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Abstract: Flooding is a major natural hazard that requires a rapid response to minimize the loss of life and property 10 

and to facilitate damage assessment. Aerial imagery, especially images from unmanned aerial vehicles (UAVs) and 

helicopters, plays a crucial role in identifying areas affected by flooding. Therefore, developing an efficient model for 

rapid flood mapping is essential. In this study, we present two segmentation approaches for the mapping of flood-

affected areas: (1) a fine-tuned Segment Anything Model (SAM), comparing the performance of point prompts versus 

bounding box (Bbox) prompts, and (2) a U-Net model with ResNet-50 and ResNet-101 as pre-trained backbones. Our 15 

results showed that the fine-tuned SAM performed best in segmenting floods with point prompts (Accuracy: 0.96, 

IoU: 0.90), while Bbox prompts led to a significant drop (Accuracy: 0.82, IoU: 0.67). This is because flood images 

often cover the image from edge to edge, making Bbox prompts less effective at capturing boundary details. For the 

U-Net model, the ResNet-50 backbone yielded an accuracy of 0.87 and an IoU of 0.72. Performance improved slightly 

with the ResNet-101 backbone, achieving an accuracy of 0.88 and an IoU of 0.74. This improvement can be attributed 20 

to the deeper architecture of ResNet-101, which allows more complex and detailed features to be extracted, improving 

U-Net’s ability to segment flood-affected areas accurately. The results of this study will help emergency response 

teams identify flood-affected areas more quickly and accurately. In addition, these models could serve as valuable 

tools for insurance companies when assessing damage. Moreover, the segmented flood images generated by these 

models can serve as training data for other machine learning models, creating a pipeline for more advanced flood 25 

analysis and prediction systems. 
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1 Introduction 

Floods are among the world's most common, pervasive, and expensive natural disasters (Smith et al., 2014; 

Tingsanchali, 2012). Floods cause the greatest number of fatalities, according to the United Nations (Kuenzer et al., 30 

2013). Global warming is expected to increase the frequency and intensity of floods, further amplifying their 

devastating impacts (Kamilaris and Prenafeta-Boldú, 2018). Recent catastrophic floods in Australia (Kelly et al., 

2023), Japan (Lin et al., 2020), Spain (Ezzatvar and López-Gil, 2024) and Germany (Lehmkuhl et al., 2022) underline 
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that flooding is not limited to the countries of the Global South. However, in countries where the infrastructure for 

flood protection is inadequate, the loss of human life is significantly higher. In the Global North, economic losses are 35 

generally higher than in the Global South (Taguchi et al., 2022), as long as no major infrastructure projects such as 

dams are affected. Effective flood management is therefore essential to mitigate these losses. 

Flood management involves four stages: prevention, preparedness, response, and recovery (Plate, 2002). Remote 

sensing data plays a critical role in the response and recovery stages. This data is particularly valuable for assessing 

damage and providing actionable information to speed up recovery efforts, such as guiding insurance claims or 40 

resource allocation (De Leeuw et al., 2014). In recent years, satellite data from platforms such as Sentinel-2, Landsat 

8 and Landsat 9 have been widely used for flood-affected area detection (Portalés-Julià et al., 2023). Satellite imagery 

provides valuable information to identify flood zones, assess damage and support flood forecasting and risk 

assessment models. However, due to revisit limitations, such data is not always available immediately after flood 

events. As a dense cloud cover is often associated with flood events, it can be challenging to obtain cloud-free images 45 

after floods. To overcome such limitations, images taken from UAVs and helicopters can provide an effective 

alternative to satellite data for flood detection (Hashemi-Beni et al., 2018). UAVs and helicopters can capture high-

resolution images at lower altitudes and are less susceptible to cloud interference. They are also cost-effective and 

offer greater flexibility in the scheduling of surveys (Klemas, 2015; Shokati et al., 2023, 2024; Sugiura et al., 2005; 

Yao et al., 2019). 50 

Rapid damage assessment is crucial for flood response, as delays can exacerbate the humanitarian and economic toll. 

