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Abstract. Thawing permafrost in the Arctic threatens to potentially release large amounts of decomposed organic matter as

CO2 or CH4 to the atmosphere. Predicting the ratio of emitted CO2 to CH4 is imperative for reliable future projections. Here,

we review the recent literature concerning methanogenesis, and its current representation in both land surface models (LSMs)

and the state-of-the-art process-based methane models. We found that the key processes, required to capture the dynamics of the

CO2:CH4 production ratio, are: fermentation, hydrogenotrophic methanogenesis, and acetoclastic methanogenesis. Commonly5

discussed linked processes are Fe(III)-reduction and homoacetogenesis. Environmental factors influencing these processes,

as identified in the literature, are: temperature, pH, water table position and alternative electron acceptors. While modern

process-based methane models account for most of these factors and processes, the same is not true for the simplified methane

formulations in many LSMs, which often opt for pre-set parameters that define a constant share of methane production from

anaerobic decomposition. This static approach stands in opposition to the growing amount of lab and in-situ data, which10

suggest a high degree of spatio-temporal variability concerning this ratio, thus preventing its accurate prediction in a changing

future Arctic. The challenge lies in upscaling the data as the environmental factors are barely quantified at the pan-Arctic scale.

Additionally, there remains the important challenge of how to model and parameterize the temperature dependence of the

individual underlying processes. Going forward, these challenges need to be overcome in order to reliably project the CO2:CH4

production ratio and methane emissions on larger scales. This will require a more process-based approach of methanogenesis15

in LSMs, for which we suggest a baseline concept here.

1 Introduction

Permafrost-affected soils are a significant global carbon pool, storing more carbon than there currently is in the atmosphere

(Hugelius et al., 2014; Mishra et al., 2021; Friedlingstein et al., 2022). This permafrost is already beginning to thaw (Biskaborn

et al., 2019) and large-scale future losses are projected (McGuire et al., 2018) due to climate change and the increased warming20

that is expected to occur in the Arctic (IPCC, 2021). Thawing permafrost enables the microbial decomposition of the large
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amounts of carbon stored across the Arctic, potentially releasing considerable amounts of carbon to the atmosphere, thus

creating a self-reinforcing carbon-climate feedback (Beer, 2008; Schuur et al., 2015, 2022).

Of particular interest is the form in which the carbon will be released to the atmosphere, namely as either CO2 or CH4,

due to the strong difference in climate forcing between the two gases, with methane being the much more potent one (Myhre25

et al., 1998). Methane has contributed 11% to the total radiative forcing since 1960, despite its relatively low concentration in

the atmosphere (Canadell et al., 2021). Furthermore, methane emissions have increased nearly 2-fold in the last two centuries

(Canadell et al., 2021) and continue to grow persistently (Saunois et al., 2020), thus garnering much research interest (IPCC,

2021; Canadell et al., 2021; Saunois et al., 2020; Xu et al., 2016; Chandel et al., 2023). The majority of emissions are expected

to occur as CO2 (Miner et al., 2022; Schädel et al., 2016) but recent studies also highlight the importance of CH4 emissions30

from a thawing Arctic (Knoblauch et al., 2018; Kleinen et al., 2021; Turetsky et al., 2020). This stresses the need for a more

accurately constrained future methane budget, which presently remains uncertain (Ito et al., 2023). Methane production is tied

to anoxic conditions in the soil, which usually occur when the soil becomes waterlogged (van Huissteden, 2021). Since the

future hydrology of the Arctic remains uncertain (Andresen et al., 2020; de Vrese et al., 2023), so does the extent and timing

of Arctic methane emissions (Canadell et al., 2021). This is also the reason for the relative scarcity of model studies on the35

topic that involve Earth System Models (ESMs) (de Vrese et al., 2021). In fact, many ESMs do not explicitly model CH4

emissions at all (Schuur et al., 2022). Those who do, often represent methane production in a highly simplified way, frequently

via a certain CO2:CH4 production ratio factor (Kleinen et al., 2020; Gasser et al., 2018; Riley et al., 2011). This is despite the

fact that this ratio has been shown to be highly variable in both laboratory (Knoblauch et al., 2018; Heslop et al., 2019) and

in situ studies (Galera et al., 2023). Knoblauch et al. (2018) showed in their long-term incubation study, that methanogenic40

communities in permafrost soils need time to establish themselves, resulting in a lag time of multiple years before eventually

a CO2:CH4 ratio of 0.92±0.18 was reached (Knoblauch et al., 2018). Heslop et al. (2019) reported C-CO2:C-CH4 production

ratios between 13-134, depending on soil depth, from their incubations. Galera et al. (2023) estimated in situ median CO2:CH4

emission ratios of 12 and 373, depending on the tundra type of polygonal tundra soils, though their values were affected by

methanotrophy and, therefore, the actual production ratios are likely smaller (Galera et al., 2023). Another important factor,45

besides hydrology and soil properties, is vegetation. Due to the CO2 fertilization effect, the plant productivity will potentially

increase, providing additional substrate for the methanogens (Kettunen, 2003). This aspect will especially be important in the

Arctic, where large-scale vegetation changes can be expected upon warming (Swann et al., 2010; Chapin et al., 2005; Cho

et al., 2018).

