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Abstract. Thawing permafrost in the Arctic threatens to potentially release large amounts of decomposed organic matter as

CO2 or CH4 to the atmosphere. Predicting the ratio of emitted CO2 to CH4 is imperative for reliable future projections. Here,

we review the recent literature concerning methanogenesis, and its current representation in both land surface models (LSMs)

and the state-of-the-art process-based methane models. We found that the key processes, required to capture the dynamics of the

CO2:CH4 production ratio, are: fermentation, hydrogenotrophic methanogenesis, and acetoclastic methanogenesis. Commonly5

discussed linked processes are Fe(III)-reduction and homoacetogenesis. Environmental factors influencing these processes,

as identified in the literature, are: temperature, pH, water table position and alternative electron acceptors. While modern

process-based methane models account for most of these factors and processes, the same is not true for the simplified methane

formulations in many LSMs, which often opt for pre-set parameters that define a constant share of methane production from

anaerobic decomposition. This static approach stands in opposition to the growing amount of lab and in-situ data, which10

suggest a high degree of spatio-temporal variability concerning this ratio, thus preventing its accurate prediction in a changing

future Arctic. The challenge lies in upscaling the data as the environmental factors are barely quantified at the pan-Arctic scale.

Additionally, there remains the important challenge of how to model and parameterize the temperature dependence of the

individual underlying processes. Going forward, these challenges need to be overcome in order to reliably project the CO2:CH4

production ratio and methane emissions on larger scales. This will require a more process-based approach of methanogenesis15

in LSMs, for which we suggest a baseline concept here.

1 Introduction

Permafrost-affected soils are a significant global carbon pool, storing more carbon than there currently is in the atmosphere

(Hugelius et al., 2014; Mishra et al., 2021; Friedlingstein et al., 2022). This permafrost is already beginning to thaw (Biskaborn

et al., 2019) and large-scale future losses are projected (McGuire et al., 2018) due to climate change and the increased warming20

that is expected to occur in the Arctic (IPCC, 2021). Thawing permafrost enables the microbial decomposition of the large
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amounts of carbon stored across the Arctic, potentially releasing considerable amounts of carbon to the atmosphere, thus

creating a self-reinforcing carbon-climate feedback (Beer, 2008; Schuur et al., 2015, 2022).

Of particular interest is the form in which the carbon will be released to the atmosphere, namely as either CO2 or CH4,

due to the strong difference in climate forcing between the two gases, with methane being the much more potent one (Myhre25

et al., 1998). Methane has contributed 11% to the total radiative forcing since 1960, despite its relatively low concentration in

the atmosphere (Canadell et al., 2021). Furthermore, methane emissions have increased nearly 2-fold in the last two centuries

(Canadell et al., 2021) and continue to grow persistently (Saunois et al., 2020), thus garnering much research interest (IPCC,

2021; Canadell et al., 2021; Saunois et al., 2020; Xu et al., 2016; Chandel et al., 2023). The majority of emissions are expected

to occur as CO2 (Miner et al., 2022; Schädel et al., 2016) but recent studies also highlight the importance of CH4 emissions30

from a thawing Arctic (Knoblauch et al., 2018; Kleinen et al., 2021; Turetsky et al., 2020). This stresses the need for a more

accurately constrained future methane budget, which presently remains uncertain (Ito et al., 2023). Methane production is tied

to anoxic conditions in the soil, which usually occur when the soil becomes waterlogged (van Huissteden, 2021). Since the

future hydrology of the Arctic remains uncertain (Andresen et al., 2020; de Vrese et al., 2023), so does the extent and timing of

Arctic methane emissions (Canadell et al., 2021). This is also the reason for the relative scarcity of model studies on the topic35

that involve Earth System Models (ESMs) (de Vrese et al., 2021). In fact, many ESMs do not explicitly model CH4 emissions at

all (Schuur et al., 2022). Those who do, often represent methane production in a highly simplified way, frequently via a certain

CO2:CH4 production ratio factor (Kleinen et al., 2020; Gasser et al., 2018; Riley et al., 2011). This is despite the fact that this

ratio has been shown to be highly variable in both laboratory (Knoblauch et al., 2018; Heslop et al., 2019) and in situ studies

(Galera et al., 2023). Knoblauch et al. (2018) showed in their long-term incubation study, that methanogenic communities in40

permafrost soils need time to establish themselves, resulting in a lag time of multiple years before eventually a CO2:CH4 ratio

of 0.92±0.18 was reached (Knoblauch et al., 2018). Heslop et al. (2019) reported C-CO2:C-CH4 production ratios between

13-134, depending on soil depth, from their incubations. Galera et al. (2023) estimated in situ median CO2:CH4 emission

ratios of 12 and 373, depending on the tundra type of polygonal tundra soils, though their values were affected by methan-

otrophy and, therefore, the actual production ratios are likely smaller (Galera et al., 2023).
::::::
Another

:::::::::
important

:::::
factor,

:::::::
besides45

::::::::
hydrology

::::
and

:::
soil

:::::::::
properties,

::
is

:::::::::
vegetation.

::::
Due

::
to

:::
the

::::
CO2 ::::::::::

fertilization
:::::
effect,

:::
the

::::
plant

:::::::::::
productivity

:::
will

:::::::::
potentially

::::::::
increase,

::::::::
providing

::::::::
additional

::::::::
substrate

:::
for

:::
the

:::::::::::
methanogens

:::::::::::::::
(Kettunen, 2003).

::::
This

::::::
aspect

::::
will

::::::::
especially

:::
be

::::::::
important

:::
in

:::
the

::::::
Arctic,

:::::
where

:::::::::
large-scale

:::::::::
vegetation

::::::
changes

::::
can

::
be

:::::::
expected

:::::
upon

:::::::
warming

:::::::::::::::::::::::::::::::::::::::::::::::
(Swann et al., 2010; Chapin et al., 2005; Cho et al., 2018)

:
.

The methane emission calculation does not stop at the methane production, however. For the methane to reach the atmosphere50

it needs to be first transported from its production point, through the soil column, to the surface. On its way to the surface,

the methane can be oxidized by methanotrophic microbes in oxic soil layers, which affects the CO2:CH4 ratio at the surface

(Wania et al., 2010). There exist three important transport mechanisms: diffusion, ebullition, and plant-mediated transport

(aerenchyma) (Walter and Heimann, 2000; Wania et al., 2010; Kaiser et al., 2017). Their relative share is important with

regards to the potential methane oxidation, since plant-mediated transport, e.g., can enable methane to bypass the oxidative55

soil layers (Knoblauch et al., 2015). Diffusion describes the methane transport along a concentration gradient and is the slowest
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way of transport, thus facilitating methane oxidation (Knoblauch et al., 2015). Ebullition is a rather fast process, describing the

rise of methane gas bubbles through water (Knoblauch et al., 2015). Lastly, plant-mediated transport happens largely through

vascular plants, which possess so called aerenchyma, a type of aerated tissue responsible for supplying O2 to the roots (Wania

et al., 2010; Knoblauch et al., 2015). That tissue enables methane and CO2 to be transported through the plant to the atmosphere60

(Wania et al., 2010).
:::
This

::::::::::
connection

:::::::
between

:::::::
methane

::::::
release

:::
and

::::::
plants

::::::
further

::::
hints

::
at

:::
the

:::
fact

::::
that,

:::::
aside

::::
from

:::::::::::
hydrological

:::::::
changes,

:::::
future

::::::::
methane

:::::::::
emissions

:::
are

::::
also

:::::::::
influenced

:::
by

:::::::::
vegetation

:::::::
changes

::::::::::::::
(Kettunen, 2003)

:
. Many models account for

these three transport ways, including large-scale land surface models (Kaiser et al., 2017; Wania et al., 2010; Riley et al.,

2011; Chinta et al., 2024). In fact, Xu et al. (2016) found that the majority of methane models in their meta-study represented

these three pathways already, albeit to varying degrees of complexity. This connection between methane release and plants65

hints at the fact that, aside from hydrological changes, future methane emissions are also influenced by vegetation changes

(Kettunen, 2003). After all, the plant productivity, potentially increasing due to the CO2 fertilization effect, serves as substrate

for the methanogens (Kettunen, 2003). This aspect will especially be important in the Arctic, where large-scale vegetation

changes can be expected upon warming (Swann et al., 2010; Chapin et al., 2005; Cho et al., 2018). Considering all this, it is

worth looking into the recent developments concerning methane modeling. In this study we will focus on the methanogenesis70

aspect in particular, since other methane-related processes, e.g., methane transport, have already been implemented into models

in more detail over the years (Wania et al., 2010; Kaiser et al., 2017; Xu et al., 2016).
:
It
::
is
::::
also

:::::
worth

::::::
noting

:::
that

:::
we

:::::
focus

:::
on

::::::::
terrestrial

::::::::
emissions

::
in

::::
this

:::::
study.

:::::
Other

:::::::
methane

:::::::
sources,

::::
e.g.,

::::::::
wildfires,

:::::
lakes,

::::
and

::::::
marine

:::
and

:::::::::
geological

:::::::
sources,

::::
also

:::::
make

::
up

:
a
:::::::::
significant

::::
part

::
of

:::
the

:::::
Arctic

:::::::
methane

:::::::
budget,

:::::::::
potentially

::::::::::
contributing

::::
over

::::
30%

::
to

:
it
::::::::::::::::::::
(Parmentier et al., 2024)

:
. We will first

recap the crucial processes and environmental factors that have been identified to govern methanogenesis and the CO2:CH475

ratio in the literature. We will then examine how methanogenesis is currently modeled in land surface models and state-

of-the-art process-based methane models, and discuss efforts to bridge the divide between laboratory-scale and global-scale

approaches. This will lead to a clear recommendation of a model structure for a methanogenesis module inside a land-surface

model that can predict, process-based, the CO2:CH4 production ratio.

