
Response to Referee #1 

The paper “Spatial-scale dependence of aerosol indirect effects over land in eastern China: A 

comparative analysis” by Yuqin Liu et al. investigates the effect of spatial scale on the 

sensitivity of cloud droplet effective radius (CER) to aerosol optical depth (AOD) and on the 

sensitivity of cloud droplet number (Nd) concentration to AOD, for two different time periods 

(2008–2014 and 2015–2022) in the eastern region of China. The present study is of scientific 

interest, falls within the scope of ACP, the manuscript is really well-written and even better 

well-structured, the presentation clear, the language fluent. I recommend publication in ACP; 

however, I recommend to the authors the following revisions and modifications. Since the 

study is already at a good level, I would argue the authors to see the comments in a positive 

way as made, raised by an approach and a view point of an external reader, as modifications 

that would improve the flow, and help other readers to better understand the outcomes and the 

scope of the study, improving also specific points that it seems that there are gaps to fill. 

The authors are grateful to Referee #1 for the valuable time spent on thorough reading our 

manuscript and providing expert views to guide us for improving the manuscript with the main 

and specific points and the references. We have taken notice of all comments, listed below in 

black, and made many changes to the manuscript to address these, together with the comments 

from the other referees. All modifications in the revised manuscript have been highlighted for 

your convenience. We address each of your comments below and refer to our responses in the 

revised manuscript and provide line numbers (clean version) and copy text in “quotes”. Finally, 

relevant references have been added to the reference list. 

Main points 

1) Abstract: The suggestion here is to re-write it in a different concept. The suggestion is to 

add somewhere in the beginning a sentence delineating the objective to the study, something 

like “… aims to reveal the sensitivity patterns of aerosol indirect effects to spatial scales, …” 

and then referring to the datasets used to facilitate the results and the basic outcomes. In 

addition, please re-visit the sentence “decreases, reflecting the weaker of aerosol-cloud 

interactions for declining aerosol concentrations.”. It needs to be written clearer.  

Answer: Thank you for this constructive comment. The abstract has been fully rewritten 

following the suggested conceptual framework. A clear statement of the study objective has 

been added at the beginning of the abstract as recommended. Subsequent content of the 

abstract is reorganized to sequentially introduce the utilized datasets, analytical methods, key 

results and main conclusions, to ensure a logical and coherent narrative that closely links data 

application to outcome derivation. 

“This study aims to reveal patterns of the sensitivity of aerosol indirect effects to spatial scales 

and investigate the regulatory role of the liquid water path (LWP) in aerosol-cloud interactions 

over land in eastern China. Using MODIS and CALIOP satellite observations, we 

systematically analyzed the relationships between aerosol optical depth (AOD) and cloud 

properties (cloud droplet effective radius, CER; cloud droplet number concentration, Nd) 

during two periods: 2008–2014 (period 1, high AOD) and 2015–2022 (period 2, decreasing 

AOD). The results show two distinct regimes of CER variation with LWP: a rapid growth 

regime (LWP < 55/50 g/m²) and a decreasing regime (LWP = 55-135/50-100 g/m²) (thresholds 

vary by period). The sensitivity of CER to AOD (SCER) exhibited a negative correlation, with 

stronger sensitivity in the decreasing LWP regime than in the rapid growth regime. Spatial 



scale (characterized by buffer size and study area) significantly modulated these sensitivities: 

|SCER| and the positive sensitivity of Nd to AOD (SNd) both decreased with increasing spatial 

scale. Optimal buffer sizes range from 6°×6° to 10°×10°: increasing with study area in period 

2 but decreasing in period 1 for the decreasing LWP regime. Compared with period 1, |SCER| in 

period 2 significantly reduced, reflecting the weakened aerosol-cloud interactions due to 

declining aerosol concentrations. Additionally, the optimal buffer sizes for SNd are larger in the 

8°×8° and 10°×10° study areas than in 4°×4° and 6°×6° areas. This study reveals the scale-

dependence of aerosol-cloud interactions, providing critical observational support for 

optimizing climate model parameterization schemes.” 

The ambiguous sentence “decreases, reflecting the weaker of aerosol-cloud interactions for 

declining aerosol concentrations” has been revised for clarity and grammatical accuracy. The 

revised version is: “Compared with period 1, |SCER| in period 2 significantly reduced, reflecting 

the weakened aerosol-cloud interactions due to declining aerosol concentrations.”, to explicitly 

clarify the causal relationship and eliminate the grammatical flaw in the original expression. 

2) “Buffer size”: Though the authors have tried to delineate the concept, it needs further 

improvements. From the reviewer’s point of view, and since this is a core-element of the study, 

I would suggest further effort on explaining this concept. I would argue the authors to address 

this as a constructive point, improvement is needed. 

Answer: We sincerely appreciate the reviewer’s constructive comment on the clarification of 

“buffer size”, which is indeed a core concept of this study. We have further refined and 

supplemented the explanation of this concept in the revised manuscript to enhance its clarity 

and comprehensibility. We have also ensured the consistency of the concept’s expression 

throughout the manuscript to avoid any potential ambiguity for readers. See the text in the 

Section 2.4 lines 331-333 and 338-364. 

The text “Here, the spatial scales are described by two parameters: study area size (the 

geographic scope of the analysis) and buffer size (the local spatial extent around each 

observation point for aggregating aerosol and cloud data).” in Section 2.4 lines 331-333. 

The text “Buffer size refers here to a circular spatial domain centered at each CALIOP-detected 

point in the study area where CALIOP detected the presence of aerosols. Within this circular 

domain, MODIS-retrieved cloud and aerosol data (AOD, CER, Nd, LWP) are spatially 

averaged to construct matched aerosol-cloud datasets at different local scales. This approach 

assumes that aerosol properties are reasonably homogeneous between adjacent clear and 

cloudy regions (Anderson et al., 2003; Quaas et al., 2008), which is a plausible considering the 

short-range transport of aerosols (e.g., 10-300 km) and the near-simultaneous observations (1-

2 minutes) by MODIS and CALIOP within the A-Train constellation. 

Buffer zones with sizes increasing from 10 to 300 km (10 km, 20 km, 30 km, 40 km, 50 km, 

60 km, 70 km, 80 km, 90 km, 100 km, 120 km, 140 km, 150 km, 160 km, 180 km, 200 km, 

250 km, and 300 km) were determined within the whole study area by using CALIOP data. 

