

1 **Drivers of Phytoplankton Bloom Interannual Variability in the Amundsen and Pine**
2 **Island Polynyas**

3
4 **Guillaume Liniger^{1,2*}, Delphine Lannuzel^{1,3,4}, Sébastien Moreau^{5,6}, Michael S. Dinniman⁷,**
5 **Peter G. Strutton^{1,3}**

6 ¹ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia

7 ² Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA

8 ³ Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart,
9 Australia

10 ⁴ Australian Antarctic Program Partnership, University of Tasmania, Hobart, Australia

11 ⁵ Norwegian Polar Institute, Tromsø, Norway

12 ⁶ iC3: Centre for ice, Cryosphere, Carbon and Climate, Department of Geosciences, UiT The
13 Arctic University of Norway, 9037 Tromsø, Norway

14 ⁷ Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA, USA

15

16 * Corresponding Author: Guillaume Liniger (liniger@mbari.org)

17

18 **Abstract**

19 The Amundsen Sea Embayment (ASE) experiences both the highest ice shelf melt rates and the
20 highest biological productivity in West Antarctica. Using 19 years of satellite data and modelling
21 output, we investigate the long-term influence of environmental factors on the phytoplankton
22 bloom in the Amundsen Sea (ASP) and Pine Island polynyas (PIP). We test the prevailing
23 hypothesis that changes in ice shelf melt rate could drive interannual variability in the polynyas'
24 surface chlorophyll-*a* (chl*a*) and Net Primary Productivity (NPP). We find that the interannual
25 variability and long-term change in glacial meltwater may play an important role in chl*a* variance
26 in the ASP, but not for NPP. Glacial meltwater does not explain the variability in both chl*a* and
27 NPP in the PIP, where light and temperature are the main drivers. We attribute this to potentially
28 greater amount of iron-enriched meltwater brought to the surface by the meltwater pump

29 downstream of the PIP, and the coastal ocean circulation accumulating and transporting iron
30 towards the ASP.

31

32 **Short Summary**

33 We investigate the phytoplankton bloom variability and its drivers in the Amundsen polynyas
34 (areas of open water within sea ice). Between 1998 and 2017, we find that changes in melting ice
35 shelves may have different impacts on biological productivity between the Amundsen Sea (ASP)
36 and Pine Island (PIP) polynyas. While ice shelves melting seems to play an important role for
37 phytoplankton growth variability in the ASP, light and warmer waters appear to be more
38 important in the PIP.

39

40 **1. Introduction**

41

42 Coastal polynyas are open ocean areas formed by strong katabatic winds pushing sea ice offshore
43 ([Morales Maqueda, 2004](#)). They are the most biologically productive areas in the Southern
44 Ocean (SO) relative to their size ([Arrigo et al., 1998](#)). This high biological productivity contrasts
45 sharply with the rest of the SO, where low iron and light availability generally co-limit
46 phytoplankton growth ([Boyd et al., 2007](#)). In West Antarctica, the Amundsen Sea Embayment
47 (ASE) hosts two of the most productive Antarctic polynyas: The Pine Island Polynya (PIP) and
48 Amundsen Sea Polynya (ASP) ([Arrigo and van Dijken, 2003](#)).

49

50 The phytoplankton community in the ASE is generally dominated by *Phaeocystis antarctica*
51 ([Lee et al., 2017](#); [Yager et al., 2016](#)), which is adapted to low iron availability and variable light
52 conditions, and forms large summer blooms ([Alderkamp et al., 2012](#); [Yager et al., 2016](#)).

53 Diatoms like *Fragilariopsis sp.* and *Chaetoceros sp.* are also present, often becoming more
54 important near the sea-ice edge or under shallow, stratified mixed layers where silicic acid (Si)
55 and iron (Fe) are more available ([Mills et al., 2012](#)). In exceptional years, such as 2020, diatoms
56 like *Dactyliosolen tenuijunctus* replaced *P. antarctica* as the dominant taxon, driven by
57 anomalously shallow mixed layers and sufficient Fe–Si supply ([Lee et al., 2022](#)). This dynamic
58 balance highlights how light, nutrient supply, and stratification control community composition
59 in these highly productive and complex Antarctic systems.

60

61 The ASE is also the Antarctic region experiencing the highest mass loss from the Antarctic ice
62 sheet. It has been undergoing increased calving, melting, thinning and retreat over the past three
63 decades (Paolo et al., 2015; Rignot et al., 2013; Rignot et al., 2019; Shepherd et al., 2018). In the
64 ASE, this ice loss is mainly through enhanced basal melting of the ice shelves. This is attributed
65 to an increase in wind-driven Circumpolar Deep Water (CDW) fluxes and ocean heat content
66 intruding onto the continental shelf through deep troughs such as the Pine Island and Dotson-
67 Getz, and flowing into the ice shelves cavities (Dotto et al., 2019; Jacobs et al., 2011; Pritchard et
68 al., 2012). There, warm waters fuel intense basal melt of the Pine Island, Thwaites, and Getz ice
69 shelves, and returns as a fresher, colder outflow that can strengthen stratification (Jenkins et al.,
70 2010; Ha et al., 2014). The PIP and ASP differ in their exposure to CDW and in local
71 circulation: the ASP is more strongly influenced by upwelled modified CDW (mCDW) and
72 glacial meltwater inputs, whereas in the PIP, vertical intrusions primarily occur beneath the ice
73 shelves, leading to a more stratified and less directly ventilated surface layer (Assmann et al.,
74 2013; Dutrieux et al., 2014). These hydrographic contrasts can shape the timing and magnitude
75 of phytoplankton blooms and nutrient dynamics across the two polynyas.

76

77 Melting ice shelves can explain about 60% of the biomass variance between all Antarctic
78 polynyas, suggesting that they are the primary supplier of dissolved iron (dFe) to coastal
79 polynyas (Arrigo et al., 2015), and can directly or indirectly contribute to regional marine
80 productivity (Bhatia et al., 2013; Gerringa et al., 2012; Hawkins et al., 2014; Herraiz-
81 Borreguero et al., 2016). The strong melting of the ice shelves can release significant quantities
82 of freshwater at depth (Biddle et al., 2017), resulting in a strong overturning within the ice
83 shelves cavity, called the meltwater pump (St-Laurent et al., 2017). Modelling efforts have
84 identified both resuspended Fe-enriched sediments and CDW entrained to the surface by the
85 meltwater pump as the two primary sources of dFe to coastal polynyas, providing up to 31% of
86 the total dFe, compared to 6% for direct ice shelves input (Dinniman et al., 2020; St-Laurent et
87 al., 2017). Other drivers such as sea-ice coverage (and associated increases in light and dFe
88 availability when sea ice retreats), or winds have also been shown to impact primary productivity
89 in polynyas (Park et al., 2019; Park et al., 2017; Vaillancourt et al., 2003).

90

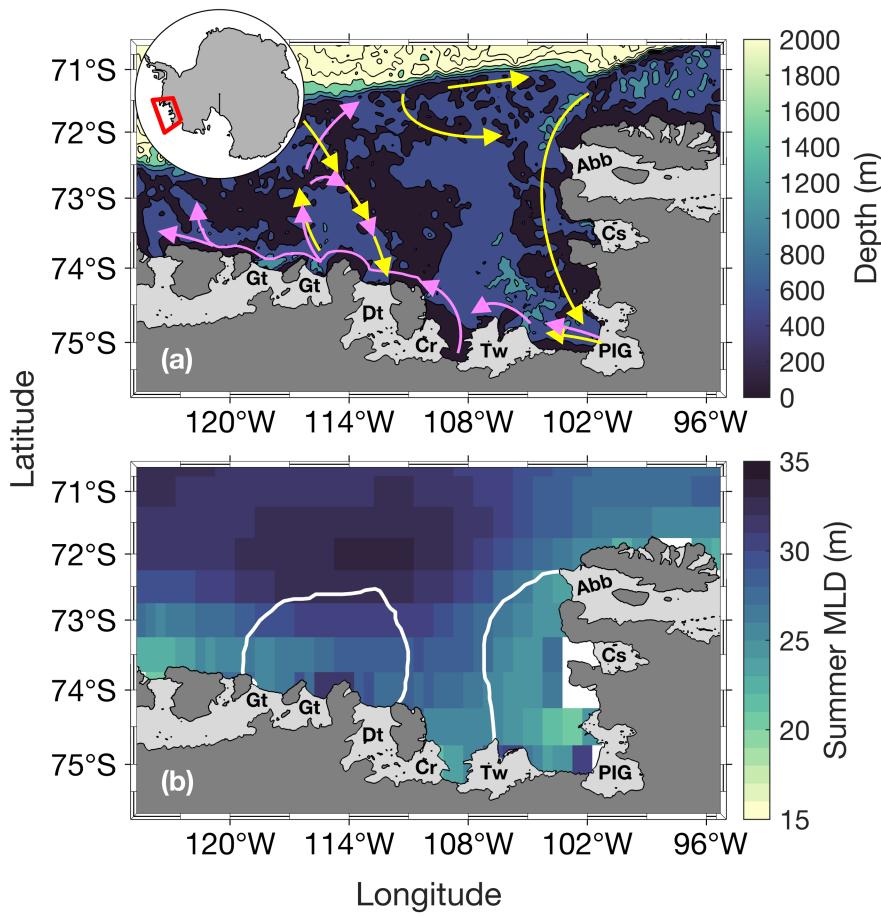
91 The key question of how glacial meltwater variability may impact biological productivity in the
92 ASE has previously been raised during the ASPIRE program (Yager et al., 2012). During the
93 expedition, a significant supply of melt-laden iron-enriched seawater to the central euphotic zone
94 of the ASP was observed, potentially explaining why this area is the most biologically
95 productive in Antarctica (Randall-Goodwin et al., 2015; Sherrell et al., 2015). Other studies in
96 the Western Antarctic Peninsula and East Antarctica showed that the meltwater pump process
97 was also responsible for natural Fe supply to the surface, increasing primary productivity (Cape
98 et al., 2019; Tamura et al., 2022).

99

100 In this study, we investigate the long-term relationship between the main environmental factors
101 of the ASE and the surface biological productivity, with a focus on ice shelves melting. A
102 demonstrated relationship between glacial meltwater and phytoplankton growth would have far-
103 reaching consequences for regional productivity in coastal Antarctica, and possibly offshore,
104 over the coming decades under expected climate change scenarios (Meredith et al., 2019). We
105 test the hypothesis that changes in glacial meltwater are linked to the surface ocean primary
106 productivity variability observed over the last two decades. We use a combination of satellite
107 (ocean color and ice shelf melting rate), climate re-analysis, and model data spanning 1998 to
108 2017.

109

110 **2. Material and Methods**


111

112 2.1 Study area and polynya mapping

113

114 We focus on the PIP and ASP in the ASE in West Antarctica (Fig. 1). The ASE is comprised of
115 several ice shelves and glaciers, including: Abbot (Abb), Cosgrove (Cs), Pine Island (PIG),
116 Thwaites (Tw), Crosson (Cs), Dotson (Dt) and Getz (Gt). The PIG and Thwaites have received
117 significant attention in recent years due to their potentially large contribution to sea level rise
118 (Rignot et al., 2019; Scambos et al., 2017). Along with the Crosson and Dotson ice shelves, the
119 PIG and Thwaites are undergoing the highest melt rate, which is expected to increase under
120 climate change scenarios (Naughten et al., 2023; Paolo et al., 2023). The mean mixed-layer
121 depth (MLD) in the ASP is deeper (Fig. 1b), indicating that it may better entrain deeper sources

122 of nutrients into the upper waters. The polynyas' boundaries were determined using a 15% sea-
123 ice concentration (SIC) mask (Moreau et al., 2015; Stammerjohn et al., 2008) for every 8-day
124 period from June 1998 to June 2017 to accurately represent the size of the polynyas through
125 time.

145 **Figure 1.** Study area. Panel 1a shows the bathymetry (from ETOPO1; Amante & Eakins, 2009)
146 and panel 1b shows the climatological summer mixed-layer depth (MLD) from 1998 to 2017.
147 Panel 1a shows a simplified schematic of the local deep ocean circulation (~ below 400m, yellow
148 arrows) and upper glacial meltwater/sediments/circumpolar deep water sourced dFe pathways
149 (magenta arrows), which follows the local upper ocean circulation. Schematic adapted from St-
150 Laurent et al. (2017). The white lines in panel (b) represent the climatological summer polynyas'
151 boundaries for the Amundsen Sea polynya (left) and Pine Island polynya (right). The dark grey
152 area is mainland Antarctica. Light grey areas indicate floating ice shelves and glaciers: Abbot

153 (Abb), Cosgrove (Cs), Pine Island Glacier (PIG), Thwaites (Tw), Crosson (Cr), Dotson (Dt) and
154 Getz (Gt).

155

156 2.2 Satellite ocean surface chlorophyll-*a* and net primary productivity

157

158 We obtained level-3 satellite surface chlorophyll-*a* (chl*a*) concentration with spatial and
159 temporal resolution of 0.04° and 8 days from the European Space Agency (ESA) Globcolor
160 project. We used the CHL1-GSM (Garver-Siegel-Maritorena) ([Maritorena and Siegel, 2005](#))
161 standard Case 1 water merged products consisting of the Sea-viewing Wide Field-of-view
162 (SeaWiFS), Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging
163 Spectroradiometer (MODIS-A) and Visible Infrared Imaging Suite sensors (VIIRS). We chose to
164 perform our analysis with the merged GlobColour product, which has been widely applied and
165 tested in Southern Ocean and coastal Antarctic studies ([Ardyna et al., 2017; Sari El Dine et al.,](#)
166 [2025; Golder & Antoine, 2025; Nunes, Fereira & Brito, 2025](#)), to increase our spatial and
167 temporal coverage.

168

169 We estimated phytoplankton bloom phenology metrics following the Kauko et al. ([2021](#))
170 method. Firstly, we applied a spatial 3x3 pixels median filter to reduce gaps in missing data.
171 Then, if a pixel was still empty, we applied the average chl*a* of the previous and following week
172 to fill the data gap. Data were smoothed using a 4-point moving median (representing a month of
173 data). For each pixel, the threshold for the bloom detection was based on 1.05 times the annual
174 median. The threshold method is frequently used ([Racault et al., 2012; Siegel et al., 2002](#)) and
175 proven reliable at higher latitudes ([Marchese et al., 2017; Soppa et al., 2016; Thomalla et al.,](#)
176 [2023](#)). We then determined 5 main bloom metrics. The bloom start (BS) is defined as the day
177 where chl*a* first exceeds the threshold for at least 2 consecutive 8-day periods. Conversely, the
178 bloom end is the day where chl*a* first falls below the threshold for at least 2 consecutive 8-day
179 periods. The bloom duration (BD) is the time elapsed between bloom start and bloom end. The
180 bloom mean chl*a* (BM) and bloom max chl*a* are respectively the average and maximum chl*a*
181 value calculated during the bloom. Each year is centered around austral summer, from June 10th
182 year *n* (day 1) to June 9th year *n+1* (day 365 or 366). We also averaged our 8-day data to
183 monthly data to perform a spatial correlation analysis (see section 2.6).

