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Abstract. Earthquake surface ruptures are a significant hazard for critical infrastructure and society. Probabilistic Fault 10 

Displacement Hazard Analysis (PFDHA) usestackles this hazard using empirical and numerical models to estimate the surface 

rupture likelihood as the first component.of surface ruptures. However, empirical datasets are often incomplete and limited to 

few geodynamic settings, reducing their accuracy for site-specific analyses. Moreover, existing models do not capture the 

influence of physical fault parameters, such as geometry, on surface rupture occurrence nor its spatial variability. We use the 

RSQSim rate-and-state earthquake simulator to simulate seismicity across twelve alternative geometries of a test fault that 15 

incorporate variations of fault connectivity at depth, dip and fault trace sinuosity, aiming for a systematic evaluation of their 

influence on the probability of primary surface rupture and its spatial variability. Our results show that fault geometry is key 

in controlling the probability of surface rupture. Models with fault connectivity at depth and greater fault trace sinuosity yield 

higher probabilities than their counterparts. Conversely, disconnected models limit rupture propagation across segments, 

reducing surface rupture capability in specific fault regions. This study demonstrates the importance of considering fault 20 

geometry when assessing seismic hazards and confirms that earthquake cycle simulators offer a robust tool for next generation 

PFDHA models. 

1 Introduction 

Earthquake surface ruptures are a phenomenon that represents a critical hazard for infrastructures such as pipelines, bridges 

and dams, and play a key role in shaping tectonically active landscapes. As such, forecasting the likelihood of and the expected 25 

surface displacement are essential components of hazard assessment strategies, especially for critical infrastructures. This is 

evidenced by the fact that surface fault displacement hazard is currently well integrated in several international safety 

frameworks (e.g., FEMA, 2015; IAEA, 2019, 2021, 2022, 2025; Valentini et al., 2025a, b2025) 

Probabilistic Fault Displacement Hazard Analysis (PFDHA), introduced by Youngs et al. (2003), is a methodology designed 

to estimate the likelihood of surface rupture and displacement expected in a site or region. Over time, most PFDHA approaches 30 
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have relied on developing new and more updated empirical models that incorporate earthquake datasets in different tectonic 

environments as they become available (e.g.,  Moss et al., 2013, 2024; Pizza et al., 2023; Takao et al., 2013; Visini et al., 2025; 

Yang et al., 2021).  

Empirical data shows that surface rupture is generally correlated with earthquake magnitude and, as such, the probability of 

damage related to fault displacement at surface increases accordingly with magnitude. However, empirical models still present 35 

key limitations. First, the earthquake datasets used to derive regressions are geographically sparse and heterogeneously 

distributed across regions and tectonic environments. As such, models usually incorporate data from multiple regions, making 

them less accurate for site-specific purposes. These models, in fact, highlight the importance of incorporating site or region-

specific elements like faulting style or soil conditions for the probability of surface rupture. Second, current empirical models 

do not consider spatial variability of fault displacement further limiting accuracy in site-specific applications. Recent advances 40 

have introduced numerical methods into PFDHA (e.g., Mammarella et al., 2024). These numerical solutions tackle intrinsic 

limitations on site-specific applicability of empirical approaches and do not require empirical earthquake datasets to develop 

the regressions. 

Despite the empirical models have been and are currently widely used, along with the numerical solutions, they lack the 

capacity to incorporate and fully capture the physical parameters that govern fault ruptures and displacement. In this context, 45 

physics-based earthquake cycle simulators, being model-driven approaches, could improve forecasting capabilities for PFDHA 

