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Abstract
The Amundsen Sea Embayment (ASE) experiences both the highest ice shelf melt rates and the
highest biological productivity in West Antarctica. Using 19 years of satellite data and modelling

output, we jnvestigate the long-term influence of environmental factors on the phytoplankton

bloom in the Amundsen Sea (ASP) and Pine Island polynyas (PIP). We fest the prevailing

hypothesis that changes in ice shelf melt rate could drive interannual variability in the polynyas’

surface chlorophyll-a (chla) and Net Primary Productivity (NPP). We find that the interannual
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variability and long-term change in glacial meltwater may play an important role in chla variance
in the ASP, but not for NPP. Glacial meltwater does not explain the variability in both chla and
NPP in the PIP, where light and temperature are the main drivers. We attribute this to potentially

greater amount of iron-enriched meltwater brought to the surface by the meltwater pump
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downstream of the PIP, and the coastal ocean circulation accumulating and transporting iron

towards the ASP.

Short Summary

We investigate, the phytoplankton bloom variability and its drivers
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shelves may have different impacts on biological productivity between the Amundsen Sea (ASP)
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and Pine Island (PIP) polynyas. While ice shelves melting seems to play an important role for

[Formatted: Font color: Auto, Pattern: Clear

phytoplankton growth variability, in the ASP, light and warmer waters appear to be more “‘[Deleted: Pine Island (PIP) and
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Coastal polynyas are open ocean areas formed by strong katabatic winds pushing sea ice offshore (Deleted: q

(Morales Maqueda, 2004). They are the most biologically productive areas in the Southern

Ocean (SO) relative to their size (Arrigo et al., 1998). This high biological productivity contrasts

sharply with the rest of the SO, where low iron and light availability generally co-limit

phytoplankton growth (Boyd et al., 2007). In West Antarctica, the Amundsen Sea Embayment

(ASE) hosts two of the most productive Antarctic polynyas: The Pine Island Polynya (PIP) and
Amundsen Sea Polynya (ASP) (Arrigo and van Dijken, 2003).

The phytoplankton community in the ASE is generally dominated by Phaeocystis antarctica

(Lee et al., 2017; Yager et al., 2016), which is adapted to low iron availability and variable light

conditions, and forms large summer blooms (Alderkamp et al., 2012; Yager et al., 2016).

Diatoms like Fragilariopsis sp. and Chaetoceros sp. are also present, often becoming more

important near the sea-ice edge or under shallow, stratified mixed layers where silicic acid (Si)

and iron (Fe) are more available (Mills et al., 2012). In exceptional years, such as 2020, diatoms

like Dactvliosolen tenuijunctus replaced P. antarctica as the dominant taxon, driven by

anomalously shallow mixed layers and sufficient Fe—Si supply (Lee et al., 2022). This dynamic

balance highlights how light, nutrient supply, and stratification control community composition

in these highly productive and complex Antarctic systems.
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The ASE is also the Antarctic region experiencing the highest mass loss from the Antarctic ice

sheet. It has been undergoing increased calving, melting, thinning and retreat over the past three
decades (Paolo et al., 2015; Rignot et al., 2013; Rignot et al., 2019: Shepherd et al., 2018). In the

ASE, this ice loss is mainly through enhanced basal melting of the ice shelves. This is attributed

to an increase in wind-driven Circumpolar Deep Water (CDW) fluxes and ocean heat content

intruding onto the continental shelf through deep troughs such as the Pine Island and Dotson-

Getz, and flowing into the ice shelves cavities (Dotto et al., 2019; Jacobs et al., 2011; Pritchard et

al., 2012). There, warm waters fuel intense basal melt of the Pine Island, Thwaites, and Getz ice

shelves, and returns as a fresher, colder outflow that can strengthen stratification (Jenkins et al.,
2010: Ha et al., 2014). The PIP and ASP differ in their exposure to CDW and in local

circulation: the ASP is more strongly influenced by upwelled modified CDW (mCDW) and

glacial meltwater inputs, whereas in the PIP, vertical intrusions primarily occur beneath the ice

shelves, leading to a more stratified and less directly ventilated surface layer (Assmann et al.,

2013:; Dutrieux et al., 2014). These hydrographic contrasts can shape the timing and magnitude

of phytoplankton blooms and nutrient dynamics across the two polynyas.

Melting ice shelves can explain about 60% of the biomass variance between all Antarctic

polynyas. suggesting that they are the primary supplier of dissolved iron (dFe) to coastal

polynyas (Arrigo et al., 2015), and can directly or indirectly contribute to regional marine

Bhatia et al., 2013; Gerringa et al., 2012;

roductivit; Hawkings et al., 2014; Herraiz-

Borreguero et al., 2016). The strong melting of the ice shelves can release significant quantities

of freshwater at depth (Biddle et al., 2017), resulting in a strong overturning within the ice

shelves cavity, called the meltwater pump (St-Laurent et al., 2017). Modelling efforts have

identified both resuspended Fe-enriched sediments and CDW entrained to the surface by the

meltwater pump as the two primary sources of dFe to coastal polynyas, providing up to 31% of

the total dFe, compared to 6% for direct ice shelves input (Dinniman et al., 2020; St-Laurent et

al., 2017). Other drivers such as sea-ice coverage (and associated increases in light and dFe

availability when sea ice retreats), or winds have also been shown to impact primary productivity

in polynyas (Park et al., 2019; Park et al., 2017; Vaillancourt et al., 2003).
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The key question of how glacial meltwater variability may impact biological productivity in the

ASE has previously been raised during the ASPIRE program (Yager et al., 2012). During the

expedition, a significant supply of melt-laden iron-enriched seawater to the central euphotic zone

of the ASP was observed, potentially explaining why this area is the most biologically

productive in Antarctica (Randall-Goodwin et al., 2015; Sherrell et al., 2015). Other studies in

the Western Antarctic Peninsula and East Antarctica showed that the meltwater pump process

was also responsible for natural Fe supply to the surface, increasing primary productivity (Cape

etal., 2019; Tamura et al., 2022).

In this study, we investigate the long-term relationship between the main environmental factors

of the ASE and the surface biological productivity, with a focus on ice shelves melting. A

demonstrated relationship between glacial yneltwater and phytoplankton growth would have far-

reaching consequences for regional productivity in coastal Antarctica, and possibly offshore,

over the coming decades under expected climate change scenarios (Meredith et al., 2019). We
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test the hypothesis that changes in glacial meltwater are linked to the surface ocean primary
productivity variability observed over the last two decades. We use a combination of satellite
(ocean color and ice shelf melting rate), climate re-analysis, and model data spanning 1998 to

2017.