184

185 We note that satellite ocean-colour chla algorithms (including the GlobColour merged product
186 used here) are globally tuned and may underperform in optically complex waters (e.g., with
187 elevated dissolved organic matter or suspended sediments, ‘Case 2’). In the ASP, past work (e.g.,
188 [Park et al. 2017](#)) shows that satellite chlorophyll climatologies reflect broad seasonal patterns
189 that are consistent with *in situ* measurements of phytoplankton biomass and photophysiology,
190 but there is limited data from regions immediately adjacent to glacier fronts or during times of
191 strong meltwater input. Thus, while we consider satellite chla to be useful for capturing spatial
192 and temporal variability at polynya scale, uncertainty likely increases in optically complex zones
193 near glacier margins or during low-light periods, and needs to be considered while interpreting
194 results.

195

196 Eight-day satellite derived Net Primary Productivity (NPP) data with 1/12° spatial resolution,
197 spanning 1998 - 2017 using the Vertically Generalized Production Model ([Behrenfeld and](#)
198 [Falkowski, 1997](#)) were obtained from the Oregon State University website. The VGPM model is
199 a chlorophyll-based approach and relies on the assumption that NPP is a function of chla,
200 influenced by light availability and maximum daily net primary production within the euphotic
201 zone. SeaWiFS-based NPP data span 1998 - 2009, MODIS-based data span 2002 - 2017. To
202 increase spatial and temporal coverage, we averaged SeaWiFS and MODIS from 2002 to 2009,
203 where there was valid data for both in a pixel. NPP data were also monthly averaged and used to
204 compare with chla spatial and temporal patterns.

205

206 We caution that our study focuses on surface productivity, and satellites cannot detect under-ice
207 phytoplankton and sea-ice algal blooms, therefore likely underestimating total primary
208 productivity ([Ardyna et al., 2020](#); [Boles et al., 2020](#); [Douglas et al., 2024](#); [McClis & Bushinsly,](#)
209 [2023](#); [Stoer & Fennel 2024](#)).

210

211 2.3 Ice shelves volume flux

212

213 We used the latest ice shelf basal melt rate estimates from [Paolo et al \(2023\)](#). These estimates are
214 derived from satellite radar altimetry measurements of ice shelves height, and produced on a 3

215 km grid every 3 months, with an effective resolution of ~5 km. For this study, our basal melt
216 record spans June 1998 to June 2017. We calculated ice shelves volume flux rate for every
217 gridded cell by multiplying the basal melt rate by the cell area. Data were summed for each ice
218 shelf for a 3-month period. A 5-point (15 months) running mean was applied to reduce noise,
219 such as spurious effects induced by seasonality on radar measurements over icy surfaces (Paolo
220 et al., 2016), and data were temporally averaged from October to March to match the SO
221 phytoplankton growth season (Arrigo et al., 2015), providing yearly mean values. The Abbot,
222 Cosgrove, Thwaites, Pine Island Glacier, Crosson, Dotson and Getz ice shelves were used to
223 calculate a single total meltwater volume flux (TVFall) for the ASE to investigate the link with
224 surface chla and NPP. We also investigated the relationship between each polynyas' productivity
225 and their closest ice shelf. The Abbot, Cosgrove, PIG and Thwaites ice shelves were used to
226 calculate the flux rate in the PIP (TVFpip) while the Thwaites, Crosson, Dotson and Getz ice
227 shelves were chosen for the ASP (TVFasp). The Thwaites was used in both due to its central
228 position between the two polynyas. We thereafter use the term glacial meltwater which defines
229 meltwater resulting from ice shelf melting.

230

231 2.4 Simulated dFe distribution

232

233 The spatial distribution of dFe from different sources in the embayment was investigated from
234 Dinniman et al. (2020) model output. The model used is a Regional Ocean Modelling System
235 (ROMS) model, with a 5 km horizontal resolution and 32 terrain following vertical layers and
236 includes sea-ice dynamics, as well as mechanical and thermodynamic interaction between ice
237 shelves and the ocean. The model time run spans seven years and simulates fourteen different
238 tracers to understand dFe supply across the entire Antarctic coastal zone, with the last two years
239 simulating biological uptake. For the purpose of this study, we only use four different dFe
240 sources/tracers in the ASE: ice shelf melt, CDW, sediments and sea ice. Each tracer estimation is
241 independent from each other, meaning that one source does not affect the other, and they have
242 the same probability for biological uptake by phytoplankton. That is, dFe from all sources can
243 equally be taken up by phytoplankton. This is parametrized in the model as all iron molecules
244 being bound to a ligand and therefore remaining in solution in a bioavailable form (Gledhill &
245 Buck, 2012). For a detailed and complete explanation of the model, see Dinniman et al. (2020).

246

247 2.5 Other environmental parameters

248

249 We used SIC data spanning June 1998 to June 2017 from the National Snow and Ice Data Center
250 ([Cavalieri et al., 1996](#)). The data are Nimbus-7 SMMR and SSMI/SSMIS passive microwave
251 daily SIC with 25 km spatial resolution. We computed the sea-ice retreat time (IRT) and open
252 water period (OWP) metrics using a 15% threshold ([Stammerjohn et al., 2008](#)). Daily data were
253 monthly averaged to perform a spatial correlation analysis (see section 2.6).

254

255 We collected monthly level-4 Optimum Interpolation Sea Surface Temperature (OISST.v2)
256 0.25° high resolution dataset from the National Oceanic and Atmospheric Administration
257 ([Huang et al., 2021](#)). Using this dataset compared to others has been proven to be the most
258 suitable for our region of interest ([Yu et al., 2023](#)).

259

260 We obtained monthly Photosynthetically Available Radiation (PAR) from the same Globcolour
261 project at the same spatial and temporal resolution (0.04° and 8 days) as chla.

262

263 We used monthly averaged ERA5 reanalysis of zonal (u) and meridional (v) surface wind speed
264 at 10 m above the surface ([Hersbach et al., 2020](#)).

265

266 We finally investigated monthly mean MLD from the Estimating the Circulation and Climate of
267 the Ocean (ECCO) ocean and sea-ice state estimate project ([ECCO consortium et al., 2021](#)). The
268 dataset is the version 4, release 4, at 0.5° spatial resolution.

269

270 2.6 Statistical analysis

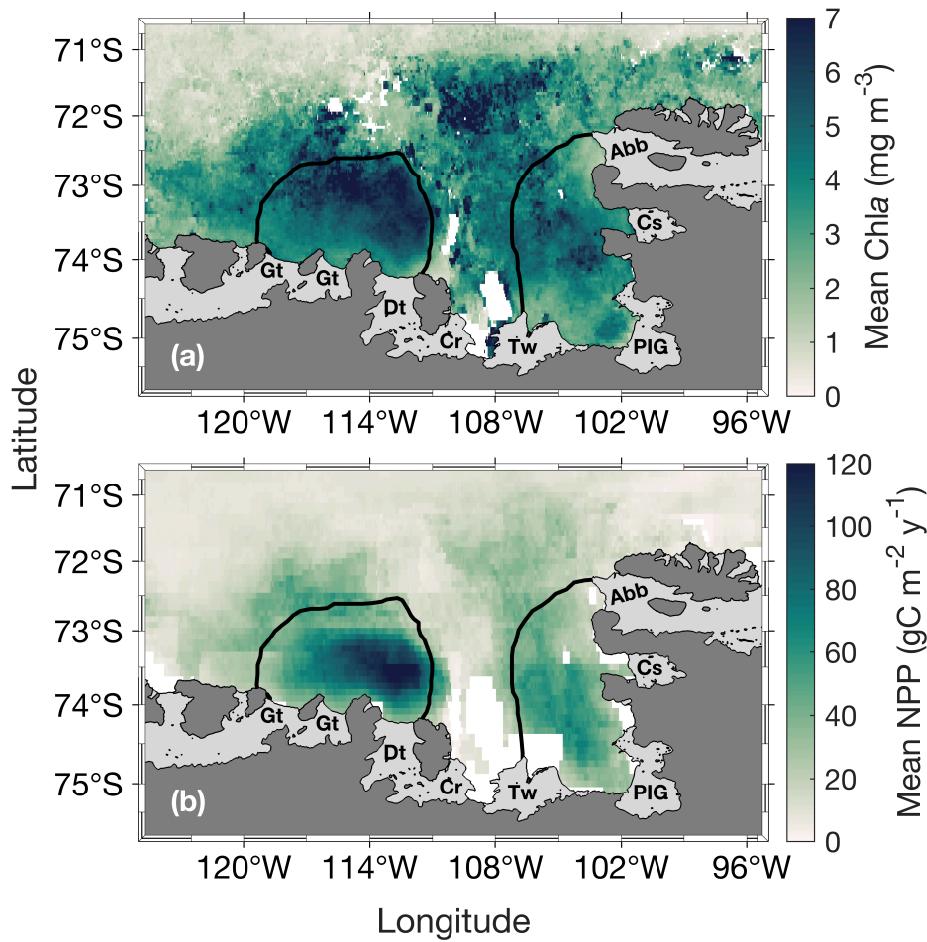
271

272 Because some of our data were not normally distributed, we consistently applied nonparametric
273 tests throughout our statistical analysis. A Mann-Kendall test was performed to detect linear
274 trends in chla and NPP. A two-tailed non-parametric Spearman correlation metric (rho, p) was
275 calculated to investigate the relationship between chla, NPP, and glacial meltwater, as well as
276 between phytoplankton and sea-ice phenology metrics. A two-tailed Mann-Whitney test was

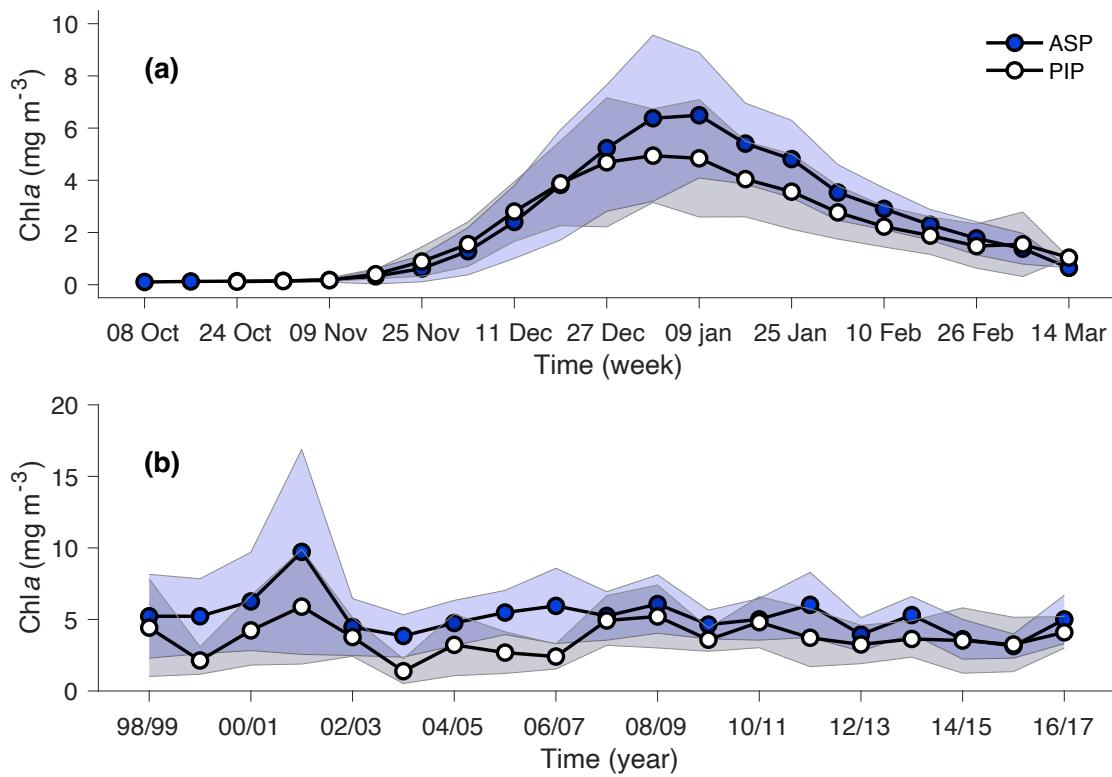
277 performed to detect any significant mean differences for chla, sea-ice phenology metrics, MLD,
278 PAR and dFe sources between the two polynyas. Monthly spatial correlations were tested
279 between SIC, winds, chla, NPP, SST, and PAR after removing the seasonality for each
280 parameter. As well, a yearly spatial correlation between chla, NPP and TVFall was performed.
281 The relationships between chla concentration, NPP and environmental factors were explored
282 using a Principal Component Analysis (PCA). No pre-treatment (mean-centering or
283 normalization) was applied to the variables prior to PCA, as all variables are expressed in
284 comparable units and ranges, consistent with common practice in marine biogeochemistry
285 studies (Marchese et al., 2017; Liniger et al., 2020). Every statistical test was run with a 95% (p-
286 value < 0.05) confidence level. Our study spans 1998-2017. We are constrained by the start of
287 satellite ocean color data (1998) and the end of the ice shelf basal melt rate record (2017) from
288 Paolo et al (2023).