The methane emission calculation does not stop at the methane production, however. For the methane to reach the atmosphere50

it needs to be first transported from its production point, through the soil column, to the surface. On its way to the surface, the

methane can be oxidized by methanotrophic microbes in oxic soil layers, which affects the CO2:CH4 ratio at the surface (Wania

et al., 2010). There exist three important transport mechanisms: diffusion, ebullition, and plant-mediated transport (Walter

and Heimann, 2000; Wania et al., 2010; Kaiser et al., 2017). Their relative share is important with regards to the potential

methane oxidation, since plant-mediated transport, e.g., can enable methane to bypass the oxidative soil layers (Knoblauch55

et al., 2015). Diffusion describes the methane transport along a concentration gradient and is the slowest way of transport,
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thus facilitating methane oxidation (Knoblauch et al., 2015). Ebullition is a rather fast process, describing the rise of methane

gas bubbles through water (Knoblauch et al., 2015). Lastly, plant-mediated transport happens largely through vascular plants,

which possess so called aerenchyma, a type of aerated tissue responsible for supplying O2 to the roots (Wania et al., 2010;

Knoblauch et al., 2015). That tissue enables methane and CO2 to be transported through the plant to the atmosphere (Wania60

et al., 2010). This connection between methane release and plants further hints at the fact that, aside from hydrological changes,

future methane emissions are also influenced by vegetation changes (Kettunen, 2003). Many models account for these three

transport ways, including large-scale land surface models (Kaiser et al., 2017; Wania et al., 2010; Riley et al., 2011; Chinta

et al., 2024). In fact, Xu et al. (2016) found that the majority of methane models in their meta-study represented these three

pathways already, albeit to varying degrees of complexity. Considering all this, it is worth looking into the recent developments65

concerning methane modeling. In this study we will focus on the methanogenesis aspect in particular, since other methane-

related processes, e.g., methane transport, have already been implemented into models in more detail over the years (Wania

et al., 2010; Kaiser et al., 2017; Xu et al., 2016). It is also worth noting that we focus on terrestrial emissions in this study.

Other methane sources, e.g., wildfires, lakes, and marine and geological sources, also make up a significant part of the Arctic

methane budget, potentially contributing over 30% to it (Parmentier et al., 2024). We will first recap the crucial processes and70

environmental factors that have been identified to govern methanogenesis and the CO2:CH4 ratio in the literature. We will

then examine how methanogenesis is currently modeled in land surface models and state-of-the-art process-based methane

models, and discuss efforts to bridge the divide between laboratory-scale and global-scale approaches. This will lead to a clear

recommendation of a model structure for a methanogenesis module inside a land-surface model that can predict, process-based,

the CO2:CH4 production ratio.75

2 The complexity of methanogenesis

One of the most challenging aspects of studying and modeling CH4 production in soils is its high degree of complexity,

encompassing various different processes, which are, in turn, affected by a multitude of environmental factors ((Xu et al.,

2015, 2016; van Bodegom and Scholten, 2001; Grant, 1998; Song et al., 2020; Sulman et al., 2022)). Methanogenesis is

not one simple straight-forward process but rather an entanglement of various interacting microbial processes in the soil (Xu80

et al., 2015). The two main methanogenesis pathways are hydrogenotrophic and acetoclastic methanogenesis, during which

hydrogen or acetate are being used as substrate by the microbes respectively, and methane is produced (Conrad, 1999). A review

performed by Xu et al. (2016) found that out of the 40 investigated models only 3 represented these two major pathways. This is

significant because the two processes yield different products: acetoclastic methanogenesis results in CO2 and CH4 production,

while hydrogenotrophic methanogenesis only produces CH4 (Conrad, 1999). Furthermore, the contribution from each process85

to total methanogenesis varies strongly between different environments (Conrad, 1999), soil depth (Liu et al., 2017), and active

layer vs. permafrost layers (Song et al., 2021), among others. Considering this, the need to distinctly represent these processes

in models becomes evident if a realistic portrayal of the CO2:CH4 production ratio wants to be achieved.
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The most important environmental factors that influence methanogenesis are temperature (Yvon-Durocher et al., 2014), soil

pH (Sulman et al., 2022), water table depth (Chen et al., 2021), and soil biogeochemical conditions (Philben et al., 2020). Espe-90

cially temperature has a profound effect on not only microbial decomposition processes in general (Kirschbaum, 1995; Hobbie,

1996), but also on the CO2:CH4 ratio in particular (Yvon-Durocher et al., 2014; Roy Chowdhury et al., 2015). This is due to

the different temperature sensitivities of the processes involved (Yvon-Durocher et al., 2014), though generally both CH4 and

CO2 production experience an increase with rising temperature (Treat et al., 2015; Schädel et al., 2016). Yvon-Durocher et al.

(2014) showed in their meta-analysis that methanogenesis as a whole exhibits a higher average temperature dependence than95

general respiration (0.98 eV vs. 0.65 eV; measured as activation energy). In fact, such differences in temperature dependence

persist even down to the finest scale, with temperature determining enzyme kinetics and thermodynamics of the individual

methanogenesis sub-processes (Conrad, 2023). Temperature-induced microbial community changes may lead to changes in

the dominant methanogenesis pathway, moving from acetoclastic to hydrogenotrophic with increasing temperatures, thus af-

fecting the CO2:CH4 ratio (Conrad, 2023).100

Naturally, this level of complexity can hardly be represented in global models. In methane modeling, there exist two common

ways of representing the effect of temperature (Chandel et al., 2023): the Q10 value and the Arrhenius-type functions (Chandel

et al., 2023).

f(T ) =Q
(T−Tref )

10
10 (1)

105

f(T ) = exp(
∆E

R
[
1

T0
− 1

T
]) (2)

In the Arrhenius equation, ∆E is the activation energy, R is the universal gas constant, and T0 is the reference temperature

(Xu et al., 2016). The Q10 parameter expresses the factor by which the reaction rate increases upon a 10 °C change in tem-

perature (Reichstein and Beer, 2008) and it is ubiquitously used to express temperature dependency across models (Xu et al.,

2016). Although, for microbial models in particular, Chandel et al. (2023) found the Arrhenius functions to be more common.110