However, recording and processing large volumes of aerial images in real time requires efficient and accurate 

automated methods. To counter this, conventional machine learning models such as Support Vector Machine (SVM), 

Random Forest (RF) and Maximum Likelihood Classifier (MLC) are often used for flood detection (Tanim et al., 

2022). However, these models face challenges such as reliance on manual feature engineering, inability to capture 55 

complex features such as textural patterns and neglect of spatial correlations in data. To overcome these challenges, 

deep learning models have proven to be a powerful tool, demonstrating remarkable effectiveness in various computer 

vision applications such as image classification (Jackson et al., 2023; Qiao et al., 2024), object detection (Ye et al., 

2023), and image segmentation (Shokati et al., 2025; Zhang et al., 2023). In particular, numerous studies have 

leveraged segmentation techniques to identify areas affected by flooding, demonstrating their potential to address real-60 

world challenges. For example, (Pally and Samadi, 2022) developed a flood image classifier using different 

convolutional neural network (CNN) architectures for segmentation and object detection to calculate water levels and 

flood areas. In another study, Safavi and Rahnemoonfar, (2023) compared the performance of different encoder-

decoder and two-pathway architectures to segment flood-affected areas. Similarly, Wieland et al., (2023) investigated 

the use of CNNs in detecting water bodies from high-resolution remote sensing imagery. In addition, Wagner et al., 65 

(2023) compared 32 CNNs for water segmentation using a dataset of 1128 images depicting river water surfaces. 

Deep learning-based approaches in hydrology and especially in flood management have made significant progress in 

recent years ( e.g. Pan et al., 2019; Wang et al., 2020). However, many models still rely on large datasets for training, 

which can affect their performance if the data are limited, unbalanced or specialized (e.g. Mallah et al., 2022). The 
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model may memorize its features in such cases, leading to overfitting (Safonova et al., 2023). Data augmentation and 70 

transfer learning are the most commonly used methods to work with small or highly specialized datasets (Safonova et 

al., 2023). In data augmentation, new samples are generated by applying different transformations, with the choice of 

method depending on the type, quality and quantity of data, and transfer learning uses models pre-trained on large 

datasets, adapting their learned features to new tasks (Safonova et al., 2023). An example of the application of these 

techniques to soil erosion is presented by (Shokati et al., 2025) who fine-tuned the SAM, a model pre-trained on a 75 

large dataset with over 1 billion masks from 11 million images, to segment erosion and deposition features in 

agricultural fields. Their approach demonstrated that despite the complexity of erosion and deposition processes and 

their detection, the fine-tuned SAM model achieved high performance. Another transfer-learning approach uses a 

residual U-Net architecture (Ronneberger et al., 2015), which improves segmentation performance by utilizing pre-

trained features. U-Net is widely known for its effectiveness in segmentation tasks such as hydrological streamline 80 

detection (Xu et al., 2021) and sea-land segmentation (Shamsolmoali et al., 2019). Incorporating residual connections, 

as implemented by Onojeghuo et al., (2023), can further improve feature propagation and model convergence. The 

availability of pre-trained deep neural networks such as ResNet (He et al., 2016) trained on large datasets such as 

ImageNet (Krizhevsky et al., 2012) facilitates cross-domain knowledge transfer, for example, from natural image 

classification to remote sensing image segmentation. In particular, combining CNN architectures such as U-Net with 85 

ResNet and transfer learning has improved performance on complex tasks such as water body segmentation (Ghaznavi 

et al., 2024) and plant mapping (Onojeghuo et al., 2023). 

Despite significant progress in applying transfer learning in various areas of computer vision, its application to small 

aerial image datasets for flood management is still largely unexplored. The primary goal in this context is to map the 

extent and location of flooded areas. Rapid data collection with helicopters and UAVs — for which only a small 90 

dataset is required — makes it possible to use this approach to evaluate preventive and preparatory measures before 

and during flood events. Furthermore, integrating satellite data could eventually lead to a comprehensive flood 

forecasting and monitoring system.  