2. Material and Methods

2.1 Study area and polynya mapping

We focus on the PIP and ASP in the ASE in West Antarctica (Fig. 1). The ASE is comprised of

several ice shelves and glaciers, including: Abbot (Abb), Cosgrove (Cs). Pine Island (PIG

Thwaites (Tw), Crosson (Cs), Dotson (Dt) and Getz (Gt). The PIG and Thwaites have received

significant attention in recent years due to their potentially large contribution to sea level rise
(Rignot et al., 2019; Scambos et al., 2017). Along with the Crosson and Dotson ice shelves, the

PIG and Thwaites are undergoing the highest melt rate, which is expected to increase under

climate change scenarios (Naughten et al., 2023 Paolo et al., 2023). The mean mixed-layer

depth (MLD) in the ASP is deeper (Fig. 1b). indicating that it may better entrain deeper sources

- ‘CDeIeted: melt
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Fig. 1. Spatial distribution of (a) annual surface chla during
the bloom and (b) net primary productivity (NPP)
climatology (1998 —2017) for the Amundsen (ASP) and Pine
Island (PIP) polynyas. The black lines represent the
climatological summer polynya boundaries.
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(Abb), Cosgrove (Cs), Pine Island Glacier (PIG), Thwaites (Tw), Crosson (Cr), Dotson (Dt) and
Getz (Gt).

2.2 Satellite ocean surface chlorophyll-a and net primary productivity

We obtained level-3 satellite surface chlorophyll-a (chla) concentration with spatial and

temporal resolution of 0.04° and 8 days from the European Space Agency (ESA) Globcolor

project, We used the CHL1-GSM (Garver-Siegel-Maritorena) (Maritorena and Siegel, 2005), |~ 'CI: leted: (https:/www.globcolour.info/). We used

standard Case 1 water merged products consisting of the Sea-viewing Wide Field-of-view N [F°"“a“e": Not Highlight

(Formatted: Font color: Text 1
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(SeaWiFS), Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging
Spectroradiometer (MODIS-A) and Visible Infrared Imaging Suite sensors (VIIRS). We chose to

perform our analysis with the merged GlobColour product, which has been widely applied and

tested in Southern Ocean and coastal Antarctic studies (Ardyna et al.. 2017; Sari El Dine et al.

2025; Golder & Antoine, 2025:; Nunes, Fereira & Brito, 2025), to increase our spatial and

temporal coverage.

v e ‘[Deleted: q
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We estimated phytoplankton bloom phenology metrics following the Kauko et al. (2021)

method. Firstly, we applied a spatial 3x3 pixels median filter to reduce gaps in missing data.

Then, if a pixel was still empty, we applied the average chla of the previous and following week

to fill the data gap. Data were smoothed using a 4-point moving median (representing a month of

data). For each pixel, the threshold for the bloom detection was based on 1.05 times the annual

median. The threshold method is frequently used (Racault et al., 2012; Siegel et al., 2002) and

proven reliable at higher latitudes (Marchese et al., 2017; Soppa et al., 2016; Thomalla et al.

2023). We then determined 5 main bloom metrics. The bloom start (BS) is defined as the day

where chla first exceeds the threshold for at least 2 consecutive 8-day periods. Conversely, the

bloom end is the day where chla first falls below the threshold for at least 2 consecutive 8-day

periods. The bloom duration (BD) is the time elapsed between bloom start and bloom end. The

bloom mean chla (BM) and bloom max chla are respectively the average and maximum chla

value calculated during the bloom. Each year is centered around austral summer, from June 10"

year n (day 1) to June 9" year n+1/ (day 365 or 366). We also averaged our 8-day data to

monthly data to perform a spatial correlation analysis (see section 2.6).




15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

15[158
15]159

15
15
15

160
161
162

15[163

15

164

We note that satellite ocean-colour chla algorithms (including the GlobColour merged product

used here) are globally tuned and may underperform in optically complex waters (e.g., with

elevated dissolved organic matter or suspended sediments, ‘Case 2°). In the ASP, past work (e.g..

Park et al. 2017) shows that satellite chlorophyll climatologies reflect broad seasonal patterns

that are consistent with in situ measurements of phytoplankton biomass and photophysiology,

but there is limited data from regions immediately adjacent to glacier fronts or during times of

strong meltwater input. Thus, while we consider satellite chla to be useful for capturing spatial

and temporal variability at polynya scale, uncertainty likely increases in optically complex zones

near glacier margins or during low-light periods, and needs to be considered while interpreting

results.

Eight-day satellite derived Net Primary Productivity (NPP) data with 1/12° spatial resolution,
spanning 1998 - 2017 using the Vertically Generalized Production Model (Behrenfeld and

Falkowski, 1997) were obtained from the Oregon State University website. The VGPM model is

a chlorophyll-based approach and relies on the assumption that NPP is a function of chla

influenced by light availability and maximum daily net primary production within the euphotic

zone, SeaWiFS-based NPP data span 1998 - 2009, MODIS-based data span 2002 - 2017. To

increase spatial and temporal coverage, we averaged SeaWiFS and MODIS from 2002 to 2009,
where there was valid data for both in a pixel. NPP data were also monthly averaged and used to

compare with chla spatial and temporal patterns.

We caution that our study focuses on surface productivity, and satellites cannot detect under-ice

phytoplankton and sea-ice algal blooms, therefore likely underestimating total primary

productivity (Ardyna et al., 2020; Boles et al.. 2020; Douglas et al., 2024; McClish & Bushinsly, .

2023: Stoer & Fennel 2024).

2.3 Ice shelves volume flux

We used the latest ice shelf basal melt rate estimates from Paolo et al (2023). These estimates are

- '[Deleted: (Behrenfeld & Falkowski, 1997) were obtained
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derived from satellite radar altimetry measurements of ice shelves height, and produced on a 3
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km grid every 3 months, with an effective resolution of ~5 km. For this study, our basal melt
record spans June 1998 to June 2017. We calculated ice shelves volume flux rate for every
gridded cell by multiplying the basal melt rate by the cell area. Data were summed for each ice
shelf for a 3-month period. A 5-point (15 months) running mean was applied to reduce noise,

such as spurious effects induced by seasonality on radar measurements over icy surfaces (Paolo

- (Deleted: (Paolo ct al., 2016)

et al., 2016), and data were temporally averaged from October to March to match the SO
phytoplankton growth season (Arrigo et al., 2015), providing yearly mean values. The Abbot,

Cosgrove, Thwaites, Pine Island Glacier, Crosson, Dotson and Getz ice shelves were used to
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calculate a single total meltwater volume flux (I'VFall) for the ASE to investigate the link with

surface chla_ and NPP. We also investigated the relationship between each polynyas' productivity
and their closest ice shelf. The Abbot, Cosgrove, PIG and Thwaites ice shelves were used to
calculate the flux rate in the PIP (TVFpip) while the Thwaites, Crosson, Dotson and Getz ice
shelves were chosen for the ASP (TVFasp). The Thwaites was used in both due to its central

position between the two polynyas. We thereafter use the term glacial meltwater which defines

meltwater resulting from ice shelf melting.