Previous observations indicate that the typical horizontal scale of cloud clusters ranges from 

tens to hundreds of kilometers (Zhang et al., 2024; Cai et al., 2022), supported by 

CloudSat/CALIPSO satellite data showing power-law distributed cloud scales (10-1000 km 

fitting range) covering major cloud types (Zhang et al., 2024) and regional evidence of 

consistent multi-season, multi-latitude cloud extents (Cai et al., 2022). Meanwhile, aerosol 

spatial homogeneity varies with distance: local-scale aerosols (≤ 50 km) exhibit high 

homogeneity due to consistent sources and stable diffusion, while regional-scale aerosols (> 



100 km) show enhanced heterogeneity from multi-source mixing and atmospheric transport 

(Hassan et al., 2024; Mohebalhojeh et al., 2026). Thus, the 10–300 km buffer range covers both 

cloud characteristic scales and the aerosol homogeneity transition range, ensuring that MODIS 

data averaging effectively captures cloud-aerosol coupling. This range avoids insufficient 

MODIS pixel coverage due to excessively small buffer sizes (< 10 km). It also prevents 

conflation between regional meteorological variations and local aci signals arising from overly 

large buffer sizes (> 300 km), as synoptic-scale circulation and other regional meteorological 

changes may interfere with local aci signals (Quaas et al., 2010). Meanwhile, this range aligns 

with the 50–150 km buffer sizes widely adopted in regional aci studies (Wang et al., 2015; Liu 

et al., 2017; 2024), enabling cross-validation of results and ensuring that MODIS data 

averaging effectively captures cloud-aerosol coupling.” in Section 2.4 lines 338-364. 

3. A basic comment is that frequently the manuscript needed references that were missing. In 

the following part of the review suggestions on parts that need a reference-or-two will follow. 

For instance: 

3.1) at the end of the sentence in lines 43, 44, and 45, references are needed. 

Answer: Added. See the text in the Introduction lines 46-49. 

“An increase in CCN concentrations results in a larger number of cloud droplets (Nd), and if 

the cloud liquid water path (LWP) remains constant, it leads to a reduction in the cloud droplet 

effective radius (CER) (Twomey, 1977; Feingold et al., 2001).” 

3.2) for the arguments in lines 55, 56, and 57: for each of the “satellite observations”, “aircraft 

measurements”, “ground-based monitoring”, and “numerical simulations” add one-or-two 

references, to show the importance of the research on atmospheric dust. 

Answer: Added. See the text in the Introduction lines 59-62. 

“Extensive research on the impact of aerosols on the microphysical properties of clouds has 

been conducted utilizing satellite observations (Liu et al., 2017; Jia et al., 2022), aircraft 

measurements (Jia et al., 2019; Zheng et al., 2024), ground-based monitoring (Sarna et al., 

2016; Zheng et al., 2020), and numerical simulations (Lee et al., 2025; Li et al., 2008).” 

4. 3.3) line 60 and “MODIS”. When referencing to instruments, references are required. 

Answer: Added. See the text in the Introduction lines 64-66. 

“However, optical satellite sensors such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) cannot effectively penetrate cloud layers (King et al., 2003; 

Kaufman et al., 2005; Remer et al., 2005), making it difficult to directly retrieve the optical 

properties of aerosols underneath clouds.” 

3.4) line 97 and “CALIOP”. Similar comment with the above.  

Answer: Added. See the text in the Introduction lines 108-110. 

“In addition, significant progress has been made in research based on Cloud-Aerosol Lidar 

with Orthogonal Polarization (CALIOP) data (Winker et al., 2007).” 



3.5) line 142 and “particularly during spring”: add references on dust climatology over the 

region of interest. 

Answer: Added. See the text in the Section 2.1 line 182. 

“Eastern China presents a unique atmospheric laboratory due to its complex aerosol 

composition - featuring both anthropogenic pollutants from industrial emissions and natural 

mineral dust transported from Central Asian deserts, particularly during the spring (Proestakis 

et al., 2018; Liu et al., 2021).” 

3.6) line 155 and “cloud systems”: add references. 

Answer: Added. See the text in the Section 2.2 line 195-197. 

“The satellite’s equator crossing time is 13:30 (Local time, i.e. in the early afternoon, 

coinciding with optimal development conditions for continental warm cloud systems (Wang et 

al., 2014; Liu et al., 2024).” 

3.7) lines 204-206: add references. 

Answer: Added. See the text in the Section 2.3 lines 288-290. 

“Under specific environmental conditions, aerosol particles can transform into CCN or INP, a 

process primarily determined by their chemical composition and ambient temperature 

(Bellouin et al., 2020).” 

3.8) lines 361-363: add references. 

Answer: Added. See the text in the Section 3.2.2 lines 504-506. 

4) line 82 and “exhibited positive values over land and negative values over oceans”: complete 

the sentence on positive and negative values of what. 

Answer: Corrected. See the text in the Introduction lines 87-90. 

“They concluded that the sensitivity of retrieved CER to AOD generally exhibited positive 

values over land and negative values over oceans, and pointed out that using grids larger than 

4°×4° could introduce significant errors due to the spatial variability of aerosol and cloud 

parameters.” 

5) line 91 and “only two of these”: add which regions. 

Answer: Corrected. See the text in the Introduction lines 101-102.  

“Their results indicated that only two of these regions, near the coasts of the Gulf of Mexico 

and the South China Sea, exhibited a positive correlation between CER and AOD.” 

6) lines 93 and 94 and “aerosol and cloud properties”: it would be good to add information on 

the kind on properties (e.g., physical, chemical, optical, …), naming them. 



Answer: Corrected. See the text in the Introduction lines 102-105.  

“Similarly, Jones et al. (2009) utilized multi-source remote sensing data and applied a point 

spread function to derive the mean AOD within a 20 km range, which was designed to match 

the native 20 km resolution of the corresponding cloud properties (cloud optical thickness, 

COT; LWP; CER; cloud top pressure, CTP).” 

7) line 98 and “calculating aerosol”: calculating aerosols what? AOD? a532nm, CCN, ...? 

Please be more specific. 

Answer: Corrected. See the text in the Introduction lines 110-115. 

“For instance, Costantino et al. (2010) used CALIOP data to investigate the aerosol influence 

on CER in stratocumulus clouds over the coastal regions of Namibia and Angola. They 

performed the analysis by co-locating an aerosol index (based on AOD and the Ångström 

exponent) with CER within a 150 km buffer zone around CALIOP observations. They found 

that there was no correlation between aerosol load and CER when aerosol and cloud layers 

were clearly separated, but a strong correlation when lidar profiles indicated mixing.” 

8) General the comment on the introduction: frequently in the paragraph studies are mentioned 

to support the necessity of the study, and this is the approach of the present study. However, in 

this paper, there are studies that are referencing without properly mentioning the core outcomes 

and conclusions of the studies, to pave the road for the present study. This leaves a potential 

reader confused on which is the point of mentioning them if not for also fulfilling the point of 

delineating the scientific gap. It would be towards the right direction if the authors revisit the 

introduction and work more on the studies that are mentioned, to bring everything together in 

the end. 

Answer: Thank you for this constructive comment. We fully agree that clarifying the core 

findings of cited studies and linking them explicitly to the scientific gaps addressed in our work 

is critical for strengthening the logical flow of the introduction.  