2 The complexity of methanogenesis80

One of the most challenging aspects of studying and modeling CH4 production in soils is its high degree of complexity,

encompassing various different processes, which are, in turn, affected by a multitude of environmental factors ((Xu et al.,

2015, 2016; van Bodegom and Scholten, 2001; Grant, 1998; Song et al., 2020; Sulman et al., 2022)). Among the most important

of these environmental factors
:::::::::::::
Methanogenesis

::
is

:::
not

:::
one

::::::
simple

:::::::::::::
straight-forward

:::::::
process

:::
but

:::::
rather

::
an

:::::::::::
entanglement

::
of
:::::::
various

:::::::::
interacting

::::::::
microbial

::::::::
processes

::
in

:::
the

:::
soil

::::::::::::::
(Xu et al., 2015).

::::
The

:::
two

:::::
main

:::::::::::::
methanogenesis

::::::::
pathways

:::
are

::::::::::::::
hydrogenotrophic

::::
and85

:::::::::
acetoclastic

::::::::::::::
methanogenesis,

::::::
during

:::::
which

:::::::::
hydrogen

::
or

::::::
acetate

:::
are

:::::
being

::::
used

:::
as

:::::::
substrate

:::
by

:::
the

::::::::
microbes

::::::::::
respectively,

::::
and

:::::::
methane

::
is

::::::::
produced

:::::::::::::
(Conrad, 1999).

:::
A

::::::
review

:::::::::
performed

::
by

::::::::::::::
Xu et al. (2016)

:::::
found

::::
that

:::
out

::
of

:::
the

:::
40

::::::::::
investigated

:::::::
models

::::
only

:
3
::::::::::
represented

::::
these

:::
two

::::::
major

::::::::
pathways.

::::
This

::
is

::::::::
significant

:::::::
because

:::
the

:::
two

::::::::
processes

:::::
yield

:::::::
different

::::::::
products:

::::::::::
acetoclastic

:::::::::::::
methanogenesis

:::::
results

::
in

::::
CO2::::

and
::::
CH4 :::::::::

production,
:::::
while

:::::::::::::::
hydrogenotrophic

:::::::::::::
methanogenesis

::::
only

:::::::
produces

::::
CH4:::::::::::::

(Conrad, 1999)
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:
.
:::::::::::
Furthermore,

:::
the

::::::::::
contribution

:::::
from

::::
each

:::::::
process

:::
to

::::
total

:::::::::::::
methanogenesis

::::::
varies

:::::::
strongly

::::::::
between

:::::::
different

::::::::::::
environments90

::::::::::::
(Conrad, 1999)

:
,
:::
soil

:::::
depth

::::::::::::::
(Liu et al., 2017),

:::
and

::::::
active

::::
layer

:::
vs.

:::::::::
permafrost

:::::
layers

:::::::::::::::
(Song et al., 2021),

::::::
among

::::::
others.

::::::::::
Considering

:::
this,

::::
the

::::
need

:::
to

::::::::
distinctly

::::::::
represent

:::::
these

:::::::::
processes

::
in

:::::::
models

:::::::
becomes

:::::::
evident

::
if
::

a
:::::::
realistic

::::::::
portrayal

:::
of

:::
the

:::::::::
CO2:CH4

:::::::::
production

::::
ratio

:::::
wants

::
to

::
be

::::::::
achieved.

:

:::
The

::::
most

:::::::::
important

::::::::::::
environmental

::::::
factors

:::
that

::::::::
influence

:::::::::::::
methanogenesis

:
are temperature (Yvon-Durocher et al., 2014), soil

pH (Sulman et al., 2022), water table depth (Chen et al., 2021), and soil biogeochemical conditions (Philben et al., 2020). Espe-95

cially temperature has a profound effect on not only microbial decomposition processes in general (Kirschbaum, 1995; Hobbie,

1996), but also on the CO2:CH4 ratio in particular (Yvon-Durocher et al., 2014; Roy Chowdhury et al., 2015). This is due to

the different temperature sensitivities of the processes involved (Yvon-Durocher et al., 2014), though generally both CH4 and

CO2 production experience an increase with rising temperature (Treat et al., 2015; Schädel et al., 2016). Yvon-Durocher et al.

(2014) showed in their meta-analysis that methanogenesis as a whole exhibits a higher average temperature dependence than100

general respiration (0.98 eV vs. 0.65 eV; measured as activation energy)(Yvon-Durocher et al., 2014). In fact, such differences

in temperature dependence persist even down to the finest scale, with temperature determining enzyme kinetics and thermody-

namics of the individual methanogenesis sub-processes (Conrad, 2023). Temperature-induced microbial community changes

may lead to changes in the dominant methanogenesis pathway, moving from acetoclastic to hydrogenotrophic with increasing

temperatures, thus affecting the CO2:CH4 ratio (Conrad, 2023).105

Naturally, this level of complexity can hardly be represented in global models. In methane modeling, there exist two common

ways of representing the effect of temperature (Chandel et al., 2023): the Q10 value and the Arrhenius-type functions (Chandel

et al., 2023).

f(T ) =Q
(T−Tref )

10
10 (1)

110

f(T ) = exp(
∆E

R
[
1

T0
− 1

T
]) (2)

The Q10 parameter expresses the factor by which the reaction rate increases upon a 10 °C change in temperature (Reichstein

and Beer, 2008) and it is ubiquitously used to express temperature dependency across models (Xu et al., 2016). Although, for

microbial models in particular, Chandel et al. (2023) found the Arrhenius functions to be more common. Despite its widespread

use, however, the Q10 concept is very simple (Reichstein and Beer, 2008) and not without criticism, owing in parts to the large115

span of reported values (Wu et al., 2021). Most models put the value for methanogenesis in the range of 1.5-4 (Xu et al., 2016)

– often a central value of around 2 is chosen (Riley et al., 2011; Tang et al., 2010) – which lies in the range of values reported

from many lab experiments (Roy Chowdhury et al., 2015; Treat et al., 2015; Inglett et al., 2012; Su et al., 2024; Lupascu

et al., 2012). Despite that, a meta analysis by Hamdi et al. (2013) showed that the entire spectrum of reported Q10 values from

lab and field studies has a large range from <2 to >300 (Hamdi et al., 2013). Wu et al. (2021) further criticized the use of120

constant Q10 parameters in models as overly simplistic, even finding that the decomposition rate behaved linearly rather than
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exponentially in the 5 °C to 30 °C range in their model experiment (Wu et al., 2021). They argue instead in favor of a more

in-depth biogeochemical model approach that accounts for individual processes (Wu et al., 2021).

As for the second frequently used method, the idea behind Arrhenius functions is to express the temperature sensitivity

through the activation energy of the process in question (Yvon-Durocher et al., 2014; Chen et al., 2021; Chandel et al., 2023;125

Li et al., 2023). This approach is based on fitting data to the Boltzmann-Arrhenius function, which, similar to the Q10 approach,

assumes an exponential increase of the metabolic rate with increasing temperature (Yvon-Durocher et al., 2014; Chen et al.,

2021). Here, reported values for methanogenesis lie between 0.62 and 0.98 eV (Yvon-Durocher et al., 2014; Chen et al., 2021;

Li et al., 2023). Both Q10 and activation energy values have been observed to decrease with increasing temperature and vice

versa (Hamdi et al., 2013; Reichstein and Beer, 2008). In models, the Q10 parameter is usually chosen, with different processes130

sometimes having their own distinct Q10 values (Song et al., 2020). This is still rare, however, with many models settling

on a single Q10 value for methane production (Riley et al., 2011; Kettunen, 2003; Xu et al., 2015), despite the evidence for

differences in the temperature response between the main pathways (Conrad, 2023). Methanotrophy usually has its own Q10

value in models, which is typically assessed at a slightly lower value than the one for methanogenesis, lying between 1.2-2.4

(Riley et al., 2011; Kettunen, 2003; Zhu et al., 2014; Sabrekov et al., 2016; Murguia-Flores et al., 2018; Grant, 1999). Since135

temperature is only a piece of the puzzle, the difficulty of how to accurately represent this factor in models alone hints at the

overarching complexity of methane modeling.

