10.5194/bg-7-3817-2010, 2010.

Treat, C. C., Natali, S. M., Ernakovich, J., Iversen, C. M., Lupascu, M., McGuire, A. D., Norby, R. J., Roy Chowdhury, T., Richter, A.,
Santrickova, H., Schidel, C., Schuur, E. A. G., Sloan, V. L., Turetsky, M. R., and Waldrop, M. P.: A pan-Arctic synthesis of CH4 and
CO2 production from anoxic soil incubations, Global change biology, 21, 2787-2803, https://doi.org/10.1111/gcb.12875, 2015.

20



655

660

665

670

675

680

685

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C.,
Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release through abrupt permafrost thaw, Nature Geoscience,
13, 138-143, https://doi.org/10.1038/s41561-019-0526-0, 2020.

van Bodegom, P. M. and Scholten, J. C.: Microbial processes of CH4 production in a rice paddy soil: model and experimental validation,
Geochimica et Cosmochimica Acta, 65, 2055-2066, https://doi.org/10.1016/S0016-7037(01)00563-4, 2001.

van Huissteden, J.: THAWING PERMAFROST: Permafrost carbon in a warming arctic, Springer, [S.1.], ISBN 9783030313814, 2021.

Voigt, C., Virkkala, A.-M., Hould Gosselin, G., Bennett, K. A., Black, T. A., Detto, M., Chevrier-Dion, C., Guggenberger, G., Hashmi,
W., Kohl, L., Kou, D., Marquis, C., Marsh, P., Marushchak, M. E., Nesic, Z., Nykénen, H., Saarela, T., Sauheitl, L., Walker, B., Weiss,
N., Wilcox, E. J., and Sonnentag, O.: Arctic soil methane sink increases with drier conditions and higher ecosystem respiration, Nature
Climate Change, 13, 1095-1104, https://doi.org/10.1038/s41558-023-01785-3, 2023.

Walter, B. P. and Heimann, M.: A process—based, climate—sensitive model to derive methane emissions from natural wetlands:
Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochemical Cycles, 14, 745-765,
https://doi.org/10.1029/1999GB001204, 2000.

Wania, R., Ross, 1., and Prentice, . C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model:
LPJ-WHyMe v1.3.1, Geoscientific Model Development, 3, 565-584, https://doi.org/10.5194/gmd-3-565-2010, 2010.

Wu, Q., Ye, R, Bridgham, S. D., and Jin, Q.: Limitations of the Q10 Coefficient for Quantifying Temperature Sensitivity of
Anaerobic Organic Matter Decomposition: A Modeling Based Assessment, Journal of Geophysical Research: Biogeosciences, 126,
https://doi.org/10.1029/2021JG006264, 2021.

Xu, X., Elias, D. A., Graham, D. E., Phelps, T. J., Carroll, S. L., Wullschleger, S. D., and Thornton, P. E.: A microbial functional group-
based module for simulating methane production and consumption: Application to an incubated permafrost soil, Journal of Geophysical
Research: Biogeosciences, 120, 1315-1333, https://doi.org/10.1002/2015JG002935, 2015.

Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E., Riley, W. J., Song, X., Graham, D. E., Song, C., and Tian,
H.: Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems, Biogeosciences, 13, 3735-3755,
https://doi.org/10.5194/bg-13-3735-2016, 2016.

Yang, W. H., McNicol, G., Teh, Y. A., Estera-Molina, K., Wood, T. E., and Silver, W. L.: Evaluating the Classical Versus an Emerging Con-
ceptual Model of Peatland Methane Dynamics, Global Biogeochemical Cycles, 31, 1435-1453, https://doi.org/10.1002/2017GB005622,
2017.

Yang, Z., Wullschleger, S. D., Liang, L., Graham, D. E., and Gu, B.: Effects of warming on the degradation and produc-
tion of low-molecular-weight labile organic carbon in an Arctic tundra soil, Soil Biology and Biochemistry, 95, 202-211,
https://doi.org/10.1016/j.s0ilbio.2015.12.022, 2016.

Yazbeck, T., Bohrer, G., Scyphers, M. E., Missik, J. E. C., Shchehlov, O., Ward, E. J., Merino, S. L., Bordelon, R., Taj, D., Villa, J. A,,
Wrighton, K., Zhu, Q., and Riley, W. J.: ELM—Wet: Inclusion of a Wet-Landunit With Sub—Grid Representation of Eco—Hydrological
Patches and Hydrological Forcing Improves Methane Emission Estimations in the E3SM Land Model (ELM), Journal of Advances in
Modeling Earth Systems, 17, https://doi.org/10.1029/2024MS004396, 2025.

Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., and del Giorgio,
P. A.: Methane fluxes show consistent temperature dependence across microbial to ecosystem scales, Nature, 507, 488-491,

https://doi.org/10.1038/nature 13164, 2014.

21



690

695

https://doi.org/10.5194/egusphere-2025-3159
Preprint. Discussion started: 18 July 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Zechlau, S., Schlund, M., Cox, P. M., Friedlingstein, P., and Eyring, V.: Do Emergent Constraints on Carbon Cycle Feedbacks Hold in
CMIP6?, Journal of Geophysical Research: Biogeosciences, 127, https://doi.org/10.1029/2022JG006985, 2022.

Zheng, J., Thornton, P. E., Painter, S. L., Gu, B., Wullschleger, S. D., and Graham, D. E.: Modeling anaerobic soil organic carbon de-
composition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization, Biogeosciences, 16, 663-680,
https://doi.org/10.5194/bg-16-663-2019, 2019.

Zhu, Q., Liu, J., Peng, C., Chen, H., Fang, X., Jiang, H., Yang, G., Zhu, D., Wang, W., and Zhou, X.: Modelling methane emissions
from natural wetlands by development and application of the TRIPLEX-GHG model, Geoscientific Model Development, 7, 981-999,
https://doi.org/10.5194/gmd-7-981-2014, 2014.

22