Despite its widespread use, however, the Q10 concept is very simple (Reichstein and Beer, 2008) and not without criticism,

owing in parts to the large span of reported values (Wu et al., 2021). Most models put the value for methanogenesis in the range

of 1.5-4 (Xu et al., 2016) – often a central value of around 2 is chosen (Riley et al., 2011; Tang et al., 2010) – which lies in

the range of values reported from many lab experiments (Roy Chowdhury et al., 2015; Treat et al., 2015; Inglett et al., 2012;

Su et al., 2024; Lupascu et al., 2012). Despite that, a meta analysis by Hamdi et al. (2013) showed that the entire spectrum of115

reported Q10 values from lab and field studies has a large range from <2 to >300 (Hamdi et al., 2013). Wu et al. (2021) further

criticized the use of constant Q10 parameters in models as overly simplistic, even finding that the decomposition rate behaved

linearly rather than exponentially in the 5 °C to 30 °C range in their model experiment (Wu et al., 2021). They argue instead in

favor of a more in-depth biogeochemical model approach that accounts for individual processes (Wu et al., 2021).

As for the second frequently used method, the idea behind Arrhenius functions is to express the temperature sensitivity120

through the activation energy of the process in question (Yvon-Durocher et al., 2014; Chen et al., 2021; Chandel et al., 2023;
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Li et al., 2023). This approach is based on fitting data to the Boltzmann-Arrhenius function, which, similar to the Q10 approach,

assumes an exponential increase of the metabolic rate with increasing temperature (Yvon-Durocher et al., 2014; Chen et al.,

2021). Here, reported values for methanogenesis lie between 0.62 and 0.98 eV (Yvon-Durocher et al., 2014; Chen et al., 2021;

Li et al., 2023). Both Q10 and activation energy values have been observed to decrease with increasing temperature and vice125

versa (Hamdi et al., 2013; Reichstein and Beer, 2008). In models, the Q10 parameter is usually chosen, with different processes

sometimes having their own distinct Q10 values (Song et al., 2020). This is still rare, however, with many models settling

on a single Q10 value for methane production (Riley et al., 2011; Kettunen, 2003; Xu et al., 2015), despite the evidence for

differences in the temperature response between the main pathways (Conrad, 2023). Methanotrophy usually has its own Q10

value in models, which is typically assessed at a slightly lower value than the one for methanogenesis, lying between 1.2-2.4130

(Riley et al., 2011; Kettunen, 2003; Zhu et al., 2014; Sabrekov et al., 2016; Murguia-Flores et al., 2018; Grant, 1999). Since

temperature is only a piece of the puzzle, the difficulty of how to accurately represent this factor in models alone hints at the

overarching complexity of methane modeling.

Besides the two main methanogenesis pathways introduced earlier, there exist further processes that have an effect on

methanogenesis. This can either be directly through processes like hydrolysis and fermentation, which break down the organic135

matter and provide the substrate for methanogenesis (Tang et al., 2016b; Grant, 1998), or indirectly through other redox reac-

tions such as Fe(III) reduction (Sulman et al., 2022; Zheng et al., 2019; Philben et al., 2020; Yang et al., 2016; Roy Chowdhury

et al., 2015). Especially the interplay between methanogenesis and Fe(III) reduction has been the subject of recent studies

and their interactions have started to be included in models (Sulman et al., 2022; Zheng et al., 2019). Additionally, some soil

processes are in competition with methanogenesis for substrate, like other, energetically more favorable metabolic pathways140

(Lovley, 1991). Another example is homoacetogenesis, through which acetate is being produced by the consumption of H2 and

CO2. While acetate is the main substrate for methane production by acetoclastic methanogenesis, homoacetogenesis thereby

reduces the substrates for hydrogenotrophic methanogens (LeeWays et al., 2022; Diekert and Wohlfarth, 1994). Looking at this

web of interconnected process (Xu et al., 2015; Song et al., 2020; Sulman et al., 2022), it becomes evident that by assuming

a prescribed CO2:CH4 production ratio in process-based models, the reliability of future methane emission projections from145

warming Arctic soils and thawing permafrost is highly limited.

3 Representation of methanogenesis in LSMs

Despite recent efforts to integrate process-based methane production in LSMs (Song et al., 2020), their representation of

CH4 production largely remains overly simplified (Chandel et al., 2023). This is also true for the land surface schemes

that are a part of widely used ESMs, such as the ones partaking in the CMIP6 (Coupled Model Intercomparison Project150

Phase 6), though simulating the CH4 feedback was not part of this project (Eyring et al., 2016). These models were fea-

tured in the latest IPCC AR6 report (Canadell et al., 2021), so it would be desirable if they were able to simulate methane

production from thawing permafrost landscapes in a more realistic fashion that reflects the seasonality and variability ob-

served in studies (Galera et al., 2023; Knoblauch et al., 2018; Li et al., 2023; Chen et al., 2021). This dire need to more
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accurately portray permafrost carbon processes in ESMs has recently been reaffirmed by Schädel et al. (2024) who con-155

cluded that methane emissions are only represented to an "intermediate" degree in ESMs. Tightly connected aspects such

as wetland distribution remain "poorly" represented (Schädel et al., 2024). The latter hints at a larger problem in regards to

accurately modeling methanogenesis in soils. Methanogenesis occurs when soils become waterlogged and oxygen is even-

tually depleted (van Huissteden, 2021). Predicting this in models, however, has been a persistent challenge (de Vrese et al.,

2021; Schädel et al., 2024). In models, this limitation of methanogenesis to anoxic conditions is usually realized through two160

different methods: (1)simulating the water-table in a given area and (2) explicitly modeling and tracking the O2 concentra-

tion in the soil layers (Morel et al., 2019). The former case is frequently realized via a TOPMODEL approach (Beven and

Kirkby, 1979), which determines the inundated areas in a grid cell (Kleinen et al., 2020), thus representing horizontal hetero-

geneity while the latter method represents vertical heterogeneity. Although many models settle for one of the two methods,

they are not mutually exclusive. Regardless of the chosen method(s), the problem remains that soil hydrology is subject to165

a high degree of sub-grid heterogeneity, especially in Arctic permafrost-affected regions (Beer, 2016; Schuur et al., 2008).