In this discussion it is important to remember that methanogenesis itself is not one simple straight-forward process but

rather an entanglement of various interacting microbial processes in the soil (Xu et al., 2015). The two main pathways are

hydrogenotrophic and acetoclastic methanogenesis , during which hydrogen or acetate are being used as substrate by the140

microbes respectively, and methane is produced (Conrad, 1999). A review performed by Xu et al. (2016) found that out of

the 40 investigated models only 3 represented these two major pathways . This is significant because the two processes yield

different products: acetoclastic methanogenesis results in CO2 and CH4 production, while hydrogenotrophic methanogenesis

only produces CH4 (Conrad, 1999). Furthermore, the contribution from each process to total methanogenesis varies strongly

between different environments (Conrad, 1999), soil depth (Liu et al., 2017), and active layer vs. permafrost layers (Song et al., 2021)145

, among others. Considering this, the need to distinctly represent these processes in models becomes evident if a realistic

portrayal of the CO2:CH4 production ratio wants to be achieved. Besides these two main pathways,
::::::
Besides

:::
the

::::
two

:::::
main

:::::::::::::
methanogenesis

::::::::
pathways

:::::::::
introduced

:::::::
earlier, there exist further processes that have an effect on methanogenesis. This can

either be directly through processes like hydrolysis and fermentation, which break down the organic matter and provide the

substrate for methanogenesis (Tang et al., 2016b; Grant, 1998), or indirectly through other redox reactions such as Fe(III)150

reduction (Sulman et al., 2022; Zheng et al., 2019; Philben et al., 2020; Yang et al., 2016; Roy Chowdhury et al., 2015). Espe-

cially the interplay between methanogenesis and Fe(III) reduction has been the subject of recent studies and their interactions

have started to be included in models (Sulman et al., 2022; Zheng et al., 2019). Additionally, some soil processes are in compe-

tition with methanogenesis for substrate, like other, energetically more favorable metabolic pathways (Lovley, 1991). Another

example is homoacetogenesis, through which acetate is being produced by the consumption of H2 and CO2. While acetate is155

the main substrate for methane production by acetoclastic methanogenesis, homoacetogenesis thereby reduces the substrates
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for hydrogenotrophic methanogens (LeeWays et al., 2022; Diekert and Wohlfarth, 1994). Looking at this web of interconnected

process (Xu et al., 2015; Song et al., 2020; Sulman et al., 2022), it becomes evident that by assuming a prescribed CO2:CH4

production ratio in process-based models, the reliability of future methane emission projections from warming Arctic soils and

thawing permafrost is highly limited.160

3 Representation of methanogenesis in LSMs

Despite recent efforts to integrate process-based methane production in LSMs (Song et al., 2020), their representation of CH4

production largely remains overly simplified (Chandel et al., 2023). This is also true for the land surface schemes that are a

part of widely used ESMs, such as the ones partaking in the CMIP6 (Coupled Model Intercomparison Project Phase 6)
:
,
::::::
though

::::::::
simulating

::::
the

::::
CH4::::::::

feedback
::::
was

:::
not

::::
part

::
of

::::
this

::::::
project

:
(Eyring et al., 2016). These models were featured in the current165

::::
latest

:
IPCC AR6 report (Canadell et al., 2021), so it would be desirable if they were able to simulate methane production

from thawing permafrost landscapes in a more realistic fashion that reflects the seasonality and variability observed in studies

(Galera et al., 2023; Knoblauch et al., 2018; Li et al., 2023; Chen et al., 2021). This dire need to more accurately portray

permafrost carbon processes in ESMs has recently been reaffirmed by Schädel et al. (2024) who concluded that methane emis-

sions are only represented to an "intermediate" degree in ESMs. Tightly connected aspects such as wetland distribution remain170

"poorly" represented (Schädel et al., 2024). The latter hints at a larger problem in regards to accurately modeling methano-

genesis in soils. Methanogenesis occurs when soils become waterlogged and oxygen is eventually depleted (van Huissteden,

2021). Predicting this in models, however, has been a persistent challenge (de Vrese et al., 2021; Schädel et al., 2024). In

models, this limitation of methanogenesis to anoxic conditions is usually realized through one of two methods:
:::
two

::::::::
different

:::::::
methods:

:::
(1)simulating the water-table in a given area or by

:::
and

:::
(2) explicitly modeling and tracking the O2 concentration in175

the soil layers (Morel et al., 2019). The former case is frequently realized via a TOPMODEL approach (Beven and Kirkby,

1979), which determines the inundated areas in a grid cell (Kleinen et al., 2020). ,
::::
thus

:::::::::::
representing

::::::::
horizontal

::::::::::::
heterogeneity

::::
while

::::
the

:::::
latter

::::::
method

:::::::::
represents

:::::::
vertical

::::::::::::
heterogeneity.

::::::::
Although

::::::
many

::::::
models

:::::
settle

:::
for

::::
one

::
of

::::
the

:::
two

:::::::::
methods,

::::
they

::
are

::::
not

::::::::
mutually

::::::::
exclusive.

:
Regardless of the chosen method

::
(s), the problem remains that soil hydrology is subject to a

high degree of sub-grid heterogeneity, especially in Arctic permafrost-affected regions (Beer, 2016; Schuur et al., 2008).180

In JSBACH, the land component of MPI-ESM (Max Planck Institute for Meteorology Earth System Model) (Mauritsen

et al., 2019) featured in CMIP6 (Zechlau et al., 2022), methane production has been modeled through a temperature depen-

dent partition factor which prescribes the faction
::::::
fraction

:
of carbon released as methane from total anaerobic decomposition

(Kleinen et al., 2021) . This is
:
-
::
an

::::::::
approach based on the approach in the CLM(4Me) model by Riley et al. (2011), which is185

used in other CMIP models as well (Zechlau et al., 2022). The temperature dependence in their model is realized through a

Q10 factor (Kleinen et al., 2020), which leads to an increased share of methane under warming conditions.
:::
The

::::::
model

::::
uses

:::
the

:::::::::::
TOPMODEL

::::::::
approach

::
to

:::::::
calculate

:::
the

:::::::::
inundated

::::::
fraction

::
in
:::
the

::::
grid

::::
cells

::::::::::::::::::
(Kleinen et al., 2020).

:
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Table 1. Overview of the main models discussed in this paper.

Models Overview

Model Methanogenesis Temperature Reference

JSBACH3.2 pre-set fraction, following (Riley et al.,

2011)

Q10 (Mauritsen et al., 2019;

Kleinen et al., 2020)

JULES scaling factor, pre-set fraction Arrhenius (Sellar et al., 2019;

Chadburn et al., 2020;

Clark et al., 2011)

JULES-microbe methanogenic microbial biomass and

activity, CO2:CH4 partition pre-set 1:1

Arrhenius (Sellar et al., 2019;

Chadburn et al., 2020;

Clark et al., 2011)

ORCHIDEE-PEAT reduced rate parameter with respect

to aerobic respiration, following

(Khvorostyanov et al., 2008a, b)

Q10 (Guimberteau et al.,

2018; Salmon et al.,

2022; Qiu et al., 2019)

ELM pre-set fraction, following (Riley et al.,

2011)

Q10 (Ricciuto et al., 2021;

Chinta et al., 2024)

ELM-SPRUCE acetoclastic and hydrogenotrophic

pathways, following (Xu et al., 2015)

Q10 (Ricciuto et al., 2021)

Song et al. model for

IBIS

acetoclastic and hydrogenotrophic

pathways, fermentation, homoacetoge-

nesis

Q10 (Song et al., 2020)

Sulman et al. model for

PFLOTRAN

acetoclastic and hydrogenotrophic

pathways, fermentation, Fe(III) reduc-

tion

CLM-CN T re-

sponse function

(Sulman et al., 2022;

Tang et al., 2016a)

Tang et al. model for

CLM-CN

acetoclastic and hydrogenotrophic

pathways, fermentation

CLM-CN T re-

sponse function

(Tang et al., 2016b;

Thornton and Rosen-

bloom, 2005)

Zheng et al. model acetoclastic and hydrogenotrophic

pathways, fermentation, Fe(III) reduc-

tion

CLM-CN T re-

sponse function

(Zheng et al., 2019;

Thornton and Rosen-

bloom, 2005)

Morel et al. model for

ISBA LSM

reduced rate parameter, based on

(Khvorostyanov et al., 2008b)

Q10 (Morel et al., 2019)

Ma et al. model for

TECO

ecosystem-specific CH4-release ratio

parameter

Q10 (Ma et al., 2017)

Another example is the UK Earth System Model’s LSM JULES (Sellar et al., 2019), which calculates methane production

from substrate availability, temperature, and the wetland fraction of the gridbox (Clark et al., 2011; Chadburn et al., 2020)190

7



through a multilayered scheme (Comyn-Platt et al., 2018; Burke et al., 2017), using a tuned methane production scaling fac-

tor (Chadburn et al., 2020). The temperature sensitivity is modeled through an Arrhenius function (Chadburn et al., 2020)
:::
and

::::::::
inundated

::::
areas

:::
are

::::::::::
represented

::::::
through

:::
the

::::::::
saturated

:::
grid

::::
cell

::::::
fraction

:::
via

:::::::::::
TOPMODEL

::::::::::::::::::::::::::::::::::::::::
(Chadburn et al., 2020; Comyn-Platt et al., 2018)

. Furthermore, Chadburn et al. (2020) showed an altered version of JULES called JULES-microbe, which features a much more

detailed decomposition process including hydrolysis, methanogenic microbial biomass, and microbial activity, though they do195

not explicitly model the two main methanogenesis pathways either (Chadburn et al., 2020). Instead they partition the produced

gases equally into CH4 and CO2, based on the theoretically assumed 1:1 production ratio of acetoclastic methanogenesis (Con-

rad, 1999; Chadburn et al., 2020). Recently, the UKESM has further received an emission-driven fully coupled methane cycle

(Folberth et al., 2022), showing the ongoing research development towards more in-depth methane representation.