To address this issue, we have revised the introduction as follows (See the text in the 

Introduction lines 84-157): 

“Currently, researchers usually use grid methods (such as 1°× 1°, 2°× 2°, etc.) to study the 

aerosol indirect effects in large areas (Bréon, 2002; Kaufman et al., 2005; Bulgin et al., 2008; 

Quaas et al., 2008). For instance, Grandey and Stier (2010) estimated the relationship between 

aerosols and CER on a global scale (60°N~60°S) using multiple spatial resolutions (1°×1°, 

4°×4°, 8°×8°, 15°×15°, and 60°×60°). They concluded that the sensitivity of retrieved CER to 

AOD generally exhibited positive values over land and negative values over oceans, and 

pointed out that using grids larger than 4°×4° could introduce significant errors due to the 

spatial variability of aerosol and cloud parameters. Additionally, the study highlighted that, 

when using grids larger than 4°×4° to investigate the relationship between aerosols and CER, 

significant errors could be introduced in calculating the aerosol indirect effect index due to the 

spatial variability of aerosol and cloud parameters.  

For studies focusing on smaller regions, researchers often employ a moving window or a fixed 

area referred to as a buffer zone, within which the distribution of aerosol concentrations is 

assumed to be uniform. Spatially matched samples are constructed by averaging AOD and 



cloud parameters within the window or buffer zone. The choice of the window or buffer size 

is often arbitrary, and existing studies rarely systematically explore how the detection of aci 

signals is influenced by the size of the area. For example, Yuan et al. (2008) used a 100 km × 

100 km moving window to calculate the mean values of AOD and cloud properties to 

investigate the relationship between aerosols and CER across seven global regions. Their 

results indicated that only two of these regions, near the coasts of the Gulf of Mexico and the 

South China Sea, exhibited a positive correlation between CER and AOD. Similarly, Jones et 

al. (2009) utilized multi-source remote sensing data and applied a point spread function to 

derive the mean AOD within a 20 km range, which was designed to match the native 20 km 

resolution of the corresponding cloud properties (cloud optical thickness, COT; LWP; CER; 

cloud top pressure, CTP). Their study examined the influence of aerosol types, cloud conditions, 

and atmospheric factors on aerosol indirect effects across six different oceanic regions globally, 

finding that the sensitivity of cloud properties to AOD varied substantially with regional 

characteristics. In addition, significant progress has been made in research utilizing 

observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data 

(Winker et al., 2007). For instance, Costantino et al. (2010) used CALIOP data to investigate 

the aerosol influence on CER in stratocumulus clouds over the coastal regions of Namibia and 

Angola. They performed the analysis by co-locating an aerosol index (based on AOD and the 

Ångström exponent) with CER within a 150 km buffer zone around CALIOP observations. 

They found that there was no correlation between aerosol load and CER when aerosol and 

cloud layers were clearly separated, but a strong correlation when lidar profiles indicated 

mixing. Costantino et al. (2013) further analyzed the statistical relationship between aerosol 

concentrations and cloud physical parameters by examining aerosol and cloud properties within 

a 20 km buffer zone around CALIOP samples, integrating vertical profiles of aerosol and cloud 

data. Their statistics also clearly showed that cloud micro-physical properties were affected by 

aerosols when aerosol and cloud layers were mixed, decreasing the CER. It is noted that these 

two studies by Costantino et al. (2010, 2013) reached consistent conclusions about aci (i.e., 

aerosols modulate CER when layers interact), by adopting different buffer sizes (150 km vs. 

20 km) to target distinct study areas. This demonstrates that the buffer size is tailored to the 

research objectives rather than through a systematic sensitivity analysis. Wang et al. (2015) 

revealed an inverse “Twomey” effect between aerosols and CER in eastern China by analyzing 

aerosol concentrations and CER within a 50 km buffer zone around CALIOP samples. Their 

results showed that larger CER was associated with high AOD, which was attributed to the 

feedback of microphysical processes from intense competition for vapor in the presence of high 

aerosol concentrations and the evaporation of smaller, less hygroscopic, droplets. Similarly, 

Liu et al. (2017) systematically examined the response mechanisms of warm cloud macro- and 

microphysical parameters to increasing AOD in the Yangtze River Delta region, also using 

CALIOP samples within a 50 km buffer zone. They found that the relation between cloud 

properties and AOD depended on the aerosol abundance, with a different behavior for low and 

high AOD (i.e. AOD < 0.35 and AOD > 0.35). However, both Wang et al. (2015) and Liu et 

al. (2017) used a fixed 50 km buffer zone without justifying the choice or exploring how 

varying buffer sizes might alter the strength or robustness of their findings—a common 

limitation in regional aci studies. More recently, Liu et al. (2024) quantified the relative 

importance of aerosols, meteorological parameters and their interactions for cloud properties 

in the eastern coastal and inland regions of China, utilizing MODIS 1°×1° aerosol and cloud 

product data. Their study confirmed that CER decreased with the increase in AOD in the 

moderately polluted atmosphere (0.1 < AOD < 0.3) over the East China Sea, whereas, in 

contrast, CER increased with increasing AOD in the polluted atmosphere (AOD > 0.3) over 

the Yangtze River Delta. These studies have provided critical scientific insights into aci at 

regional scales, but the lack of systematic scale sensitivity analysis—especially for varying 



window/buffer sizes within the same regional domain—leaves uncertainties about the 

generalizability of their conclusions. 

However, the properties and interaction processes of aerosols and clouds are spatially 

significantly heterogeneous and scale dependent (McComiskey et al., 2009; McComiskey and 

Feingold, 2012; Chen et al., 2015; Glotfelty et al., 2020). McComiskey and Feingold (2012) 

explicitly pointed out that the “scale problem” is a major challenge in quantifying aerosol 

indirect effects, as the spatial scale of observation can mask or exaggerate the true interaction 

signals. In previous studies, the definitions of window size and buffer size have often been 

subjective, inadvertently introducing uncertainties into the research on aci. Although studies 

have explored the relationship between aerosols and CER across different observational scales, 

these investigations have primarily focused on larger spatial scales, leaving a gap in sensitivity 

analysis of aerosol indirect effects at smaller regional scales. For example, Grandey and Stier 

(2010) focused on global-scale grid resolutions but did not explore the scale dependence within 

regional domains; Wang et al. (2015) and Liu et al. (2017) used fixed buffer sizes (50 km) 

without investigating how varying buffer sizes affect the results. Therefore, utilizing multi-

source remote sensing data to explore whether and how the aerosol indirect effect depends on 

observational spatial scales in eastern China is of great significance for developing 

parameterization schemes that align with the regional characteristics of aci.” 

These revisions will ensure that each cited study serves a clear purpose in justifying the 

scientific rationale of our research, helping readers better understand the motivation and 

novelty of the present work. 

9) Section 2.2. and Data used. It would be towards the right direction to add a paragraph 

describing the degree of uncertainties behind the products used, especially of the CDR, LWP, 

COT, CTP, and CPI, this addition would be of particular importance, since the uncertainties of 

the aforementioned products are significantly higher than MODIS AOD. 

Answer: Thank you for pointing out this important aspect. We fully agree that explicitly 

describing the uncertainties of AOD and key cloud products (CER, LWP, COT, CTP, and CPI) 

is critical for enhancing the transparency and rigor of our study, especially given their relatively 

higher uncertainty compared to MODIS AOD. 