289

290 **3. Results**


291

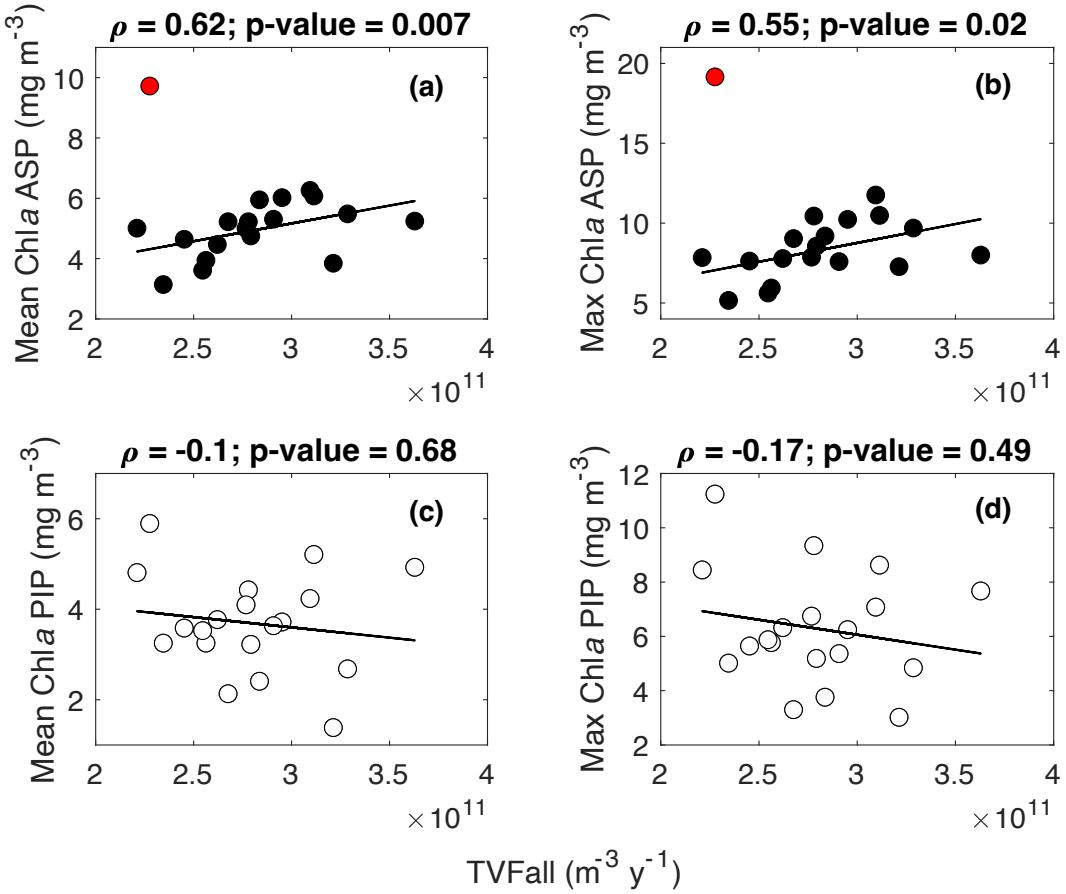
292 3.1 Glacial meltwater and chla variability


293

294 The annual climatology maps reveal substantially higher chla concentration and NPP in the ASP
295 compared to the PIP (Fig. 2). The chla concentration starts increasing in mid-November to reach
296 its average earlier in the PIP than the ASP. At its peak, chla in the ASP is 6.49 mg m^{-3} and 4.94 mg m^{-3} in the PIP (Fig. 3a). During the bloom period, chla concentration is also higher in the
297 ASP on average compared to the PIP ($\text{ASP} = 5.21 \pm 1.29 \text{ mg m}^{-3}$; $\text{PIP} = 3.69 \pm 1.11 \text{ mg m}^{-3}$,
298 Fig. 3b; Supplementary Table T1; p-value < 0.01). When looking at polynya area integrated
299 values (concentration multiplied by area gives units of mg m^{-1}), chla is significantly higher in the
300 ASP than in the PIP, and increases with the polynya area (Supplementary Figs. S1 and S2). NPP
301 is also significantly higher in the ASP than in the PIP ($1.88 \pm 1.12 \text{ TgC y}^{-1}$ vs $0.85 \pm 0.86 \text{ TgC y}^{-1}$,
302 p-value = 0.004; Supplementary Fig. S3). No significant interannual trends in mean chla and
303 NPP during the bloom are observed for either polynya (Fig. 3b; Supplementary Fig. S3; p-
304 value > 0.1).
305

306

Fig. 2. Spatial distribution of (a) surface chlorophyll-*a* (chl *a*) during the bloom and (b) net primary productivity (NPP) climatology (1998 – 2017) for the Amundsen (ASP) and Pine Island (PIG) polynyas. The black lines represent the climatological summer polynyas' boundaries.


Fig. 3. (a) Weekly chlorophyll-*a* (chl_{*a*}) climatology (1998-2017) for ASP (blue circles) and PIP (white circles). (b) Bloom mean chl_{*a*} time series of ASP (blue circles) and PIP (white circles). Shaded areas represent the standard deviation for a given year. The relationship between chl_{*a*} (in mg m⁻³ and mg m⁻¹) and the polynya size is shown in Supplementary Fig. S2.

The variability in TVFall is statistically uncorrelated with surface chl_{*a*} concentration and NPP in both polynyas from 1998 to 2017 (Fig. 4; Supplementary Fig. S4). However, the relationship becomes strongly significant in the ASP for both mean and max chl_{*a*} when we remove the chl_{*a*} outlier in 2001/02 (red data point; Figs. 4a-b), although not for NPP (Supplementary Figs. S4a-b). The positive relationship implies that surface chl_{*a*} in the ASP is higher when more glacial meltwater is delivered to the embayment. No strong relationships are observed in the PIP between TVFall, surface chl_{*a*} and NPP (Figs. 4c-d; Supplementary Figs. S4c-d). When fluxes from individual glaciers are considered, PIP chl_{*a*} does not correlate with Abbot, Cosgrove, PIG, Thwaites or TVFpip fluxes (Table 1). On the other hand, ASP chl_{*a*} shows strong relationships with TVFasp, the Dotson and Crosson ice shelves (Table 1), and all ice shelves become

369 significantly correlated with mean and max chla when year 2001/02 is removed. There are no
 370 statistically significant relationships between individual ice shelves and NPP in both polynyas.
 371 Spatially, the mean and max chla are strongly correlated with TVFall in southern-eastern part of
 372 the ASP, in front of the Dotson ice shelf (Figs. 5a-b), where a positive relationship with NPP is
 373 also observed (Fig. 5c), although not significant.

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

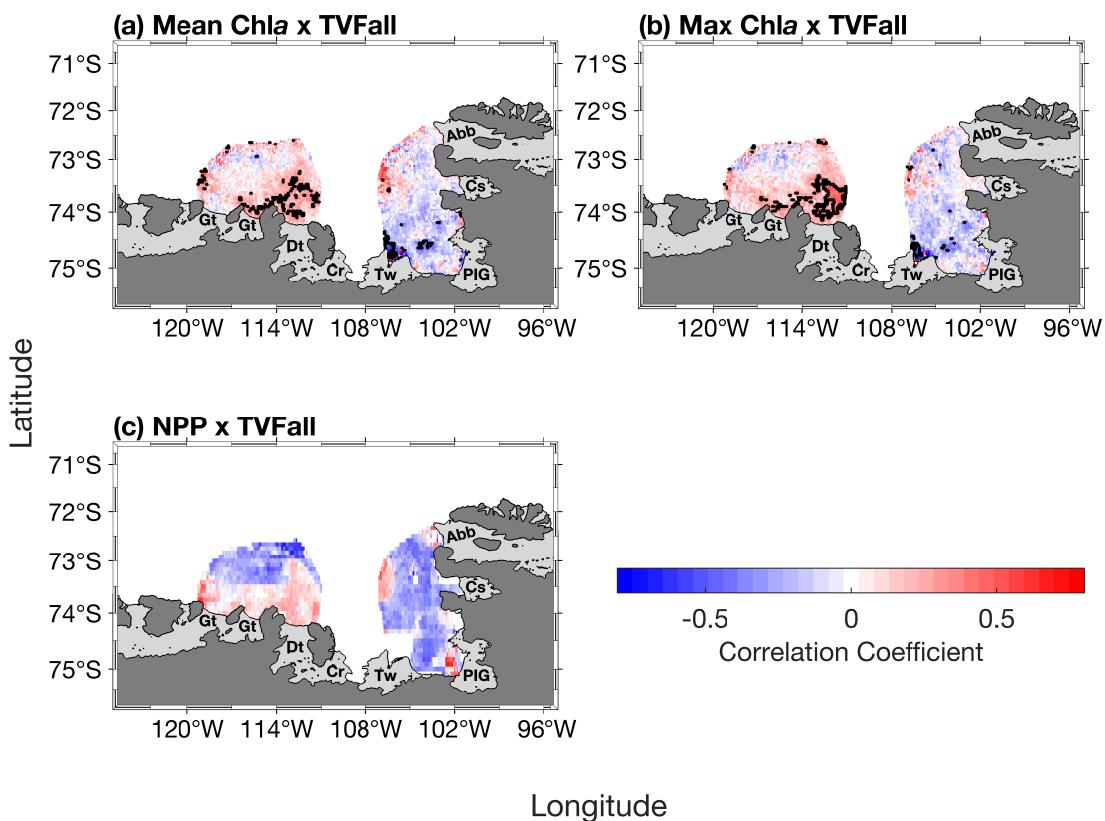
398

399

Fig. 4. Scatter plots of mean and max surface chlorophyll-*a* (chla) with the total volume flux (TVFall) for (a-b) the ASP and (c-d) the PIP from 1998 to 2017 (n=19). The fitted lines and statistics exclude year 2001/02 (red outlier) for the ASP regressions. If all data is considered, the relationships between mean chla, max chla and TVFall in the ASP are not significant. TVFall is an annual integral representing the sum of all ice shelves (see methods section) for the ASE.

Table 1. Statistical summary of the relationships between ice shelves volume flux and

400 surface chlorophyll-*a* (chl*a*). The * marks a significant (p-value < 0.05) relationship. Statistical
 401 results for the ASP include all years (n=19). All relationships between mean chl*a*, max chl*a* and
 402 ASP ice shelves become significant when year 2001/02 is removed.


403

404

	ASP				PIP			
	Mean chl <i>a</i>		Max chl <i>a</i>		Mean chl <i>a</i>		Max chl <i>a</i>	
	rho	p-value	rho	p-value	rho	p-value	rho	p-value
Abbot	/	/	/	/	0.09	0.73	-0.04	0.88
Cosgrove	/	/	/	/	-0.32	0.18	-0.46	0.05
PIG	/	/	/	/	-0.04	0.88	-0.13	0.61
Thwaites	0.16	0.52	0.11	0.66	0.12	0.63	0.09	0.71
Crosson	0.43	0.07	0.50	0.03*	/	/	/	/
Dotson	0.48	0.04*	0.54	0.02*	/	/	/	/
Getz	0.37	0.12	0.43	0.07	/	/	/	/
TVFasp	0.42	0.07	0.46	0.05*	/	/	/	/
TVFpip	/	/	/	/	0.009	0.97	-0.1	0.68

425

426

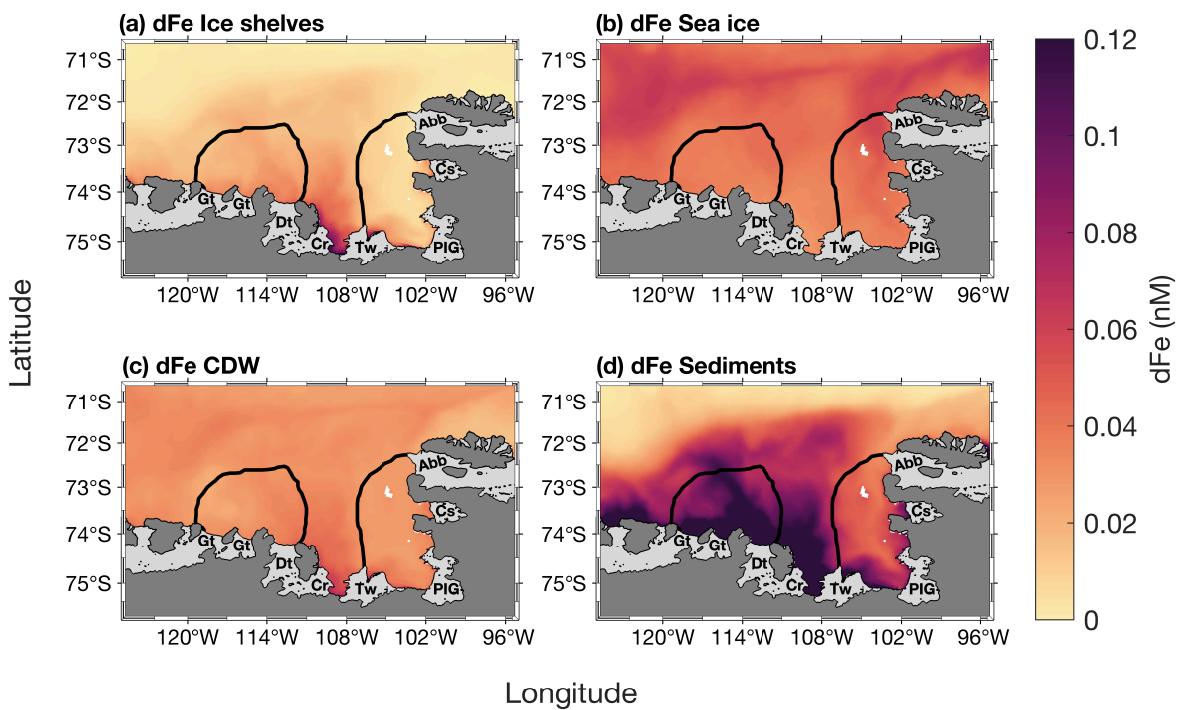


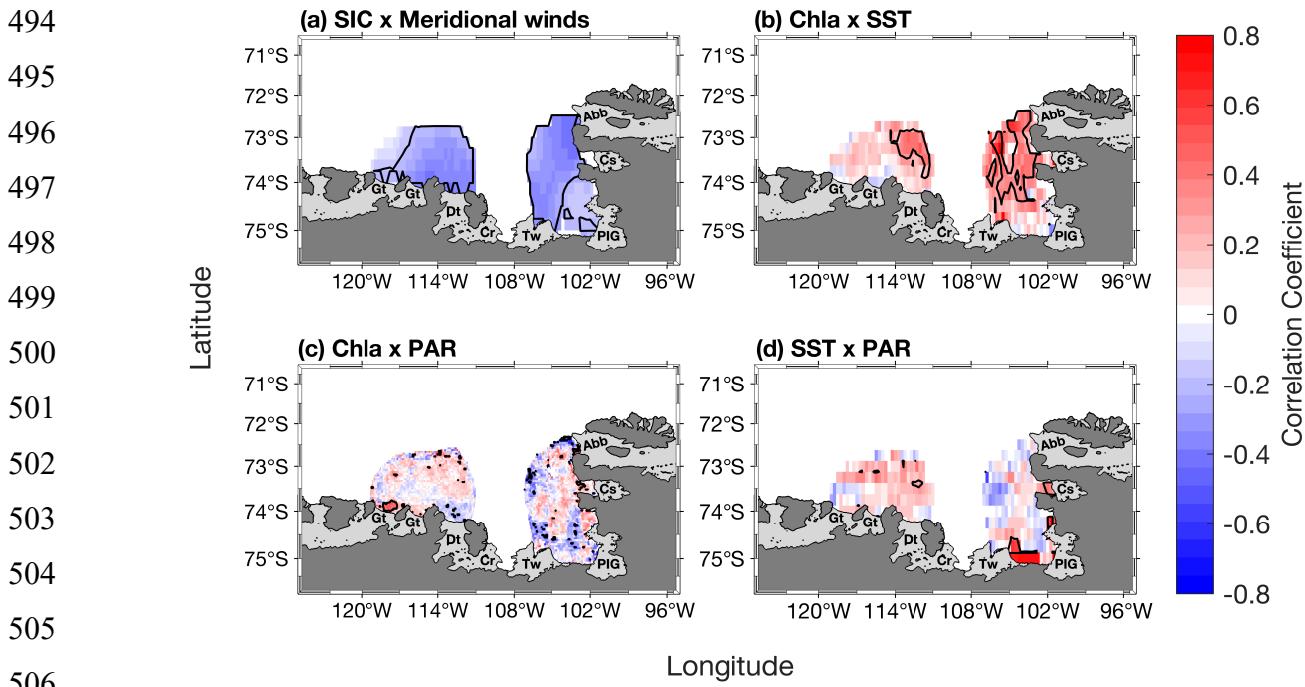
Fig. 5. Spatial correlation maps between total volume flux (TVFall) and (a) surface mean chlorophyll-*a* (chl_a), (b) surface max chl_a and (c) net primary productivity (NPP) (n=19). The black contour represents significant correlations at 95% confidence level. Data outside of the summer climatological polynyas' boundaries were masked out.