The ORCHIDEE model is another commonly used LSM, which over the years has been updated to represent permafrost200

processes and high-latitude peatlands
::
in

::::::::::::::::
ORCHIDEE-PEAT(Guimberteau et al., 2018; Qiu et al., 2019). It has recently received

a methane module
::
an

:::::::
updated

:::::::
methane

:::::::
module

::::::
named

::::::::::::::::
ORCHIDEE-PCH4, based on the scheme described by Khvorostyanov

et al. (2008a, b), which uses the same temperature and soil moisture dependent function for methanogenesis as for aerobic

respiration, albeit with a 10-times lower rate (Salmon et al., 2022; Khvorostyanov et al., 2008a). Temperature dependence

was modeled through a Q10 function, although the relationship is assumed to be linear instead of exponential at values below205

0 °C , reaching zero at -1 °C (Qiu et al., 2019; Koven et al., 2011). Naturally, the
:::::
While

:::
the

::::
base

:::::::::::::::::
ORCHIDEE-PEAT

::::
uses

::
the

::::::::::::
TOPMODEL

::::::::
approach

::
to

::::::::
determine

::::::::
inundated

::::
grid

::::
cell

:::::::
fractions

::::::::::::::
(Qiu et al., 2019)

:
,
::::::::::::::::
ORCHIDEE-PCH4

::::::::
explicitly

::::
uses

:::
the

::::::
oxygen

:::::::::::
concentration

::
in

:::
the

::::
soil

::
for

::::::::::::::
methanogenesis

:::::::::::::::::
(Salmon et al., 2022)

:
.
:::
The

:::::
latter model has only been evaluated with data

from peatlands (Salmon et al., 2022). Peatlands, however, are a very specific environment with unique features and model

requirements (Mozafari et al., 2023). This limits the model’s application to these areas even though Arctic methane emissions210

from permafrost thaw will arise from other sources as well, such as thermokarst lakes or simply from thaw and inundation of

non-peatland soils (Saunois et al., 2020).

A land-surface model that has seen some recent progress in improving its methane representation is the Energy Exascale

Earth System Model’s (E3SM) land model (ELM) (Ricciuto et al., 2021). Originally, its methane module was based on the

CLM(4Me) (Riley et al., 2011), same as for JSBACH (Kleinen et al., 2021). Since then, there have been attempts to update215

the methane module and include a more process-based representation of many methane processes, for example in the ELM-

SPRUCE version with acetoclastic and hydrogenotrophic methanogenesis, based in large parts on the process-based methane

model developed by Xu et al. (2015) (Ricciuto et al., 2021; Xu et al., 2015). This updated module, however, has yet to be

incorporated into the ELM proper for global simulations
:
as

::::
part

::
of

::::::
E3SM (Ricciuto et al., 2021). The current version still uses

the CO2:CH4 ratio partition factor as proposed by Riley et al. (2011), as well as a Q10 parameter for modeling the temperature220

dependence of methane production (Chinta et al., 2024).
::
As

:::
for

::::::::::
inundation,

:::::
ELM

::::
uses

:
a
:::::::

typical
::::::::::
hydrological

:::::::::
sub-model

:::
to

:::::::
calculate

:::
the

::::::
spacial

::::::::::
distribution

::
of

:::::::::
wetlands,

:::::::
however,

::
it
:::
has

::::::::
recently

:::::::
received

::
an

:::::::
updated

:::::::
version

::::
with

:
a
:::::

focus
:::
on

::::::::
wetlands

:::::
called

:::::::::
ELM-Wet,

::::::
which

:::::::::
introduces

::
a

::::::
distinct

::::::::
sub-grid

:::::::::::
wet-landunit

:::
that

:::::::
enables

::
a
:::::
more

::::::::::
mechanistic

::::::::
portrayal

:::
of

:::::::
wetland

::::::::
processes

::::::::::::::::::
(Yazbeck et al., 2025).
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4 State of process-based methanogenesis models
:
of

::::::::::::::
methanogenesis

:::
at

::::
local

:::::
scale

:::::::::::
applications225

In contrast to
:::::
global

:
LSMs, there exist smaller process-based methane models on the lab

:::
and

:::
site

:
scale that represent many

of the processes related to methane production in much more detail (Xu et al., 2016, 2015; Grant, 1998; van Bodegom and

Scholten, 2001).
::::
The

:::::::::::
process-based

:::::::
methane

::::::
models

::::::::
discussed

::
in
::::
this

::::::
section

::::::
include

::::
both

:::::::::
standalone

::::::
models

:::
and

::::::::::::::
methane-focused

:::::::
modules

:::::::::
developed

::
for

::::::
larger

:::::::
models,

::::
such

::
as

::::::
LSMs.

::
In

:::::::
contrast

::
to
:::

the
:::::::::

previously
:::::::::

discussed
::::::
LSMs,

:::::
which

:::
are

:::::
being

:::::
used

::
in

:::::
global

::::::::::
simulations,

:::::
often

::
as

::::
part

::
of

::::::
ESMs,

:::
the

:::::::
models

::
in

::::
this

::::::
section

::::
were

:::::::::
developed

:::
for

::::::::
site-level

::
or

::::::::
lab-scale

:::::::::::
applications,230

::::
with

::
an

:::::::
explicit

:::::
focus

:::
on

:::::::
methane

:::::::::
processes.

:
Indeed, there has been an ongoing effort to refine the modeling of methane

over the decades and a plethora of models with varying complexity have emerged, with process-based models being
::::::
models

::::
using

::::::::::::
process-based

::::::::::::::
methanogenesis

::::::::::::
representation

:
at the top (Xu et al., 2016). It is these process-based approaches that

are needed to better understand the processes underlying methane dynamics in the soil, which will then enable more accu-

rate predictions on how these processes and, by extension, the methane budget at large will react to future climate change235

(Chandel et al., 2023). It should be noted, however, that many of the past in-depth methane models have been designed

for environments other than permafrost landscapes, with much of the research being focused on (rice) paddy soils (Fumoto

et al., 2008; van Bodegom and Scholten, 2001) and general wetland areas (Tang et al., 2010; Chadburn et al., 2020; For-

brich et al., 2024).Permafrost-affected soils constitute a special environment with
::::::::
Although

::::::::::::
process-based

:::::::
models

::::::
should

:::::
ideally

:::
be

::::::::
applicable

::::::
across

:::::::
different

::::::::::::
environments,

::::::::::::::::
permafrost-affected

::::
soils

::::::
exhibit

:
unique properties and microbial structure240

(Miner et al., 2022; Beer et al., 2022; Song et al., 2021) that is
::::::::
structures

:::::::::::::::::::::::::::::::::::::::::::::
(Miner et al., 2022; Beer et al., 2022; Song et al., 2021)

:::
that

:::
are

:
only comparable to the aforementioned ecosystems to a limited degree. Masyagina and Menyailo (2020) have shown

that the methane emission patterns of permafrost-affected areas differed significantly to those of non-permafrost areas, high-

lighting this issue. Nevertheless, since the thorough synthesis conducted by Xu et al. (2016), this development has only con-

tinued further and in recent years some highly sophisticated methane models have been published. One such state-of-the-art245

model is the methane module developed by Song et al. (2020) for the IBIS terrestrial ecosystem model (Song et al., 2020).

It is based on microbial functional groups, encompassing acetoclastic and hydrogenotrophic methanogenesis, fermentation,

homoacetogenesis, and methane oxidation (Song et al., 2020). Mathematically, these processes are largely realized through

formulas based on Michaelis-Menten kinetics (Song et al., 2020), while most of the parameter values stem from Grant (1998)

and Kettunen (2003). In the decomposition cascade, the model starts with dissolved organic carbon (DOC), which is calculated250

from the total soil organic carbon pool (SOC) via a temperature and moisture dependent DOC:SOC ratio factor (Song et al.,

2020). Acetate, CO2 and H2 are then produced through fermentation (Song et al., 2020). In the next step, these fermentation

products act as the substrate for the two main methanogenesis pathways (Conrad, 1999) and homoacetogenesis (Diekert and

Wohlfarth, 1994; Song et al., 2020).

One process that has recently started to be included in methane models more frequently is iron reduction (Sulman et al.,255

2022; Zheng et al., 2019). It is an energetically more favorable metabolic pathway for microbes, during which Fe(III) is

being reduced to Fe(II) under anoxic conditions (Lovley, 1991). Although these processes are in competition with each other

(Lovley, 1991; Sulman et al., 2022), they have been observed to occur concurrently in soils (Roy Chowdhury et al., 2015;
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Sulman et al., 2022), thus hinting at a more complicated interplay (Sulman et al., 2022; Zheng et al., 2019). A recent model

that includes this process is the model developed by Sulman et al. (2022). It features largely the same microbial (methane)260

processes as the Song et al. (2020) model, minus the homoacetogenesis, in a comparable level of detail. Their model, however,

adds another level of complexity by explicitly modeling the Fe(III) reduction alongside the methane processes (Sulman et al.,

2022). The methane production is modeled via Monod-type equations and the interactions with Fe(III) reduction as well as

the dependence of the methanogenic pathway on pH was represented (Sulman et al., 2022). They found the inclusion of

other terminal electron acceptors to be important for accurate methane predictions, since Fe(III) reduction either increased265

or decreased CH4 production, depending on how much substrate was available to the microbes (Sulman et al., 2022). These

findings compliment
::::::::::
complement

:
the results from Tang et al. (2016b), who also used a process-based

:::::::
methane

:
model, and

found that Fe(III) reduction positively impacted methanogenesis, by means of raising the pH, when substrate was not limiting

(Tang et al., 2016b).
::::
Their

::::::
model

::
is

::
an

::::::::::
augmented

::::::
version

::
of

:::
the

:::::::::
CLM-CN

:::::
model

:::::::::::::::::::::::::::::
(Thornton and Rosenbloom, 2005),

::::::
which

:::
has

::::
been

::::::::
expanded

:::
by

:::::::::::
incorporating

:::::::::
additional

:::::::::::::
biogeochemical

:::::::
process

:::::
from,

::::
e.g.,

::::::
ecosys

::::::::::::
(Grant, 1998)

:::
and

:::
the

:::::
model

:::::
from270

:::::::::::::
Xu et al. (2015).