The central aim of this study is to test the potential of two advanced transfer learning techniques - the fine-tuned SAM 

and the U-Net architecture with ResNet-50 and ResNet-101 backbones - for automated and fast flood area detection 95 

and mapping. By automating the mapping process, our approach aims to speed up damage assessment and enable 

authorities to respond more efficiently and mitigate the financial and human toll of flooding. The priority is to record 

the extent and location of the flooded areas to assess the extent of the damage and predict possible further damage. 

Specifically, we address the following research questions: 

1. Which combination of prompt (bounding box or point prompt) for SAM and backbone (ResNet-50 or ResNet-100 

101) for U-Net provides the best performance in flood area detection? 

2. How do the fine-tuned SAM and U-Net architecture differ in terms of segmentation accuracy for flood area 

detection using UAV and helicopter imagery? 

3. How do the elements of the sky, such as clouds or open sky, affect segmentation accuracy? 
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2 Materials and methods 105 

2.1 Dataset 

This study uses a flood area dataset comprising 290 images with their corresponding masks acquired from Karim et 

al., (2022). The images were captured using UAVs and helicopters with optical sensors in different regions, including 

flood events in southern Germany (2013), Karnataka, Kerala and Maharashtra in India (2019), Sabah in Malaysia 

(2021) and Bangladesh (2022). The dataset includes a variety of scenes, including rural areas, urban areas, peri-urban 110 

areas, greenery, buildings, mountains, rivers, sky, and roads, with masks created using Label Studio software (Figure 

1). 

Due to the use of different platforms and sensors, the imaging conditions were inherently inconsistent. The camera 

angle during imaging was inconsistent. In some cases, no clouds or sky elements were visible due to the low camera 

angle, while in other cases, sky elements such as clouds or open sky were visible due to greater camera rotation. In 115 

addition, the images were taken at different heights, resulting in different spatial resolutions. The image dimensions 

also varied considerably: the width ranged from 219 to 3648 pixels and the height from 330 to 5472 pixels. To ensure 

the uniformity of the dataset for modeling purposes, all images were resized to 256 × 256 pixels prior to analysis. 

         

       120 

Figure 1: Example images from the Flood Area dataset (top) with their corresponding ground truth masks (bottom). 

Images and their corresponding masks are from Karim et al., (2022). 

 

2.2 Network Architecture  

2.2.1 Fine-tuning Segment Anything Model  125 
 

The Segment Anything Model (SAM) developed by Meta AI Inc., USA is an image segmentation model trained on 1 

billion masks extracted from 11 million images. As the name suggests, it can segment any image without the need for 
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additional training data (Kirillov et al., 2023). The architecture of SAM is composed of three primary components: an 

image encoder, which is built on a robust Vision Transformer (ViT) backbone and extracts features from the input 130 

image; a prompt encoder, which uses the input prompts to create embeddings; and a mask decoder, which generates 

the final mask by combining the outputs of the previous components (Figure 2). 

The SAM architecture enables the integration of human prompts, which increases the efficiency of annotation by the 

human in the loop. The prompts guide the model to focus on specific regions of the image, improving segmentation 

accuracy. These prompts can take different forms, e.g., bounding boxes (Bbox), points and texts. To implement 135 

prompt-based interaction with the SAM architecture, we used both Bbox and point prompts in a fully automated 

manner. For the Bbox prompts, we first identified all foreground pixels in the annotated images (pixels representing 

flood). The Bbox was then computed as the smallest rectangle enclosing all foreground pixels in each binary mask by 

determining their minimum and maximum x and y coordinates. For the point prompts, we randomly selected 30 

foreground pixels per image. To ensure spatial diversity and avoid clustering, a minimum Euclidean distance of 10 140 

pixels was set between two selected points. This restriction contributed to a more representative coverage of the 

flooded area, which in turn improves segmentation accuracy. 