3.2 Simulated dFe sources distribution

451 The modelled spatial distribution of surface dFe sources is presented in Fig. 6. On average, the
 452 smallest dFe source in the embayment is from the ice shelves, with a maximum concentration
 453 between the Thwaites and Dotson ice shelves. The dFe from sea ice is slightly higher than from
 454 ice shelves and similar over the two polynyas, and is higher near the sea-ice margin (Fig. 6b). The
 455 dFe from CDW is also higher between the Thwaites and Dotson (Fig. 6c). Sediment is the
 456 dominant dFe source (Fig. 6d). Its distribution spreads from 108°W to the western part of the Getz
 457 ice shelf. The highest sediment concentration is found along the coast and inside the ASP. On

458 polynya-wide average basis, the sediment reservoir contributes significantly more to total dFe in
 459 the ASP (58.3%, 0.13nM) compared to sea ice (16.5%, 0.04nM), CDW (13.5%, 0.03nM) and ice
 460 shelves (11.7%, 0.03nM). In the PIP, the contribution of sediments is still significantly higher
 461 (41.2%; 0.08nM) but lower than the ASP and the contribution gap with the other sources decreases.
 462 The CDW and sea ice contribute 22.5% (0.04nM) and 18.9% (0.035nM) to the dFe pool
 463 respectively, while ice shelves are still the smallest sources at 14.5% (0.03nM) in the PIP.

479 **Fig. 6.** Two-years top-100m averaged spatial distribution of surface dissolved iron (dFe)
 480 contribution from (a) ice shelves, (b) sea ice, (c) circumpolar deep water (CDW) and (d) sediments
 481 simulated by the model from Dinniman et al. (2020). The black lines represent the climatological
 482 summer polynyas' boundaries.


3.3 Environmental parameters, chla and NPP variability

486 During the phytoplankton growth season (October-March), SIC is spatially significantly
 487 anticorrelated to the meridional winds speed in both polynyas (Fig. 7a). Chla is significantly
 488 positively correlated with SST in the eastern ASP, and the whole PIP (Fig. 7b), but weakly with

489 PAR in both polynyas (Fig. 7c). Finally, PAR and SST are positively related in both central
 490 polynyas, albeit not significantly (Fig. 7d). We note that similar spatial relationships are
 491 observed when NPP is correlated with SST and PAR. (Supplementary Fig. S5).

492

493

507 **Fig. 7.** Spatial correlation map between sea-ice concentration (SIC) and (a) meridional winds.
 508 Spatial correlation maps between mean chlorophyll-*a* (chla) concentration and (b) sea surface
 509 temperature (SST), (c) photosynthetically available radiation (PAR). (d) Spatial correlation map
 510 between PAR and SST. Data span 1998 – 2017 from October to March (n=114). The black contour
 511 represents significant correlations at 95% confidence level. Seasonality was removed from the data
 512 before performing the correlation. Data outside of the summer climatological polynyas'
 513 boundaries were masked out.

514

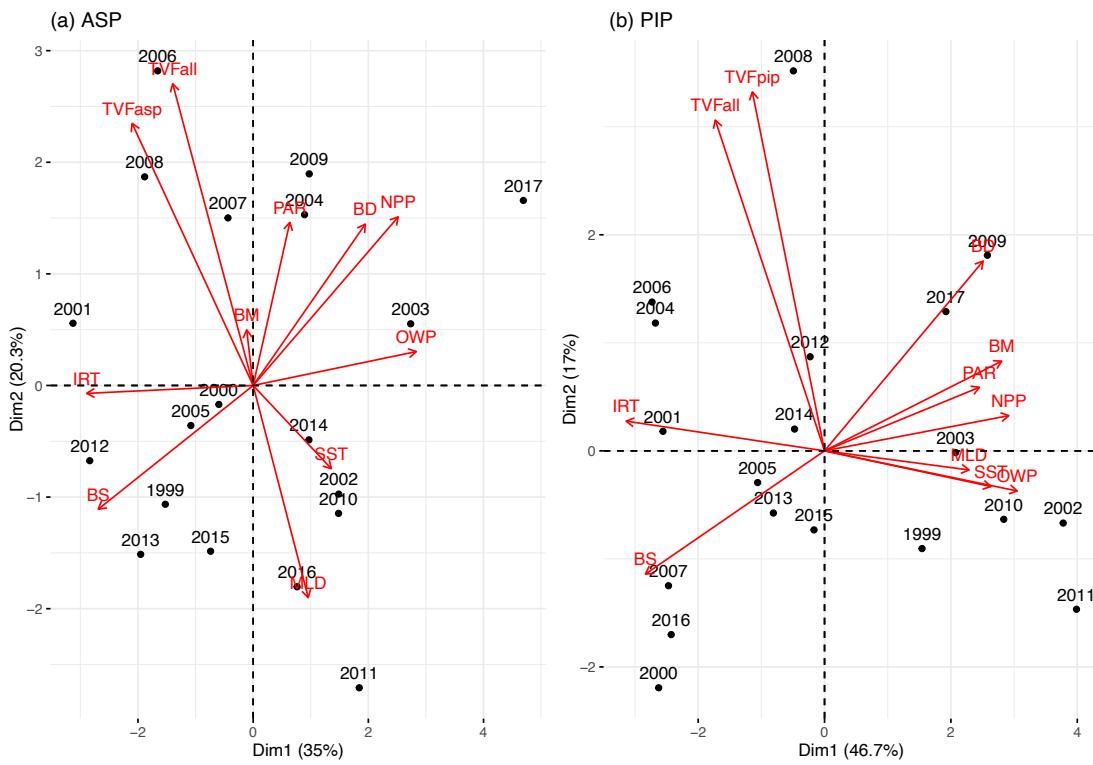
515 Regarding the phenology, the bloom start is positively correlated to IRT and negatively with
 516 OWP in the ASP, although not significantly with the OWP (Table 2). This means that the bloom
 517 starts earlier and later as IRT does, and that longer OWP and earlier bloom starts are correlated
 518 with earlier ice retreat. The bloom mean and bloom max chla are not correlated with either IRT
 519 and OWP in the ASP. IRT and OWP are significantly related ($p = -0.93$; p -value < 0.001). When

520 year 2001/02 is removed, no significant changes in the relationships between all parameters are
 521 detected. In the PIP, all metrics are significantly related to each other, except for PAR and OWP
 522 (Table 2). That is, the bloom start is positively correlated with IRT and negatively with OWP,
 523 while the bloom duration, mean chla, max chla concentrations and NPP are negatively linked to
 524 the IRT and positively with OWP. SST and PAR are negatively correlated with IRT, and
 525 positively with SST. IRT and OWP are significantly related in the PIP ($p = -0.88$; p-value <
 526 0.001).

527

528 **Table 2.** Statistical summary of the relationships between the phytoplankton bloom metrics and
 529 environmental parameters (n=19). The * marks a significant (p-value < 0.05) relationship. IRT =
 530 ice retreat time, OWP = open water period, NPP = net primary productivity, SST = sea surface
 531 temperature, PAR = photosynthetically available radiation. Removing year 2001/02 for the ASP
 532 slightly changes the strength of the relationships between parameters (i.e., rho) but not the
 533 significance.

534


	Amundsen Sea polynya				Pine Island polynya			
	IRT		OWP		IRT		OWP	
	rho	p-value	rho	p-value	rho	p-value	rho	p-value
Bloom start	0.51	0.03*	-0.43	0.07	0.56	0.02*	-0.48	0.04*
Bloom duration	-0.12	0.63	0.09	0.71	-0.56	0.02*	0.59	0.01*
Bloom mean	0.19	0.44	-0.33	0.17	-0.67	0.003*	0.50	0.04*
Bloom max	0.24	0.32	-0.35	0.14	-0.65	0.005*	0.52	0.03*
NPP	-0.55	0.02*	0.45	0.05	-0.72	0.001*	0.54	0.02*
SST	-0.09	0.72	-0.01	0.96	-0.57	0.02*	0.52	0.03*
PAR	-0.09	0.72	0.05	0.84	-0.62	0.007*	0.38	0.12

548

549

550 We explore the relationships between phytoplankton bloom phenology metrics and their
551 potential environmental drivers by conducting a multivariate PCA for both polynyas (Fig. 8).
552 The PCA reduces our datasets (11 variables) and breaks them down into dimensions that capture
553 most of the variability and relationships between all variables. Arrows indicate the contribution
554 of each variable to the dimensions, with longer arrows representing stronger influence.
555 Observations (in our case, years) positioned in the direction of an arrow are more influenced by
556 that variable. In the ASP (Fig. 8a), the first two principal components explain 55.3% of the total
557 variance (Dim1: 35%, Dim2: 20.3%). NPP in the ASP is closely associated with BD, indicating
558 that the bloom duration is the primary driver of production. On the other hand, environmental
559 vectors such as TVFall and TVFasp project more strongly onto Dim2 with the bloom mean chla,
560 indicating that meltwater input may influence surface chla interannual variability, and is less
561 directly tied to NPP. We note that when year 2001/02 is removed, the relationship between
562 TVFasp and TVFall becomes much stronger with the bloom mean chla (Supplementary Fig.
563 S6a) and is slightly anticorrelated to SST and MLD. In the PIP (Fig. 8b), the first two
564 components account for 63.7% of the total variance (Dim1: 46.7%, Dim2: 17%). Compared to
565 the ASP, both NPP and BM cluster strongly with BD and PAR on Dim1. Additionally, IRT,
566 OWP and SST and MLD aligned along Dim1, which explains 46.7% of the total variance
567 compared to 35% for the ASP, suggesting that physical conditions might play a stronger
568 structuring role in PIP compared to the ASP. In contrast, TVFall and TVFpip stand alone and
569 align more strongly with Dim2, suggesting a less dominant influence of meltwater on the system
570 bloom mean chla and NPP variability in the PIP. Finally, polynya-averaged PAR and MLD are
571 significantly stronger and deeper, respectively, in the ASP compared to the PIP during the bloom
572 season (MLD ASP = 28.5 ± 5.7 m; MLD PIP = 24.9 ± 3.7 m; p-value = 0.03 and PAR ASP = 31.5
573 ± 5.4 Einstein m $^{-2}$ d $^{-1}$; PAR PIP = 26.5 ± 6.7 Einstein m $^{-2}$ d $^{-1}$; p-value = 0.02).

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

589
590 **Fig. 8.** Principal component analysis biplot of environmental parameters (red) and years (black)
591 for (a) the ASP and (b) the PIP. TVFasp = total volume flux for ASP; TVFpip = total volume flux
592 for PIP; TVFall = total volume flux for all ice shelves; BM = bloom mean; PAR =
593 photosynthetically available radiation; BD = bloom duration; NPP = net primary productivity;
594 OWP = open water period; SST = sea surface temperature; MLD = mixed-layer depth; BS = bloom
595 start; IRT = ice retreat time. The same plot is presented in supplementary Fig. S6, but removing
596 year 2001/02 for the ASP, emphasizing the relationship between total volume flux (TVFall,
597 TVFasp) and BM in the ASP.

598

599 **4. Discussion**

600

601 4.1 Effect of glacial meltwater on phytoplankton chla and NPP

602

603 The relationship between glacial meltwater, surface chla and NPP observed over the last two
604 decades was distinctly different between the two polynyas. In the ASP, we found that enhanced

605 glacial melt translates into higher surface chla, but not with NPP (when removing year 2001/02;
606 Figs. 4a-b; Supplementary Fig. S6a). Modelling results (Fig. 6) suggest that sediment from the
607 seafloor is the main source of dFe in the ASP, but this source is also linked to glacial melt. Ice
608 shelf glacial meltwater drives the meltwater pump, which brings up mCDW and fine-grained
609 subglacial sediments to the surface. This result is in agreement with previous research: Melt-
610 laden modified CDW flowing offshore from the Dotson ice shelf to the central ASP ([Sherrell et
611 al., 2015](#)), and resuspended sediments ([Dinniman et al., 2020; St-Laurent et al., 2017; 2019](#)) have
612 been identified as significant sources of dFe to be used by phytoplankton. Interestingly, both dFe
613 supplied from ice shelves and CDW are most important in front of the Thwaites and Crosson ice
614 shelves, where the area averaged basal melt rate, and thus likely the area averaged meltwater
615 pumping ([Jourdain et al., 2017](#)), are typically strongest in observations ([Adusumilli et al., 2020;](#)
616 [Rignot et al., 2013](#)) and the modelling (Fig. 6). The year 2001/02 does not stand out as being
617 influenced by any specific parameter in the ASP compared to other years (Fig. 8a,
618 Supplementary Fig. S6a). The anomalously high surface chla observed during this year, as also
619 reported by Arrigo et al. ([2012](#)), may result from exceptional conditions that were not captured
620 by the parameters analysed in our study, for instance, an imbalance in the grazing pressure.
621 Interestingly, surface chla and NPP exhibit contrasting trends when averaged across the polynya.
622 While TVFall may explain some of the variance in surface chla, it does not account for the
623 variance in NPP, whether assessed through direct or multivariate relationships. This decoupling
624 between chla and NPP in the ASP suggests that glacial meltwater, while enhancing surface
625 phytoplankton biomass through nutrient delivery, may also promote vertical mixing. This mixing
626 deepens the mixed layer, reducing light availability and constraining photosynthetic rates. These
627 rates are influenced by fluctuations in the MLD, even in the presence of high biomass and
628 sufficient macronutrients. The summer MLD is deeper in the ASP (Fig. 1b), which would
629 decrease light availability, despite higher PAR compared to the PIP. Previous studies report that
630 the small prymnesiophyte *P. antarctica*, a low-efficiency primary producer ([Lee et al., 2017](#)), is
631 better adapted to deeper mixed layers and therefore lower light conditions ([Alderkamp et al.,
632 2012; Mills et al., 2010](#)) and could contribute to high surface chla decoupled from NPP, as
633 observed in the ASP. This is consistent with past *in situ* studies showing systematic differences
634 in mixed-layer structure between the two polynyas. The PIP commonly exhibits a shallow,
635 strongly stratified surface mixed layer while the ASP is more variable and has been observed to

636 host deeper MLD ([Alderkamp et al., 2012](#); [Park et al., 2017](#); [Yager et al., 2016](#); [Mills et al., 2012](#)).