In JSBACH, the land component of MPI-ESM (Max Planck Institute for Meteorology Earth System Model) (Mauritsen

et al., 2019) featured in CMIP6 (Zechlau et al., 2022), methane production has been modeled through a temperature dependent

partition factor which prescribes the fraction of carbon released as methane from total anaerobic decomposition (Kleinen et al.,170

2021) - an approach based on the CLM(4Me) model by Riley et al. (2011). The temperature dependence in their model is

realized through a Q10 factor (Kleinen et al., 2020), which leads to an increased share of methane under warming conditions.

The model uses the TOPMODEL approach to calculate the inundated fraction in the grid cells (Kleinen et al., 2020).

Another example is the UK Earth System Model’s LSM JULES (Sellar et al., 2019), which calculates methane production

from substrate availability, temperature, and the wetland fraction of the gridbox (Clark et al., 2011; Chadburn et al., 2020)175

through a multilayered scheme (Comyn-Platt et al., 2018; Burke et al., 2017), using a tuned methane production scaling

factor (Chadburn et al., 2020). The temperature sensitivity is modeled through an Arrhenius function and inundated areas

are represented through the saturated grid cell fraction via TOPMODEL (Chadburn et al., 2020; Comyn-Platt et al., 2018).

Furthermore, Chadburn et al. (2020) showed an altered version of JULES called JULES-microbe, which features a much more

detailed decomposition process including hydrolysis, methanogenic microbial biomass, and microbial activity, though they do180

not explicitly model the two main methanogenesis pathways either (Chadburn et al., 2020). Instead they partition the produced

gases equally into CH4 and CO2, based on the theoretically assumed 1:1 production ratio of acetoclastic methanogenesis

(Conrad, 1999; Chadburn et al., 2020). Recently, the UKESM has further received an emission-driven fully coupled methane

cycle (Folberth et al., 2022), showing the ongoing research development towards more in-depth methane representation.

The ORCHIDEE model is another commonly used LSM, which over the years has been updated to represent permafrost185

processes and high-latitude peatlands in ORCHIDEE-PEAT(Guimberteau et al., 2018; Qiu et al., 2019). It has recently received

an updated methane module named ORCHIDEE-PCH4, based on the scheme described by Khvorostyanov et al. (2008a, b),

which uses the same temperature and soil moisture dependent function for methanogenesis as for aerobic respiration, albeit

with a 10-times lower rate (Salmon et al., 2022; Khvorostyanov et al., 2008a). Temperature dependence was modeled through
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Table 1. Overview of the main models discussed in this paper.

Models Overview

Model Methanogenesis Temperature Reference

JSBACH3.2 pre-set fraction, following (Riley et al.,

2011)

Q10 (Mauritsen et al., 2019;

Kleinen et al., 2020)

JULES scaling factor, pre-set fraction Arrhenius (Sellar et al., 2019;

Chadburn et al., 2020;

Clark et al., 2011)

JULES-microbe methanogenic microbial biomass and

activity, CO2:CH4 partition pre-set 1:1

Arrhenius (Sellar et al., 2019;

Chadburn et al., 2020;

Clark et al., 2011)

ORCHIDEE-PEAT reduced rate parameter with respect

to aerobic respiration, following

(Khvorostyanov et al., 2008a, b)

Q10 (Guimberteau et al.,

2018; Salmon et al.,

2022; Qiu et al., 2019)

ELM pre-set fraction, following (Riley et al.,

2011)

Q10 (Ricciuto et al., 2021;

Chinta et al., 2024)

ELM-SPRUCE acetoclastic and hydrogenotrophic

pathways, following (Xu et al., 2015)

Q10 (Ricciuto et al., 2021)

Song et al. model for

IBIS

acetoclastic and hydrogenotrophic

pathways, fermentation, homoacetoge-

nesis

Q10 (Song et al., 2020)

Sulman et al. model for

PFLOTRAN

acetoclastic and hydrogenotrophic

pathways, fermentation, Fe(III) reduc-

tion

CLM-CN T re-

sponse function

(Sulman et al., 2022;

Tang et al., 2016a)

Tang et al. model for

CLM-CN

acetoclastic and hydrogenotrophic

pathways, fermentation

CLM-CN T re-

sponse function

(Tang et al., 2016b;

Thornton and Rosen-

bloom, 2005)

Zheng et al. model acetoclastic and hydrogenotrophic

pathways, fermentation, Fe(III) reduc-

tion

CLM-CN T re-

sponse function

(Zheng et al., 2019;

Thornton and Rosen-

bloom, 2005)

Morel et al. model for

ISBA LSM

reduced rate parameter, based on

(Khvorostyanov et al., 2008b)

Q10 (Morel et al., 2019)

Ma et al. model for

TECO

ecosystem-specific CH4-release ratio

parameter

Q10 (Ma et al., 2017)

a Q10 function, although the relationship is assumed to be linear instead of exponential at values below 0 °C , reaching zero at190

-1 °C (Qiu et al., 2019; Koven et al., 2011). While the base ORCHIDEE-PEAT uses the TOPMODEL approach to determine
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inundated grid cell fractions (Qiu et al., 2019), ORCHIDEE-PCH4 explicitly uses the oxygen concentration in the soil for

methanogenesis (Salmon et al., 2022). The latter model has only been evaluated with data from peatlands (Salmon et al.,

2022). Peatlands, however, are a very specific environment with unique features and model requirements (Mozafari et al.,

2023). This limits the model’s application to these areas even though Arctic methane emissions from permafrost thaw will195

arise from other sources as well, such as thermokarst lakes or simply from thaw and inundation of non-peatland soils (Saunois

et al., 2020).