SAM offers several variants, each tailored to different computational requirements and based on distinct 

configurations of the Vision Transformer (ViT) backbone: ViT-Base, ViT-Large, and ViT-Huge, containing 

approximately 91M, 308M, and 636M parameters, respectively (Kirillov et al., 2023). Upon evaluating these variants, 145 

we observed that their effectiveness in detecting flood-affected areas was remarkably comparable. To optimize our 

computational resources, we opted for the ViT-Base variant as it offers a favorable balance between performance and 

efficiency. 

Although SAM can process any image without additional training, its performance may be limited in complex tasks. 

In such cases, fine-tuning can enhance its segmentation accuracy (Shokati et al., 2025). Fine-tuning is a transfer 150 

learning technique that applies a pre-trained model, such as SAM, which has already learned general patterns from a 

large dataset. A task-specific dataset, such as a flood dataset, is then prepared and formatted to match the model's 

input requirements. Certain layers of the model are either frozen or modified to regulate the extent to which training 

updates alter the original knowledge. The model is then trained with the new dataset at a lower learning rate to refine 

its understanding without overwriting prior knowledge. After training, the model's performance is evaluated using a 155 

validation set, and hyperparameters are adjusted for optimization. Once the model achieves satisfactory accuracy, it 

is deployed and continuously monitored to ensure robust performance on real-world data. In this study, the mask 

decoder of SAM (Figure 2b) is fine-tuned (modified) as it has a simple and efficient design that requires fewer 

computational resources (Sun et al., 2024). This ensures that the fine-tuning process is fast, efficient, and requires less 

memory. In this process, the other two components, the image encoder (Figure 2a) and the prompt encoder (Figure 160 

2c) are kept fixed (frozen), meaning their parameters are not updated during fine-tuning. This ensures that only the 

mask decoder is modified. 
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Figure 2: Schematic figure of the Segment Anything Model architecture, where the image encoder processes the image to 

extract features, which are combined with the prompt encoder's embeddings and passed to the mask decoder to generate 165 
the final segmentation mask. Image and mask are from Karim et al., (2022). 

 

2.2.2 U-Net architecture with ResNet as the backbone  

U-Net is a fully convolutional neural network introduced in 2015 for segmenting biomedical images (Ronneberger et 

al., 2015). Over time, it has been adapted for other fields, such as remote sensing. With its U-shaped architecture, U-170 

Net comprises a down-sampling path (encoder) and an up-sampling path (decoder). This structure enables the 

convolutional network to learn and combine features at various levels of detail, which is critical for accurately 

segmenting small regions and fine details in images. 

The down-sampling path follows a typical convolutional network architecture. It involves repeated applications of 

3×3 convolutions (without padding), each followed by a ReLU (Rectified Linear Unit) activation and a 2×2 max-175 

pooling operation with a stride of 2 to reduce the spatial dimensions. At each down-sampling stage, the number of 

feature channels doubles, enabling the network to extract increasingly complex features while progressively losing 

spatial information. This part of the network is crucial for capturing high-level features from the input image. 

The up-sampling path is the reverse of the down-sampling path. This part of the network utilizes deconvolution 

operations to double the spatial dimensions of the feature maps. Following each deconvolution, a concatenation 180 

operation is performed with the corresponding feature maps from the down-sampling path to restore spatial 

information. This process helps recover the details lost during the down-sampling phase and enhances the network's 

spatial accuracy for final segmentation. Skip connections are used to concatenate feature maps from the corresponding 

layers in the encoding path to the decoding layers, ensuring the recovery of information lost during down-sampling. 

At the end of the architecture, a 1×1 convolutional layer is applied to map the feature maps to the desired number of 185 

segmentation classes. This final layer assigns a class label to each pixel, producing the segmented output. 

To achieve better results with limited data, we apply knowledge from transfer learning in this study. Specifically, we 

use a residual neural network (ResNet) (He et al., 2016) pre-trained on ImageNet as the encoder backbone of U-Net. 

The weights of the pre-trained encoder are kept frozen to utilize the existing low-level feature representations (such 

as edges, corners, and textures), while only the U-Net decoder is trained on our dataset. This allows the decoder to 190 

adapt to our segmentation task without updating the encoder's weights (Figure 3). 