638

639 In the PIP, we did not find any long-term relationships between the phytoplankton bloom, NPP
640 and glacial meltwater. Variability in ice shelf glacial meltwater may not have the same effect on
641 the surface chla and NPP in the PIP compared to the ASP. Iron delivered from glacial melt
642 process related in the PIP and west of it could accumulate and follow the westward coastal
643 current, towards the ASP ([St-Laurent et al., 2017](#)). These sources would include dFe from
644 meltwater pumped CDW, sediments and ice shelves, all of which are higher in front of the
645 Crosson ice shelf, west of the PIP (Fig. 6). With the coastal circulation, this would make dFe
646 supplied by glacial meltwater greater in the ASP, thereby contributing to the higher productivity
647 in the ASP. Recently, subglacial discharge (SGD) was shown to have a different impact on basal
648 melt rate in the ASE polynyas ([Goldberg et al., 2023](#)), where PIG had a lot less relative increase
649 in melt with SGD input than Thwaites or Dotson/Crosson. Thus, assuming a direct relationship
650 between meltrate, SGD and dFe sources, the signal in the PIP (fed by PIG melt) will be much
651 weaker than in the ASP (fed by upstream Thwaites, Crosson and local Dotson due to the
652 circulation), which might also explain the discrepancies between the PIP and ASP. A stronger
653 meltwater-driven stratification may also dominate in the PIP, reducing vertical nutrient
654 replenishment and thereby limiting biomass growth ([Oh et al., 2022](#)), even where TVFall is high,
655 hence leading to a direct negative relationship observed compared to the ASP (Fig. 4;
656 Supplementary Fig. S4). The model outputs used here are critical to understand the spatial
657 distribution of dFe in the embayment. They strongly suggest, but do not definitively demonstrate,
658 the role of dFe in influencing the phytoplankton bloom interannual variability.

659

660 The decoupling between surface chla and NPP could reflect two contrasting meltwater effects.
661 Near glacier and ice-shelf fronts, entrainment of iron-rich deep waters rising to the surface
662 through the meltwater pump can produce surface chla maxima (high biomass) without
663 proportional increases in depth-integrated productivity. Further from the coast, meltwater
664 spreading at neutral buoyancy strengthens stratification, limiting vertical nutrient fluxes and
665 thereby suppressing NPP despite elevated chla. These dual mechanisms are consistent with
666 observational and modelling studies of meltwater entrainment and dispersal ([Randall-Goodwin et](#)

667 al., 2015; St-Laurent et al., 2017; Dinniman et al., 2020; Forsch et al. 2021), and suggest that
668 spatial heterogeneity in plume dynamics could explain the observed chla and NPP mismatch. We
669 also note as a limitation that satellite-derived chla and VGPM NPP estimates lack the vertical
670 resolution needed to resolve sub-plume stratification and mixing processes (e.g., fine-scale
671 vertical gradients in iron or nutrient fluxes), so our mechanistic interpretations of surface chla vs.
672 depth-integrated productivity decoupling must be taken with caution.

673
674 Satellite algorithms commonly estimate NPP from surface chla, but the approach and
675 assumptions vary across models. The VGPM relates chla to depth-integrated photosynthesis
676 through empirical relationships with light and temperature (Behrenfeld & Falkowski, 1997). In
677 contrast, the Carbon-based Productivity Model (CbPM) emphasizes phytoplankton carbon
678 biomass and growth rates derived from satellite optical properties, decoupling productivity
679 estimates from chla alone (Westberry et al., 2008). The CAFE model (Carbon, Absorption, and
680 Fluorescence Euphotic-resolving model) integrates additional physiological parameters such as
681 chla fluorescence and absorption to better constrain phytoplankton carbon fixation (Silsbe et al.,
682 2016). In the Southern Ocean, where light limitation, iron supply, and community composition
683 strongly influence the relationship between chla and productivity, these algorithmic differences
684 can yield substantial variability in NPP estimates (Ryan-Keogh et al., 2023), with studies
685 showing that VGPM-type models often outperform CbPM in coastal Southern Ocean regions
686 (Jena et al., 2020). Because the VGPM algorithm does not explicitly incorporate the MLD, but
687 instead estimates primary production integrated over the euphotic zone based on surface chla,
688 PAR, and temperature, it may not fully capture the influence of variable MLD or subsurface
689 processes related to glacial melt, which could contribute to the observed decoupling between
690 chla and NPP. Therefore, while the observed decoupling between chla and NPP in the ASP
691 might also come from our choice of dataset, the VGPM model may be more appropriate for
692 coastal polynya environments, such as those in the Amundsen Sea.

693
694 Direct observations from Sherrell et al. (2015) showed higher chla in the central ASP while
695 surface dFe was low weeks before the bloom peak. This suggests a continuous supply and
696 consumption of dFe in the area, most likely from the circulation, as mentioned above.
697 Considering the long residence time of water masses in both polynyas (about 2 years (Tamsitt et

698 al., 2021)), and the daily dFe uptake by phytoplankton (3-196 pmol l⁻¹ d⁻¹ (Lannuzel et al.,
699 2023)), we also hypothesise that any dFe reaching the upper ocean from external sources is
700 quickly used and unlikely to remain readily available for phytoplankton in the following spring
701 season.

702

703 In recent model simulations with the meltwater pump turned off, Fe becomes the principal factor
704 limiting phytoplankton growth in the ASP (Oliver et al., 2019). However, the transport of Fe-rich
705 glacial meltwater outside the ice shelf cavities and to the ocean surface depends strongly on the
706 local hydrography. While Naveira Garabato et al. (2017) suggested that the glacial meltwater
707 concentration and settling depth (neutral buoyancy) outside the ice shelf cavities is controlled by
708 an overturning circulation driven by instability, others suggest that the strong stratification plays
709 an important role in how close to the surface the buoyant plume of said meltwater can rise
710 (Arnscheidt et al., 2021; Zheng et al., 2021). Therefore, high melting years and greater TVFall
711 might not necessarily translate into a more iron-enriched meltwater delivered to the surface
712 outside the ice shelf cavities, close to the ice shelf edge, as rising water masses may be either
713 prevented from doing so, or be transported further offshore in the polynyas where the
714 phytoplankton bloom occurs, before they can resurface (Herraiz-Borreguero et al., 2016).

715

716 Although several Fe sources can fuel polynya blooms, and they depend on processes mentioned
717 above, Fe-binding ligands may ultimately set the limit on how much of this dFe stays dissolved
718 in the surface waters (Gledhill and Buck, 2012; Hassler et al., 2019; Tagliabue et al., 2019).
719 Models of the Amundsen Sea (Dinniman et al., 2020, 2023; St-Laurent et al., 2017, 2019) did not
720 include Fe complexation with ligands and assumed a continuous supply of available dFe for
721 phytoplankton. Spatial and seasonal data on Fe-binding ligands along the Antarctic coast remain
722 extremely scarce and their dynamics are poorly understood (see Smith et al. (2022) for a
723 database of publicly available Fe-binding ligand surveys performed south of 50°S). Field
724 observations in the ASP and PIP suggest that the ligands measured in the upwelling region in
725 front of the ice shelves had little capacity to complex any additional Fe supplied from glacial
726 melt. As a consequence, much of the glacial and sedimentary Fe supply in front of the ice
727 shelves could be lost via particle scavenging and precipitation (Thuróczy et al., 2012). This was
728 also recently observed by van Manen et al. (2022) in the ASP. However, within the polynya

729 blooms, Thuróczy et al. (2012) found that the ligands produced by biological activity were
730 capable of stabilising additional Fe supplied from glacial melt, where we observed the highest
731 productivity. The production of ligands by phytoplankton would increase the stock of
732 bioavailable dFe and further fuel the phytoplankton bloom in the polynyas, potentially
733 highlighting the dominance of *P. antarctica*, which uses iron-binding ligands more efficiently
734 than diatoms (Thuróczy et al., 2012), even under low light conditions. Model development and
735 sustained field observations on dFe availability, including ligands, are needed to adequately
736 predict how these may impact biological productivity under changing glacial and oceanic
737 conditions, now and in the future.

738

739 Overall, the discrepancies observed between the ASP and PIP point to a complex set of ice-
740 ocean-sediment interactions, where several co-occurring processes and differences in
741 hydrographic properties of the water column influence dFe supply and consequent primary
742 productivity.

743

744 4.2 Possible drivers of the difference in phytoplankton surface chla and NPP between the
745 two polynyas

746

747 The biological productivity is higher in the ASP than the PIP, consistent with previous studies
748 (Arrigo et al., 2012; Park et al., 2017). In section 4.1, we mentioned the underlying hydrographic
749 drivers of these differences. We related the higher biological productivity in the ASP to a
750 potentially greater supply of iron from melt-laden Fe-enriched mCDW and sediment sources, but
751 this difference in productivity could also be attributed to other local features. The Bear Ridge
752 grounded icebergs on the ASP's eastern side (Bett et al., 2020) could add to the overall
753 meltwater pump strength. They can enhance warm CDW intrusions to the ice shelf cavity (Bett
754 et al., 2020), increasing ice shelf melting and subsequent stronger phytoplankton bloom from the
755 meltwater pump activity. These processes are weaker or absent in the PIP. Few sources other
756 than glacial meltwater may influence the bloom in the PIP. For instance, dFe in the euphotic
757 zone can also be sustained by the biological recycling, as shown in the PIP by Gerringa et al.
758 (2020).

759

760 Sea ice could also partly explain the difference in chla magnitudes, NPP, and variability between
761 the ASP and PIP. The strong spatial correlation between SIC and meridional winds (Fig. 7a)
762 indicates that southerly winds can export the coastal sea ice offshore and play a significant role
763 in opening the polynyas. In the ASP compared to the PIP, sea ice retreats earlier (IRT = Jan 1st \pm
764 14d vs Jan 18th \pm 17d, p-value = 0.003), the open water period is longer (OWP = 61 \pm 16d vs 44
765 \pm 22d, p-value < 0.001), and the SIC is lower (Supplementary Fig. S7). In the ASP, an early sea-
766 ice retreat leads to an earlier bloom start, but the longer open water period is not significantly
767 associated with greater bloom mean and max chla (Table 2). On the other hand in the PIP, an
768 early sea-ice retreat also triggers an early bloom start, but the longer open duration is associated
769 with warmer water, higher bloom mean chla, max chla, and NPP. These results suggest that
770 different processes might drive phytoplankton growth variability in the two polynyas. In the
771 ASP, it is likely the replenishment of dFe mentioned above that mostly influences the bloom. In
772 the PIP, higher SIC can delay the retreat time and shorten the open water season (Table 2,
773 Supplementary Fig. S7), leading to lower chla and NPP compared to the ASP. The significant
774 negative relationships between IRT, PAR, chla and NPP in the PIP (Table 2, Supplementary Fig.
775 S6) suggests a strong light limitation relief in the polynya. This light limitation hypothesis is
776 further supported by the high correlation between polynya-averaged chla mean with PAR and
777 SST in the PIP across the 19 years of study, compared to the lack of correlation in the ASP
778 (Supplementary Table T2; p-value < 0.01 for all relationships in the PIP). While *P. antarctica* is
779 usually the main phytoplankton species dominating in both polynyas, the combination of light-
780 limitation relief and higher SST may create better conditions for a stratified and warmer
781 environment that would favor diatom (Arrigo et al., 1999; van Leeuwe et al., 2020), as recently
782 observed in the ASP (Lee et al., 2022). The positive association of PAR, SST and chla with
783 MLD likely reflects conditions around sea-ice retreat (all negatively associated with IRT), when
784 enhanced wind mixing deepens the mixed layer and replenishes surface nutrients while light
785 availability and SST increases. This nutrient-light co-limitation phase supports high biomass
786 accumulation, likely from diatoms. Similar results have been reported by Park et al. (2017). They
787 found that the PIP was dFe replete, potentially from biological recycling (Gerringa et al., 2020),
788 compared to an iron-limited ASP. We hypothesise that the connection between glacial meltwater
789 and chla that we found in the ASP is a response to iron input (also observed by Park et al. (2017)
790 during incubation experiments) compared to the PIP, where light and temperature seem to play a

791 more significant role in driving the phytoplankton bloom variability. Our results suggest
792 potential long-term changes in the phytoplankton community, specifically a shift towards
793 diatoms in the ASE coastal regions during phytoplankton bloom. Hayward et al. (2025) reported
794 a decline in diatoms from 1997 to 2017 in the PIP. However, they observed an increase in
795 diatoms after 2017, linked to regime shift in sea ice. Their study also indicates that diatoms are
796 competitively disadvantaged under iron-depleted conditions. *P. antarctica*, which relies on dFe
797 supplied by ocean circulation, would then tends to dominate in the ASP. Such shifts in
798 phytoplankton composition are likely to affect carbon export, grazing, and higher trophic levels.
799 Additional long-term data on inter-annual variability in phytoplankton composition and
800 physiology will be essential to fully understand these relationships.

801
802 Variability in SIC and sea-ice retreat can be influenced by the Amundsen Sea Low (ASL) . We
803 therefore also investigated its potential role on sea-ice variability. We found on average weak
804 spatial negative relationships between SIC and ASL latitude, longitude, mean sector and actual
805 central pressure in both polynyas during the growing seasons (Supplementary Fig. S8), and only
806 slightly significant in the eastern PIP. The weak relationships might be owing to the seasonal
807 variation of the ASL, where its position largely varies during summer, and its impact in shaping
808 coastal sea ice is also greater during winter and autumn in the Amundsen-Bellingshausen region
809 (Hosking et al., 2013). The lack of strong significant relationships overall does not allow us to
810 conclude that the ASL plays an important role in shaping the coastal polynyas landscape and
811 influencing chla variability.

812
813 4.3 Limitations and future directions
814

815 While it seems reasonable that the higher ASP productivity could be driven by more iron
816 delivered through a stronger meltwater pump downstream of the PIP, our data cannot confirm
817 this hypothesis. To accurately understand the role of iron through the meltwater pump process,
818 we would need to quantify the fraction of meltwater and glacial modified water (mix of CDW
819 and ice shelf meltwater) reaching the ocean surface, together with the iron content. Obtaining
820 this information is challenging over the decadal time scales considered and the method used in
821 our study. Here, our intention was to provide valuable insights into the potential drivers of our

822 results, and highlight the benefit of remote sensing, in this poorly observed environment. Our
823 work directly aligns with Pan et al. (2025), who investigated the long-term relationship between
824 sea surface glacial meltwater and satellite surface chla in the Western Antarctic Peninsula, and
825 found a strong relationship between the two parameters, highlighting the importance of glacial
826 meltwater discharge in regions prone to extreme and rapid climate changes.