To address this comment, we will add the following paragraph to Section 2.2 “Data used” (lines 

201-204 and lines 216-233) to clarify the uncertainty characteristics of the involved products, 

based on existing validation studies and official product documentation: 

“The MODIS AOD (at 550 nm) Level 2 product (10 km × 10 km) has been validated against 

ground-based remote sensing data and the results show that 69.40% of the MODIS AOD data 

fall within the expected uncertainty of ± (0.05 + 15 %) over land (Levy et al., 2013).” 

“Uncertainties in the MODIS C6.1 cloud parameters over land originate from instrument 

calibration, atmospheric correction, land surface properties, and model assumptions (Platnick 

et al., 2017, 2018). For COT, these include scene-dependent Level 1B data errors (1.5%–30%), 

land surface albedo errors (±15%), and atmospheric correction errors (±20%). The C6.1 

algorithm addresses some prior limitations by inheriting C6’s optimized lookup table design, 

which reduces interpolation errors to 0.1%–0.2% for near-nadir views and corrects C5’s 

overestimation of thin-cloud COT (Platnick et al., 2017). CER uncertainties, stemming from 

solar irradiance error (~4% at 3.7 μm), atmospheric correction, and scattering differences, are 



mitigated as C6.1 retains C6’s separate multi-band reporting, thereby eliminating C5’s 

systematic bias (Platnick et al., 2017). LWP uncertainty is linked to COT/CER retrieval errors 

and cloud-phase classification accuracy; the latter is improved by C6’s voting-based phase 

algorithm (preserved in C6.1), which reduces misclassification over complex surfaces like 

vegetation and deserts (Marchant et al., 2015; Platnick et al., 2017). For CTP (1 km resolution), 

uncertainties from viewing angles and cloud structure are partially countered in C6.1 by 

assigning fill values when the 1 km retrieval fails, avoiding surface parameter defaults. For 

land clouds above 3 km, CTP accuracy reaches ~50 hPa (Baum et al., 2012). Finally, CPI 

adopts C6’s weighted voting logic (replacing C5’s sequential tree), with C6.1 maintaining an 

enhanced Phase Agreement Fraction against CALIOP/POLDER data, which reduces 

uncertainties from weak thin-cloud signals and complex land interference (Marchant et al., 

2015; Platnick et al., 2017)” 

This revision will provide readers with a clear understanding of the data quality and potential 

limitations, further strengthening the credibility of our study’s findings. 

10) line 160: The authors need to add a justification on the reason behind applying the threshold 

on 1.5, and not for instance 1.4, or 1.6? Add references or as a supplement the analysis made 

supporting this upper limit. 

Answer: Thank you for this insightful comment. To address this concern, we will revise Line 

160 and add the following justification in Section 2.2 “Data used” (lines 204-211): 

“In this study, AOD larger than 1.5 was excluded from further analysis to mitigate potential 

retrieval overestimation. This threshold was selected based on two key considerations: (1) 

Christensen et al. (2017) used MOD06 C6 data (1 km × 1 km) and reported that “large aerosol 

optical depths remain in the MODIS-observed pixels near cloud edges, due primarily to 3D 

effects (Varnái and Marshak, 2009) and the swelling of aerosols by higher relative humidity”; 

(2) the threshold of 1.5 aligns with widely adopted thresholds in regional aerosol-cloud 

interaction studies over eastern China, where high AOD often coincides with complex surface 

conditions (e.g., urbanization, heterogeneous land cover) that exacerbate retrieval biases 

(Wang et al., 2015; Liu et al., 2017, 2021).” 

This revision ensures the AOD threshold is not arbitrary but grounded in product characteristics, 

literature consensus, and data sensitivity, enhancing the transparency and rigor of our data 

processing steps. 

10) Paragraph in lines 180-188: Please revisit the paragraph, the references are not so suitable. 

When referring to CALIOP and CALIPSO the Winker et al., 2009, 2010, and 2013 are the 

most suitable ones, the Winker et al., 2003 should change. Moreover, the Stephens et al., 2002 

is at the early steps of the A-Train and the authors should possibly add more updated references. 

Finally, CALIOP is not the “first” space-based lidar in space, so remove please correct this part. 

Answer:  Corrected. See the text in the Section 2.2 lines 249-255. 

“CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) operates 

within the A-Train constellation alongside the Aqua satellite and other NASA Earth-observing 

platforms. The primary instrument aboard CALIPSO is the Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP). CALIOP is a two-wavelength, polarization-sensitive lidar 

specifically designed to provide high-resolution vertical profiles of aerosols and clouds on a 



global scale (Winker et al., 2009). The mission and its lidar instrument are described in Winker 

et al. (2009), and the associated Level 1 data products are detailed in Winker et al. (2010).” 

11) Table 1: add more information on the products used, especially in terms of CALIOP, the 

list is not complete I guess, I am left of the impression that more observations and products 

were applied than just the coordinates. 

Answer: Thanks for your reminder! Just to clarify: In this study, we only used latitude, 

longitude, and time information from CALIOP. This is because CALIOP and MODIS are both 

part of the A-Train satellite constellation, and their observation time difference is controlled 

within 1–2 minutes. This coordinated observation ensures that the MODIS aerosol (AOD) and 

cloud parameter data corresponding to the CALIOP positioning buffer are “quasi-

simultaneous”, which effectively avoids interferences such as aerosol diffusion and cloud 

physical state evolution caused by observation time lags—an advantage that positioning 

methods like random grid points or ground stations cannot match. Subsequently, we calculated 

the mean values of MODIS AOD and cloud parameters within each CALIOP positioning buffer 

to conduct correlation analysis of aerosol indirect effects. We also added the text in the Section 

2.2 lines 261-263. 

“This temporal synchronization guarantees data consistency when extracting coincident 

measurements, avoiding interferences such as aerosol diffusion and cloud evolution caused by 

observational time lags—an advantage unparalleled by positioning methods like random grid 

points and ground-based stations.” 

12) end of section 2.3: It would be fair to the approach and the readers to provide a paragraph 

reporting the assumptions and uncertainties of the methods/equations, and as such the 

limitations, in order to facilitate also future studies. 

Answer: Thank you for this valuable suggestion. We fully agree that explicitly outlining the 

key assumptions, inherent uncertainties, and limitations of the data processing methods in 

Section 2.3 is essential for enhancing the transparency of our study and providing meaningful 

references for future research. 

To address this comment, we have added the following paragraph at the end of Section 2.3 

lines 316-327: 

“This method quantifies the sensitivity of CER and Nd to AOD variations via linear regression 

in log-log space, using Eq. 1 and Eq. 2, respectively. Its core assumptions, uncertainties, and 

limitations are highly consistent: both rely on AOD as an aerosol proxy variable, assume 

constant cloud liquid water content and a linear sensitivity relationship, and depend on the 

reliability of satellite-retrieved parameters (Feingold et al., 2001; Gryspeerdt et al., 2023). 