ResNet is a convolutional neural network (CNN) that uses identity skip connections to solve the degradation issue that 

occurs when accuracy reaches saturation and rapidly deteriorates as network depth grows. Convolutions of 1 × 1, 3 × 
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3, and 1 × 1 series are used to stack several bottleneck residual blocks to create it. There are several variations of the 

ResNet model depending on the network's depth, including ResNet18, ResNet34, ResNet50, ResNet101, and others. 195 

ResNet50 and ResNet101, which have 50 and 101 layers, respectively, were used in this study.   

 

Figure 3: Architecture of U-Net with ResNet-50 backbone (adapted from Manos et al., (2022)) 

2.3 Experimental Training Setup 

For the segmentation model, 70% of the flood area dataset (204 samples) was used for training. To enhance the 200 

diversity of the training data, we applied several data augmentation techniques. These included geometric 

transformations, such as random horizontal and vertical flips and rotations, as well as color-based transformations like 

random grayscale conversion and Gaussian blur. The model was trained for 50 epochs, with each epoch representing 

a complete pass the training data through the model. A batch size of 4 and a learning rate of 1e−3 were used. A learning 

rate scheduler was employed to adjust the learning rate if the validation loss did not decrease over 10 consecutive 205 

epochs, reducing the previous learning rate by multiplying it by a factor of 0.1. Additionally, 15% of the dataset (43 

samples) was used for model validation at the end of each epoch. Among the 50 models generated, the one with the 

lowest validation loss was selected as the best model and tested on the remaining dataset (15%, 43 samples). The 

Adam optimizer algorithm was utilized due to its strong adaptability (Liu et al., 2023). To minimize the divergence 

between the predicted and the observed values, we used DiceCELoss, a loss function that integrates Dice Loss with 210 

Cross-Entropy Loss (CE Loss). DiceCELoss is often used to improve segmentation performance by leveraging both 

the pixel-wise accuracy (via Cross-Entropy) and the structural similarity (via Dice coefficient).  

The dice and cross-entropy losses are calculated as: 

𝐿𝐷𝑖𝑐𝑒 = 1 −
2 ∑ ∑ 𝑔𝑖

𝑐𝑁
𝑖=1 𝑆𝑖

𝑐𝐶
𝑐=1

∑ ∑ 𝑔𝑖
𝑐𝑁

𝑖=1 + ∑ ∑ 𝑆𝑖
𝑐𝑁

𝑖=1
𝐶
𝑐=1

𝐶
𝑐=1

                                                                                                                         (1) 
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𝐿𝐶𝐸 = −
1

𝑁
∑ ∑ g𝑖

𝑐𝑁
𝑖=1  log 𝑆𝑖

𝑐𝐶
𝑐=1                                                                                                                                 (2) 215 

Where 𝐿𝐷𝑖𝑐𝑒  and 𝐿𝐶𝐸  are dice and cross-entropy losses, respectively, N is the number of pixels, g𝑖
𝑐 is the ground truth 

binary indicator of the class label c of pixel i, and 𝑆𝑖
𝑐 is the corresponding predicted segmentation probability. 

Experiments were carried out using Python and the PyTorch framework on a Windows 11 computer equipped with 

an NVIDIA GeForce RTX 4070 Ti GPU. 

 220 

2.4 Model performance evaluation 

The performance of segmentation models is usually evaluated using several metrics, e.g. intersection-over-union 

(IoU), dice coefficient, recall, precision and accuracy. IoU quantifies the overlap between the predicted and true flood-

affected regions, with higher values indicating better model performance in terms of accurately identifying flood-

affected areas. The dice coefficient is similar to IoU, but emphasizes correct positive predictions, making it particularly 225 

useful in scenarios with class imbalance. Recall measures the model's ability to correctly identify all flood-affected 

regions, with higher values reflecting fewer overlooked regions. Precision evaluates the accuracy of the model's 

positive predictions and indicates the proportion of correctly identified flood-affected regions out of all predicted 

positive outcomes. Finally, accuracy provides an overall measure of the correctness of the model, considering both 

correct predictions of flood-affected and non-flood-affected regions. However, it may not be as informative for highly 230 

imbalanced datasets. Each of these metrics provides different insights into the performance of the model and can be 

used together for a comprehensive assessment. They are given in the following equations (Vinayahalingam et al., 

