Reviewer comments are in bold and the authors’ responses are in blue.

We thank the reviewer for their thoughtful and constructive evaluation of our manuscript. The
central concern raised on whether CESM2-WACCMG is an appropriate model for assessing air
quality-related health impacts of SAl is an important one, and we have worked to address it
directly. In the revised manuscript, we have clarified the limitations of CESM2-WACCMG for air
quality applications, drawing on previous work evaluating the model and highlighting where
gaps remain. We have removed wording that overstated the comprehensiveness of the model,
added explicit caveats in the abstract and discussion regarding photolysis and missing aerosol
species, and reframed our conclusions. We have also expanded our interpretation of the
conclusions in relation to the “climate penalty” literature, and added supplemental analysis to
provide further context for some of our results. Below, we provide point-by-point responses to
the reviewer’s comments and describe the corresponding changes made in the revised
manuscript.

Major comments

The two most significant concerns are related, and boil down to the question of whether
the model being used is appropriate for the task at hand. On the one hand, the authors
make a good case that the fully interactive nature of the CESM2-WACCM6 simulation
means that it can capture key meteorological responses to SAl, which are likely to be
significant to the air quality response. Since these responses were often either neglected
entirely or crudely parameterized in previous studies, directly simulating the interactions
of changing meteorology with air quality is a valuable advance. However, the first
question is whether the chosen model is appropriate for simulations of air quality. | am
aware of almost no studies which have used WACCM for air quality modelling, beyond
one study which is cited by the authors and which was itself an intercomparison of
CMIP6 models. There seem to be several modelling choices in WACCM which, while
sensible for a model of whole-atmosphere climate responses, might compromise its
representation of air quality responses. For example Hancock et al. (2023) indicate that
WACCM does not include any representation of ammonium or nitrate aerosols, but these
are standard in models such as CMAQ which are dedicated to air quality — and such
aerosols can be dominant in understanding air quality responses to climate change (see
e.g. Nolte et al. (2018)). Indeed it appears that a recent paper in ACP which used WACCM
for the boundary conditions in an air quality simulation specifically chose to use WRF for
the regional analysis, in part because it includes air quality-relevant aerosol chemistry
lacking in WACCM (Clayton et al., 2024). | would strongly recommend that the authors
perform a detailed evaluation of a) WACCM'’s ability to represent baseline air quality in
the present day, b) WACCM'’s ability to reproduce already-understood effects of climate
change on air quality, and c) the likely gaps in WACCM’s representation of processes and
species which are important to air quality, beyond the question of tropospheric
photolysis below.



We agree that the choice of model is central to the credibility of our conclusions, and we
appreciate the opportunity to clarify both the strengths and limitations of CESM2-WACCM®6 for
air quality analysis.

First, regarding model suitability, we chose to analyse the CESM2-WACCM6 ARISE-SAI
simulation output because its fully interactive chemistry—climate framework allows us to capture
the coupled response of meteorology, radiation, and atmospheric composition under SAl.
ARISE-SAI simulations have already been widely applied to study climate impacts of SAl, and
we believe expanding its use to study air quality is a necessary next step. Although not without
limitations, CESM'’s integration of climate, radiation, chemistry, and aerosols provides a unique
opportunity to evaluate potential on-the-ground impacts of SAI. This coupling capability is
essential, as air quality responses to SAl are strongly mediated by dynamical and chemical
feedbacks that cannot be represented in offline or regionally constrained models. While not
perfect, our analysis offers a valuable foundation for more comprehensive assessments of air
quality and SAI. Moreover, CESM2-WACCMBG6 has previously been evaluated against
observations of ozone, aerosols, and precursors. Emmons et al. (2020) provide a systematic
assessment of CAM6-chem and WACCMB6, showing that the model captures large-scale
distributions of tropospheric ozone and key pollutants. Similarly, Gettelman et al. (2019)
evaluate WACCMG6’s baseline climatology and variability, finding that its representation of ozone,
aerosols, and chemistry is consistent with other state-of-the-art Earth system models. Griffiths et
al. (2021) benchmark CMIP6 models (including WACCM) against observed tropospheric ozone
distributions, demonstrating broad agreement in spatial and seasonal variability. Additional
studies highlight the implementation of new chemistry mechanisms: Tilmes et al. (2019),
Emmons et al. (2019), and Schwantes et al. (2020) evaluated CESM2(WACCMG6) against both
earlier model versions and multiple observational datasets—including NASA's ATom aircraft
campaign, TOAR surface ozone, and MOPITT carbon monoxide—reporting good agreement
with ozonesondes and seasonal ozone cycles, though with some regional spatial biases. For
aerosols, Hancock et al. (2023) used CESM2-WACCMBG6 to analyze PM2.5 over India, finding
that while the model underestimates concentrations in some regions due to missing species, it
reproduces observed spatial patterns and long-term trends.