However, AOD cannot distinguish aerosol size and hygroscopicity, retrieval errors are 

substantial in clean conditions, and linear fitting fails to capture nonlinear/non-monotonic 

responses. Both methods are constrained by satellite retrieval biases, limited scenario 

applicability (only valid for specific homogeneous clouds and aerosol types), the omission of 

key modulating factors (dynamical conditions, aerosol type) and feedback processes, and can 

only assess first-order direct effects. Reliability requires scenario constraints and uncertainty 

analysis; the only nuances come from the target variable (CER vs. Nd), which do not alter the 

shared methodological limitations.” 



13) Section 2.4 line 236: at some point the comparison of clouds’ horizontal extend with the 

spatial homogeneity of aerosols should be discussed. 

Answer: Thank you for highlighting this critical point. We fully agree that discussing the 

relationship between cloud horizontal extent and aerosol spatial homogeneity is essential for 

justifying the multi-scale analysis framework in Section 2.4, as it directly affects the validity 

of assuming aerosol homogeneity within buffer zones. 

To address this comment, we will add the following discussion in Section 2.4 lines 348-364: 

“Previous observations indicate that the typical horizontal scale of cloud clusters ranges from 

tens to hundreds of kilometers (Zhang et al., 2024; Cai et al., 2022), supported by 

CloudSat/CALIPSO satellite data showing power-law distributed cloud scales (10-1000 km 

fitting range) covering major cloud types (Zhang et al., 2024) and regional evidence of 

consistent multi-season, multi-latitude cloud extents (Cai et al., 2022). Meanwhile, aerosol 

spatial homogeneity varies with distance: local-scale aerosols (≤ 50 km) exhibit high 

homogeneity due to consistent sources and stable diffusion, while regional-scale aerosols (> 

100 km) show enhanced heterogeneity from multi-source mixing and atmospheric transport 

(Hassan et al., 2024; Mohebalhojeh et al., 2026). Thus, the 10–300 km buffer range covers both 

cloud characteristic scales and the aerosol homogeneity transition range, ensuring that MODIS 

data averaging effectively captures cloud-aerosol coupling. This range avoids insufficient 

MODIS pixel coverage due to excessively small buffer sizes (< 10 km). It also prevents 

conflation between regional meteorological variations and local aci signals arising from overly 

large buffer sizes (> 300 km), as synoptic-scale circulation and other regional meteorological 

changes may interfere with local aci signals (Quaas et al., 2010). Meanwhile, this range aligns 

with the 50–150 km buffer sizes widely adopted in regional aci studies (Wang et al., 2015; Liu 

et al., 2017; 2024), enabling cross-validation of results and ensuring that MODIS data 

averaging effectively captures cloud-aerosol coupling.” 

14) Central hypothesis of the comparison between the two periods is that LWP is more or less 

similar, allowing comparison between AOD and CER/Nd in terms of spatial sensitiveness. 

Please add at some point discussion on the degree that this hypothesis holds. 

Answer: Thank you for this critical observation. We fully agree that verifying the similarity of 

LWP characteristics between the two study periods (2008–2014 and 2015–2022) is essential 

to validate the core hypothesis of our comparative analysis—ensuring that differences in 

aerosol-cloud sensitivity (SCER/SNd) are primarily driven by changes in AOD rather than 

variations in LWP. 

To address this comment, we will add the following discussion in Section 4.1 lines 636-651: 

“The central hypothesis of this study—that LWP is relatively consistent between the two 

periods (2008–2014 and 2015–2022), supporting valid comparisons of the spatial sensitivity 

of AOD-CER relationships—is well-supported by the following analysis. The differences in 

the mean, median, 25th, and 50th percentiles of LWP between the two periods are all less than 

5%, indicating a stable overall water vapor supply level. The spatial patterns of high-LWP 

regions (e.g., southeastern areas) and low-LWP regions (e.g., the mountainous areas in northern 

Shanxi) remained stable across the two periods (see Supplement Figure S1), demonstrating 

LWP spatial distribution characteristics are highly consistent. The sample proportions of LWP 

in the rapid growth regime are 59.30% (period 1: 0–55 g/m²) and 55.36% (period 2: 0–50 g/m²), 



while those in the decreasing regime are 29.64% (period 1: 55–135 g/m²) and 24.59% (period 

2: 50–100 g/m²), suggesting that there is no systematic temporal shift in the LWP distribution. 

Meanwhile, short-term fluctuations are smoothed by multi-year averaging and large-sample 

statistics, resulting in a weak indirect impact of aerosols on LWP (LWP only increased by 5.6%, 

much smaller than the 24% decrease in AOD). Additionally, LWP-stratified analysis further 

isolates interference. The validation of the core hypothesis provides a reliable premise for 

accurately quantifying the impact of aerosol concentration changes on the sensitivity of cloud 

parameters and their spatial scale dependence.” 

 

Figure S1. Spatial distributions of LWP averaged over the years 2008-2014 (a) and 2015-2022 (b) over the study area. 

The lines are provincial borders and the names of provinces mentioned in the text are indicated in Fig. 3(f). 

15) Lines 261-262 and lines 269-270: please add at least at one map the Hebei, Shandong, 

Shanxi, and Anhui provinces at a map, not everyone is familiar with the geographical areas and 

provinces in terms of where they are located. 

Answer: Corrected.  

 



Figure 3. Spatial distributions of AOD (a, d), CER (b, e) and Nd (c, f), averaged over the years 2008-2014 (top row) 

and 2015-2022 (bottom row) over the study area. 

16) line 268: correct “.,”. 

Answer: Corrected. 

17) Lines 314-318: When providing results of the analysis discuss on the reasons “why” behind 

the results is of significance. A connection with theory is missing in this section. The paper 

would benefit by adding a few lines at the end of the section. 

Answer: Thank you for this valuable suggestion. We fully agree that explaining the “why” 

behind the results—by linking them to aerosol-cloud interaction theory — is critical for 

deepening the scientific insight of Section 3.2.1 (Rapid CER growth regime) and enhancing 

the paper’s rigor. 

To address this, we will add the following lines at the end of Section 3.2.1 lines 461-463 and 

Section 4.2 lines 662-673, connecting the observed scale-dependent SCER patterns to theoretical 

mechanisms: 

“The decrease of |SCER| with increasing study area is mechanistically tied to scale-dependent 

aerosol indirect effect theory and meteorological confounding (Quaas et al., 2009; 

McComiskey & Feingold, 2012).” 