2023):  

IoU =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                                                                                                            (3)                

Dice coefficient =
 2 𝑇𝑃

2 𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                                                                                     (4)                235 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                                             (5)                

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                                        (6)                      

Accuracy =
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                                                            (7)                      

Where TP, TN, FP, and FN stand for the pixel labels for true positives, false positives, true negatives, and false 

negatives, respectively.   240 
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3 Results and discussion 

3.1 Training and validation losses 245 

Both U-Net (with ResNet-50 and ResNet-101 as backbones) and fine-tuned SAM (with Bbox and point prompts) 

models were trained for 50 epochs (Figure 4). For the SAM models, whether trained with points or Bbox prompts, the 

training loss exhibited a sharp decline at the beginning of the training process. This was followed by a slower, more 

gradual decrease until the final epochs. Similarly, the validation loss initially experienced a steep decline, which then 

slowed progressively until the point where the downward trend almost stopped, especially for Bbox prompts where 250 

the validation loss even increased very slightly, which could be a sign of overfitting (Shorten and Khoshgoftaar, 2019). 

A comparison of training and validation losses between the points prompt and the Bbox prompt revealed that the 

model trained with the points prompt generally performed better in both learning the training set and generalizing to 

the validation set.  

For the U-Net model, both training loss and validation loss gradually decreased throughout the training process, 255 

whether ResNet-50 or ResNet-101 was used as the backbone. This indicates that the model effectively learned the 

relationships within the training set while also improving its ability to generalize to unseen data (validation set). The 

training and validation loss values were nearly identical when using ResNet-50 and ResNet-101 as backbones, 

suggesting that both backbones performed similarly in terms of learning and generalization capabilities. 

 260 

Figure 4: Training and validation losses for a) Segment Anything Model with points and bounding box prompts and b) U-

Net model with ResNet-50 and ResNet-101 backbones 

 

3.2 Performance of the model on the validation set 

For the SAM model with points prompt, all evaluation metrics consistently increased during the initial epochs, 265 

followed by stabilization in the later epochs (Figure 5a). The SAM model with Bbox prompts demonstrated a similar 
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trend, with metrics steadily increasing before reaching stability (Figure 5b). Comparing these two prompting methods 

revealed that the SAM model with points prompt (Figure 5a) outperformed the version with Bbox prompts (Figure 

5b) regarding overall validation performance. 

For the U-Net model, the metrics for the ResNet-50 backbone showed a steady improvement, eventually reaching 270 

stabilization (Figure 5c). The U-Net model with the ResNet-101 backbone followed a similar trajectory, with only 

minor differences in terms of stability (Figure 5d). A direct comparison of the two backbone configurations revealed 

that both ResNet-50 and ResNet-101 backbones performed similarly in learning and generalization for the U-Net 

model. 

When comparing the performance of the SAM model to the U-Net model, regardless of the prompt type or backbone 275 

configuration, the SAM model consistently outperformed the U-Net model on the validation set. 

 

Figure 5: Performance of the Segment Anything Model on validation set using a) points prompt and b) bounding box 

prompt and the performance of U-Net model with c) ResNet-50 and d) ResNet-101 backbones 

 280 
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3.3 Evaluating segmentation results  

In this study, the performance of the SAM and U-Net models was evaluated for segmenting flooded areas. The SAM 

model was assessed with two types of prompts, points prompt and Bbox prompt, while the U-Net model was tested 

with two backbone types, ResNet-50 and ResNet-101. The results of the different metrics are shown in Table 1, and 

examples of the segmentation results of all models are shown in Figure 6. 285 

The results indicated that the SAM model with the points prompt (SAM-Points) outperformed all other models 

(Table1). The strong performance of this model can be primarily attributed to the ability of the points prompt to 

provide precise spatial information. This information allows the model to recognize the exact boundaries of the flood-

affected areas and to make accurate predictions. This ability is particularly important in regions where light intensity 

varies significantly (e.g. Figures 6e and 6h), or the boundaries of flooding are unclear. In addition, the architecture of 290 

the SAM model uses input prompts, which increases the accuracy of its predictions and contributes to its superior 

performance. 