A land-surface model that has seen some recent progress in improving its methane representation is the Energy Exascale

Earth System Model’s (E3SM) land model (ELM) (Ricciuto et al., 2021). Originally, its methane module was based on the

CLM(4Me) (Riley et al., 2011), same as for JSBACH (Kleinen et al., 2021). Since then, there have been attempts to update200

the methane module and include a more process-based representation of many methane processes, for example in the ELM-

SPRUCE version with acetoclastic and hydrogenotrophic methanogenesis, based in large parts on the process-based methane

model developed by Xu et al. (2015) (Ricciuto et al., 2021; Xu et al., 2015). This updated module, however, has yet to be

incorporated into the ELM for global simulations as part of E3SM (Ricciuto et al., 2021). The current version still uses the

CO2:CH4 ratio partition factor as proposed by Riley et al. (2011), as well as a Q10 parameter for modeling the temperature205

dependence of methane production (Chinta et al., 2024). As for inundation, ELM uses a typical hydrological sub-model to

calculate the spacial distribution of wetlands, however, it has recently received an updated version with a focus on wetlands

called ELM-Wet, which introduces a distinct sub-grid wet-landunit that enables a more mechanistic portrayal of wetland

processes (Yazbeck et al., 2025).

4 State of process-based models of methanogenesis at local scale applications210

In contrast to global LSMs, there exist smaller process-based methane models on the lab and site scale that represent many

of the processes related to methane production in much more detail (Xu et al., 2016, 2015; Grant, 1998; van Bodegom and

Scholten, 2001). The process-based methane models discussed in this section include both standalone models and methane-

focused modules developed for larger models, such as LSMs. In contrast to the previously discussed LSMs, which are being

used in global simulations, often as part of ESMs, the models in this section were developed for site-level or lab-scale applica-215

tions, with an explicit focus on methane processes. Indeed, there has been an ongoing effort to refine the modeling of methane

over the decades and a plethora of models with varying complexity have emerged, with models using process-based methano-

genesis representation at the top (Xu et al., 2016). It is these process-based approaches that are needed to better understand the

processes underlying methane dynamics in the soil, which will then enable more accurate predictions on how these processes

and, by extension, the methane budget at large will react to future climate change (Chandel et al., 2023). It should be noted,220

however, that many of the past in-depth methane models have been designed for environments other than permafrost land-

scapes, with much of the research being focused on (rice) paddy soils (Fumoto et al., 2008; van Bodegom and Scholten, 2001)

and general wetland areas (Tang et al., 2010; Chadburn et al., 2020; Forbrich et al., 2024).Although process-based models

should ideally be applicable across different environments, permafrost-affected soils exhibit unique properties and microbial
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structures (Miner et al., 2022; Beer et al., 2022; Song et al., 2021) that are only comparable to the aforementioned ecosystems to225

a limited degree. Masyagina and Menyailo (2020) have shown that the methane emission patterns of permafrost-affected areas

differed significantly to those of non-permafrost areas, highlighting this issue. Nevertheless, since the thorough synthesis con-

ducted by Xu et al. (2016), this development has only continued further and in recent years some highly sophisticated methane

models have been published. One such state-of-the-art model is the methane module developed by Song et al. (2020) for the

IBIS terrestrial ecosystem model (Song et al., 2020). It is based on microbial functional groups, encompassing acetoclastic230

and hydrogenotrophic methanogenesis, fermentation, homoacetogenesis, and methane oxidation (Song et al., 2020). Mathe-

matically, these processes are largely realized through formulas based on Michaelis-Menten kinetics (Song et al., 2020), while

most of the parameter values stem from Grant (1998) and Kettunen (2003). In the decomposition cascade, the model starts

with dissolved organic carbon (DOC), which is calculated from the total soil organic carbon pool (SOC) via a temperature and

moisture dependent DOC:SOC ratio factor (Song et al., 2020). Acetate, CO2 and H2 are then produced through fermentation235

(Song et al., 2020). In the next step, these fermentation products act as the substrate for the two main methanogenesis pathways

(Conrad, 1999) and homoacetogenesis (Diekert and Wohlfarth, 1994; Song et al., 2020).

One process that has recently started to be included in methane models more frequently is iron reduction (Sulman et al.,

2022; Zheng et al., 2019). It is an energetically more favorable metabolic pathway for microbes, during which Fe(III) is

being reduced to Fe(II) under anoxic conditions (Lovley, 1991). Although these processes are in competition with each other240

(Lovley, 1991; Sulman et al., 2022), they have been observed to occur concurrently in soils (Roy Chowdhury et al., 2015;

Sulman et al., 2022), thus hinting at a more complicated interplay (Sulman et al., 2022; Zheng et al., 2019). A recent model

that includes this process is the model developed by Sulman et al. (2022). It features largely the same microbial (methane)

processes as the Song et al. (2020) model, minus the homoacetogenesis, in a comparable level of detail. Their model, however,

adds another level of complexity by explicitly modeling the Fe(III) reduction alongside the methane processes (Sulman et al.,245

2022). The methane production is modeled via Monod-type equations and the interactions with Fe(III) reduction as well as

the dependence of the methanogenic pathway on pH was represented (Sulman et al., 2022). They found the inclusion of

other terminal electron acceptors to be important for accurate methane predictions, since Fe(III) reduction either increased

or decreased CH4 production, depending on how much substrate was available to the microbes (Sulman et al., 2022). These

findings complement the results from Tang et al. (2016b), who also used a process-based methane model, and found that250

Fe(III) reduction positively impacted methanogenesis, by means of raising the pH, when substrate was not limiting (Tang

et al., 2016b). Their model is an augmented version of the CLM-CN model (Thornton and Rosenbloom, 2005), which has been

expanded by incorporating additional biogeochemical process from, e.g., ecosys (Grant, 1998) and the model from Xu et al.