:

Similarly, Zheng et al. (2019) developed a process-based
:::::::
methane

:
model that uses Monod-type equations to model methano-

genesis (acetoclastic and hydrogenotrophic) and features Fe(III)-reduction and fermentation (Zheng et al., 2019). They further

included a thermodynamic factor to simulate the dynamic between the different redox processes (Zheng et al., 2019). In their

model, hydrolysis of polysaccharides was assumed to be the rate limiting process for methanogenesis under anaerobic condi-275

tions (Zheng et al., 2019; Yang et al., 2016), which aligns with the importance of substrate availability for the methanogenesis-

iron-reduction-system found by Sulman et al. (2022). This connection has further been supported by incubation study results

that also found a correlation between iron reduction, acetate production and methanogenesis (Yang et al., 2016). Fermenters

prefer organic carbon compounds with low-molecular weight and the fermentation products (e.g., acetate) are required for

methanogenesis (Yang et al., 2016). Consequently, this early stage of the anaerobic decomposition appears to have significant280

impact on the final methane production rate (Yang et al., 2016; Zheng et al., 2019). The designation of hydrolysis as the rate-

limiting step has, however, been called into question by Conrad (2023), who instead argued in favor of the final steps in the

methanogenesis process as being rate limiting (Conrad, 2023).

The methane model developed by Morel et al. (2019) as a module for the ISBA LSM (Noilhan and Planton, 1989) is another

interesting approach. They model methanogenesis with the same 10-times lower decomposition rate, compared to aerobic285

decomposition, from Khvorostyanov et al. (2008a) that is also used in the recent ORCHIDEE module (Salmon et al., 2022).

Aside from the usual temperature and substrate availability dependence, their model also factors in the limitation by oxygen

concentration in each respective soil layer (Morel et al., 2019). Their approach of explicitly modeling O2 concentration in the

soil layers and its impact on methanogenesis differs from the more common approach of determining the water table level and

strictly limiting methanogenesis to layers below that level(Morel et al., 2019)–an approach that has previously been criticized290

(Yang et al., 2017). Their model, however, does not have a representation of the two main methanogenesis pathways (Morel

et al., 2019), thus reducing its complexity.
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The data-constrained process-based
:::::::
methane model from (Ma et al., 2017) is another example for a methane module incor-

porated in a terrestrial ecosystem model (TECO) (Ma et al., 2017). Even though methanogenesis itself is not modeled in as

much detail as other models discussed here–they used an ecosystem-specific CH4-release ratio parameter with no distinction295

between pathways–their warming experiment resulted in an increased CH4:CO2 emission ratio (Ma et al., 2017). This makes

the study one of the few who put a focus on the changes of this ratio.

5 Going forward - bridging the divide between scales

Looking at the discussed small-scale process-based methane models and
:::::
global LSMs side by side, it becomes clear that they

differ profoundly with regard to how detailed methane processes, especially methanogenesis, are being represented. Bridging300

this gap and using the process understanding gained in smaller scale process-based models have been identified as major

remaining challenges for making ESMs more reliable and grounded in reality (Zheng et al., 2019; Xu et al., 2016; Chandel

et al., 2023; Ricciuto et al., 2021). This development is needed, if models want to capture the highly variable CO2:CH4

production ratios observed in the field (Galera et al., 2023) and lab (Knoblauch et al., 2018; Heslop et al., 2019).Furthermore,

Ma et al. (2021) have shown the importance of constraining models with in situ observational data, since
::
At

::::
this

:::::
point,

::
it

::
is305

::::::::
important

::
to

::::::
clearly

:::::::::
distinguish

::::::::
between

:::::::
methane

:::::::::
production

::::
and

:::::::
emission

::::::
ratios.

:::
The

:::::
high

::::::::
variability

:::
of

::::::::
CO2:CH4::::::::

emission

::::
ratios

:::::::::
measured

:
in
:::
the

::::
field

::
is

:::
the

:::::
result

::
of

:::::
many

:::::::
different

::::::::
processes

:::::::::::::::::
(Galera et al., 2023),

::::::
beyond

::::::::::::::
methanogenesis.

::::
The

:::::::
methane

:::
has

::
to

::
be

::::::::::
transported

::
to

:::
the

::::::
surface

::::
and,

:::::::::
depending

::
on

:::
the

::::::::
dominant

::::::::
transport

::::::::::
mechanism,

::::
may

::
be

::::::::
oxidized

:::::
almost

::::::::::
completely

::
by

::::::::::::
methanotrophs

::::::
before

::
it

:::
can

:::::
reach

:::
the

::::::::::
atmosphere

::::::::::::::::::::::::::::::::::
(Wania et al., 2010; de Vrese et al., 2021).

:::::::::::
Additionally,

::::
CO2:::::::::

emissions

::::
from

::::
other

::::::::
processes

::::
that

::::::
happen

:::::::::::
concurrently

::::
with

:::::::::::::
methanogenesis

::
at

::::
sites

::::
with

::::::::
anaerobic

:::::::::
conditions,

::::
such

::
as

::::::
Fe(III)

::
or

::::::
sulfate310

::::::::
reduction

::::::::::::::::::::::::::::::::::
(Dettling et al., 2006; Sulman et al., 2022)

:
,
:::
and

::::::::::
respiration

::
in

::::
oxic

::::::
layers

::::
also

:::::
affect

:::
the

:::::
CO2:CH4 and

:::::::
emission

::::
ratio

::::::::::::::::
(Galera et al., 2023)

:
.
:::::::
Refining

:::
the

::::::::::::::
methanogenesis

::::::
process

:::::
alone

::::
will

:::::::::::
consequently

:::
not

::
be

::::::::
sufficient

:::
for

::::::
greatly

::::::::
reducing

::
the

::::::::::
uncertainty

::
of
::::

the
:::::::
emission

:::::
ratio

:::::::
between

::::
CO2::::

and
::::::::
methane

::
at

:::
the

:::::::
surface.

::::::::
However,

:::
the

::::::::
modeling

:::
of

::::::::::::::
methanogenesis,

:::
and

:::
by

::::::::
extension

:::
the

:
CO2emissions show distinct responses to climate change (Ma et al., 2021).

::::
:CH4::::::::::

production
::::
ratio,

:::
in

::
the

::::
soil

::
is

:::::::
already

:
a
::::::

source
:::

of
::::::::::
uncertainty.

:::::::
Looking

::
at
::::

the
:::::::::
production

:::::
ratios

::::::::
obtained

:::::
under

:::::::::
controlled

:::
lab

:::::::::
conditions

:::::
from315

:::::::::::::::::::
Knoblauch et al. (2018),

:::::
who

:::::::
reported

::::::
values

:::::::
between

:::::::
0.2-0.8,

::
in

:::::::
contrast

::
to

:::
the

:::::
fixed

::::
ratio

::::::
factors

::::
used

::
in

:::::
many

::::::
LSMs

::::
(see

::::
Table

:::
1),

::
it
::::::::
becomes

::::::
evident

::::
that

:::::
using

::::
these

:::::
fixed

:::::
ratios

:::::::
directly

::::
leads

:::
to

::
an

:::::::
increase

:::
of

:::
the

:::::::::
uncertainty

:::
of

:::::::
methane

:::::::
release,

::::::
already

::
in

:::
the

:::::
initial

::::
step.

::
To

:::::::
quantify

::::
this

::::::::::
uncertainty,

::::::::
especially

::
in

::::::
relation

::
to
:::
the

:::::
other

::::::::
processes

:::::::
affecting

:::
the

:::::::
methane

:::::::
budget,

:
a
:::::::
dynamic

::::::::::::
process-based

:::::::
methane

:::::::
models

:
is
:::::::
needed,

::::::
giving

::::::
further

::::::
agency

::
to

::
its

:::::::::::
development.

:

First efforts in this direction are being done, with one example being the inclusion of the aforementioned model by Song320

et al. (2020) into a terrestrial ecosystem model. Another case is the model by Ricciuto et al. (2021), which has been included

in the ELM and features a process-based methanogenesis scheme (Xu et al., 2015). Their model reproduced the observed

distinct seasonality of the two main methanogenesis pathways (Ricciuto et al., 2021), showing the advantages of such a detailed

representation, though their model has so far only been run on a site level scale (Ricciuto et al., 2021). These models are focused

on natural wetland (Song et al., 2020) and peatland emissions (Ricciuto et al., 2021) respectively, meaning that the distinct325
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features of permafrost-affected areas (Masyagina and Menyailo, 2020) are largely not considered in their model composition

and subsequent evaluation with site data (Song et al., 2020; Ricciuto et al., 2021). Still, the ELM has recently received an

improved wetland scheme in ELM-Wet and there are plans to implement the already discussed in-depth methane model by

Sulman et al. (2022) in the future to further improve methanogenesis representation (Yazbeck et al., 2025).