2.4 Simulated dFe distribution

The spatial distribution of dFe from different sources in the embayment was investigated from

Dinniman et al. (2020) model output. The model used is a Regional Ocean Modelling System

(ROMS) model, with a 5 km horizontal resolution and 32 terrain following vertical layers and

includes sea-ice dynamics, as well as mechanical and thermodynamic interaction between ice

shelves and the ocean. The model time run spans seven years and simulates fourteen different

tracers to understand dFe supply across the entire Antarctic coastal zone, with the last two years

simulating biological uptake. For the purpose of this study, we only use four different dFe

sources/tracers in the ASE: ice shelf melt, CDW, sediments and sea ice. Each tracer estimation is

independent from each other, meaning that one source does not affect the other, and they have
the same probability for biological uptake by phytoplankton. That is, dFe from all sources can

equally be taken up by phytoplankton. This is parametrized in the model as all iron molecules

being bound to a ligand and therefore remaining in solution in a bioavailable form (Gledhill &

Buck, 2012). For a detailed and complete explanation of the model, see Dinniman et al. (2020).
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includes sea-ice dynamics, as well as mechanical and
thermodynamic interaction between ice shelves and the
ocean. The model time run spans seven years and simulates
fourteen different tracers to understand dFe supply across the
entire Antarctic coastal zone, with the last two years
simulating biological uptake. For the purpose of this study,
we only use four different dFe sources/tracers in the ASE: ice
shelf melt, CDW, sediments and sea ice. Each tracer
estimation is independent from each other, meaning that one
source does not affect the other, and they have the same
probability for biological uptake by phytoplankton. That is,
dFe from all sources can equally be taken up by
phytoplankton. This is parametrized in the model as all iron
molecules being bound to a ligand and therefore remaining in
solution in a bioavailable form. For a detailed and complete
explanation of the model, see Dinniman et al. (2020).¢
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2.5 Other environmental parameters’
q
We used SIC data spanning June 1998 to June 2017 from the
National Snow and Ice Data Center (Cavalieri et al., 1996).
The data are Nimbus-7 SMMR and SSMI/SSMIS passive
microwave daily SIC with 25 km spatial resolution. We
computed the sea-ice retreat (IRT) and open water period
(OWP) metrics using a 15% threshold (Stammerjohn et al.,
2008). Daily data were monthly averaged to perform a spatial
correlation analysis (see section 2.6).9
q
We collected monthly level-4 Optimum Interpolation Sea
Surface Temperature (OISST.v2) 0.25° high resolution
dataset from the National Oceanic and Atmospheric
Administration (Banzon et al., 2016). Using this dataset
compared to others has been proven to be the most suitable
for our region of interest (Yu et al., 2023).9
q

We obtained monthly Photosynthetically Available Radiation
(PAR) from the same Globcolour project at the same spatial
and temporal resolution (0.04° and 8 days) as chla.”|

q

‘We used monthly averaged ERAS reanalysis of zonal (u) and
meridional (v) surface wind speed at 10 m above the surface
(Hersbach et al., 2020). §
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2.5 Other environmental parameters

We used SIC data spanning June 1998 to June 2017 from the National Snow and Ice Data Center
(Cavalieri et al., 1996). The data are Nimbus-7 SMMR and SSMI/SSMIS passive microwave

daily SIC with 25 km spatial resolution. We computed the sea-ice retreat time (IRT) and open

water period (OWP) metrics using a 15% threshold (Stammerjohn et al., 2008). Daily data were

monthly averaged to perform a spatial correlation analysis (see section 2.6).

We collected monthly level-4 Optimum Interpolation Sea Surface Temperature (OISST.v2)

0.25° high resolution dataset from the National Oceanic and Atmospheric Administration

(Huang et al., 2021). Using this dataset compared to others has been proven to be the most

suitable for our region of interest (Yu et al., 2023).

We obtained monthly Photosynthetically Available Radiation (PAR) from the same Globcolour

project at the same spatial and temporal resolution (0.04° and 8 days) as chla.

We used monthly averaged ERAS5 reanalysis of zonal (u) and meridional (v) surface wind speed

at 10 m above the surface (Hersbach et al., 2020).

We finally investigated monthly mean MLD from the Estimating the Circulation and Climate of
the Ocean (ECCO) ocean and sea-ice state estimate project (ECCO consortium et al., 2021). The

dataset is the version 4, release 4, at 0.5° spatial resolution.

2.6 Statistical analysis

Because some of our data were not normaly distributed, we consistently applied nonparametric
tests throughout our statistical analysis. A Mann-Kendall test was performed to detect linear
trends in chla and NPP. A two-tailed non-parametric Spearman correlation metric (rho. p) was
calculated to investigate the relationship between chla, NPP, and glacial meltwater, as well as

between phytoplankton and sea-ice phenology metrics. A two-tailed Mann-Whitney test was
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performed to detect any significant mean differences for chla, sea-ice phenology metrics, MLD

2
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PAR and dFe sources between the two polynyas. Monthly spatial correlations were tested
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between SIC, winds, chla, NPP, SST, and PAR after removing the seasonality for each

parameter. As well, a yearly spatial correlation between chla, NPP and TVFall was performed.
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The relationships between chla concentration, NPP and environmental factors were explored

using a Principal Component Analysis (PCA). No pre-treatment (mean-centering or

normalization) was applied to the variables prior to PCA, as all variables are expressed in

comparable units and ranges, consistent with common practice in marine biogeochemistry

studies (Marchese et al., 2017; Liniger et al., 2020). Every statistical test was run with a 95% (p-

value < 0.05) confidence level. Our study spans 1998-2017. We are constrained by the start of
satellite ocean color data (1998) and the end of the ice shelf basal melt rate record (2017) from

Paolo et al (2023).
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3. Results

3.1 Glacial mmeltwater and chla variability
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The annual climatology maps reveal substantially higher chla concentration and NPP in the ASP

compared to the PIP (Fig. 2), The chla concentration starts increasing in mid-November to reach

its average earlier in the PIP than the ASP. At its peak, chla in the ASP is 6.49 mg m™ and 4.94

mg m in the PIP (Fig. 3a). During the bloom period, chla concentration is also higher in the

ASP on average compared to the PIP (ASP =521+ 1.29 mgm> ;PIP=3.69+ .11 mg m?,

Fig. 3b: Supplementary Table T1: p-value < 0.01). When looking at polynya area integrated
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[Deleted: 2b and Table T1, p-value < 0.01).
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Moved down [1]:). During the bloom period, chla
concentration is also higher in the ASP on average compared
to the PIP (ASP =521 £ 1.29 mgm™; PIP=3.69 + 1.11 mg
m?, Fig. 2b

values (concentration multiplied by area gives units of mg m™), chla is significantly higher in the