The SAM model with the Bbox prompt (SAM-Bbox) showed the weakest performance among all other models (Table 

1). Although SAM-Bbox achieved the highest recall (0.96), it performed worse on other metrics compared to SAM-

Points. The higher recall indicates the model's strong ability to identify flood-affected areas. However, the lower 295 

precision (0.69) shows that it is difficult to delineate the boundaries accurately, resulting in extraneous or non-

contiguous areas being part of the flood-affected areas. This limitation arises from the limited information provided 

by the Bbox prompt, which only provides the general framework of the target area without offering detailed boundary 

data. In other words, the Bbox prompts provide the model with limited information about the exact boundaries, which 

increases the probability of false-positive predictions.    300 

While the existing literature suggests that Bbox prompts often perform better than point-based prompts in different 

contexts (Cheng et al., 2023; Gaus et al., 2024; Mazurowski et al., 2023; Xie et al., 2024), the choice of prompt is 

highly dependent on the specific nature of the dataset. Flood segmentation is a rare case where point-based prompts 

outperform Bbox prompts. In the analyzed dataset, the flooding areas often extend across the entire image from one 

edge to another. Consequently, a Bbox usually covers most of the image and provides the model with less detailed 305 

information than point-based prompts. Theoretically, this lower granularity of information from Bbox prompts leads 

to poorer performance in such cases. However, this observation must be interpreted in light of the specific assumptions 

and methodological choices made in our study. In particular, both types of prompts were generated fully automatically 

and without manual refinement, and the point prompts were spatially constrained to ensure dispersion across the 

flooded regions. These design decisions, in combination with the inherent characteristics of flood imagery, such as 310 

large, amorphous regions that often cover significant portions of the image, have a direct impact on the relative 

effectiveness of each prompt type. Therefore, the superior performance of point-based prompts observed in our 

experiments should not be generalized to other domains without carefully considering the characteristics of the dataset 

properties and the prompt generation strategies. 
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The U-Net models used in this study showed moderate performance in flood segmentation (Table 1). Notably, the U-315 

Net model with a ResNet-101 backbone outperformed the model with a ResNet-50 backbone. This improved 

performance of the ResNet-101 backbone was also reported in a study by Ait El Asri et al., (2023) which focused on 

aerial image segmentation. The superior performance of the ResNet-101 can be attributed to its ability to extract more 

complex and detailed features from the images due to its deeper layers, allowing U-Net to identify flood-affected areas 

with higher accuracy. However, the difference between the two models was minimal, and U-Net with ResNet-101 320 

only outperformed ResNet-50 on a few images (e.g. Figure 6g). The small difference in results suggests that increasing 

the network depth does not significantly improve performance in the context of flood segmentation. This could be 

because flooding patterns are not complex enough to require deeper architecture for effective analysis. Nevertheless, 

the performance of U-Net with both backbones lagged behind that of SAM-Points, highlighting the superiority of the 

SAM model in utilizing prompt-based information to improve prediction accuracy. The better performance of the fine-325 

tuned SAM model compared to U-Net was also highlighted in a similar study by Lehmiani et al., (2023) that focused 

on medical image segmentation. 