Sulman et al. (2024) have recently performed a similar inclusion of an in-depth biogeochemical model into a LSM, featuring330

methanogenesis and methanotrophy among others, but their model study was concerned with and evaluated against data from

coastal wetlands, which are distinct in their own right with, e.g., sulfate dynamics (Sulman et al., 2024). Modeling efforts like

these are direly needed for permafrost-affected soils as well (Schädel et al., 2024), since estimations of the permafrost-carbon-

climate feedback remain uncertain in both their spatiotemporal extent and magnitude (Miner et al., 2022; Nitzbon et al., 2024).

Indeed, the future ratio of CO2:CH4 emissions is one of the key open questions in that endeavor (Schuur et al., 2022).
::::
Even335

::::::
though

:::
the

:::::::
emission

::::
ratio

::
is
:::::::
affected

:::
by

:::::
many

::::
other

:::::::::
processes,

::
as

:::::::::
discussed

:::::
above,

:::
the

::::::::::
production

::::
ratio

::
is

::
an

:::::::::
important

:::::
initial

::::
step. Additionally, the representation of permafrost processes in ESMs is generally still severely lacking (Miner et al., 2022;

Schädel et al., 2024), with many of the models informing the most recent IPCC report still not having permafrost processes

included (Canadell et al., 2021).

More complexity or realism, in regards to how certain processes are modeled, might not always be the optimal way however.340

Sulman et al. (2018) argued in their meta study, for example, that the ever increasing complexity and amount of processes in

SOC-focused models may in fact add to the already large uncertainty of projections, due to an increase in modeling possibilities

to choose from (Sulman et al., 2018). A more concrete example would be the JULES LSM, which had in the past been

enhanced with a more detailed methane soil-transport and oxidation scheme (McNorton et al., 2016). This scheme was later-on

abandoned due to the overall negligible improvement in terms of making the results more accurate (Comyn-Platt et al., 2018).345

In light of many other processes being underrepresented or all out missing in global models, the adequate complexity of each

included process needs to be considered. Abrupt thaw processes, e.g., could lead to an increase in permafrost thaw emissions

by up to 40% if accounted for, yet they are not featured in global models (Turetsky et al., 2020; Schädel et al., 2024). Naturally,

numerical resources are not endless and current ESMs already struggle with their ever-increasing complexity (Schädel et al.,

2024). Considering this, it might be necessary to find a middle ground between the current state of methane representation in350

most LSMs and the state-of-the-art smaller scale process-based methane models.
:::::::::::
Furthermore,

:
it
::::
will

::
be

:::::::::
important

::
to

:::::::
quantify

::
the

::::::::::
uncertainty

:::
and

::::::::::
importance

::
of

:::
the

::::::
various

::::::::
processes

::::::::::
contributing

::
to

:::
the

::::
total

:::::::
methane

::::::
budget,

::
to

:::
see

::::::
which

::::::::
processes

::::::
require

::::
more

::::::::
attention,

:::::::::
numerical

::::::::
resources

:::
and

::::::
further

::::::::::
refinement.

In conclusion, when modeling methane production in soils, the essential processes determining the CO2:CH4 production

ratio appear to be (1) fermentation, which has been identified as a potential rate-limiting step in multiple studies (Zheng et al.,355

2019; Sulman et al., 2022; Philben et al., 2020), (2) acetoclastic and (3) hydrogenotrophic methanogenesis and the variable

share between the two (Conrad, 1999). LSMs need to feature at least these three core-processes (see Figure 1) if the dynamics

of the CO2:CH4 production ratio wants to be represented.

Additionally, these core-processes may be complemented by closely connected processes that either enhance or stand in

competition with methanogenesis, most importantly Fe(III) reduction and homoacetogenesis (see Figure 2), something that has360
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Figure 1. Schematic structure of the suggested core-processes required for modeling the dynamics of the CO2:CH4 production ratio, with

(1) fermentation, (2) hydrogenotrophic methanogenesis, and (3) acetoclastic methanogenesis.

Figure 2. Schematic structure of a more complex approach for modeling the dynamics of the CO2:CH4 production ratio, with core-processes

(1) fermentation, (2) hydrogenotrophic methanogenesis, (3) acetoclastic methanogenesis in blue, and closely connected process (4) Ho-

moacetogenesis and (5) Fe(III) reduction in green.

already been achieved in some smaller scale process-based models (Sulman et al., 2022; Zheng et al., 2019; LeeWays et al.,

2022; Diekert and Wohlfarth, 1994). Though it would undoubtedly be preferable to have these ancillary processes featured in

LSMs as well, this would make the task all the more difficult. Previous studies found, for example, Fe(III) reduction to impact

methanogenesis indirectly through changes to the pH (Sulman et al., 2022; Zheng et al., 2019), meaning that LSMs would

have to both model global soil Fe concentrations and soil pH levels. When considering the current, highly simplified state of365

methanogenesis modeling in LSMs, it would be a more realistic first step to focus on the three aforementioned core-processes,

before tackling further connected processes.

These processes are influenced by multiple environmental factors, the most important of which are: temperature (Yvon-

Durocher et al., 2014), pH (Sulman et al., 2022), and oxygen availability (Morel et al., 2019) or water table depth (Chen

et al., 2021). Soil biogeochemical conditions, especially the discussed interplay with Fe(III) reduction, is another important,370

albeit more complicated factor that has relatively recently emerged as a focus point in modeling studies on methane (Philben

et al., 2020; Sulman et al., 2022; Zheng et al., 2019; Yang et al., 2016). Despite their importance, many of these factors are

poorly quantified across the Arctic (Stimmler et al., 2023). This is largely due to the scarcity of observational field data in the

vast and remote Arctic areas like Northern Russia (Suleymanov et al., 2024). ESMs, however, require spatial maps of these

soil parameters to accurately portray the soil biogeochemical processes in the Arctic regions. Besides the obvious need for375

more field data, there are some recent publications which provide spatial datasets derived from the few data we already have.
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(Stimmler et al., 2023; Suleymanov et al., 2024). Stimmler et al. (2023) extrapolated sampling data to create a Pan-Arcitc

:::::::::
Pan-Arctic map of bioavailable soil elements, including Fe, based on lithology. Another interesting approach is shown in

Suleymanov et al. (2024) who used machine learning algorithms to digitally map soil properties, like soil pH, in Arctic areas

with scarce data availability. These techniques may prove to be important tools to bridge the large gaps in the spatial data.380

Both still depend on field data, however, which means that more extensive field studies remain crucial (Suleymanov et al.,

2024).
:::
The

::::
same

::
is
::::
true

:::
for

:::::::::::::
methanogenesis

:::::::::::
measurement

::::
data

:::::::
required

::
to

:::::::::
benchmark

:::::::
models

:
at
:::::
large

::::::
scales,

::::::::
something

::::
that

::
is

::::::
difficult

::
to

:::::
attain

:::
for

:::
the

:::::
same

:::::::
reasons.

::
In

::::
fact,

::::::::::::::
Ma et al. (2021)

:::
have

::::::
shown

:::
the

:::::::::
importance

:::
of

::::::::::
constraining

::::::
models

::::
with

::
in

::::
situ

:::::::::::
observational

::::
data,

:::::
since

::::
CH4::::

and
::::
CO2:::::::::

emissions
::::
show

:::::::
distinct

::::::::
responses

::
to
:::::::

climate
::::::
change

::::::::::::::
(Ma et al., 2021)

:
.
:::::
Even

::::::
though

::
lab

::::::::::
incubations

::::
only

::::
offer

:::::::
limited

::::::
insights

::::
into

::
in

:::
situ

:::::::::
conditions

::::::::::::::::
(Galera et al., 2023)

:
,
::::
they

:::
can

::::::::::
nevertheless

:::
be

:::::
useful

::
to

::::::
isolate385

:::
and

:::::
study

:::::
single

::::::::
processes

::::
that

:::
are

::::
hard

::
to

:::::::::
disentangle

::
in
:::
the

:::::
field.

Concerning the temperature dependence, the Q10 function is arguably the most commonly used method for describing the

temperature sensitivity of methane production in models (Xu et al., 2016), likely due to its simplicity (Reichstein and Beer,

2008). At the same time, the Q10 value has been repeatedly identified as a highly sensitive model parameter (Chinta et al.,

2024; Riley et al., 2011; Song et al., 2020; Ma et al., 2017), making its accurate assessment paramount. Parameter estimations,390

however, vary strongly between different models (Xu et al., 2016), owing in large part to the wide range of reported values

from experiments (Roy Chowdhury et al., 2015; Hamdi et al., 2013; Wu et al., 2021). Furthermore, the different temperature

sensitivities of the processes involved in fermentation and methanogenesis (Conrad, 2023) need to be considered and should

be represented in future models. Reducing the uncertainty introduced through the modeling of temperature dependence will be

a crucial step towards improving the overall predictive abilities of methane models.395

For predicting future methane emissions from soils, further processes are required. First, the transport of methane to the

surface through the main three transport ways (Walter and Heimann, 2000; Wania et al., 2010; Kaiser et al., 2017) and, second,

methanotrophy, which has the possibility to drastically reduce methane emissions before they reach the atmosphere (de Vrese

et al., 2021). These processes are, however, already more broadly represented in models (Xu et al., 2016), including LSMs (Wa-

nia et al., 2010; Kaiser et al., 2017; Chinta et al., 2024), compared to methanogenesis. Here it could be interesting to explore,400

e.g., the kinetic differences between low-affinity and high-affinity methanogens, the former requiring high methane concentra-

tions while the latter can function even under atmospheric methane concentrations (Voigt et al., 2023; Dion-Kirschner et al.,

2024), which is yet to be explored in most models
:::::
rarely

::::::::
explored

::
in

:::::::
models.