ASP than in the PIP, and increases with the polynya area (Supplementary Figs. S1 and S2). NPP
is also significantly higher in the ASP than in the PIP (1.88 + 1.12 TgC y! vs 0.85 + 0.86 TgC y-

1, p-value = 0.004; Supplementary Fig. S3). No significant interannual trends in mean chla and
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meltwater is delivered to the embayment. No strong relationships are observed in the PIP

between TVFall, surface chla and NPP (Figs. 4c-d; Supplementary Figs. S4c-d). When fluxes

from individual glaciers are considered, PIP chla does not correlate with Abbot, Cosgrove, PIG,
Thwaites or TVFpip fluxes (Table 1). On the other hand, ASP chla shows strong relationships

with TVFasp, the Dotson and Crosson ice shelves (Table 1), and all ice shelves become
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significantly correlated with mean and max chla when year 2001/02 js removed. There are no

statistically significant relationships between individual ice shelves and NPP in both polynyas.

Spatially, the mean and max chla are strongly correlated with I'VFall in southern-eastern part of

the ASP, in front of the Dotson ice shelf (Figs. 5a-b), where a positive relationship with NPP is

also observed (Fig. 5c), although not significant.
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surface chlorophyll-a (chla). The * marks a significant (p-value < 0.05) relationship. Statistical

results for the ASP include all years (n=19). All relationships between mean chla, max chla and
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Fig. 5. Spatial correlation maps between total volume flux (I'VFall) and (a) surface mean

chlorophyll-a (chla), (b) surface max chla and (c) net primary productivity (NPP) (n=19). The

black contour represents significant correlations at 95% confidence level. Data outside of the . -

summer climatological polynyas’ boundaries were masked out.

3.2 Simulated dFe sources distribution

The modelled spatial distribution of surface dFe sources js presented in Fig. 6. On average, the

smallest dFe source in the embayment is from the ice shelves, with a maximum concentration ‘

between the Thwaites and Dotson ice shelves. The dFe from sea ice is slightly higher than from
ice shelves and similar over the two polynyas, and is higher near the sea-ice margin (Fig. 6b). The

dFe from CDW is also higher between the Thwaites and Dotson (Fig. 6c). Sediment is the
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polynya-wide average basis, the sediment reservoir contributes significantly more to total dFe in
the ASP (58.3%, 0.13nM) compared to sea ice (16.5%, 0.04nM), CDW (13.5%, 0.03nM) and ice
shelves (11.7%, 0.03nM). In the PIP, the contribution of sediments is still significantly higher
(41.2%; 0.08nM) but lower than the ASP and the contribution gap with the other sources decreases.
The CDW and sea ice contribute 22.5% (0.04nM) and 18.9% (0.035nM) to the dFe pool
respectively, while ice shelves are still the smallest sources at 14.5% (0.03nM) in the PIP.
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Fig. 6. Two-years top-100m averaged spatial distribution of surface dissolved iron (dFe) .-

contribution from (a) ice shelves, (b) sea ice, (¢) circumpolar deep water (CDW) and (d) sediments

simulated by the model from Dinniman et al. (2020). The black lines represent the climatological

summer polynyas’ boundaries.

3.3 Environmental parameters, chla and NPP variability

During the phytoplankton growth season (October-March), SIC is spatially significantly
anticorrelated to the meridional winds speed in both polynyas (Fig. 7a). Chla is significantly

[ Deleted: © C.ns)

Deleted: Fig. 5. Two-years top-100m averaged spatial
distribution of surface dissolved iron (dFe) contribution from
(a) ice shelves, (b) sea ice, (c) circumpolar deep water and (d)
sediments simulated by the model from Dinniman et al.
(2020). The black lines represent the climatological summer
polynya boundaries.{

o ‘CDeIeted: 6a

positively correlated with SST in the gastern ASP, and the whole PIP (Fig. 7b), but weakly with

o CDeIeted: central-

NN AN

(Deleted: 6b




15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

15’6

15
15
15
15

593
594
595
596

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
012
613
014
615
616

617
618
19
620
621
622

’623

PAR in both polynyas (Fig. /c). Finally, PAR and SST are positively yelated in both central

polynyas, albeit not significantly (Fig. 7d). We note that similar spatial relationships are

observed when NPP is correlated with SST and PAR. (Supplementary Fig. S5).
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Fig. 7. Spatial correlation map between sea-ice concentration (SIC) and (a) meridional winds.

Spatial correlation maps between mean chlorophyll-a (chla) concentration, and (b) sea surface

temperature (SST), (c) photosynthetically available radiation (PAR). (d) Spatial correlation map

between PAR and SST. Data span 1998 — 2017 from October to March (n=114). The black contour -
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Regarding the phenology, the bloom start is positively correlated to IRT and negatively with «

OWP in the ASP, although not significantly with the OWP (Table 2). This means that the bloom
starts earlier and later as IRT does, and that longer OWP and earlier bloom starts are correlated
with earlier ice retreat. The bloom mean and bloom max chla are not correlated with either IRT

and OWP in the ASP. IRT and OWP are significantly related (p = -0.93; p-value < 0.001). When
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year 2001/02 is removed, no significant changes in the relationships between all parameters are

detected. In the PIP, all metrics are significantly related to each other, except for PAR and OWP

(Table 2). That is, the bloom start is positively correlated with IRT and negatively with OWP,

while the bloom duration, mean chla, max chla concentrations and NPP are negatively linked to

the IRT and positively with OWP. SST and PAR are negatively correlated with IRT, and

positively with SST. IRT and OWP are significantly related in the PIP,(p = -0.88: p-value <

0.001).

environmental parameters (n=19). The * marks a significant (p-value < 0.05) relationship. IRT =

ice retreat time, OWP = open water period, NPP = net primary productivity, SST = sea surface

temperature, PAR = photosynthetically available radiation. Removing year 2001/02 for the ASP

slightly changes the strength of the relationships between parameters (i.e., rho) but not the

significance.
Amundsen Sea polynya Pine Island polynya
IRT OWP IRT OWP
rho | p-value | rho p- rho p- rho p-
value value value
Bloom 0.51 003* -0.43 007 [0.56( 0.02* | -0.48 | 0.04*
start
Bloom -0.12 063 0.09 071 - 0.02* | 0.59 | 0.01*
duration 0.56
Bloom 0.19 0.44 -033 017 - [0.003*| 0.50 | 0.04*
mean 0.67
Bloom 024 0.32 -035 0.14 - [0.005%| 0.52 | 0.03*
max 0.65
NPP -0.55 0.02* 0.45 0.05 - 10.001%| 054 | 0.02*
0.72
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OWP and SST and MLD aligned along Dim1. which explains 46.7% of the total variance

compared to 35% for the ASP, suggesting that physical conditions might play a stronger
structuring role in PIP compared to the ASP. In contrast, TVFall and TVFpip stand alone and
align more strongly with Dim2, suggesting a less dominant influence of meltwater on the system

bloom mean chla and NPP variability in the PIP. Finally, polynya-averaged PAR and MLD are

significantly stronger and deeper, respectively, in the ASP compared to the PIP during the bloom
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for PIP; TVFall = total volume flux for all ice shelves; BM = bloom mean; PAR =

photosynthetically available radiation; BD = bloom duration; NPP = net primary productivity;