In summary, regarding the first research question, which investigates the optimal combination of prompts for SAM 

and backbones for U-Net, the results indicated that the SAM model with the points prompt performed better than the 

SAM model with the bounding box prompt. In addition, the U-Net model with the ResNet-101 backbone performed 330 

better than the model with ResNet-50. In response to the second research question on the differences in segmentation 

accuracy between the fine-tuned SAM model and the U-Net model with ResNet-50 and ResNet-101 backbones, our 

results showed that the SAM-Points model significantly outperformed both U-Net configurations, while the SAM-

Bbox model had the weakest performance among all models tested. This analysis shows how the design of the model, 

the choice of prompt and the choice of backbone can directly influence segmentation performance. 335 

To answer the research question regarding the effects of sky elements on segmentation accuracy, our analysis revealed 

that segmentation accuracy of all models decreased in images where sky elements such as clouds or open sky were 

present due to significant camera rotation angles, compared to conditions where the camera provided a near top-down 

view (e.g. Figures 6e and 6h). This finding is consistent with the results of (Simantiris and Panagiotakis, 2024). This 

is because segmentation methods are often based on color information. If the color of objects such as the sky or clouds 340 

is similar to the color of the areas affected by the flood, the model may have difficulty distinguishing them from the 

flood and incorrectly segment them as part of the flood zone. This problem was less pronounced in the SAM model 

with the points prompt than in the other models, while it was more prominent in the SAM model with the Bbox prompt, 

as each Bbox usually covers almost the entire image. In other words, sky elements can be falsely considered as 

potential regions for segmentation. 345 
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Table 1: Segmentation results of the test dataset using the Segment Anything model with points and bounding box prompts 

and the U-Net model with ResNet-50 and ResNet-101 backbones (the highest accuracies are in bold) 350 

Model Accuracy IoU Dice Precision Recall 

SAM-Points 0.96 0.90 0.95 0.94 0.95 

SAM-Bbox 0.82 0.67 0.81 0.69 0.96 

U-Net (ResNet-50) 0.87 0.72 0.84 0.83 0.85 

U-Net (ResNet-101) 0.88 0.74 0.85 0.83 0.87 
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      395 

       

    
Figure 6: Example segmented images using the Segment Anything model with points and bounding box prompts and the 

U-Net model with ResNet-50 and ResNet-101 backbones. Images and Ground truths are from Karim et al., (2022). 
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3.4 Effectiveness of the models in real-world applications 400 

The results of this study highlight the effectiveness of U-Net (with ResNet-50 and ResNet-101 backbones) and fine-

tuned SAM (with Bbox and point prompts) models in segmenting flood-affected areas. Despite variations in flight 

altitude, image quality, resolution and viewing angles, these models performed remarkably well. In real-world 

scenarios, where such variations are common, these models can be expected to process aerial images of affected 

regions quickly and without additional training. This rapid prediction capability can help emergency teams 405 

immediately identify flooded areas and take the necessary measures. In addition, these models are of great benefit to 

insurance companies in assessing damage, speeding up insurance payments and improving post-crisis services. In 

summary, these approaches offer significant benefits for flood crisis management and help minimize human and 

economic flood impacts through timely and precise interventions. 

4 Conclusion 410 

In this study, we used two advanced transfer learning techniques: the fine-tuned SAM model and the U-Net 

architecture with ResNet-50 and ResNet-101 backbones to detect flood-affected areas. Using the Flood Area dataset, 

which includes UAV and helicopter aerial images of flood-affected areas, we aimed to evaluate and compare the 

performance of these models in accurately segmenting flood-affected areas. Our results showed that the fine-tuned 

SAM model outperformed the U-Net model when point prompts were used, while it performed worst among all 415 

models when Bbox prompts were used. This emphasizes the crucial role of prompting strategies in influencing the 

performance of the fine-tuned SAM model in flood segmentation. The results of the study offer practical benefits for 

emergency response teams as they allow for a faster and more accurate assessment of the areas affected by the floods. 

In addition, the models are also of great value to insurance companies in the damage assessment phase. Despite these 

promising results, there is still room for further research. Future work could include the development of a user-friendly 420 

interface that allows emergency responders and insurance professionals to seamlessly utilize these models and 

effectively interpret the results. In addition, extending the models to predict high-risk areas before flooding occurs - 

using inputs such as topographical data, rainfall trends and river flow information - could further enhance their utility. 
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