:::
One

::::::
model

:::::
study

::::
that

:::
did

::::::
include

:::::::::::
high-affinity

:::::::::::
methanogens

:::
into

::
a

:::::::::::::
biogeochemical

:::::
model

::
is
:::
the

::::
one

::
by

::::::::::::::
Oh et al. (2020).

:::::
They

::::
used

:::
the

:::::::::
Terrestrial

:::::::::
Ecosystem

::::::
Model

::::::
(TEM)

::::::::::::::::::::::
(Zhuang et al., 2004, 2013)

::
as

:
a
:::::
basis

:::
and

::::::
found

:::
that

:::
the

:::::::
addition

::
of

:::::::::::
high-affinity

:::::::::::
methanogens

::
to

:::
the

::::::
model

:::
led

::
to

:
a
::::::::
doubling405

::
of

:::
the

:::::
Arctic

:::::::
upland

:::::::
methane

:::::
sink,

:::::::
reducing

:::
net

:::::
CH4::::::::

emissions
:::

by
:::
ca.

:::
5.5

:::
Tg

:::::
CH4 ::::

yr−1
::::::::::::::
(Oh et al., 2020).

:::::
This

:::::::::
significant

::::::::
reduction

:::::
shows

::::
that

::::::
further

:::::::
refining

::::::::::::
methanotrophy

::
in
:::::::
models

:::
will

::::
also

:::
be

::::::
crucial

:::
for

:::::::
reducing

:::
the

::::::::::
uncertainty

::
of

:::::::::
CO2:CH4

:::::::
emission

::::::
ratios,

:::
and

::::
more

::::::
studies

:::::::
focused

:::
on

::
the

::::::::
inclusion

::
of

:::::::::::
high-affinity

:::::::::::
methanogens

::
in

::::::
models

:::
are

::::::
needed

::::::::::::::
(Oh et al., 2020)

.

Here
:::::
There

:::
are

::::
other

:::::::::
important

:::::::::
uncertainty

:::::::
sources

:::::::::
concerning

:::
the

::::::::
methane

::::::
budget,

::::
one

::
of

:::::
which

:::
are

::::
cold

::::::
season

::::::::
methane410

:::::
fluxes,

::::::
which

:::
can

:::::
make

:::
up

:::::
more

::::
than

::::
half

::
of

:::
the

::::
total

:::::::
annual

:::::
Arctic

::::::::
methane

:::
flux

::::::::::::::::
(Zona et al., 2016)

:
.
::
In

:::::::
models,

::::::::
however,
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::::
these

:::::::::
emissions

:::
are

:::::::::
commonly

:::::::::::::
underestimated

:::
and

::::::
poorly

::::::::::
constrained

::::::::::::::::::::::::::::
(Treat et al., 2018; Ito et al., 2023).

::::::::::::::::
Treat et al. (2018)

::::::
showed

::::
that

::::::::::
constraining

:
a
::::::::::::
process-based

:::::
model

::::::::
ensemble

::::
with

:::::::::
measured

:::
data

:::::
from

:::
the

::::::::::
non-growing

::::::
season

:::::::::::::::
(September-May)

::::
could

::::::::
increase

:::
the

::::::
annual

:::::::
wetland

::::::::
methane

::::
flux

:::
by

::::
25%

::::::
when

::::::::
compared

:::
to

:::
the

::::::::::::
unconstrained

:::::::::
approach.

:::::
These

::::::::
findings

::::
have

:::::
been

:::::::::::
corroborated

:::
by

:::::::::::::
Ito et al. (2023)

:
,
::::
who

:::::::::
compared

:::
the

::::
cold

::::::
season

:::::::::::::::
(September-May)

::::::::
methane

::::
flux

::::::
outputs

:::
of

:::
16415

::::::
models

::
to

::
in

:::
situ

::::::::::::
observational

:::
data

::::
and

:::::
found

::::
that

:::
the

::::::
models

:::::::::::::
underestimated

:::::::
methane

::::::::
emissions

::::::
during

::::
that

::::::
period,

::::
with

:::
the

::::::::::
discrepancy

::::
being

:::::::::
especially

::::::::::
pronounced

::
in

::::::
months

::::
that

::::::::
exhibited

::
air

:::::::::::
temperatures

:::::
under

::
0
:::
°C.

::::
This

:::::::::::::
underestimation

::
is
::::
due

::
to

:::::::::
insufficient

::::
cold

::::::
season

::::::
process

::::::::::::
representation

:::
and

::::::::::::::
parametrization

::::::::::::::::::::::::::::
(Ito et al., 2023; Treat et al., 2018).

:::::::
Models

:::
fail

::
to

:::::::
capture,

::
for

::::::::
example,

:::
the

::::::::
observed

:::::
burst

::
of

::::::::
methane

::::::::
emissions

::::::
during

:::
the

::::::::
freeze-in

::::::
period

::
in

:::::::::::
late-autumn

:::::::::::::::::::::
(Mastepanov et al., 2008)

:
.
::::
This

:::::
period

:::::
falls

:::
into

:::
the

:::::
"zero

:::::::
curtain"

:::::::
period,

::::::
during

:::::
which

:::
the

::::
soil

::::
stays

:::::::::
unfrozen,

:::::
while

:::::::::::
temperatures

::::
stay

::
at

::::::
around

::
0420

:::
°C,

:::
due

::
to

:::::
latent

::::
heat

::
of
::::::

fusion
::
of

::::
soil

:::::
water

:::
and

:::::
snow

:::::
cover

:::::::::
insulation

:::::::::::::::
(Zona et al., 2016).

::::
The

:::::
latter

::
is

::::::::
especially

:::::::::
important

::::::
because

:::::::
changes

:::
to

:::
the

:::::
snow

:::::
cover

:::::
affect

:::
soil

:::::::::::::::
thermodynamics,

::::::
which,

::
in

::::
turn,

::::::
affects

::::
soil

::::::::::::::
biogeochemistry

:::
and

::::::::::
permafrost

::::::::
dynamics

::::::::::::::::::
(Pongracz et al., 2021)

:
.
:::
The

::::::
impact

::
of

:::::::::
improving

:::
the

::::::::::::
representation

::
of

::::
snow

::::::::
processes

::
in
:::::::
models

::
for

::::::
further

::::::::
reducing

:::::::::
uncertainty

::
in

:::::::::
projecting

:::::
Arctic

:::::::
methane

:::::::::
emissions,

:::
has

::::
been

::::::
shown

:::
by

::::::::::::::::::
Pongracz et al. (2021),

::::
who

:::::::::::
implemented

:
a
::::::::::
multi-layer

:::::::::::
snow-scheme

:::
into

:::
the

:::::::::::
LPJ-GUESS

:::::::
dynamic

:::::::::
vegetation

:::::
model

:::
and

::::::
found

:
a
:::::::::
significant

:::::::::::
improvement

::
to

::
the

:::::::::
simulated

:::::::::
permafrost425

:::::
extent.

:::::::
Further

:::::
model

:::::::::
refinement

:::
of

::::
these

:::::::::
processes

::
is,

:::::::::::
consequently,

:::::::
needed

::
to

::::::
reduce

:::
this

::::::::::
uncertainty

::
in

:::
the

:::::
Arctic

::::::::
methane

:::::
budget

::::::::::::::
(Ito et al., 2023).

:

::::::
Finally,

:::
the

:::::::::
uncertainty

::
of

:::::::
wetland

:::::
extent

::::
and

:::::::::
distribution

::
as

::::
well

::
as

::::
their

::::
poor

::::::::::::
representation

::
in

::::::
models

::::::::::::::::::
(Schädel et al., 2024)

::::::
remain

::::
some

:::
of

:::
the

::::
most

::::::::
important

:::::::
sources

::
of

::::::::::
uncertainty

:::::::::
concerning

:::
the

::::::
Arctic

:::::::
methane

::::::
budget,

:::
as

:::::::
recently

:::::
shown

:::::
again

:::
by

:::::::::::::::
Ying et al. (2025)

:
in

:::::
their

::::::::::::::::::::
machine-learning-based

::::::::
upscaling

:::::
study.

:::::
Here

::
in

::::
this

:::::
paper, we present a framework for a more430

process-based portrayal of methanogenesis in LSMs and review which processes and factors need to be considered for cap-

turing the dynamics of the CO2:CH4 production ratio. This development becomes a necessity if research questions such as

the prediction of pan-Arctic greenhouse gas fluxes under a changing future hydrology want to be answered with a higher de-

gree of confidence.
:::::::
However,

:::
the

:::::
many

:::::
other

::::::::
discussed

::::::::
processes

::::
that

:::::
make

::
up

:::
the

::::
total

::::::::
methane

::::::
budget

::::
have

::::
high

:::::::
degrees

::
of

:::::::::
uncertainty

::
as

::::
well

:::
and

:::::::::
estimating

::::
their

:::::::::
respective

:::::::::
importance

:::
and

::::::::::
quantifying

::::
their

:::::::::::
uncertainties

:::
will

:::
be

:::::
crucial

:::::
going

::::::::
forward.435

In the end, it would also enable
:
a
:::::
more

::::::::::::
process-based

:::::::::::::
methanogenesis

::::::::
approach

::
in

:::::::
models

:::::
could

::::::::
contribute

::
to
:

more reliable

estimates of the carbon-climate feedback, for which the relative roles of carbon dioxide and methane emissions represent an

important factor (Schuur et al., 2022).
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C., Graham, D. E., Hartley, I. P., Iversen, C. M., Kane, E., Knoblauch, C., Lupascu, M., Martikainen, P. J., Natali, S. M., Norby, R. J.,
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Šantrůčková, H., Schädel, C., Schuur, E. A. G., Sloan, V. L., Turetsky, M. R., and Waldrop, M. P.: A pan-Arctic synthesis of CH4 and

CO2 production from anoxic soil incubations, Global change biology, 21, 2787–2803, https://doi.org/10.1111/gcb.12875, 2015.760

Treat, C. C., Bloom, A. A., and Marushchak, M. E.: Nongrowing season methane emissions-a significant component of annual emissions

across northern ecosystems, Global change biology, 24, 3331–3343, https://doi.org/10.1111/gcb.14137, 2018.

Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C.,

Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release through abrupt permafrost thaw, Nature Geoscience,

13, 138–143, https://doi.org/10.1038/s41561-019-0526-0, 2020.765

van Bodegom, P. M. and Scholten, J. C.: Microbial processes of CH4 production in a rice paddy soil: model and experimental validation,

Geochimica et Cosmochimica Acta, 65, 2055–2066, https://doi.org/10.1016/S0016-7037(01)00563-4, 2001.

van Huissteden, J.: THAWING PERMAFROST: Permafrost carbon in a warming arctic, Springer, [S.l.], ISBN 9783030313814, 2021.

Voigt, C., Virkkala, A.-M., Hould Gosselin, G., Bennett, K. A., Black, T. A., Detto, M., Chevrier-Dion, C., Guggenberger, G., Hashmi,

W., Kohl, L., Kou, D., Marquis, C., Marsh, P., Marushchak, M. E., Nesic, Z., Nykänen, H., Saarela, T., Sauheitl, L., Walker, B., Weiss,770

N., Wilcox, E. J., and Sonnentag, O.: Arctic soil methane sink increases with drier conditions and higher ecosystem respiration, Nature

Climate Change, 13, 1095–1104, https://doi.org/10.1038/s41558-023-01785-3, 2023.

Walter, B. P. and Heimann, M.: A process–based, climate–sensitive model to derive methane emissions from natural wetlands:

Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochemical Cycles, 14, 745–765,

https://doi.org/10.1029/1999GB001204, 2000.775

Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model:

LPJ-WHyMe v1.3.1, Geoscientific Model Development, 3, 565–584, https://doi.org/10.5194/gmd-3-565-2010, 2010.

25

https://doi.org/10.1029/2023MS004002
https://doi.org/10.1073/pnas.0913846107
https://doi.org/10.5194/gmd-9-927-2016
https://doi.org/10.5194/gmd-9-927-2016
https://doi.org/10.5194/gmd-9-927-2016
https://doi.org/10.5194/bg-13-5021-2016
https://doi.org/10.5194/bg-7-3817-2010
https://doi.org/10.1016/j.ecolmodel.2005.04.008
https://doi.org/10.1111/gcb.12875
https://doi.org/10.1111/gcb.14137
https://doi.org/10.1038/s41561-019-0526-0
https://doi.org/10.1016/S0016-7037(01)00563-4
https://doi.org/10.1038/s41558-023-01785-3
https://doi.org/10.1029/1999GB001204
https://doi.org/10.5194/gmd-3-565-2010


Wu, Q., Ye, R., Bridgham, S. D., and Jin, Q.: Limitations of the Q10 Coefficient for Quantifying Temperature Sensitivity of

Anaerobic Organic Matter Decomposition: A Modeling Based Assessment, Journal of Geophysical Research: Biogeosciences, 126,

https://doi.org/10.1029/2021JG006264, 2021.780

Xu, X., Elias, D. A., Graham, D. E., Phelps, T. J., Carroll, S. L., Wullschleger, S. D., and Thornton, P. E.: A microbial functional group–

based module for simulating methane production and consumption: Application to an incubated permafrost soil, Journal of Geophysical

Research: Biogeosciences, 120, 1315–1333, https://doi.org/10.1002/2015JG002935, 2015.

Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E., Riley, W. J., Song, X., Graham, D. E., Song, C., and Tian,

H.: Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems, Biogeosciences, 13, 3735–3755,785

https://doi.org/10.5194/bg-13-3735-2016, 2016.

Yang, W. H., McNicol, G., Teh, Y. A., Estera-Molina, K., Wood, T. E., and Silver, W. L.: Evaluating the Classical Versus an Emerging Con-

ceptual Model of Peatland Methane Dynamics, Global Biogeochemical Cycles, 31, 1435–1453, https://doi.org/10.1002/2017GB005622,

2017.

Yang, Z., Wullschleger, S. D., Liang, L., Graham, D. E., and Gu, B.: Effects of warming on the degradation and produc-790

tion of low-molecular-weight labile organic carbon in an Arctic tundra soil, Soil Biology and Biochemistry, 95, 202–211,

https://doi.org/10.1016/j.soilbio.2015.12.022, 2016.

Yazbeck, T., Bohrer, G., Scyphers, M. E., Missik, J. E. C., Shchehlov, O., Ward, E. J., Merino, S. L., Bordelon, R., Taj, D., Villa, J. A.,

Wrighton, K., Zhu, Q., and Riley, W. J.: ELM–Wet: Inclusion of a Wet–Landunit With Sub–Grid Representation of Eco–Hydrological

Patches and Hydrological Forcing Improves Methane Emission Estimations in the E3SM Land Model (ELM), Journal of Advances in795

Modeling Earth Systems, 17, https://doi.org/10.1029/2024MS004396, 2025.

Ying, Q., Poulter, B., Watts, J. D., Arndt, K. A., Virkkala, A.-M., Bruhwiler, L., Oh, Y., Rogers, B. M., Natali, S. M., Sullivan, H., Armstrong,

A., Ward, E. J., Schiferl, L. D., Elder, C. D., Peltola, O., Bartsch, A., Desai, A. R., Euskirchen, E., Göckede, M., Lehner, B., Nilsson, M. B.,

Peichl, M., Sonnentag, O., Tuittila, E.-S., Sachs, T., Kalhori, A., Ueyama, M., and Zhang, Z.: WetCH 4 : a machine-learning-based upscal-

ing of methane fluxes of northern wetlands during 2016–2022, Earth System Science Data, 17, 2507–2534, https://doi.org/10.5194/essd-800

17-2507-2025, 2025.

Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., and del Giorgio,

P. A.: Methane fluxes show consistent temperature dependence across microbial to ecosystem scales, Nature, 507, 488–491,

https://doi.org/10.1038/nature13164, 2014.

Zechlau, S., Schlund, M., Cox, P. M., Friedlingstein, P., and Eyring, V.: Do Emergent Constraints on Carbon Cycle Feedbacks Hold in805

CMIP6?, Journal of Geophysical Research: Biogeosciences, 127, https://doi.org/10.1029/2022JG006985, 2022.

Zheng, J., Thornton, P. E., Painter, S. L., Gu, B., Wullschleger, S. D., and Graham, D. E.: Modeling anaerobic soil organic carbon de-

composition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization, Biogeosciences, 16, 663–680,

https://doi.org/10.5194/bg-16-663-2019, 2019.

Zhu, Q., Liu, J., Peng, C., Chen, H., Fang, X., Jiang, H., Yang, G., Zhu, D., Wang, W., and Zhou, X.: Modelling methane emissions810

from natural wetlands by development and application of the TRIPLEX-GHG model, Geoscientific Model Development, 7, 981–999,

https://doi.org/10.5194/gmd-7-981-2014, 2014.

Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., Felzer, B. S., and Hu, S.: Methane fluxes between

terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process–based

biogeochemistry model, Global Biogeochemical Cycles, 18, https://doi.org/10.1029/2004GB002239, 2004.815

26

https://doi.org/10.1029/2021JG006264
https://doi.org/10.1002/2015JG002935
https://doi.org/10.5194/bg-13-3735-2016
https://doi.org/10.1002/2017GB005622
https://doi.org/10.1016/j.soilbio.2015.12.022
https://doi.org/10.1029/2024MS004396
https://doi.org/10.5194/essd-17-2507-2025
https://doi.org/10.5194/essd-17-2507-2025
https://doi.org/10.5194/essd-17-2507-2025
https://doi.org/10.1038/nature13164
https://doi.org/10.1029/2022JG006985
https://doi.org/10.5194/bg-16-663-2019
https://doi.org/10.5194/gmd-7-981-2014
https://doi.org/10.1029/2004GB002239


Zhuang, Q., Chen, M., Xu, K., Tang, J., Saikawa, E., Lu, Y., Melillo, J. M., Prinn, R. G., and McGuire, A. D.: Response of global soil

consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition, Global Biogeochemical Cycles, 27,

650–663, https://doi.org/10.1002/gbc.20057, 2013.

Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E., Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R.

Y.-W., Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl, A., Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel,820

W. C.: Cold season emissions dominate the Arctic tundra methane budget, Proceedings of the National Academy of Sciences of the United

States of America, 113, 40–45, https://doi.org/10.1073/pnas.1516017113, 2016.

27

https://doi.org/10.1002/gbc.20057
https://doi.org/10.1073/pnas.1516017113