Regarding WACCM'’s ability to reproduce effects of climate change on air quality, WACCM has
also been applied to evaluate well-established climate—air quality interactions. Fiore et al. (2022)
demonstrate that WACCMG6 reproduces observed large-scale tropospheric ozone changes in
response to climate variability and anthropogenic forcing. Griffiths et al. (2021) similarly show
that WACCM captures the long-term evolution of tropospheric ozone, consistent with our
understanding of emissions and climate drivers.

At the same time, important limitations must be acknowledged. Regarding Hancock et al.
(2023), we appreciate the reviewer raising this point. Indeed, CESM2-WACCM®6 does not
include explicit ammonium or nitrate aerosol chemistry, and these species can be important
contributors to fine particulate matter in certain regions. Hancock et al. (2023) evaluated the
performance of WACCMB®6 using observations of monthly PM2.5 over India and found that the
model underestimates PM2.5 for certain seasons and cities due to the omission of coarse



particles, such as nitrate and ammonium, which are important components of PM2.5 in India.
Ren et al. (2024) show that many CMIP6 models, including WACCM, underestimate PM2.5
burdens globally due to this omission.

Despite these limitations, Hancock et al. (2023) evaluated the spatial pattern and trends of
PM2.5 and meteorological variables and concluded that air pollutant emissions, rather than
climate variability, play a dominant role in poor air quality in India. In our analysis, air quality
impacts are based on changes in PM2.5 and ozone. PM2.5 in WACCM is composed of six
species (sulfate, organic carbon, black carbon, sea salt, and dust), so while ammonium is not
included, the model still captures the major contributors to global PM2.5, and it is unlikely that
sulfate-related changes would greatly affect ammonia contributions to PM2.5, making our
conclusions robust to this shortcoming. That said, we recognize that ammonium and nitrate
could add to the PM2.5 burden, especially in ammonia-rich regions, and this omission may lead
us to underestimate pollution-related health impacts. We will make these limitations clearer in
the revised manuscript (L 86).

The second concern is related. Specifically, the fact that WACCM uses fixed tropospheric
photolysis rates is a significant shortcoming in a study which seeks to understand the
atmospheric composition implications of stratospheric aerosol injection. This is a
difficult issue to rectify, and | am glad to see that the authors have at least acknowledged
this challenge. However, previous studies (e.g. Xia et al., 2017) did include this response
and discussed at length the potential for tropospheric UV changes to be significant in
understanding the tropospheric ozone response — and thus the air quality response. The
authors themselves argue that tropospheric photochemistry is the dominant factor in NH
surface ozone change (line 219). Ideally, an analysis such as that by Clayton et al. (2024)
in which WACCM outputs are used as boundary conditions to a more air quality-focused
model may be a way to resolve these issues, and | would recommend that the authors
seriously consider if there is a way that they could perform a more comprehensive
simulation of tropospheric chemistry using their existing data - recognizing that this
would require a great deal of additional work but would also resolve what | perceive as
being a major gap in the work.

We realized that stating that the model does not include photolysis changes is incorrect. The
model includes photolysis rates that are calculated using lookup tables accounting for overhead
ozone column and clouds. However, this approach of calculating the photolysis rates does not
include the direct radiative effects of dynamic aerosol distributions. In an attempt to address this
gap, we conducted offline calculations with the Trospheric Ultraviolet and Visible (TUV) model,
which indicate that surface UV changes under SAl are small and broadly consistent with past
studies (Bardeen et al., 2021).