OWP = open water period; SST = sea surface temperature; MLD = mixed-layer depth; BS = bloom

start; IRT = ice retreat time. The same plot is presented in supplementary Fig. S6, but removing

i | surface chla observed over the last two decades was distinctly

year 2001/02 for the ASP, emphasizing the relationship between total volume flux (TVFall,

TVFasp) and BM, in the ASP,

4. Discussion

4.1 Effect of glacial meltwater on phytoplankton chla and NPP

The relationship between glacial meltwater, surface chla and NPP observed over the last two

decades was distinctly different between the two polynyas. In the ASP, we found that enhanced

glacial melt translates into higher surface chla, but not with NPP (when removing year 2001/02;

Figs. 4a-b; Supplementary Fig. S6a). Modelling results (Fig. 6) suggest that sediment from the

seafloor is the main source of dFe in the ASP. but this source is also linked to glacial melt. Ice

shelf glacial meltwater drives the meltwater pump, which brings up mCDW and fine-grained

subglacial sediments to the surface. This result is in agreement with previous research: Melt-

laden modified CDW flowing offshore from the Dotson ice shelf to the central ASP (Sherrell et

al., 2015), and resuspended sediments (Dinniman et al., 2020; St-Laurent et al., 2017; 2019) have

been identified as significant sources of dFe to be used by phytoplankton. Interestingly, both dFe
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different between the two polynyas. In the ASP, we found
that enhanced glacial melt translates into higher surface chla,
but not with NPP (when removing the anomalous 2001/02
summer; Figs. 3a-b; Fig. S7a). Modelling results (Fig. 5)
suggest that sediment from the seafloor is the main source of
dFe in the ASP, but this source is also linked to glacial melt.
Ice shelf glacial meltwater drives the meltwater pump, which
brings up modified CDW (mCDW) and fine-grained
subglacial sediments to the surface. This result is in
agreement with previous research: Melt-laden modified CDW
flowing offshore from the Dotson ice shelf to the central ASP
(Sherrell et al., 2015), and resuspended sediments (Dinniman
et al., 2020; St-Laurent et al., 2017; 2019) have been
identified as significant sources of dFe to be used by
phytoplankton. Interestingly, both dFe supplied from ice
shelves and CDW are most important in front of the Thwaites
and Crosson ice shelves, where the area averaged basal melt
rate, and thus likely the area averaged meltwater pumping
(Jourdain et al., 2017) are typically strongest in observations
(Adusumilli et al., 2020; Rignot et al., 2013) and the
modelling (Fig. 5). The year 2001/02 does not stand out as
being influenced by any specific parameter in the ASP
compared to other years (Fig. 7a; Fig. S7a). The anomalously
high surface chla observed during this year, as also reported
by Arrigo et al. (2012), may result from exceptional
conditions that were not captured by the parameters analysed
in our study - for instance, an imbalance in the grazing
pressure. Interestingly, surface chla and NPP exhibit
contrasting trends when averaged across the polynya. While
TVF may explain some of the variance in surface chla, it does
not account for the variance in NPP, whether assessed
through direct or multivariate relationships. This decoupling
between chla and NPP in the ASP suggests that ice shelf
meltwaters, while enhancing surface phytoplankton biomass
through nutrient delivery, also promote vertical mixing. This
mixing deepens the mixed layer, reducing light availability
and constraining photosynthetic rates. These rates are
influenced by fluctuations in the MLD, even in the presence
of high biomass and sufficient macronutrients. Additionally,
interannual variability in the composition of the
phytoplankton community may further explain these
observations. For example, the occasional dominance of the
small prymnesiophyte Phaeocystis antarctica, a low-( . [117)
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supplied from ice shelves and CDW are most important in front of the Thwaites and Crosson ice

shelves, where the area averaged basal melt rate, and thus likely the area averaged meltwater

pumping (Jourdain et al., 2017), are typically strongest in observations (Adusumilli et al., 2020;

Rignot et al., 2013) and the modelling (Fig. 6). The year 2001/02 does not stand out as being

influenced by any specific parameter in the ASP compared to other years (Fig. 8a,

Supplementary Fig. S6a). The anomalously high surface chla observed during this year, as also

reported by Arrigo et al. (2012), may result from exceptional conditions that were not captured

by the parameters analysed in our study, for instance, an imbalance in the grazing pressure.

Interestingly, surface chla and NPP exhibit contrasting trends when averaged across the polynya.

While TVFall may explain some of the variance in surface chla, it does not account for the

variance in NPP. whether assessed through direct or multivariate relationships. This decoupling

between chla and NPP in the ASP suggests that glacial meltwater, while enhancing surface

phytoplankton biomass through nutrient delivery, may also promote vertical mixing. This mixing

deepens the mixed layer, reducing light availability and constraining photosynthetic rates. These

rates are influenced by fluctuations in the MLD, even in the presence of high biomass and

sufficient macronutrients. The summer MLD is deeper in the ASP (Fig. 1b), which would

decrease light availability, despite higher PAR compared to the PIP. Previous studies report that

the small prymnesiophyte P. antarctica, a low-efficiency primary producer (Lee et al., 2017), is

better adapted to deeper mixed layers and therefore lower light conditions (Alderkamp et al.,
2012:; Mills et al., 2010) and could contribute to high surface chla decoupled from NPP, as

observed in the ASP. This is consistent with past in situ studies showing systematic differences

in mixed-layer structure between the two polynyas. The PIP commonly exhibits a shallow

strongly stratified surface mixed layer while the ASP is more variable and has been observed to
host deeper MLD (Alderkamp et al., 2012; Park et al., 2017; Yager et al., 2016; Mills et al.,
2012).