827

828 In multimodel climate change simulations, Naughten et al (2018) showed an increase of ice
829 shelves melting up to 90% on average, attributed to more warm CDW on the shelf, due to
830 atmospherically driven changes in local sea-ice formation. More recently, Dinniman et al. (2023)
831 also highlighted the impact of projected atmospheric changes on Antarctic ice sheet melt. They
832 showed that strengthening winds, increasing precipitation and warmer atmospheric temperatures
833 will increase heat advection onto the continental shelf, ultimately increasing basal melt rate by
834 83% by 2100. Compared to present climate simulations, their simulation showed a 62% increase
835 in total dFe supply to shelf surface waters, while basal melt driven overturning Fe supply
836 increased by 48%. The ice shelf melt and overturning contributions varied spatially, increasing in
837 the Amundsen-Bellingshausen area and decreasing in East Antarctica. This implies that, under
838 future climate change, phytoplankton productivity could show stronger spatial asymmetry
839 around Antarctica. The increasing melting and thinning of ice shelves will eventually result in
840 more numerous calving events and drifting icebergs (Liu et al., 2015). Model simulations
841 stressed the importance of ice shelves and icebergs in delivering dFe to the SO (Death et al.,
842 2014; Person et al., 2019), increasing offshore productivity. As Fe will likely be replenished and
843 sufficient from increasing melting in coastal areas, it is possible that the system will shift from
844 Fe-limited to being limited by nitrate, silicate, or even manganese (Anugerahanti and Tagliabue,
845 2024), while offshore SO productivity will likely remain Fe-dependent (Oh et al., 2022).

846

847 **5. Conclusions**

848

849 Using spatial and multivariate approaches, our study explored the variability of surface chla and
850 NPP in the Amundsen Sea polynyas over the last two decades, with a focus on the main
851 environmental characteristics of the ASE. We found a potential strong relationship between ice
852 shelf melting and surface chla in the ASP, which becomes stronger when year 2001/02 was

853 removed, a result in agreement with the ASPIRE field studies and previous satellite analyses. On
854 the other hand, we did not find clear evidence of such a relationship in the PIP, where light, sea
855 surface temperature and open water availability seem more important. The differences between
856 the polynyas may lie in hydrographic properties, or the use of satellite remote sensing itself,
857 which cannot tell us about processes such as Fe supply, bioavailability and phytoplankton
858 demand. To gain greater insight, we referred to model simulations that showed the spatial
859 variability in the magnitude of iron sources. Our results call for sustained *in situ* observations
860 (e.g., moorings equipped with trace-metal clean samplers, and physical sensors to better
861 understand year-to-year water mass meltwater fraction and properties) to elucidate these long-
862 term relationships. Satellite observations are a powerful tool to investigate the relationship
863 between glacial meltwater and biological productivity on such time scales, which has until now
864 relied almost exclusively on field observations and modelling. Using such tools, we showed how
865 the relationship between phytoplankton and the environment varies spatially and temporally
866 across 19 years.

867

868 **Appendices**

869 No appendices are related to the manuscript.

870

871 **Data availability**

872 Bathymetry data (Amante & Eakins, 2009) was taken from the NOAA website
873 (<http://www.ngdc.noaa.gov/mgg/global/global.html>). Mixed-layer depth (ECCO Consortium et
874 al., 2021) can be accessed here:

875 https://podaac.jpl.nasa.gov/dataset/ECCO_L4_MIXED_LAYER_DEPTH_05DEG_MONTHLY_V4R4. Satellite surface chlorophyll-*a* and photosynthetically available radiation were

876 downloaded from <https://www.globcolour.info/>. Sea surface temperature (Huang et al., 2021)
877 can be found here <https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html>. Wind re-
878 analysis data (Hersbach et al., 2020) are available at

879 <https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=download>. Sea-ice concentration (Cavalieri et al., 1996) was obtained from
880 <https://nsidc.org/data> and Net Primary productivity (Behrenfeld and Falkowski, 1997) was
881 downloaded from <http://sites.science.oregonstate.edu/ocean.productivity/index.php>. Circumpolar

884 surface model output from Dinniman et al (2020) can be found at <https://www.bco-dmo.org/dataset/782848>. The Amundsen Sea Low index (Hosking et al., 2016) data are available
885 at http://scotthosking.com/asl_index.
886

887

888 **Author contributions**

889 GL conceptualised and led the study; MSD provided the dissolved iron model output. All authors
890 were involved in the interpretation of the results, the revision, and the writing of the final version
891 of the paper.
892

893 **Competing interest**

894 We declare having no competing interests.
895

896 **Acknowledgments**

897 We would like to thank the University of Tasmania, the Australian Research Council (ARC)
898 Centre of Excellence for Climate Extremes (CE170100023), and the Australian Centre for
899 Excellence in Antarctic Science (ACEAS; SR200100008) for financial support. Delphine
900 Lannuzel is funded by the ARC through a Future Fellowship (L0026677). Sebastien Moreau
901 received funding from the Research Council of Norway (RCN) for the project “I-CRYME:
902 Impact of CRYosphere Melting on Southern Ocean Ecosystems and biogeochemical cycles”
903 (grant number 335512) and for the Norwegian Centre of Excellence “iC3: Center for ice,
904 Cryosphere, Carbon and Climate” (grand number 332635). Michael Dinniman was supported by
905 the U.S National Science Foundation grant OPP-1643652. We are also grateful to Will Hobbs,
906 Rob Massom and Patricia Yager for their knowledgeable input. We thank Vincent Georges for
907 some preliminary work as part of his masters’ internship. We are very grateful to Fernando S.
908 Paolo for his early input and help with the glacial meltwater dataset. We thank the data providers
909 mentioned in the methods section for making their data available and free of charge.
910

911 **Financial support**

912 All financial support were mentioned in the Acknowledgment section.
913

914 **References**

915 Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual
916 variations in meltwater input to the Southern Ocean from Antarctic ice shelves, *Nat. Geosci.*, 13,
917 616–620, <https://doi.org/10.1038/s41561-020-0616-z>, 2020.

918 Alderkamp, A-C., Mills, M. M., van Dijken, G. L., Lann, P., Thuróczy, C-E., Gerringa, L. J.A.,
919 de Barr, H. J. W., Payne, C. D., Visser, R. J. W., Buma A. G. J., and Arrigo, K. R.: Iron from
920 glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton
921 characteristics and productivity, *Deep-Sea Res. II.*, 71–76, 32–48,
922 <https://doi.org/10.1016/j.dsr2.2012.03.005>, 2012.
923

924 Amante, C., and Eakins, B.W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data
925 Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24. National
926 Geophysical Data Center [data set], NOAA, doi:10.7289/V5C8276M, 2009.
927

928 Anugerahanti, P. and Tagliabue, A.: Response of Southern Ocean Resource Stress in a Changing
929 Climate, *Geophys. Res. Lett.*, 51, e2023GL107870, <https://doi.org/10.1029/2023GL107870>,
930 2024.

931 Ardyna, M., Claustre, H., Sallée, J-B., D'Ovidio, F., Gentili, B., van Dijken, G. L., D'Ortenzio,
932 F., and Arrigo, K. R.: Delineating environmental control of phytoplankton biomass and
933 phenology in the Southern Ocean, *Geophys. Res. Lett.*, 44, 5016–5024, doi:10.1002/
934 2016GL072428, 2017.

935 Ardyna, M., Mundy, C. J., Mayot, N., Matthes, L. C., Oziel, L., Horvat, C., Leu, E., Assmy, P.,
936 Hill, V., Matrai, P. A., Gale, M., Melnikov, I. A., and Arrigo, K. R.: Under-Ice Phytoplankton
937 Blooms: Shedding Light on the “Invisible” Part of Arctic Primary Production, *Front. Mar. Sci.*,
938 7, <https://doi.org/10.3389/fmars.2020.608032>, 2020.

939 Arnscheidt, C. W., Marshall, J., Dutrieux, P., Rye, C. D., and Ramadhan, A.: On the Settling
940 Depth of Meltwater Escaping from beneath Antarctic Ice Shelves, *JPO*, 51, 2257–2270,
941 <https://doi.org/10.1175/JPO-D-20-0286.1>, 2021.

942 Arrigo, K. R., Lowry, K. E., and van Dijken, G. L.: Annual changes in sea ice and phytoplankton
943 in polynyas of the Amundsen Sea, Antarctica. *Deep-Sea Res. II.*, 71–76, 5–15.
944 <https://doi.org/10.1016/j.dsr2.2012.03.006>, 2012.

945 Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G. R., VanWoert, M.,
946 and Lizotte, M. P.: Phytoplankton community structure and the drawdown of nutrients and CO₂
947 in the Southern Ocean, *Sci.*, 283, 5400, 365–367, DOI: 10.1126/science.283.5400.365, 1999.
948

949 Arrigo, K. R. and van Dijken, G. L.: Phytoplankton dynamics within 37 Antarctic coastal
950 polynya systems, *J. Geophys. Res. Ocean.*, 108, <https://doi.org/10.1029/2002JC001739>, 2003.

951 Arrigo, K. R., van Dijken, G. L., and Strong, A. L.: Environmental controls of marine
952 productivity hot spots around Antarctica, *J. Geophys. Res. Ocean.*, 120, 5545–5565,
953 <https://doi.org/10.1002/2015JC010888>, 2015.

954 Arrigo, K. R., Worthen, D., Schnell, A., and Lizotte, M. P.: Primary production in Southern
955 Ocean waters, *J. Geophys. Res. Ocean.*, 103, 15587–15600, <https://doi.org/10.1029/98JC00930>,
956 1998.

957 Assmann, K. M., Jenkins, A., Shoosmith, D. R., Walker, D., Jacobs, S., and and Nicholls, K.:
958 Variability of circumpolar deep water transport onto the Amundsen Sea continental shelf through
959 a shelf break trough. *J. Geophys. Res. Oceans*, 118, 6603–6620, doi:10.1002/2013JC008871,
960 2013.

961 Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based
962 chlorophyll concentration, *Limnol. Oceanogr.*, 42, 1–20,
963 <https://doi.org/10.4319/lo.1997.42.1.0001>, 1997.

964 Bett, D. T., Holland, P. R., Naveira Garabato, A. C., Jenkins, A., Dutrieux, P., Kimura, S., and
965 Fleming, A.: The Impact of the Amundsen Sea Freshwater Balance on Ocean Melting of the
966 West Antarctic Ice Sheet, *J. Geophys. Res. Oceans*, 125, <https://doi.org/10.1029/2020JC016305>,
967 2020.

968 Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., and Charette, M. A.:
969 Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean,
970 *Nat. Geosci.*, 6, 274–278, <https://doi.org/10.1038/ngeo1746>, 2013.

971 Biddle, L. C., Heywood, K. J., Kaiser, J., and Jenkins, A.: Glacial Meltwater Identification in the
972 Amundsen Sea, *JPO*, 47, 933–954, <https://doi.org/10.1175/JPO-D-16-0221.1>, 2017.

973 Boles, E., Provost, C., Garçon, V., Bertosio, C., Athanase, M., Koenig, Z., and Sennéchael, N.:
974 Under-Ice Phytoplankton Blooms in the Central Arctic Ocean: Insights From the First
975 Biogeochemical IAOOS Platform Drift in 2017, *J. Geophys. Res. Ocean.*, 125, e2019JC015608,
976 <https://doi.org/10.1029/2019JC015608>, 2020.

977 Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H.,
978 Cullen, J. J., Baar, H. J. W. de, Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N.
979 P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda,
980 A., Turner, S., and Watson, A. J.: Mesoscale Iron Enrichment Experiments 1993–2005: Synthesis
981 and Future Directions, *Science*, 315, 612–617, <https://doi.org/10.1126/science.1131669>, 2007.

982 Cape, M. R., Vernet, M., Pettit, E. C., Wellner, J., Truffer, M., Akie, G., Domack, E., Leventer,
983 A., Smith, C. R., and Huber, B. A.: Circumpolar Deep Water Impacts Glacial Meltwater Export
984 and Coastal Biogeochemical Cycling Along the West Antarctic Peninsula, *Front. Mar. Sci.*, 6,
985 <https://doi.org/10.3389/fmars.2019.00144>, 2019.

986 Cavalieri, D., Parkinson, C., Gloersen, P., and Zwally, H. J.: Sea Ice Concentrations from
987 Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1,
988 <https://doi.org/10.5067/8GQ8LZQVL0VL>, 1996.

989 Death, R., Wadham, J. L., Monteiro, F., Le Brocq, A. M., Tranter, M., Ridgwell, A., Dutkiewicz,
990 S., and Raiswell, R.: Antarctic ice sheet fertilises the Southern Ocean, *BG*, 11, 2635–2643,
991 <https://doi.org/10.5194/bg-11-2635-2014>, 2014.

992 Dinniman, M. S., St-Laurent, P., Arrigo, K. R., Hofmann, E. E., and Dijken, G. L.: Analysis of
993 Iron Sources in Antarctic Continental Shelf Waters, *J. Geophys. Res. Oceans.*, 125,
994 <https://doi.org/10.1029/2019JC015736>, 2020.

995 Dinniman, M. S., St-Laurent, P., Arrigo, K. R., Hofmann, E. E., and van Dijken, G. L.:
996 Sensitivity of the Relationship Between Antarctic Ice Shelves and Iron Supply to Projected
997 Changes in the Atmospheric Forcing, *J. Geophys. Res. Ocean.*, 128, e2022JC019210,
998 <https://doi.org/10.1029/2022JC019210>, 2023.

999 Dotto, T. S., Naveira Garabato, A. C., Bacon, S., Holland, P. R., Kimura, S., Firing, Y. L.,
1000 Tsamados, M., Wåhlin, A. K., and Jenkins, A.: Wind-Driven Processes Controlling Oceanic
1001 Heat Delivery to the Amundsen Sea, Antarctica, *J. Phys. Oceanogr.*, 49, 2829–2849,
1002 <https://doi.org/10.1175/JPO-D-19-0064.1>, 2019.

1003 Douglas, C. C., Briggs, N., Brown, P., MacGilchrist, G., and Naveira Garabato, A.: Exploring
1004 the relationship between sea ice and phytoplankton growth in the Weddell Gyre using satellite
1005 and Argo float data, *Ocean Sci.*, 20, 475–497, <https://doi.org/10.5194/os-20-475-2024>, 2024.

1006

1007 Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S. H., Steig, E. J., Ding,
1008 Q., Abrahamsen, E. P., and Schröder, M.: Strong sensitivity of Pine Island ice-shelf melting to
1009 climate variability, *Sci*, 343, 6167, 174–178, DOI: 10.1126/science.1244341, 2014.