Our analysis focuses on the health impacts of particulate matter (PM2.5), which is the primary
driver of air pollution—related mortality worldwide. While we acknowledge that our framework
likely underestimates the role of tropospheric photochemistry in shaping ozone changes, the
main conclusions regarding PM2.5 impacts remain robust. We have highlighted this limitation in



the text and interpreted the ozone-related results with appropriate caution (L 380). We view our
study as a first step in quantifying global-scale mortality implications of SAl and hope that future
work can build upon it by explicitly incorporating variable tropospheric photolysis rates and
extending the analysis to UV-driven health outcomes (e.g., skin cancer, cataracts) that lie
outside the scope of the present paper.

Notwithstanding such an expansion, these are sufficiently significant deficiencies that |
believe they need to be much more strongly highlighted. | would recommend that the
abstract explicitly state that changes in tropospheric photolysis are not considered, and
that statements that this is the first study to use “comprehensive” stratospheric and
tropospheric chemistry (e.g. line 29 and 58) be removed. While | absolutely believe that
this study can provide a valuable contribution to our understanding of the impacts of SAI
on the environment, | would argue that it needs to be placed in the correct context (and
thus allow subsequent studies to fill the remaining knowledge gaps).

We have revised the manuscript to remove the phrasing of the model as “comprehensive” and
avoid suggesting that this is the first study with fully comprehensive stratospheric and
tropospheric chemistry. In the abstract, we have added explicit caveats about photolysis/UV
treatment and clarified that the results are scenario-specific, not general for all SAI.

Independent of these concerns, | was struck by one of the conclusions drawn (and which
is highlighted in the abstract). The authors argue that internal variability is key, on the
basis that they find significant differences across ensemble members. This aligns
climate intervention effects on air quality with the well established effects of climate
change on air quality (e.g. Fiore et al., 2015) where noise in the meteorological response
can be greater than the change in exposure to pollutants resulting from SAl. It would
have been useful to discuss how the projected effects of SAl on air quality compare to
the air quality "penalty" projected for climate change, given that there is a robust
literature discussing not only this question but also specifically the problem of how to
deal with internal variability in such projections. The lack of such a discussion is a
notable absence, and leaves the paper somewhat unmoored.

We thank the reviewer for highlighting the importance of exploring the parallel between internal
variability in climate intervention studies and the air quality “penalty” literature. We agree that
this is an important contextual point, and we have added a new discussion at the end of the
conclusion (see page 18, last paragraph) comparing our findings to prior work.

The use of large ensembles is a good (if expensive) solution to this problem, but analysis
of air quality interventions may also rely on representative meteorological years if it can
be shown that the outcome would be the same as when using a large ensemble average
(see e.g. Stewart et al. (2017) and Abel et al. (2018) for examples looking at air quality
change in future conditions). Here it seems that internal variability is used to draw some
conclusions which seem hard to justify; for example, on lines 291-293 it is claimed that
"health impacts under SAl are not governed mainly by the magnitude of SO2 injected”.



Certainly it is true that SAl alone is not going to become the dominant cause of air
pollution under almost any scenario, and the comparison of ARISE-SAI-1.0 and 1.5
shows how important these other factors are - an important contribution. However the
paper simultaneously argues that there is a robust surface ozone response relative to a
scenario where the amount of SO2 injected is zero (SSP2-4.5), so presumably the
magnitude of the injection is not entirely irrelevant. Is there evidence that a robust (if
complex) difference in the effects of larger injection quantities would not emerge if using
a larger ensemble, longer averaging period, and/or if other factors (eg surface-level
emissions of air quality precursors) were held constant? | would suggest that the authors
explore in more detail the degree to which their results might be improved by such
approaches, not least because the data to do so appears to already exist (e.g. it should
be straightforward to evaluate the degree to which a smaller ensemble would or would
not have allowed the same conclusions to be drawn - which would be valuable
information for those interested in performing future studies of atmospheric composition
change under SAl).