“The results from this study suggest that AOD-cloud property correlations in large study areas 

are susceptible to meteorological confounding effects (Quaas et al., 2010; Boucher and Quaas, 

2012; Gryspeerdt et al., 2014; Liu et al., 2024). Theoretically, aerosol regulation of cloud 

microphysics is strongly local: smaller domains (e.g., 4°×4°) feature homogeneous 

meteorological conditions (humidity, updrafts), preserving undiluted aerosol-cloud interaction 

signals and yielding larger |SCER| (pronounced Twomey effect). In contrast, expanded domains 

(e.g., 10°×10°) encompass heterogeneous meteorological conditions (circulation differences, 

boundary layer variability) that independently modulate cloud droplet growth. For example, 

strong updrafts enhance liquid water supply, offsetting aerosol-induced radius reduction 

(Altaratz et al., 2014), weakening aerosol-CER correlations and reducing |SCER|. Consistent 

with Grandey & Stier (2010), large-scale domains introduce “dilution bias” via non-target 

meteorological variability. This scale-dependent confounding mechanism elucidates 

uncertainties in aerosol indirect effect assessments at regional scales.” 

18) Lines 369-371: In general it is missing an explanation on the mechanisms resulting to the 

observed patterns, here are results provided without any connection with theory or at least some 

brief discussion. The section can be significantly improved. 

Answer: Thank you for this constructive feedback. We fully agree that supplementing 

mechanistic explanations—linking the observed SCER patterns in the decreasing LWP regime 

to aerosol-cloud interaction theories and physical processes—is critical for enhancing the 

scientific depth of Section 3.2.2 and addressing the “why” behind the results. 

To address this gap, we will add the following discussion at the end of Section 3.2.2 lines 514-

516 and Section 4.1 lines 602-624, integrating theoretical mechanisms with the observed 

results: 



“This pattern highlights the dominant role of LWP in regulating aerosol-cloud interaction 

sensitivity, with AOD variations further modulating the magnitude of such differences.” 

“Comparative analysis of scale-conditioned SCER across LWP regimes in periods 1 and 2 

revealed markedly enhanced sensitivity of SCER to AOD in the second LWP regime. There is a 

trade-off between AOD and LWP when the amount of water vapor is insufficient and CER 

becomes smaller. As suggested by Costantino et al. (2013), the LWP response to aerosol 

invigoration is influenced by two competing mechanisms: a drying effect caused by enhanced 

entrainment of dry air at cloud top (dominant in optically thin clouds) and a moistening effect 

from precipitation suppression (dominant in optically thick clouds). For larger LWP, the supply 

of cloud water is sufficient, and the increase in aerosol number concentrations significantly 

affects the distribution of cloud droplet number concentrations and sizes, enhancing the 

sensitivity of CER to AOD. For small aerosol concentrations, the values of |SCER| (Figure 5b, 

7b) decreased overall with expanding buffer size within the same study area. For fixed buffer 

size, |SCER| decreased as the study area increased, and the ranges of |SCER| values across different 

study area showed a convergent pattern, typically remaining small (close to zero). During the 

high AOD period (2008–2014), anthropogenic emissions and dust transport provided abundant 

CCN, laying the material foundation for aerosol-cloud interactions. This enhanced the 

synergistic effect of “sufficient liquid water + abundant CCN” in the second LWP regime, 

amplifying the difference in SCER between the two LWP regimes. In the period of decreasing 

AOD (2015–2022), following the implementation of clean air policies (de Leeuw et al., 2021; 

2023), CCN concentration decreased (Wang et al, 2023), weakening the direct impact of 

aerosols on CER. However, the LWP-driven microphysical differences persisted, so SCER in 

the second regime remained significantly smaller than that in the first regime, albeit with a 

smaller difference. Additionally, the complexity of aerosol types during the high AOD period 

(e.g., mixing of anthropogenic pollutants and natural dust) may have adjusted the value of SCER, 

but did not alter the dominant role of LWP. This aligns with the theory that “aerosol indirect 

effects are jointly regulated by concentration and type” (Liu et al., 2017).” 

19) Section 3.3: At some point discussion of AOD has to be included, in terms of composition. 

The aerosol composition resulting to the AOD over the two periods may have significantly 

changed due to the policies imposed, therefore the impact of AOD on clouds may be very 

different, even for exact same AOD values, since the relative percentage of different aerosol 

species will be different. Add at least some discussion on this aspect, to be fair with the analysis, 

the hypothesis that are made, and the readers. 

Answer: Thank you for highlighting this important aspect. We fully agree that discussing 

potential changes in aerosol composition between the two periods (2008–2014 and 2015–2022) 

is critical for contextualizing the observed SNd patterns—since aerosol composition directly 

affects CCN activity and thus the impact of AOD on cloud microphysics, even for identical 

AOD values. 

To address this gap, we will add the following discussion in Section 3.3 lines 560-575, linking 

aerosol composition changes to policy impacts and cloud sensitivity: 

“The chemical composition of aerosols, which directly affects AOD and CCN activation 

efficiency, underwent significant changes between the two periods due to policy interventions. 

During 2008–2014, aerosols over eastern China were dominated by sulfate, which accounted 

for 30%–40% of the PM₂.₅ mass (Huang et al., 2014; Zheng et al., 2018). Given the strong 

hygroscopicity of sulfate-dominated aerosols (Zhang et al., 2012; Liu et al., 2023), their CCN 



activation efficiency was likely high, which may have provided a critical physical basis for the 

aerosol-cloud indirect effect (Lee et al., 2009). In the period of 2015–2022, driven by policies 

such as the Air Pollution Prevention and Control Action Plan (Zheng et al., 2018), the chemical 

composition of aerosols underwent a structural transition. Specifically, the mass fraction of 

sulfate dropped sharply to 15%–25% with an absolute concentration reduction of more than 

50%, while the relative proportions of nitrate, carbonaceous aerosols (i.e., organic carbon (OC) 

and black carbon (BC)), and secondary organic aerosols (SOA) showed an increasing trend 

(Huang et al., 2014; Zheng et al., 2018). As these components generally exhibit weaker 

hygroscopicity compared with sulfate (Zhang et al., 2012; Liu et al., 2023), such a 

compositional shift might have led to a decrease in CCN activation efficiency under the same 

AOD conditions, thereby potentially weakening the sensitivity of cloud droplet number 

concentration to AOD and altering the intensity and mode of aerosol-cloud interactions to a 

certain extent (Lee et al., 2009).” 

20) Section 4. The discussion is well-written. However, some of the points raised should also 

appear accompanying the results and the discussion on the figures, and not appearing in this 

section for the first time. 

Answer: We thank the reviewer for the positive feedback on the discussion and for this 

constructive suggestion. We have carefully integrated the key discussion points raised in 

Section 4 into the corresponding results sections and figure captions throughout the manuscript 

to ensure a more logical flow. The revisions are now reflected in the updated manuscript for 

the reviewer’s inspection.  

4 Discussion 

4.1 The importance of liquid water path constraint 

LWP is a critical parameter governing cloud radiative properties (Murray-Watson et al., 2022). 

The quantification of albedo effects strongly depends on the spatial scale and the LWP. 

Neglecting LWP constraints in aerosol-cloud interaction studies can weaken microphysical 

signals, leading to underestimation of radiative forcing (McComiskey et al., 2012). To address 

this, we first systematically investigated the dynamic relationship between CER and LWP 

before analyzing CER sensitivity to AOD. The results demonstrate pronounced CER sensitivity 

to LWP variations, which can be categorized into three distinct regimes (Figure 4): 

In the first LWP regime, CER increases rapidly with LWP, i.e. the evolution of CER is 

predominantly driven by changes in LWP. This dominance may lead to overestimation of the 

influence of the AOD on CER (Liu et al., 2021). 