In the PIP, we did not find any long-term yelationships between the phytoplankton bloom, NPP

e ‘(Deleted: relationship

and glacial meltwater. Variability in ice shelf glacial meltwater may not have the same effect on

g 'CDeIeted: melt rates

the surface chla and NPP in the PIP compared to the ASP. Iron delivered from glacial melt
process related in the PIP and west of it could accumulate and follow the westward coastal

current, towards the ASP (St-Laurent et al., 2017). These sources would include dFe from

- (Deleted: (St-Laurent ct al., 2017)
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meltwater pumped CDW, sediments and ice shelves, all of which are higher in front of the

Crosson ice shelf, west of the PIP (Fig. 6). With the coastal circulation, this would make dFe e 'CDeIeted: 5 )

supplied by glacial meltwater greater in the ASP, thereby contributing to the higher productivity
in the ASP. Recently, subglacial discharge (SGD) was shown to have a different impact on basal
melt rate in the ASE polynyas (Goldberg et al., 2023), where PIG had a lot less relative increase
in melt with SGD input than Thwaites or Dotson/Crosson. Thus, assuming a direct relationship
between meltrate, SGD and dFe sources, the signal in the PIP (fed by PIG melt) will be much
weaker than in the ASP (fed by upstream Thwaites, Crosson and local Dotson due to the
circulation), which might also explain the discrepancies between the PIP and ASP. A stronger

meltwater-driven stratification may also dominate in the PIP, reducing vertical nutrient

replenishment and thereby limiting biomass growth (Oh et al., 2022). even where TVFall is high,

hence leading to a direct negative relationship observed compared to the ASP (Fig. 4;

Supplementary Fig. S4). The model outputs used here are critical to understand the spatial

distribution of dFe in the embayment. They strongly suggest, but do not definitively demonstrate,

N

the role of dFe in influencing the phytoplankton bloom interannual variability., s '[Formatted: Font color: Black

] _(Deleted: « 18]

The decoupling between surface chla and NPP could reflect two contrasting meltwater effects.

Near glacier and ice-shelf fronts, entrainment of iron-rich deep waters rising to the surface

through the meltwater pump can produce surface chla maxima (high biomass) without

proportional increases in depth-integrated productivity. Further from the coast, meltwater

spreading at neutral buoyancy strengthens stratification, limiting vertical nutrient fluxes and

thereby suppressing NPP despite elevated chla. These dual mechanisms are consistent with

observational and modelling studies of meltwater entrainment and dispersal (Randall-Goodwin et

al., 2015; St-Laurent et al., 2017; Dinniman et al., 2020; Forsch et al. 2021), and suggest that

spatial heterogeneity in plume dynamics could explain the observed chla and NPP mismatch. We

also note as a limitation that satellite-derived chla and VGPM NPP estimates lack the vertical

resolution needed to resolve sub-plume stratification and mixing processes (e.g., fine-scale

vertical gradients in iron or nutrient fluxes), so our mechanistic interpretations of surface chla vs.

depth-integrated productivity decoupling must be taken with caution.
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Satellite algorithms commonly estimate NPP from surface chla, but the approach and

assumptions vary across models. The VGPM relates chla to depth-integrated photosynthesis

through empirical relationships with light and temperature (Behrenfeld & Falkowski, 1997). In

contrast, the Carbon-based Productivity Model (CbPM) emphasizes phytoplankton carbon

biomass and growth rates derived from satellite optical properties, decoupling productivity

estimates from chla alone (Westberry et al., 2008). The CAFE model (Carbon, Absorption, and

Fluorescence Euphotic-resolving model) integrates additional physiological parameters such as

chla fluorescence and absorption to better constrain phytoplankton carbon fixation (Silsbe et al.,

2016). In the Southern Ocean, where light limitation, iron supply, and community composition

strongly influence the relationship between chla and productivity, these algorithmic differences
can yield substantial variability in NPP estimates (Ryan-Keogh et al., 2023), with studies

showing that VGPM-type models often outperform CbPM in coastal Southern Ocean regions

(Jena et al., 2020). Because the VGPM algorithm does not explicitly incorporate the MLD, but

instead estimates primary production integrated over the euphotic zone based on surface chla,

PAR, and temperature, it may not fully capture the influence of variable MLD or subsurface

processes related to glacial melt, which could contribute to the observed decoupling between

chla and NPP. Therefore, while the observed decoupling between chla and NPP in the ASP
might also come from our choice of dataset, the VGPM model may be more appropriate for

coastal polynya environments, such as those in the Amundsen Sea.

Direct observations from Sherrell et al. (2015) showed higher chla in the central ASP while

surface dFe was low weeks before the bloom peak. This suggests a continuous supply and

consumption of dFe in the area, most likely from the cicrculation, as mentioned above.

Considering the long residence time of water masses in both polynyas (about 2 years (Tamsitt et

al., 2021)). and the daily dFe uptake by phytoplankton (3-196 pmol I'' d"! (Lannuzel et al.,

2023)), we also hypothesise that any dFe reaching the upper ocean from external sources is

quickly used and unlikely to remain readily available for phytoplankton in the following spring

season.

In recent model simulations with the meltwater pump turned off, Fe becomes the principal factor

limiting phytoplankton growth in the ASP (Oliver et al., 2019). However, the transport of Fe-rich
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glacial meltwater outside the ice shelf cavities and to the ocean surface depends strongly on the

local hydrography. While Naveira Garabato et al. (2017) suggested that the glacial meltwater

concentration and settling depth (neutral buoyancy) outside the ice shelf cavities is controlled by

an overturning circulation driven by instability, others suggest that the strong stratification plays

an important role in how close to the surface the buoyant plume of said meltwater can rise

(Arnscheidt et al., 2021: Zheng et al., 2021). Therefore, high melting years and greater TVFall

might not necessarily translate into a more iron-enriched meltwater delivered to the surface

outside the ice shelf cavities, close to the ice shelf edge, as rising water masses may be either

prevented from doing so, or be transported further offshore in the polynyas where the

phytoplankton bloom occurs, before they can resurface (Herraiz-Borreguero et al., 2016).

Although several Fe sources can fuel polynya blooms, and they depend on processes mentioned

above, Fe-binding ligands may ultimately set the limit on how much of this dFe stays dissolved
in the surface waters (Gledhill and Buck, 2012; Hassler et al., 2019; Tagliabue et al., 2019).
Models of the Amundsen Sea (Dinniman et al., 2020, 2023; St-Laurent et al., 2017, 2019) did not
include Fe complexation with ligands and assumed a continuous supply of available dFe for
phytoplankton. Spatial and seasonal data on Fe-binding ligands along the Antarctic coast remain
extremely scarce and their dynamics are poorly understood (see Smith et al. (2022) for a

database of publicly available Fe-binding ligand surveys performed south of 50°S). Field

observations in the ASP and PIP suggest that the ligands measured in the upwelling region in

front of the ice shelves had little capacity to complex any additional Fe supplied from glacial

melt. As a consequence, much of the glacial and sedimentary Fe supply in front of the ice

shelves could be lost via particle scavenging and precipitation (Thur6czy et al., 2012). This was

also recently observed by van Manen et al. (2022) in the ASP. However, within the polynya

blooms, Thuréczy et al. (2012) found that the ligands produced by biological activity were

capable of stabilising additional Fe supplied from glacial melt, where we observed the highest

productivity. The production of ligands by phytoplankton would increase the stock of

bioavailable dFe and further fuel the phytoplankton bloom in the polynyas, potentially
highlighting the dominance of P. antarctica, which uses iron-binding ligands more efficiently

than diatoms (Thurdczy et al., 2012), even under low light conditions. Model development and

sustained field observations on dFe availability. including ligands, are needed to adequately
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predict how these may impact biological productivity under changing glacial and oceanic

conditions, now and in the future.