We thank the reviewer for raising this important point. In Figs. 7 and 8, we show that air
pollution-related mortality does not increase monotonically with the magnitude of SO2 injected
across ARISE-SAI-1.0 and ARISE-SAI-1.5. There is a robust surface ozone response, which
likely arises from SO2 being injected primarily in the southern hemisphere during 2060-2069,
that modulates the hemispheric temperature gradients. For surface ozone, the impact on
mortality is a complex interplay between deposition, tropospheric and stratospheric changes
due to chemistry and transport, and surface changes due to cooling. However, our results
indicate that such an interplay results in a significant, but not magnitude-dependent, change.
Furthermore, changes in surface ozone impact the spatial distribution of ozone-related mortality
but not the global average.

In additional simulations following the G2-SAI-3DOF and G2-SAI-1DOF protocols (Visioni et al.,
2024), where injections occur without any associated changes in tropospheric chemistry, we still
find a robust surface ozone response relative to SSP2-4.5.

Regarding ensemble size, our analysis draws on two independent 10-member ensembles
(ARISE-SAI-1.5 and ARISE-SAI-1.0). A 10-member ensemble is generally considered sufficient
to separate forced responses from internal variability (Milinski et al., 2020; Wills et al., 2020),
and indeed, our results show consistent outcomes across both ensembles. Furthermore, by
analyzing 35-year time series (see figure below), we find that the overall mortality estimates do
not exhibit a clear trend with increasing injection amounts, regardless of the temporal averaging
resolution. Therefore, having a large ensemble size gives us more confidence in our results.
However, we agree that using representative meteorological years or expanding the ensemble
size further could provide additional insights, and we have revised the text to explicitly
acknowledge this (last sentence of Section 3.2). To address this concern, we performed a
subsampling analysis: drawing 10 random sets of 3 ensemble members each, we found that
only a minority of subsamples exhibited a statistically significant linear relationship (p < 0.05)
between injection rate and mortality, and even then, the correlation coefficients were weak. This



suggests that our central conclusion that mortality impacts do not scale in a simple linear
fashion with SO2 injection remains robust, though further ensembles, longer time periods, and
controlled precursor emissions experiments would be valuable in future work. Both figures have
been added to the supplemental.
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Global differences in air-pollution mortality between ARISE-SAI and SSP2-4.5 as a function of
the total SO2 injection rate for the first 35 simulation years. Panels show (a) PM2.5-attributable
mortality for ARISE-SAI-1.5, (b) ozone-attributable mortality for ARISE-SAI-1.5, (c) PM2.5 for
ARISE-SAI-1.0, and (d) ozone for ARISE-SAI-1.0. Colored lines indicate individual ensemble
members, while the thick black line represents the 10-member ensemble mean.
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Global mortality differences between ARISE-SAI and SSP2-4.5 are shown as a function of the
SO2 injection rate over the first 35 years of simulation. Panels depict (a) PM2.5-attributable
mortality for ARISE-SAI-1.5, (b) ozone-attributable mortality for ARISE-SAI-1.5, (c) PM2.5 for
ARISE-SAI-1.0, and (d) ozone for ARISE-SAI-1.0. Colored lines represent ordinary
least-squares fits from randomly selected 3-member ensemble subsets (10 draws), plotted only
where significant linear relationships are detected (p < 0.05). Slopes, r-values, and p-values are
annotated in the legend.

Minor comments

Some aspects of the air quality response which | had expected might be significant were
seemingly not discussed. | would recommend discussing whether elements of the air
quality response to SAl which have been significant for studies of the climate penalty —
for example, changes in planetary boundary layer height, and the (highly
model-dependent) lightning response — are playing a significant role in the calculated
response. These factors are well described in the literature already cited and would be
expected to be represented in an ESM (ostensibly one of the key novelties of this work),
so providing a careful evaluation of how these factors translate to an SAl study would be
valuable.

We appreciate the reviewer’s suggestion and agree that factors such as planetary boundary
layer (PBL) height and lightning are important components of the broader air quality—climate



literature. However, the scope of the present study is intentionally focused on quantifying the air
quality and associated health impacts of SAl, using CESM to evaluate the net surface-level
changes in PM2.5 and ozone concentrations across large ensembles. Our goal here is not to
provide a mechanistic attribution of every pathway by which SAl may influence surface air
quality, but rather to assess the aggregate outcome of these multiple processes as represented
within the model.