1010

1011 ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R.
1012 M: ECCO Ocean Mixed Layer Depth - Monthly Mean 0.5 Degree 9Version 4 Release 4). ver
1013 V4r4. PO.DACC, CA, USA, Dataset accessed [2025-08-22], <https://doi.org/10.5067/ECG5M-OML44>, 2021.

1015

1016 Forsch, K. O., Hahn-Woernle, L., Sherrell, R. M., Rocanova, V. J., Bu, K., Burdige, D., Vernet,
1017 M., and Barbeau, K. A.: Seasonal dispersal of fjord meltwaters as an important source of iron
1018 and manganese to coastal Antarctic phytoplankton, *Biogeo.*, 18, 6349–6375,
1019 <https://doi.org/10.5194/bg-18-6349-2021>, 2021.

1020

1021 Golder, M.R., and Antoine, D.: Physical drivers of long-term chlorophyll-a variability in the
1022 Southern Ocean, *Elem. Sci Anth*, 13:1, <https://doi.org/10.1525/elementa.2024.00077>, 2025.

1023

1024 Garabato, A. C. N., Forryan, A., Dutrieux, P., Brannigan, L., Biddle, L. C., Heywood, K. J.,
1025 Jenkins, A., Firing, Y. L., and Kimura, S.: Vigorous lateral export of the meltwater outflow from
1026 beneath an Antarctic ice shelf, *Nature*, 542, 219–222, <https://doi.org/10.1038/nature20825>, 2017.

1027 Gerringa, L. J. A., Alderkamp, A.-C., Laan, P., Thuróczy, C.-E., De Baar, H. J. W., Mills, M. M.,
1028 van Dijken, G. L., Haren, H. van, and Arrigo, K. R.: Iron from melting glaciers fuels the
1029 phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry, *Deep-Sea
1030 Res. II*, 71–76, 16–31, <https://doi.org/10.1016/j.dsr2.2012.03.007>, 2012.

1031 Gerringa, L. J. A., Alderkamp, A.-C., Laan, P., Thuróczy, C.-E., de Baar, H. J. W., Mills, M. M.,
1032 van Dijken, G. L., van Haren, H., and Arrigo, K. R.: Corrigendum to “Iron from melting glaciers
1033 fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): iron biogeochemistry”
1034 (Gerringa et al., 2012), Deep-Sea Res. II., 177, 104843,
1035 <https://doi.org/10.1016/j.dsr2.2020.104843>, 2020.

1036 Gledhill, M. and Buck, K.: The Organic Complexation of Iron in the Marine Environment: A
1037 Review, *Front. Microbiol.*, 3, <https://doi.org/10.3389/fmicb.2012.00069>. 2012.

1038 Goldberg, D. N., Twelves, A. G., Holland, P. R., & Wearing, K. G.: The non-local impact of
1039 Antarctic subglacial runoff. *Journal of Geophysical Research: Oceans* 128, e2023JC019823.
1040 <https://doi.org/10.1029/2023JC019823>. 2023.

1041 Ha, H. K., Wåhlin, A. K., Kim, T. W., Lee, S. H., Lee, J. H., Lee, H. J., Hong, C. S., Arneborg,
1042 L., Björk, G., and Kalén, O.: Circulation and modification of warm deep water on the central
1043 Amundsen shelf, 44, 5, 1493–1501, <https://doi.org/10.1175/JPO-D-13-0240.1>, 2014.

1044

1045 Hassler, C., Cabanes, D., Blanco-Ameijeiras, S., Sander, S. G., Benner, R., Hassler, C., Cabanes,
1046 D., Blanco-Ameijeiras, S., Sander, S. G., and Benner, R.: Importance of refractory ligands and
1047 their photodegradation for iron oceanic inventories and cycling, *Mar. Fresh. Res.*, 71, 311–320,
1048 <https://doi.org/10.1071/MF19213>, 2019.

1049 Hawkings, J. R., Wadham, J. L., Tranter, M., Raiswell, R., Benning, L. G., Statham, P. J.,
1050 Tedstone, A., Nienow, P., Lee, K., and Telling, J.: Ice sheets as a significant source of highly
1051 reactive nanoparticulate iron to the oceans, *Nat. Commun.*, 5, 3929,
1052 <https://doi.org/10.1038/ncomms4929>, 2014.

1053 Hayward, A., Wright, S. W., Carroll, D. Law, C. S., Wongpan, P., Gutiérrez-Rodríguez, A., and
1054 Pinkerton, M. H.: Antarctic phytoplankton communities restructure under shifting sea-ice
1055 regimes. *Nat. Clim. Chang.* 15, 889–896, <https://doi.org/10.1038/s41558-025-02379-x>, 2025.

1056

1057 Herraiz-Borreguero, L., Lannuzel, D., van der Merwe, P., Treverrow, A., and Pedro, J. B.: Large
1058 flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica, *J. Geophys. Res.*
1059 *Ocean.*, 121, 6009–6020, <https://doi.org/10.1002/2016JC011687>, 2016.

1060 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
1061 Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellán, X., Balsamo,
1062 G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
1063 Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
1064 Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C.,
1065 Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
1066 global reanalysis, *Q. J. R. Meteorol. Soc.*, 146, 1999–2049, <https://doi.org/10.1002/qj.3803>,
1067 2020.

1068 Hosking, J. S., Orr, A., Marshall, G. J., Turner, J., and Phillips, T.: The Influence of the
1069 Amundsen–Bellingshausen Seas Low on the Climate of West Antarctica and Its Representation

1070 in Coupled Climate Model Simulations, *J. Clim.*, 26, 6633–6648, <https://doi.org/10.1175/JCLI-D-12-00813.1>, 2013.

1072 Hosking, J. S., Orr, A., Bracegirdle, T. J., and Turner, J.: Future circulation changes off West
1073 Antarctica: Sensitivity of the Amundsen Sea Low to projected anthropogenic forcing, *Geophys.*
1074 *Res. Lett.*, 43, 367–376, <https://doi.org/10.1002/2015GL067143>, 2016.

1075 Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang,
1076 H.-M.: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST)
1077 Version 2.1, *Journal of Climate*, 34, 2923–2939. doi: 10.1175/JCLI-D-20-0166.1, 2021.

1078
1079 Jacobs, S. S., Jenkins, A., Giulivi, C. F., and Dutrieux, P.: Stronger ocean circulation and
1080 increased melting under Pine Island Glacier ice shelf, *Nat. Geo.*, 4, 519–523,
1081 <https://doi.org/10.1038/ngeo1188>, 2011.

1082 Jena, B. and Pillai, A. N.: Satellite observations of unprecedented phytoplankton blooms in the
1083 Maud Rise polynya, Southern Ocean, *The Cryosphere*, 14, 1385–1398,
1084 <https://doi.org/10.5194/tc-14-1385-2020>, 2020.

1085
1086 Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R., Webb, A. T., and White,
1087 D.: Observations beneath Pine Island glacier in West Antarctica and implications for its retreat,
1088 *Nat. Geo.*, 3, 468–472, <https://doi.org/10.1038/NGEO890>, 2010.

1089
1090 Jourdain, N. C., Mathiot, P., Merino, N., Durand, G., Le Sommer, J., Spence, P., Dutrieux, P.,
1091 and Madec, G.: Ocean circulation and sea-ice thinning induced by melting ice shelves in the
1092 Amundsen Sea, *J. Geophys. Res. Ocean.*, 122, 2550–2573,
1093 <https://doi.org/10.1002/2016JC012509>, 2017.

1094 Kauko, H. M., Hattermann, T., Ryan-Keogh, T., Singh, A., de Steur, L., Fransson, A., Chierici,
1095 M., Falkenhaug, T., Hallfredsson, E. H., Bratbak, G., Tsagaraki, T., Berge, T., Zhou, Q., and
1096 Moreau, S.: Phenology and Environmental Control of Phytoplankton Blooms in the Kong Håkon
1097 VII Hav in the Southern Ocean, *Front. Mar. Sci.*, 8, <https://doi.org/10.3389/fmars.2021.623856>,
1098 2021.

1099 Lannuzel, D., Fourquez, M., de Jong, J., Tison, J.-L., Delille, B., and Schoemann, V.: First report
1100 on biological iron uptake in the Antarctic sea-ice environment, *Polar Biol.*, 46, 339–355,
1101 <https://doi.org/10.1007/s00300-023-03127-7>, 2023.

1102 Lee, S. H., Kim, B. K., Lim, Y. J., Joo, H., Kang, J. J., Lee, D., Park, J., Ha, S.-Y., and Lee, S.
1103 H.: Small phytoplankton contribution to the standing stocks and the total primary production in
1104 the Amundsen Sea, *BG*, 14, 3705–3713, <https://doi.org/10.5194/bg-14-3705-2017>, 2017.

1105 Lee, Y., Park, J., Jung, J., and Kim, T. W.: Unprecedented differences in phytoplankton
1106 community structures in the Amundsen Sea polynyas, West Antarctica, *Environ. Res. Lett.* 17,
1107 114022, [10.1088/1748-9326/ac9a5f](https://doi.org/10.1088/1748-9326/ac9a5f), 2022.

1108

1109 van Leeuwe, M. A., Webb, A. L., Venables, H. J., Visser, R. J. W., Meredith, M., P., Elzenga J.
1110 T. M., and Stefels, J.: Annual patterns in phytoplankton phenology in Antarctic coastal waters
1111 explained by environmental drivers, *Limnol. Oceanogr.*, 65, 1651-1668,
1112 <https://doi.org/10.1002/lno.11477>, 2020.

1113

1114 Liniger, G., Strutton, P. G., Lannuzel, D., and Moreau, S.: Calving event led to changes in
1115 phytoplankton bloom phenology in the Mertz polynya, Antarctica, *J. Geophys. Res. Oceans.*,
1116 125, e2020JC016387, <https://doi.org/10.1029/2020JC016387>, 2020.

1117

1118 Liu, Y., Moore, J. C., Cheng, X., Gladstone, R. M., Bassis, J. N., Liu, H., Wen, J., and Hui, F.:
1119 Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves, *Proc. Nat.*
1120 *Acad. Sci.*, 112, 3263–3268, <https://doi.org/10.1073/pnas.1415137112>, 2015.

1121

1122 van Manen, M., Aoki, S., Brussaard, C. P. D., Conway, T. M., Eich, C., Gerringa, L., Jung, J.,
1123 Kim, T.-W., Lee, S. H., Lee, Y., Reichart, G.-J., Tian, H., Wille, F., and Middag, R.: The role of
1124 the Dotson Ice Shelf and circumpolar deep water as driver and source of dissolved and
1125 particulate iron and manganese in the Amundsen Sea polynya, Southern Ocean, *Mar. Chem.*,
1126 104161, <https://doi.org/10.1016/j.marchem.2022.104161>, 2022.

1127

1128 Marchese, C., Albouy, C., Tremblay, J.-É., Dumont, D., D'Ortenzio, F., Vissault, S., and
1129 Bélanger, S.: Changes in phytoplankton bloom phenology over the North Water (NOW)
1130 polynya: a response to changing environmental conditions, *Polar Biol.*, 40, 1721–1737,
<https://doi.org/10.1007/s00300-017-2095-2>, 2017.

1131

1132 Maritorena, S., and Siegel, D. A.: Consistent merging of satellite ocean color data sets using a
1133 bio-optical model, *Rem. Sens. Environ.*, 94, 429-440, <https://doi.org/10.1016/j.rse.2004.08.014>,
2005.

1134

1135 McClish, S., and Bushinsky, S. M.: Majority of Southern Ocean seasonal ice zone bloom net
1136 community production precedes total ice retreat, *Geophys. Res. Lett.*, 50, e2023GL103459.
1137 <https://doi.org/10.1029/2023GL103459>, 2023.

1138

1139 Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas,
1140 G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M.M.C., Ottersen, G., Pritchard, H., and
1141 Schurr, E.A.G.: Polar Regions. In: *IPCC Special Report on the Ocean and Cryosphere in a
1142 Changing Climate* [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E.
1143 Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M.
1144 Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 203-
1145 320, <https://doi.org/10.1017/9781009157964.005>, 2019.

1146

1147 Mills, M. M., Lindsey, R.K., van Dijken, G. L., Alderkamp, C-A., Berg, G. M., Robinson, D. H.,
1148 Welschmeyer, N. A and Arrigo, K. R.: Photophysiology in two Southern Ocean phytoplankton
1149 taxa: photosynthesis of *phaeocystis antarctica* (prymnesiophyceae) and *fragiloriopsis cylindrus*
(bacillariophyceae) under simulated mixed-layer irradiance, *J. Phycol.*, 46, 1114-1127,
1150 <https://doi.org/10.1111/j.1529-8817.2010.00923.x>, 2010.

1151 Mills, M. M., Alderkamp, C-A., Thuróczy, C-E., van Dijken, G. L., Laan, P., de Barr, H. J. W.
1152 and Arrigo, K. R.: Phytoplankton biomass and pigment responses to Fe amendments on the Pine
1153 Island and Amundsen polynyas, Deep-Sea Res. II., 71-76, 61-76,
1154 <https://doi.org/10.1016/j.dsr2.2012.03.008>, 2012.

1155 Morales Maqueda, M. A.: Polynya Dynamics: a Review of Observations and Modeling, Rev.
1156 Geophys., 42, RG1004, <https://doi.org/10.1029/2002RG000116>, 2004.

1157 Moreau, S., Mostajir, B., Bélanger, S., Schloss, I. R., Vancoppenolle, M., Demers, S., and
1158 Ferreyra, G. A.: Climate change enhances primary production in the western Antarctic Peninsula,
1159 Global Change Biology, 21, 2191–2205, <https://doi.org/10.1111/gcb.12878>, 2015.

1160 Naughten, K. A., Holland, P. R., and De Rydt, J.: Unavoidable future increase in West Antarctic
1161 ice-shelf melting over the twenty-first century, Nat. Clim. Change., 13, 1222-1228,
1162 <https://doi.org/10.1038/s41558-023-01818-x>, 2023.

1163 Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., and
1164 Hellmer, H. H.: Future Projections of Antarctic Ice Shelf Melting Based on CMIP5 Scenarios, J.
1165 Clim., 31, 5243–5261, <https://doi.org/10.1175/JCLI-D-17-0854.1>, 2018.

1166 Nunes, G.S., Ferreira, A. and Brito, A.C. Long-term satellite data reveals complex phytoplankton
1167 dynamics in the Ross Sea, Antarctica. Commun. Earth. Environ., 6, 864,
1168 <https://doi.org/10.1038/s43247-025-02590-w>, 2025.

1169

1170 Oh, J.-H., Noh, K. M., Lim, H.-G., Jin, E. K., Jun, S.-Y., and Kug, J.-S.: Antarctic meltwater-
1171 induced dynamical changes in phytoplankton in the Southern Ocean, Environ. Res. Lett., 17,
1172 024022, <https://doi.org/10.1088/1748-9326/ac444e>, 2022.