In the second LWP regime, CER decreases with increasing LWP. In this regime, the regulatory 

effect of LWP on CER weakens significantly, and CER variations become increasingly 

governed by aerosol-related processes, indicating the growing dominance of aerosol indirect 

effects. 

The third regime contains an insufficient number of CER observations to yield statistically 

significant results, which excludes the analysis of the sensitivity of CER to AOD.  

Comparative analysis of scale-conditioned SCER across LWP regimes in periods 1 and 2 

revealed markedly enhanced sensitivity of SCER to AOD in the second LWP regime. There is a 

trade-off between AOD and LWP when the amount of water vapor is insufficient and CER 

becomes smaller. As suggested by Costantino et al. (2013), the LWP response to aerosol 



invigoration is influenced by two competing mechanisms: a drying effect caused by enhanced 

entrainment of dry air at cloud top (dominant in optically thin clouds) and a moistening effect 

from precipitation suppression (dominant in optically thick clouds). For larger LWP, the supply 

of cloud water is sufficient, and the increase in aerosol number concentrations significantly 

affects the distribution of cloud droplet number concentrations and sizes, enhancing the 

sensitivity of CER to AOD. For small aerosol concentrations, the values of |SCER| (Figure 5b, 

7b) decreased overall with expanding buffer size within the same study area. For fixed buffer 

size, |SCER| decreased as the study area increased, and the ranges of |SCER| values across different 

study area showed a convergent pattern, typically remaining small (close to zero). During the 

high AOD period (2008–2014), anthropogenic emissions and dust transport provided abundant 

CCN, laying the material foundation for aerosol-cloud interactions. This enhanced the 

synergistic effect of “sufficient liquid water + abundant CCN” in the second LWP regime, 

amplifying the difference in SCER between the two LWP regimes. In the period of decreasing 

AOD (2015–2022), following the implementation of clean air policies (de Leeuw et al., 2021; 

2023), CCN concentration decreased (Wang et al, 2023), weakening the direct impact of 

aerosols on CER. However, the LWP-driven microphysical differences persisted, so SCER in 

the second regime remained significantly smaller than that in the first regime, albeit with a 

smaller difference. Additionally, the complexity of aerosol types during the high AOD period 

(e.g., mixing of anthropogenic pollutants and natural dust) may have adjusted the value of SCER, 

but did not alter the dominant role of LWP. This aligns with the theory that “aerosol indirect 

effects are jointly regulated by concentration and type” (Liu et al., 2017). 

The larger SCER observed at larger spatial scales (Figures 5 and 7) may be attributed to 

meteorological confounding effects. In addition, clouds with larger LWP are usually associated 

with strong updrafts (such as convective clouds), and stronger turbulence and vertical transport 

will bring more aerosols into the clouds, increasing CCN concentration and a decrease in 

particle size, making them more sensitive to changes in AOD (Jones et al., 2009; Han et al., 

2022; Fan et al., 2025). Therefore, this phenomenon is the result of the combined action of 

cloud microphysical processes (CCN activation, cloud droplet competition growth) and 

dynamic processes (updrafts, turbulent mixing). If the characteristics of aerosols (such as 

composition) change in the second LWP regime, this sensitivity may be further amplified. 

Consequently, the LWP-stratified SCER quantification framework enables precise 

characterization of scale-dependent aerosol-cloud interactions, providing robust physical 

insights for climate effect assessments and effectively reducing uncertainties in future climate 

projections. 

The central hypothesis of this study—that LWP is relatively consistent between the two periods 

(2008–2014 and 2015–2022), supporting valid comparisons of the spatial sensitivity of AOD-

CER relationships—is well-supported by the following analysis. The differences in the mean, 

median, 25th, and 50th percentiles of LWP between the two periods are all less than 5%, 

indicating a stable overall water vapor supply level. The spatial patterns of high-LWP regions 

(e.g., southeastern areas) and low-LWP regions (e.g., the mountainous areas in northern Shanxi) 

remained stable across the two periods (see Supplement Figure S1), demonstrating LWP spatial 

distribution characteristics are highly consistent. The sample proportions of LWP in the rapid 

growth regime are 59.30% (period 1: 0–55 g/m²) and 55.36% (period 2: 0–50 g/m²), while 

those in the decreasing regime are 29.64% (period 1: 55–135 g/m²) and 24.59% (period 2: 50–

100 g/m²), suggesting that there is no systematic temporal shift in the LWP distribution. 

Meanwhile, short-term fluctuations are smoothed by multi-year averaging and large-sample 

statistics, resulting in a weak indirect impact of aerosols on LWP (LWP only increased by 5.6%, 

much smaller than the 24% decrease in AOD). Additionally, LWP-stratified analysis further 

isolates interference. The validation of the core hypothesis provides a reliable premise for 



accurately quantifying the impact of aerosol concentration changes on the sensitivity of cloud 

parameters and their spatial scale dependence. 

4.2 Scale dependence of cloud parameters sensitivities to aerosol variations 

Extensive studies have demonstrated a significant spatial scale dependence of aerosol indirect 

effects (McComiskey et al., 2012; Possner et al., 2016; Glotfelty et al., 2020; Ekman et al., 

2023). Failure to explicitly define the scale-dependent behavior of aerosol indirect effects may 

introduce systematic biases and inconsistencies in subsequent process analyses. Based on 

satellite observations, this study confirms statistically significant negative correlations between 

CER and AOD, as well as positive correlations between Nd and AOD during periods with 

different aerosol concentrations, aligning with classical aerosol-cloud interaction theory 

(Quaas et al., 2009). Analysis of scale-conditioned SCER and SNd reveals that for fixed buffer 

size, an increase in the size of the study area leads to a systematic reduction in SCER (less 

negative) and SNd, corroborating the nonlinear attenuation of aerosol signals with spatial 

domain expansion (Quaas et al., 2009). The results from this study suggest that AOD-cloud 

property correlations in large study areas are susceptible to meteorological confounding effects 

(Quaas et al., 2010; Boucher and Quaas, 2012; Gryspeerdt et al., 2014; Liu et al., 2024). 

Theoretically, aerosol regulation of cloud microphysics is strongly local: smaller domains (e.g., 

4°×4°) feature homogeneous meteorological conditions (humidity, updrafts), preserving 

undiluted aerosol-cloud interaction signals and yielding larger |SCER| (pronounced Twomey 

effect). In contrast, expanded domains (e.g., 10°×10°) encompass heterogeneous 

meteorological conditions (circulation differences, boundary layer variability) that 

independently modulate cloud droplet growth. For example, strong updrafts enhance liquid 

water supply, offsetting aerosol-induced radius reduction (Altaratz et al., 2014), weakening 

aerosol-CER correlations and reducing |SCER|. Consistent with Grandey & Stier (2010), large-

scale domains introduce “dilution bias” via non-target meteorological variability. This scale-

dependent confounding mechanism elucidates uncertainties in aerosol indirect effect 

assessments at regional scales.  