Elements such as PBL height and lightning response are indeed simulated in WACCM and
therefore implicitly contribute to the overall modeled response. To address the reviewer’s
comments, we have included a plot of PBLH changes in the supplemental which show
interesting changes in PBLH from SAIl but a more detailed process-level analysis of each of
these mechanisms is an important and valuable direction for future work. We frame our analysis
around the ensemble-mean concentration and mortality responses, and we highlight where
internal variability and policy-driven changes dominate the signal. By design, this allows us to
place the air quality consequences of SAl in direct context with prior studies of the climate
penalty and emissions controls, while keeping the focus on the net implications for surface air
quality and health outcomes. We have clarified this point in the text and noted that more detailed
process studies, which include explicit evaluation of changes in PBL dynamics and lightning, will
be a valuable complement to our findings (L 385).

While | understand why the authors have chosen not to estimate the health impacts of UV
changes associated with SAI, | was surprised that no formal analysis was done at all of
surface UV changes. The statement on line 372 — that a preliminary analysis indicated
“very modest changes” — is unfortunately not much help, as the authors do not provide
any metric of what they consider to be “modest” (or why). Quantifying (say) relative
changes in projected population exposure to UV would help us to understand whether
such changes need further study. Quantitative analysis of UV changes may also be
useful in understanding the degree to which neglecting changes in tropospheric
photolysis change may or may not be a minor oversight.

We agree that quantifying surface UV changes provides useful context for understanding both
health and chemical implications. For the preliminary analysis in question, we conducted an
offline analysis of the UV changes using the Tropospheric Ultraviolet and Visible Radiation
Model (TUV-X; https://qithub.com/NCAR/tuv-x). We calculated photolysis rate constants and
surface UV changes under clear-sky conditions, comparing output from the two simulations. Our
analysis indicates that percentage changes in surface UV are between -5.3 to -6.1% globally.
For example, for JJA 2069 we find relative changes on the order of only a few percent between
the SAl and SSP2-4.5 scenarios.

In response to this comment, we have added a supplemental figure (shown below) showing the
spatial distribution of percentage changes in surface UV for JJA 2069. This figure illustrates that
changes are small across nearly all regions. While this analysis confirms that UV changes are
not a dominant driver of the air quality responses we focus on here, we agree that they remain
relevant for future work, especially in the context of quantifying potential UV-related health
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effects. The text has been revised to include a discussion of our preliminary findings from TUV
and how it is consistent with previous work (L 391).

2069 JJA UV Dose Rates
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Hancock et al. (2023) indicated that WACCM-based estimates of exposure to PM2.5 may
overestimate the role of dust, due to inclusion of too-large particles in the PM2.5 metric.



Given that dust is the predominant factor in exposure under ARISE-SAI-1.5 for a
significant fraction of the world (Figure 2), it would be useful to have more information on
how the PM2.5 calculation was performed and whether the issue identified by Hancock et
al. was addressed.

The reviewer raises an important point. Our PM2.5 calculation follows the same setup described
in Hancock et al. (2023), and it is therefore subject to the same caveats regarding the
representation of dust, including the potential inclusion of overly large particles in the PM2.5
metric. We acknowledge that this may lead to some overestimation of dust contributions to total
exposure. However, we emphasize that our analysis focuses on differences between the
ARISE-SAI-1.5 and SSP2-4.5 scenarios, rather than the absolute magnitudes of exposure.
Because the same definition of PM2.5 is applied consistently across both scenarios, any
systematic bias in the representation of dust is expected to cancel out when examining the
relative effects of SAI. For this reason, while the caution identified by Hancock et al. is relevant
to the interpretation of the absolute dust burden, it does not materially affect the conclusions we
draw about the differences attributable to SAI. We have included text in the manuscript to
highlight this caveat.

There are numerous grammatical errors (e.g. lines 221-222: “many of this conditions”,
“we deem important”; line 228: “These estimates and Fig. 4 show that the standard
deviation of mortality estimates highlights the large spread in project PM2.5-related
deaths”; Eq. 2 says the PM2.5 threshold is 2.4 (no units given), but Table 1 says 2.5 ppm -
and Burnett et al (2018) say 2.4 ug/m3). | would recommend the authors take some time
to go through the paper in depth and fix such errors before resubmitting.

The text has been revised to address these grammatical errors.
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