1173 Oliver, H., St-Laurent, P., Sherrell, R. M., and Yager, P. L.: Modeling Iron and Light Controls
1174 on the Summer *Phaeocystis antarctica* Bloom in the Amundsen Sea Polynya, Global
1175 Biogeochem. Cycles, 2018GB006168, <https://doi.org/10.1029/2018GB006168>, 2019.

1176 Pan, J. B., Gierach, M. M., Stammerjohn, S., Schofield, O., Meredith, M. P., Reynolds, R. A.,
1177 vernet, M., Haumann, F. A., Orona, A. J., and Miller, C. E.: Impact of glacial meltwater on
1178 phytoplankton biomass along the Western Antarctic Peninsula. Comm. Earth. Environ., 6(456).
1179 <https://doi.org/10.1038/s43247-025-02435-6>. 2025

1180 Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice shelves is
1181 accelerating, Science, 348, 327–331, <https://doi.org/10.1126/science.aaa0940>, 2015.

1182 Paolo, F. S., Fricker, H. A., and Padman, L.: Constructing improved decadal records of Antarctic
1183 ice shelf height change from multiple satellite radar altimeters, Remote Sens. Environ. 177, 192–
1184 205, <https://doi.org/10.1016/j.rse.2016.01.026>, 2016.

1185 Paolo, F. S., Gardner, A. S., Greene, C. A., Nilsson, J., Schodlok, M. P., Schlegel, N.-J., and
1186 Fricker, H. A.: Widespread slowdown in thinning rates of West Antarctic ice shelves, TC, 17,
1187 3409–3433, <https://doi.org/10.5194/tc-17-3409-2023>, 2023.

1188 Park, J., Kuzminov, F. I., Bailleul, B., Yang, E. J., Lee, S., Falkowski, P. G., and Gorbunov, M.
1189 Y.: Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in
1190 the Amundsen Sea polynyas, Antarctica: Light availability rather than Fe controls phytoplankton
1191 bloom, *Limnol. Oceanogr.*, 62, 2260–2276, <https://doi.org/10.1002/lo.10565>, 2017.

1192 Park, J., Kim, J.-H., Kim, H., Hwang, J., Jo, Y.-H., and Lee, S. H.: Environmental Forcings on
1193 the Remotely Sensed Phytoplankton Bloom Phenology in the Central Ross Sea Polynya, *J.*
1194 *Geophys. Res. Ocean.*, 124, 5400–5417, <https://doi.org/10.1029/2019JC015222>, 2019.

1195 Person, R., Aumont, O., Madec, G., Vancoppenolle, M., Bopp, L., and Merino, N.: Sensitivity of
1196 ocean biogeochemistry to the iron supply from the Antarctic Ice Sheet explored with a
1197 biogeochemical model, *BG*, 16, 3583–3603, <https://doi.org/10.5194/bg-16-3583-2019>, 2019.

1198 Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R.,
1199 and Padman, L.: Antarctic ice-sheet loss driven by basal melting of ice shelves, *Nat.*, 484, 502–
1200 505, <https://doi.org/10.1038/nature10968>, 2012.

1201 Racault, M.-F., Le Quéré, C., Buitenhuis, E., Sathyendranath, S., and Platt, T.: Phytoplankton
1202 phenology in the global ocean, *Ecol. Indic.*, 14, 152–163,
1203 <https://doi.org/10.1016/j.ecolind.2011.07.010>, 2012.

1204 Randall-Goodwin, E., Meredith, M. P., Jenkins, A., Yager, P. L., Sherrell, R. M., Abrahamsen,
1205 E. P., Guerrero, R., Yuan, X., Mortlock, R. A., Gavahan, K., Alderkamp, A.-C., Ducklow, H.,
1206 Robertson, R., and Stammerjohn, S. E.: Freshwater distributions and water mass structure in the
1207 Amundsen Sea Polynya region, Antarctica, *Elem. Sci. Anth.*, 3, 000065,
1208 <https://doi.org/10.12952/journal.elementa.000065>, 2015.

1209 Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting Around Antarctica, *Sci.*,
1210 341, 266–270, <https://doi.org/10.1126/science.1235798>, 2013.

1211 Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., and Morlighem,
1212 M.: Four decades of Antarctic Ice Sheet mass balance from 1979–2017, *Proc. Nat. Acad. Sci.*,
1213 116, 4, 1095–1103, <https://doi.org/10.1073/pnas.1812883116>, 2019.

1214 Ryan-Keogh, T. J., Thomalla, S. J., Chang, N., and Moalusi, T.: A new global oceanic multi-
1215 model net primary productivity data product, *Earth Syst. Sci. Data*, 15, 4829–4848,
1216 <https://doi.org/10.5194/essd-15-4829-2023>, 2023.

1217 Sari El Dine, Z., Guinet, C., Picard, B., Thyssen, M., Duforêt-gaurier, L., and El Hourany,
1218 R.:Influence of the phytoplankton community structure on the southern elephant seals' foraging
1219 activity within the Southern Ocean, *Commun. Biol.*, 8, 620, [https://doi.org/10.1038/s42003-025-08049-0](https://doi.org/10.1038/s42003-025-
1220 08049-0), 2025.

1221 Scambos, T., Bell, R. E., Alley, R. B., Anandakrishnan, S., Bromwich, D. H., Brunt, K.,
1222 Christianson, K., Creyts, T., Das, S. B., DeConto, R., Dutrieux, P., Fricker, H. A., Holland, D.,
1223 MacGregor, J., Medley, B., Nicolas, J. P., Pollard, D., Siegfried, M. R., Smith, A. M., Steig, E.
1224 J., Trusel, L. D., Vaughan, D. G., and Yager, P. L.: How much, how fast?: A science review and
1225

1227 outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century, *Glob.*
1228 *Planet. Change.*, 153, 16–34, <https://doi.org/10.1016/j.gloplacha.2017.04.008>, 2017.

1229

1230 Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J., and Westberry, T. K.: The CAFE
1231 model: A net production model for global ocean phytoplankton, *Global Biogeochem. Cycles.*,
1232 30, 1756–1777, doi:10.1002/2016GB005521, 2016.

1233 Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P.,
1234 Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G.,
1235 Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B.,
1236 Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh,
1237 A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K.,
1238 K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D.,
1239 Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield,
1240 G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H.,
1241 Sandberg-Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.-
1242 W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J.,
1243 van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D., Wouters, B., and The
1244 IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, *Nat.*, 558, 219–222,
1245 <https://doi.org/10.1038/s41586-018-0179-y>, 2018.

1246 Sherrell, R. M., Lagerström, M. E., Forsch, K. O., Stammerjohn, S. E., and Yager, P. L.:
1247 Dynamics of dissolved iron and other bioactive trace metals (Mn, Ni, Cu, Zn) in the Amundsen
1248 Sea Polynya, Antarctica, *Elementa: Sci. Anthrop.*, 3, 000071,
1249 <https://doi.org/10.12952/journal.elementa.000071>, 2015.

1250 Siegel, D. A., Doney, S. C., and Yoder, J. A.: The North Atlantic Spring Phytoplankton Bloom
1251 and Sverdrup's Critical Depth Hypothesis, *Science*, 296, 730–733,
1252 <https://doi.org/10.1126/science.1069174>, 2002.

1253 Smith, A. J. R., Nelson, T., Ratnarajah, L., Genovese, C., Westwood, K., Holmes, T. M., Corkill,
1254 M., Townsend, A. T., Bell, E., Wuttig, K., and Lannuzel, D.: Identifying potential sources of
1255 iron-binding ligands in coastal Antarctic environments and the wider Southern Ocean, *Front. Mar. Sci.*, 9, <https://doi.org/10.3389/fmars.2022.948772>, 2022.

1257 Soppa, M. A., Völker, C., and Bracher, A.: Diatom Phenology in the Southern Ocean: Mean
1258 Patterns, Trends and the Role of Climate Oscillations, *Remote Sens.*, 8, 420,
1259 <https://doi.org/10.3390/rs8050420>, 2016.

1260 Stammerjohn, S. E., Martinson, D. G., Smith, R. C., and Iannuzzi, R. A.: Sea ice in the western
1261 Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change
1262 perspectives, *Deep-Sea Res. II.*, 55, 2041–2058, <https://doi.org/10.1016/j.dsr2.2008.04.026>,
1263 2008.

1264 Stoer, A. C., and Fennel, K.: Carbon-centric dynamics of Earth's marine phytoplankton, *Proc. Nat. Acad. Sci.*, 121, 45, e2405354121, <https://doi.org/10.1073/pnas.2405354121>, 2024.

1267
1268 St-Laurent, P., Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., and Dinniman, M. S.: Pathways
1269 and supply of dissolved iron in the Amundsen Sea (Antarctica), *J. Geophys. Res. Oceans.*, 122,
1270 7135–7162, <https://doi.org/10.1002/2017JC013162>, 2017.

1271 St-Laurent, P., Yager, P. L., Sherrell, R. M., Oliver, H., Dinniman, M. S., and Stammerjohn, S.
1272 E.: Modeling the Seasonal Cycle of Iron and Carbon Fluxes in the Amundsen Sea Polynya,
1273 Antarctica, *J. Geophys. Res. Oceans.*, 124, 1544–1565, <https://doi.org/10.1029/2018JC014773>,
1274 2019.

1275 Tagliabue, A., Bowie, A. R., DeVries, T., Ellwood, M. J., Landing, W. M., Milne, A., Ohnemus,
1276 D. C., Twining, B. S., and Boyd, P. W.: The interplay between regeneration and scavenging
1277 fluxes drives ocean iron cycling, *Nat Commun.*, 10, 4960, [https://doi.org/10.1038/s41467-019-12775-5](https://doi.org/10.1038/s41467-019-
1278 12775-5), 2019.

1279 Tamsitt, V., England, M. H., Rintoul, S. R., and Morrison, A. K.: Residence Time and
1280 Transformation of Warm Circumpolar Deep Water on the Antarctic Continental Shelf, *Geophys.*
1281 *Res. Lett.*, 48, e2021GL096092, <https://doi.org/10.1029/2021GL096092>, 2021.

1282 Tamura, T. P., Nomura, D., Hirano, D., Tamura, T., Kiuchi, M., Hashida, G., Makabe, R., Ono,
1283 K., Ushio, S., Yamazaki, K., Nakayama, Y., Takahashi, K. D., Sasaki, H., Murase, H., and Aoki,
1284 S.: Impacts of basal melting of the Totten Ice Shelf and biological productivity on marine
1285 biogeochemical components in Sabrina Coast, East Antarctica, *Global Biogeochem. Cycles.*, 37,
1286 e2022GB007510, <https://doi.org/10.1029/2022GB007510>, 2023.

1287 Thomalla, S.J., Nicholson, S.A., Ryan-Keogh, T.J. *et al.* Widespread changes in Southern Ocean
1288 phytoplankton blooms linked to climate drivers. *Nat. Clim. Chang.* 13, 975–984,
1289 <https://doi.org/10.1038/s41558-023-01768-4>, 2023.

1290 Thuróczy, C.-E., Alderkamp, A.-C., Laan, P., Gerringa, L. J. A., Mills, M. M., van Dijken, G. L.,
1291 De Baar, H. J. W., and Arrigo, K. R.: Key role of organic complexation of iron in sustaining
1292 phytoplankton blooms in the Pine Island and Amundsen Polynyas (Southern Ocean), *Deep-Sea*
1293 *Res. II.*, 71–76, 49–60, <https://doi.org/10.1016/j.dsr2.2012.03.009>, 2012.

1294 Turner, J., Hosking, J. S., Marshall, G. J., Phillips, T., and Bracegirdle, T. J.: Antarctic sea ice
1295 increase consistent with intrinsic variability of the Amundsen Sea Low, *Clim. Dyn.*, 46, 2391–
1296 2402, <https://doi.org/10.1007/s00382-015-2708-9>, 2016.

1297 Vaillancourt, R. D., Sambrotto, R. N., Green, S., and Matsuda, A.: Phytoplankton biomass and
1298 photosynthetic competency in the summertime Mertz Glacier Region of East Antarctica, *Deep-
1299 Sea Res. II.*, 50, 1415–1440, [https://doi.org/10.1016/S0967-0645\(03\)00077-8](https://doi.org/10.1016/S0967-0645(03)00077-8), 2003.

1300 Westberry, T., Behrenfeld, M. J., Siegel, D. A., and Boss, E.: Carbon-based primary productivity
1301 modeling with vertically resolved photoacclimation, *Global Biogeochem. Cycle.*, 22, GB2024,
1302 doi:10.1029/2007GB003078, 2008.

1303
1304 Yager, P. L., Sherrell, R. M., Stammerjohn, S., Alderkamp, A.-C., Schofield, O., Abrahamsen, P.,
1305 Arrigo, K., Bertilsson, S., Garay, L., Guerrero, R., Lowry, K., Moksnes, P.-O., Ndungo, K., Post,

1306 A., Randall-Goodwin, E., Riemann, L., Severmann, S., Thatje, S., van Dijken, G., and Wilson,
1307 S.: ASPIRE: The Amundsen Sea Polynya International Research Expedition, *Oceanog.*, 25, 40–
1308 53, <https://doi.org/10.5670/oceanog.2012.73>, 2012.

1309 Yager P. L, Sherrell, R.M., Stammerjohn, S.E., Ducklow, H. W., Schofield, O., Ingall E.D.,
1310 Wilson, S. E., Lowry, K. E., Willismd, C. M., Riemann, L., Bertilsson, S., Alderkamp, A-C.,
1311 Dinasquet, J., Logares, R., Richert, I., Sipler, R. E., Melara A. J., Mu, L., Newstead, R. G., Post,
1312 A. F., Swalethorp, R and van Dijken, G. L.: A carbon budget for the Amundsen Sea Polynya,
1313 Antarctica: Estimating net community production and export in a highly productive polar
1314 ecosystem, *Elem. Sci. Anth.*, 4, 000140, doi: 10.12952/journal.elementa.000140, 2016.

1315 Yu, L.-S., He, H., Leng, H., Liu, H., and Lin, P.: Interannual variation of summer sea surface
1316 temperature in the Amundsen Sea, Antarctica, *Front. Mar. Sci.*, 10,
1317 <https://doi.org/10.3389/fmars.2023.1050955>, 2023.

1318 Zheng, Y., Heywood, K. J., Webber, B. G. M., Stevens, D. P., Biddle, L. C., Boehme, L., and
1319 Loose, B.: Winter seal-based observations reveal glacial meltwater surfacing in the southeastern
1320 Amundsen Sea, *Commun. Earth. Environ.*, 2, 1–9, <https://doi.org/10.1038/s43247-021-00111-z>,
1321 2021.

1322