Multi-scale spatial analysis identifies different optimal buffer sizes for SCER and SNd in different 

periods. These findings align closely with satellite-based aerosol indirect effect studies (Wang 

et al., 2015; Liu et al., 2017), providing critical scale benchmarks for satellite product validation. 

Wang et al. (2015) reported an inverse “Twomey” effect between aerosols and CER in eastern 

China by analyzing aerosol and CER within a 50 km buffer zone around CALIOP samples. 

Similarly, Liu et al. (2017) systematically examined the response mechanisms of warm cloud 

macro- and microphysical parameters to increasing AOD in the Yangtze River Delta region, 

also using CALIOP samples within a 50 km buffer zone. Present study further shows that, as 

aerosol concentrations decrease, SCER values across different study areas with the same buffer 

size exhibit convergence characteristics, with generally smaller SCER (closer to zero). This 

indicates a significant weakening of aerosol-cloud interaction intensity and reduced spatial 

extent dependency in low aerosol loading conditions. This phenomenon is consistent with the 

simulated behavior of aerosol-limited cloud regimes, where aerosol-cloud interactions are 

quantitatively modulated by moisture availability and lose their sensitivity to large-scale 

dynamical stability, leading to a weaker and more homogeneous effect (Zhao et al., 2025). 

By systematically quantifying the scale-response characteristics of aerosol indirect effects, this 

work not only elucidates the dynamic scale behavior of aerosol-cloud interactions but, more 

critically, establishes criteria for determining optimal buffer size in regional aerosol indirect 

effect studies. Such advancements provide actionable insights for refining parameterization 

schemes in climate models, thereby enhancing their predictive reliability. 



4.3 Contrasting sensitivity patterns of cloud parameters in response to AOD 

A comprehensive comparison of the sensitivity SCER and SNd reveals that the responses of CER 

and Nd to AOD exhibit distinct yet inherently interconnected characteristics. These 

characteristics are jointly modulated by spatial scale and LWP regimes (Figs. 5, 7, 8; 

Supplements Tables 1–2), which profoundly reflect the core microphysical mechanisms of 

aerosol-cloud interactions. Details are elaborated as follows: 

4.3.1 Core differences in response modes between SCER and Nd to AOD 

SCER is consistently negative across both periods and all LWP regimes (−0.33<SCER<0) (Figs. 

5, 7; Supplement Table 1), indicating that an increase in AOD leads to a decrease in CER. This 

aligns with the core principle of the Twomey effect (Twomey, 1977; Feingold et al., 2001). 

The values of |SCER| are larger in the second LWP regime than in the first regime, reflecting 

stronger aerosol modulation of cloud microphysical properties when liquid water is abundant 

(McComiskey & Feingold, 2012). In contrast, SNd maintains a significant positive correlation 

with AOD across all scenarios (0<SNd<1) (Fig. 8; Supplement Table 2), confirming that higher 

AOD directly promotes CCN activation and thereby increases cloud droplet number 

concentration (Andreae, 2009). SNd is larger in small-scale study areas (e.g., 4°×4°) and small 

buffer zones, with a maximum value of 0.45 in the first period, indicating greater sensitivity of 

cloud droplet number to aerosol loading at fine spatial scales. 

4.3.2 Synergistic modulation of AOD and spatial scale 

Using the LWP interval corresponding to SNd (0 < LWP ≤ 200 g/m²) as a benchmark, 

comparisons between the two periods (incorporating average values of SCER across two LWP 

regimes) reveal distinct characteristics: 

For the small-scale study area (4°×4°): In period 1, the average |SCER| across two LWP regimes 

is 0.271 (0.2232 for the 0–55 g/m² LWP regime, 0.3189 for the 55–135 g/m² LWP regime) and 

SNd=0.4496, both significantly higher than those in period 2 (average |SCER|=0.154, with 0.0863 

for 0–50 g/m² LWP regime and 0.2212 for 50–100 g/m² LWP regime; SNd=0.2903). The 

negative correlation between AOD and CER is more significant in period 1, as sufficient CCN 

in small-scale areas amplifies both cloud droplet number increase and size reduction, enhancing 

the Twomey effect. 

For the medium-to-large scale study areas (6°×6°, 8°×8°, 10°×10°): In period 1, the average 

|SCER| across two LWP regimes is 0.1683 (0.1305 for 0–55 g/m², 0.2061 for 55–135 g/m²), 

0.13065 (0.1026 for 0–55 g/m², 0.1587 for 55–135 g/m²), and 0.1067 (0.0858 for 0–55 g/m², 

0.0885 for 55–135 g/m²), respectively, all higher than the corresponding values in period 2 

(0.1516, 0.1246, 0.0985). However, SNd in period 1 (0.2430, 0.2050, 0.1430) is lower than that 

in period 2 (0.2960, 0.2680, 0.1740), with no significant difference in the negative correlation 

between AOD and CER between the two periods. 

This characteristic indicates that meteorological confounding effects are enhanced at larger 

scales, weakening the regulation of SNd by aerosols, while at small scales the aci is directly 

driven by AOD levels. 

4.3.3 Implications for aerosol indirect effects 



The differences and interconnections between SCER and SNd highlight that aerosol indirect 

effects are dominated by coupled microphysical processes: Aerosol-induced increases in CCN 

first enhance Nd through positive SNd, and then reduce CER through negative SCER under 

constant LWP conditions. The scale-dependent attenuation of both sensitivities and their 

modulation by LWP indicate that quantifying aerosol indirect effects requires full consideration 

of spatial scales and the key role of liquid water, providing observational basis for optimizing 

climate model parameterization schemes. 

4.4 Limitations and future perspectives 

This study has three significant limitations. Firstly, similar to most previous studies (Wang et 

al., 2015; Liu et al., 2021), this study only utilized MODIS data with a resolution of 10 km to 

explore scale effects, ignoring finer or coarser resolution data. Therefore, using a 10 km buffer 

size as the minimum observation unit, this limitation makes the indirect effects of aerosols on 

smaller scales still unknown, which may lead to inaccurate evaluation of aerosol indirect effects. 

Therefore, future research can improve the sensitivity of aerosol indirect effects to scale 

changes by using observation data with higher accuracy or model simulations. Secondly, the 

current research focuses on the influence of buffer size and study areas, the potential impact of 

spatial aggregation methods (especially zoning directionality) on the quantitative results of 

aerosol indirect effects has not been systematically evaluated. Future research should further 

investigate the sensitivity of aerosol indirect effects to zoning direction. Moreover, the current 

study employs a uniform buffer size for both aerosol and cloud parameters, failing to account 

for potential interaction effects arising from discrepancies of buffer size between them. 

Therefore, clarifying scale dependence will avoid directly extrapolating local observation 

results to a larger study area when downscaling climate models or formulating regional 

environmental policies. 
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