Overall, the discrepancies observed between the ASP and PIP point to a complex set of ice-

ocean-sediment interactions, where several co-occurring processes and differences in

hydrographic properties of the water column influence dFe supply and consequent primary

productivity.

4.2 Possible drivers of the difference in phytoplankton surface chla and NPP between the

two polynyas

The biological productivity is higher in the ASP than the PIP, consistent with previous studies

(Arrigo et al., 2012; Park et al., 2017). In section 4.1, we mentioned the underlying hydrographic

drivers of these differences. We related the higher biological productivity in the ASP to a

potentially greater supply of iron from melt-laden Fe-enriched mCDW and sediment sources, but

this difference in productivity could also be attributed to other local features. The Bear Ridge

grounded icebergs on the ASP’s eastern side (Bett et al., 2020) could add to the overall

meltwater pump strength. They can enhance warm CDW intrusions to the ice shelf cavity (Bett

et al., 2020), increasing ice shelf melting and subsequent stronger phytoplankton bloom from the

meltwater pump activity. These processes are weaker or absent in the PIP. Few sources other

than glacial meltwater may influence the bloom in the PIP. For instance, dFe in the euphotic

zone can also be sustained by the biological recycling, as shown in the PIP by Gerringa et al.

(2020).

Sea ice could also partly explain the difference in chla magnitudes, NPP, and variability between «- (Formatted: Normal (Web)

the ASP and PIP. The strong spatial correlation between SIC and meridional winds (Fig. 7a)

indicates that southerly winds can export the coastal sea ice offshore and play a significant role
in opening the polynyas. In the ASP compared to the PIP, sea ice retreats earlier (IRT = Jan 15+
14d vs Jan 18" + 17d, p-value = 0.003), the open water period is longer (OWP = 61 + 16d vs 44

+22d, p-value < 0.001), and the SIC is lower (Supplementary Fig. S7). In the ASP, an early sea- ~(Deleted: S6c, Table 2

ice retreat leads to an earlier bloom start, but the longer open water period is not significantly
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associated with greater bloom mean and max chla (Table 2). On the other hand in the PIP, an
early sea-ice retreat also triggers an early bloom start, but the longer open duration is associated
with warmer water, higher bloom mean chla, max chla, and NPP. These results suggest that
different processes might drive phytoplankton growth variability in the two polynyas. In the
ASP, it is likely the replenishment of dFe mentioned above that mostly influences the bloom. In

the PIP, higher SIC can delay the retreat time and shorten the open water season (Table 2,

Supplementary Fig. S7), leading to Jower chla and NPP compared to the ASP. The significant

negative relationships between IRT, PAR, chla and NPP in the PIP (Table 2, Su;

S6) suggests a strong light limitation relief in the polynya. This light limitation hypothesis is
further supported by the high correlation between polynya-averaged chla mean with PAR and
SST in the PIP across the 19 years of study, compared to the lack of correlation in the ASP

(Supplementary Table T2; p-value < 0.01 for all relationships in the PIP). While P. antarctica is
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Deleted: compared to the lack of correlation in the ASP
(Table T2; p-value < 0.01 for all relationships in the PIP).
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usually the main phytoplankton species dominating in both polynyas. the combination of light-

limitation relief and higher SST may create better conditions for a stratified and warmer

environment that would favor diatom (Arrigo et al., 1999; van Leeuwe et al., 2020), as recently

observed in the ASP (Lee et al., 2022). The positive association of PAR, SST and chla with

MLD likely reflects conditions around sea-ice retreat (all negatively associated with IRT), when

enhanced wind mixing deepens the mixed layer and replenishes surface nutrients while light

availability and SST increases. This nutrient-light co-limitation phase supports high biomass

accumulation, likely from diatoms, Similar results have been reported by Park et al. (2017). They

found that the PIP was dFe replete, potentially from biological recycling . (Gerringa et al.. 2020)

(Deleted: Park ct al. (2017)
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compared to an iron-limited ASP. We hypothesise that the connection between glacial meltwater

(Deleted: (Gerringa et al., 2020)

and chla that we found in the ASP is a response to iron input (also observed by Park et al. (2017)

(Deleted: ice shelf

(Deleted: Park ctal. (2017)

during incubation experiments) compared to the PIP, where light and temperature seem to play a
more significant role in driving the phytoplankton bloom variability. Our results suggest

potential long-term changes in the phytoplankton community, specifically a shift towards

diatoms in the ASE coastal regions during phytoplankton bloom. Hayward et al. (2025) reported

a decline in diatoms from 1997 to 2017 in the PIP. However, they observed an increase in

diatoms after 2017, linked to regime shift in sea ice. Their study also indicates that diatoms are

competitively disadvantaged under iron-depleted conditions. P. antarctica, which relies on dFe

supplied by ocean circulation, would then tends to dominate in the ASP. Such shifts in
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phytoplankton composition are likely to affect carbon export, grazing, and higher trophic levels.

Additional long-term data on inter-annual variability in phytoplankton composition and

physiology will be essential to fully understand these relationships.,

Variabili

therefore also investigated its potential role on sea-ice variability. We found on average weak

spatial negative relationships between SIC and ASL latitude, longitude, mean sector and actual

central pressure in both polynyas during the growing seasons (Supplementary Fig. S8), and only

slightly significant in the eastern PIP. The weak relationships might be owing to the seasonal

variation of the ASL, where its position largely varies during summer, and its impact in shaping

coastal sea ice is also greater during winter and autumn in the Amundsen-Bellingshausen region
(Hosking et al., 2013). The lack of strong significant relationships overall does not allow us to

conclude that the ASL plays an important role in shaping the coastal polynyas landscape and

influencing chla variability.