(2015).

Similarly, Zheng et al. (2019) developed a process-based methane model that uses Monod-type equations to model methano-255

genesis (acetoclastic and hydrogenotrophic) and features Fe(III)-reduction and fermentation (Zheng et al., 2019). They further

included a thermodynamic factor to simulate the dynamic between the different redox processes (Zheng et al., 2019). In their

model, hydrolysis of polysaccharides was assumed to be the rate limiting process for methanogenesis under anaerobic condi-

tions (Zheng et al., 2019; Yang et al., 2016), which aligns with the importance of substrate availability for the methanogenesis-
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iron-reduction-system found by Sulman et al. (2022). This connection has further been supported by incubation study results260

that also found a correlation between iron reduction, acetate production and methanogenesis (Yang et al., 2016). Fermenters

prefer organic carbon compounds with low-molecular weight and the fermentation products (e.g., acetate) are required for

methanogenesis (Yang et al., 2016). Consequently, this early stage of the anaerobic decomposition appears to have significant

impact on the final methane production rate (Yang et al., 2016; Zheng et al., 2019). The designation of hydrolysis as the rate-

limiting step has, however, been called into question by Conrad (2023), who instead argued in favor of the final steps in the265

methanogenesis process as being rate limiting (Conrad, 2023).

The methane model developed by Morel et al. (2019) as a module for the ISBA LSM (Noilhan and Planton, 1989) is another

interesting approach. They model methanogenesis with the same 10-times lower decomposition rate, compared to aerobic

decomposition, from Khvorostyanov et al. (2008a) that is also used in the recent ORCHIDEE module (Salmon et al., 2022).

Aside from the usual temperature and substrate availability dependence, their model also factors in the limitation by oxygen270

concentration in each respective soil layer (Morel et al., 2019). Their approach of explicitly modeling O2 concentration in the

soil layers and its impact on methanogenesis differs from the more common approach of determining the water table level and

strictly limiting methanogenesis to layers below that level(Morel et al., 2019)–an approach that has previously been criticized

(Yang et al., 2017). Their model, however, does not have a representation of the two main methanogenesis pathways (Morel

et al., 2019), thus reducing its complexity.275

The data-constrained process-based methane model from (Ma et al., 2017) is another example for a methane module incor-

porated in a terrestrial ecosystem model (TECO) (Ma et al., 2017). Even though methanogenesis itself is not modeled in as

much detail as other models discussed here–they used an ecosystem-specific CH4-release ratio parameter with no distinction

between pathways–their warming experiment resulted in an increased CH4:CO2 emission ratio (Ma et al., 2017). This makes

the study one of the few who put a focus on the changes of this ratio.280

5 Going forward - bridging the divide between scales

Looking at the discussed small-scale process-based methane models and global LSMs side by side, it becomes clear that they

differ profoundly with regard to how detailed methane processes, especially methanogenesis, are being represented. Bridging

this gap and using the process understanding gained in smaller scale process-based models have been identified as major

remaining challenges for making ESMs more reliable and grounded in reality (Zheng et al., 2019; Xu et al., 2016; Chandel285

et al., 2023; Ricciuto et al., 2021). This development is needed, if models want to capture the highly variable CO2:CH4 ratios

observed in the field (Galera et al., 2023) and lab (Knoblauch et al., 2018; Heslop et al., 2019).At this point, it is important

to clearly distinguish between methane production and emission ratios. The high variability of CO2:CH4 emission ratios

measured in the field is the result of many different processes (Galera et al., 2023), beyond methanogenesis. The methane has

to be transported to the surface and, depending on the dominant transport mechanism, may be oxidized almost completely290

by methanotrophs before it can reach the atmosphere (Wania et al., 2010; de Vrese et al., 2021). Additionally, CO2 emissions

from other processes that happen concurrently with methanogenesis at sites with anaerobic conditions, such as Fe(III) or sulfate
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reduction (Dettling et al., 2006; Sulman et al., 2022), and respiration in oxic layers also affect the CO2:CH4 emission ratio

(Galera et al., 2023). Refining the methanogenesis process alone will consequently not be sufficient for greatly reducing the

uncertainty of the emission ratio between CO2 and methane at the surface. However, the modeling of methanogenesis, and295

by extension the CO2:CH4 production ratio, in the soil is already a source of uncertainty. Looking at the production ratios

obtained under controlled lab conditions from Knoblauch et al. (2018), who reported values between 0.2-0.8, in contrast to

the fixed ratio factors used in many LSMs (see Table 1), it becomes evident that using these fixed ratios directly leads to an

increase of the uncertainty of methane release, already in the initial step. To quantify this uncertainty, especially in relation to

the other processes affecting the methane budget, a dynamic process-based methane models is needed, giving further agency300

to its development.

First efforts in this direction are being done, with one example being the inclusion of the aforementioned model by Song

et al. (2020) into a terrestrial ecosystem model. Another case is the model by Ricciuto et al. (2021), which has been included

in the ELM and features a process-based methanogenesis scheme (Xu et al., 2015). Their model reproduced the observed

distinct seasonality of the two main methanogenesis pathways (Ricciuto et al., 2021), showing the advantages of such a detailed305

representation, though their model has so far only been run on a site level scale (Ricciuto et al., 2021). These models are focused

on natural wetland (Song et al., 2020) and peatland emissions (Ricciuto et al., 2021) respectively, meaning that the distinct

features of permafrost-affected areas (Masyagina and Menyailo, 2020) are largely not considered in their model composition

and subsequent evaluation with site data (Song et al., 2020; Ricciuto et al., 2021). Still, the ELM has recently received an

improved wetland scheme in ELM-Wet and there are plans to implement the already discussed in-depth methane model by310

Sulman et al. (2022) in the future to further improve methanogenesis representation (Yazbeck et al., 2025).

Sulman et al. (2024) have recently performed a similar inclusion of an in-depth biogeochemical model into a LSM, featuring

methanogenesis and methanotrophy among others, but their model study was concerned with and evaluated against data from

coastal wetlands, which are distinct in their own right with, e.g., sulfate dynamics (Sulman et al., 2024). Modeling efforts like

these are direly needed for permafrost-affected soils as well (Schädel et al., 2024), since estimations of the permafrost-carbon-315

climate feedback remain uncertain in both their spatiotemporal extent and magnitude (Miner et al., 2022; Nitzbon et al., 2024).

Indeed, the future ratio of CO2:CH4 emissions is one of the key open questions in that endeavor (Schuur et al., 2022). Even

though the emission ratio is affected by many other processes, as discussed above, the production ratio is an important initial

step. Additionally, the representation of permafrost processes in ESMs is generally still severely lacking (Miner et al., 2022;

Schädel et al., 2024), with many of the models informing the most recent IPCC report still not having permafrost processes320

included (Canadell et al., 2021).

More complexity or realism, in regards to how certain processes are modeled, might not always be the optimal way however.

Sulman et al. (2018) argued in their meta study, for example, that the ever increasing complexity and amount of processes in

SOC-focused models may in fact add to the already large uncertainty of projections, due to an increase in modeling possibilities

to choose from (Sulman et al., 2018). A more concrete example would be the JULES LSM, which had in the past been325

enhanced with a more detailed methane soil-transport and oxidation scheme (McNorton et al., 2016). This scheme was later-on

abandoned due to the overall negligible improvement in terms of making the results more accurate (Comyn-Platt et al., 2018).
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Figure 1. Schematic structure of the suggested core-processes required for modeling the dynamics of the CO2:CH4 production ratio, with

(1) fermentation, (2) hydrogenotrophic methanogenesis, and (3) acetoclastic methanogenesis.

Figure 2. Schematic structure of a more complex approach for modeling the dynamics of the CO2:CH4 production ratio, with core-processes

(1) fermentation, (2) hydrogenotrophic methanogenesis, (3) acetoclastic methanogenesis in blue, and closely connected process (4) Ho-

moacetogenesis and (5) Fe(III) reduction in green.

In light of many other processes being underrepresented or all out missing in global models, the adequate complexity of each

included process needs to be considered. Abrupt thaw processes, e.g., could lead to an increase in permafrost thaw emissions

by up to 40% if accounted for, yet they are not featured in global models (Turetsky et al., 2020; Schädel et al., 2024). Naturally,330

numerical resources are not endless and current ESMs already struggle with their ever-increasing complexity (Schädel et al.,

2024). Considering this, it might be necessary to find a middle ground between the current state of methane representation in

most LSMs and the state-of-the-art smaller scale process-based methane models. Furthermore, it will be important to quantify

the uncertainty and importance of the various processes contributing to the total methane budget, to see which processes require

more attention, numerical resources and further refinement.335

In conclusion, when modeling methane production in soils, the essential processes determining the CO2:CH4 production

ratio appear to be (1) fermentation, which has been identified as a potential rate-limiting step in multiple studies (Zheng et al.,

2019; Sulman et al., 2022; Philben et al., 2020), (2) acetoclastic and (3) hydrogenotrophic methanogenesis and the variable

share between the two (Conrad, 1999). LSMs need to feature at least these three core-processes (see Figure 1) if the dynamics

of the CO2:CH4 production ratio wants to be represented.340

Additionally, these core-processes may be complemented by closely connected processes that either enhance or stand in

competition with methanogenesis, most importantly Fe(III) reduction and homoacetogenesis (see Figure 2), something that has

already been achieved in some smaller scale process-based models (Sulman et al., 2022; Zheng et al., 2019; LeeWays et al.,
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2022; Diekert and Wohlfarth, 1994). Though it would undoubtedly be preferable to have these ancillary processes featured in

LSMs as well, this would make the task all the more difficult. Previous studies found, for example, Fe(III) reduction to impact345

methanogenesis indirectly through changes to the pH (Sulman et al., 2022; Zheng et al., 2019), meaning that LSMs would

have to both model global soil Fe concentrations and soil pH levels. When considering the current, highly simplified state of

methanogenesis modeling in LSMs, it would be a more realistic first step to focus on the three aforementioned core-processes,

before tackling further connected processes.

These processes are influenced by multiple environmental factors, the most important of which are: temperature (Yvon-350

Durocher et al., 2014), pH (Sulman et al., 2022), and oxygen availability (Morel et al., 2019) or water table depth (Chen

et al., 2021). Soil biogeochemical conditions, especially the discussed interplay with Fe(III) reduction, is another important,

albeit more complicated factor that has relatively recently emerged as a focus point in modeling studies on methane (Philben

et al., 2020; Sulman et al., 2022; Zheng et al., 2019; Yang et al., 2016). Despite their importance, many of these factors are

poorly quantified across the Arctic (Stimmler et al., 2023). This is largely due to the scarcity of observational field data in the355

vast and remote Arctic areas like Northern Russia (Suleymanov et al., 2024). ESMs, however, require spatial maps of these

soil parameters to accurately portray the soil biogeochemical processes in the Arctic regions. Besides the obvious need for

more field data, there are some recent publications which provide spatial datasets derived from the few data we already have.