4.3 Limitations and future directions

While it seems reasonable that the higher ASP productivity could be driven by more iron

delivered through a stronger meltwater pump downstream of the PIP. our data cannot confirm

this hypothesis. To accurately understand the role of iron through the meltwater pump process

we would need to quantify the fraction of meltwater and glacial modified water (mix of CDW

and ice shelf meltwater) reaching the ocean surface, together with the iron content. Obtaining

this information is challenging over the decadal time scales considered and the method used in

our study. Here, our intention was to provide valuable insights into the potential drivers of our

results, and highlight the benefit of remote sensing. in this poorly observed environment. Our
work directly aligns with Pan et al. (2025), who investigated the long-term relationship between
sea surface glacial meltwater and satellite surface chla in the Western Antarctic Peninsula, and
found a strong relationship between the two parameters, highlighting the importance of glacial

meltwater discharge in regions prone to extreme and rapid climate changes.
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in SIC and sea-ice retreat can be influenced by the Amundsen Sea Low (ASL) . We
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influenced by the Amundsen Sea Low (ASL; Hosking et al.,
2013; Turner et al., 2016). We therefore also investigated its
potential role on sea-ice variability. We found on average
weak spatial negative relationships between SIC and ASL
latitude, longitude, mean sector and actual central pressure in
both polynyas during the growing seasons (Fig. S8), and only
slightly significant in the eastern PIP. The weak relationships
might be owing to the seasonal variation of the ASL, where
its position largely varies during summer, and its impact in
shaping coastal sea ice is also greater during winter and
autumn in the Amundsen-Bellingshausen region (Hosking et
al., 2013). The lack of strong significant relationships overall
does not allow us to conclude that the ASL plays an
important role in shaping the coastal polynyas landscape and
influencing chla variability.¢|
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4.3 Limitations and future directions'|
q

While it seems reasonable that the higher ASP productivity
could be driven by more iron delivered through a stronger
meltwater pump downstream of the PIP, our data cannot
confirm this hypothesis. To accurately understand the role of
iron through the meltwater pump process, we would need to
quantify the fraction of meltwater and glacial modified water
(mix of CDW and ice shelf meltwater) reaching the ocean
surface, together with the iron content. Obtaining this
information is challenging over the decadal time scales
considered and the method used in our study. Here, our
intention was to provide insights into the potential drivers of
our results, and highlight the benefit of remote sensing
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Jn multimodel climate change simulations, Naughten et al (2018) showed an increase of ice
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shelves melting up to 90% on average, attributed to more warm CDW on the shelf, due to

atmospherically driven changes in local sea-ice formation. More recently, Dinniman et al. (2023)

also highlighted the impact of projected atmospheric changes on Antarctic ice sheet melt. They

showed that strengthening winds, increasing precipitation and warmer atmospheric temperatures

will increase heat advection onto the continental shelf, ultimately increasing basal melt rate by

83% by 2100. Compared to present climate simulations, their simulation showed a 62% increase

in total dFe supply to shelf surface waters, while basal melt driven overturning Fe supply

increased by 48%. The ice shelf melt and overturning contributions varied spatially, increasing in

the Amundsen-Bellingshausen area and decreasing in East Antarctica. This implies that, under

future climate change, phytoplankton productivity could show stronger spatial asymmetry

around Antarctica. The increasing melting and thinning of ice shelves will eventually result in

more numerous calving events and drifting icebergs (Liu et al., 2015). Model simulations

stressed the importance of ice shelves and icebergs in delivering dFe to the SO (Death et al.,

2014; Person et al., 2019), increasing offshore productivity. As Fe will likely be replenished and

sufficient from increasing melting in coastal areas, it is possible that the system will shift from

Fe-limited to being limited by nitrate, silicate, or even manganese (Anugerahanti and Tagliabue

2024). while offshore SO productivity will likely remain Fe-dependent (Oh et al., 2022).

5. Conclusions

Using spatial and multivariate approaches, our study explored the variability of surface chla and

NPP in the Amundsen Sea polynyas over the last two decades. with a focus on the main

environmental characteristics of the ASE. We found a potential strong relationship between ice

shelf melting and surface chla in the ASP, which becomes stronger when year 2001/02, was

e (Deleted: the anomalous

removed, a result in agreement with the ASPIRE field studies and previous satellite analyses. On
the other hand, we did not find clear evidence of such a relationship in the PIP, where light, sea
surface temperature and open water availability seem more important. The differences between
the polynyas may lie in hydrographic properties, or the use of satellite remote sensing itself,
which cannot tell us about processes such as Fe supply, bioavailability and phytoplankton

demand. To gain greater insight, we referred to model simulations that showed the spatial
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Naughten et al (2018) showed an increase of ice shelves
melting up to 90% on average, attributed to more warm CDW
on the shelf, due to atmospherically driven changes in local
sea-ice formation. More recently, Dinniman et al. (2023) also
highlighted the impact of projected atmospheric changes on
Antarctic ice sheet melt. They showed that strengthening
winds, increasing precipitation and warmer atmospheric
temperatures will increase heat advection onto the continental
shelf, ultimately increasing basal melt rate by 83% by 2100.
Compared to present climate simulations, their simulation
showed a 62% increase in total dFe supply to shelf surface
waters, while basal melt driven overturning Fe supply
increased by 48%. The ice shelf melt and overturning
contributions varied spatially, increasing in the Amundsen-
Bellingshausen area and decreasing in East Antarctica. This
implies that, under future climate change, phytoplankton
productivity could show stronger spatial asymmetry around
Antarctica. The increasing melting and thinning of ice shelves
will eventually result in more numerous calving events and
drifting icebergs (Liu et al., 2015). Model simulations
stressed the importance of ice shelves and icebergs in
delivering dFe to the SO (Death et al., 2014; Person et al.,
2019), increasing offshore productivity. As Fe will likely be
replenished and sufficient from increasing melting in coastal
areas, it is possible that the system will shift from Fe-limited
to being limited by nitrate, silicate, or even manganese
(Anugerahanti & Tagliabue, 2024). while offshore SO
productivity will likely remain Fe-dependent (Oh et al.,
2022).9

q

5. Conclusionsf
q

Using spatial and multivariate approaches, our study explored
the variability of surface chla and NPP in the Amundsen Sea
polynyas over the last two decades, with a focus on the main
environmental characteristics of the ASE.
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variability in the magnitude of iron sources. Our results call for sustained in situ observations

(e.g,. moorings equipped with trace-metal clean samplers, and physical sensors to better

s 'CDeIeted:.

understand year-to-year water mass meltwater fraction and properties) to elucidate these long-
term relationships. Satellite observations are a powerful tool to investigate the relationship

between glacial meltwater and biological productivity on such time scales, which has until now

g 'CDeleted: ice

relied almost exclusively on field observations and modelling. Using such tools, we showed how
the relationship between phytoplankton and the environment varies spatially and temporally

across 19 years.

Appendices

No appendices are related to the manuscript.

Data availability
Bathymetry data (Amante & Eakins, 2009) was taken from the NOAA website

(http://www.ngdc.noaa.gov/mgg/global/global.html). Mixed-layer depth (ECCO Consortium et

al., 2021) can be accessed here:
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