(Stimmler et al., 2023; Suleymanov et al., 2024). Stimmler et al. (2023) extrapolated sampling data to create a Pan-Arctic map

of bioavailable soil elements, including Fe, based on lithology. Another interesting approach is shown in Suleymanov et al.360

(2024) who used machine learning algorithms to digitally map soil properties, like soil pH, in Arctic areas with scarce data

availability. These techniques may prove to be important tools to bridge the large gaps in the spatial data. Both still depend on

field data, however, which means that more extensive field studies remain crucial (Suleymanov et al., 2024). The same is true

for methanogenesis measurement data required to benchmark models at large scales, something that is difficult to attain for

the same reasons. In fact, Ma et al. (2021) have shown the importance of constraining models with in situ observational data,365

since CH4 and CO2 emissions show distinct responses to climate change (Ma et al., 2021). Even though lab incubations only

offer limited insights into in situ conditions (Galera et al., 2023), they can nevertheless be useful to isolate and study single

processes that are hard to disentangle in the field.

Concerning the temperature dependence, the Q10 function is arguably the most commonly used method for describing the

temperature sensitivity of methane production in models (Xu et al., 2016), likely due to its simplicity (Reichstein and Beer,370

2008). At the same time, the Q10 value has been repeatedly identified as a highly sensitive model parameter (Chinta et al.,

2024; Riley et al., 2011; Song et al., 2020; Ma et al., 2017), making its accurate assessment paramount. Parameter estimations,

however, vary strongly between different models (Xu et al., 2016), owing in large part to the wide range of reported values

from experiments (Roy Chowdhury et al., 2015; Hamdi et al., 2013; Wu et al., 2021). Furthermore, the different temperature

sensitivities of the processes involved in fermentation and methanogenesis (Conrad, 2023) need to be considered and should375

be represented in future models. Reducing the uncertainty introduced through the modeling of temperature dependence will be

a crucial step towards improving the overall predictive abilities of methane models.
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For predicting future methane emissions from soils, further processes are required. First, the transport of methane to the

surface through the main three transport ways (Walter and Heimann, 2000; Wania et al., 2010; Kaiser et al., 2017) and, second,

methanotrophy, which has the possibility to drastically reduce methane emissions before they reach the atmosphere (de Vrese380

et al., 2021). These processes are, however, already more broadly represented in models (Xu et al., 2016), including LSMs

(Wania et al., 2010; Kaiser et al., 2017; Chinta et al., 2024), compared to methanogenesis. Here it could be interesting to

explore, e.g., the kinetic differences between low-affinity and high-affinity methanogens, the former requiring high methane

concentrations while the latter can function even under atmospheric methane concentrations (Voigt et al., 2023; Dion-Kirschner

et al., 2024), which is rarely explored in models. One model study that did include high-affinity methanogens into a biogeo-385

chemical model is the one by Oh et al. (2020). They used the Terrestrial Ecosystem Model (TEM) (Zhuang et al., 2004, 2013)

as a basis and found that the addition of high-affinity methanogens to the model led to a doubling of the Arctic upland methane

sink, reducing net CH4 emissions by ca. 5.5 Tg CH4 yr−1 (Oh et al., 2020). This significant reduction shows that further refin-

ing methanotrophy in models will also be crucial for reducing the uncertainty of CO2:CH4 emission ratios, and more studies

focused on the inclusion of high-affinity methanogens in models are needed (Oh et al., 2020).390

There are other important uncertainty sources concerning the methane budget, one of which are cold season methane fluxes,

which can make up more than half of the total annual Arctic methane flux (Zona et al., 2016). In models, however, these

emissions are commonly underestimated and poorly constrained (Treat et al., 2018; Ito et al., 2023). Treat et al. (2018) showed

that constraining a process-based model ensemble with measured data from the non-growing season (September-May) could

increase the annual wetland methane flux by 25% when compared to the unconstrained approach. These findings have been395

corroborated by Ito et al. (2023), who compared the cold season (September-May) methane flux outputs of 16 models to in

situ observational data and found that the models underestimated methane emissions during that period, with the discrepancy

being especially pronounced in months that exhibited air temperatures under 0 °C. This underestimation is due to insufficient

cold season process representation and parametrization (Ito et al., 2023; Treat et al., 2018). Models fail to capture, for example,

the observed burst of methane emissions during the freeze-in period in late-autumn (Mastepanov et al., 2008). This period falls400

into the "zero curtain" period, during which the soil stays unfrozen, while temperatures stay at around 0 °C, due to latent heat

of fusion of soil water and snow cover insulation (Zona et al., 2016). The latter is especially important because changes to the

snow cover affect soil thermodynamics, which, in turn, affects soil biogeochemistry and permafrost dynamics (Pongracz et al.,

2021). The impact of improving the representation of snow processes in models for further reducing uncertainty in projecting

Arctic methane emissions, has been shown by Pongracz et al. (2021), who implemented a multi-layer snow-scheme into the405

LPJ-GUESS dynamic vegetation model and found a significant improvement to the simulated permafrost extent. Further model

refinement of these processes is, consequently, needed to reduce this uncertainty in the Arctic methane budget (Ito et al., 2023).

Finally, the uncertainty of wetland extent and distribution as well as their poor representation in models (Schädel et al.,

2024) remain some of the most important sources of uncertainty concerning the Arctic methane budget, as recently shown

again by Ying et al. (2025) in their machine-learning-based upscaling study. Here in this paper, we present a framework for a410

more process-based portrayal of methanogenesis in LSMs and review which processes and factors need to be considered for

capturing the dynamics of the CO2:CH4 production ratio. This development becomes a necessity if research questions such

14



as the prediction of pan-Arctic greenhouse gas fluxes under a changing future hydrology want to be answered with a higher

degree of confidence. However, the many other discussed processes that make up the total methane budget have high degrees of

uncertainty as well and estimating their respective importance and quantifying their uncertainties will be crucial going forward.415

In the end, a more process-based methanogenesis approach in models could contribute to more reliable estimates of the carbon-

climate feedback, for which the relative roles of carbon dioxide and methane emissions represent an important factor (Schuur

et al., 2022).
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