(e.g., Valentini et al., 2025b).. These simulators are algorithms that incorporate frictional and stress evolution laws governing 

the seismic cycle to simulate seismicity in pre-defined fault systems. For one, this allows simulating earthquake ruptures and 

rupture patterns consistently with observations (e.g., Richards-Dinger and Dieterich, 2012; Zielke and Mai, 2023). For another, 

the simulators generate large earthquake catalogues over many earthquake cycles, allowing robust statistical data exploitation 50 

capabilities for probabilistic-based approaches like PFDHA. Recently, Daglish et al. (2025) developed a novel PFDHA 

application that combines, for the first time, historical earthquake data and physics-based earthquake cycle simulations to 

evaluate road exposure and vulnerability to fault displacement in New Zealand. In detail, the authors use the New Zealand 

community fault model to simulate earthquake ruptures and, thus, to generate fault surface displacement fields from the on-

fault simulated displacements, which are then used to evaluate their impact in the road network of the country. However, so 55 

farTo date, no study has used investigated the applicability of earthquake cycle simulators to systematically evaluate the impact 

of fault-specific parameters, such as multiple realizations of fault geometries, into the probability ofaddress surface rupture 

probability estimates for PFDHA, including their spatial variability., or for assessing the impact of fault-specific parameters 

on such estimates. We hypothesize that these simulators can enhance PFDHA by allowing to model the impact of fault-specific 

characteristics like fault geometry, a more accurate representation of fault ruptures, and the inclusion of many seismic cycles 60 

to improve statistical representativeness. 

In this study, we explore the feasibility of integrating earthquake cycle simulations into PFDHA using RSQSim, a rate-and-

state earthquake cycle simulator (Richards-Dinger and Dieterich, 2012). We examine how variations in fault geometry—
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including segmentation, dip variability, and along-strike trace sinuosity (e.g., fault roughness linked to the traces at the top and 

bottom of the fault)—affect surface rupture probability on the principal fault. Specifically, we undertake this work in a case 65 

study at the Mt. Vettore Fault in Central Italy (Fig. 1).  
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Figure 1.  Fault trace of the Monte Vettore Fault System (MVFS). Fault traces correspond to the “Fault” level as 

compiled in the Central Apennines Database (CAD); Faure-Walker et al. (2021). The fault level considers first-order 

structures – i.e., fault segments – that have the potential of rupturing entirely but that have prominent end boundaries 

that are considered as potential rupture barriers. The base hillshade has been created from the 10-m resolution 70 

TINITALY 1.1 digital elevation model (Tarquini et al., 2023). 

The Mt. Vettore Fault is a normal fault in the Central Apennines that was the source of the 2016 Mw 6.5 Central Italy 

earthquake. The activity of the fault is geologically well known, with several studies focusing on the characterization of its 

surface morphology, paleoseismic activity and seismotectonics (e.g., Cinti et al., 2019; Galli et al., 2019; Lavecchia et al., 

2016; Puliti et al., 2020). Despite this, there is little consensusdata on a preferredthe subsurface geometry model forof the fault 75 



5 

 

is currently not available, which makes it a suitable candidate to explore geometric implications for earthquake cycle models 

and to confront our results with geological observations in the area.  

Figure 1.  Fault trace of the Monte Vettore Fault System (MVFS). Fault traces correspond to the “Fault” level as 

compiled in the Central Apennines Database (CAD); Faure-Walker et al. (2021). The fault level considers first-order 
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structures – i.e., fault segments – that have the potential of rupturing entirely but that have prominent end boundaries 80 

that are considered as potential rupture barriers. The base hillshade has been created from the 10-m resolution 

TINITALY 1.1 digital elevation model (Tarquini et al., 2023). 

 

Our objectives are: 1) to assess the impact of fault geometry features such as depth connectivity, dip and trace sinuosity on 

primary surface rupture occurrence; 2) to evaluate the consistency between simulation-based probabilities and existing 85 

empirical and numerical models, as well as with geological observations; and 3) to characterize the spatial variability of rupture 

probability along the fault trace. Our outcomes aim to advance the use of physics-based models in fault displacement hazard 

assessments, contributing to a more robust and fault-specific PFDHA methodological framework. 

2 Methods and modeling setup 

In this section we explain the basic formulation and assumptions of the RSQSim simulator (Richards-Dinger and Dieterich, 90 

2012) and the modeling setup followed in the earthquake cycle simulations, including the fault geometric models explored and 

the initial parameter selection. We also detail the statistical approaches we conducted during the analyses of the simulation 

outputs to derive surface rupture statistics for each one of the model setups, as well as to compare with observations. 

2.1. The RSQSim simulator 

RSQSim is an earthquake cycle simulator that employs the rate-and-state friction (RSF) laws first introduced by Dieterich 95 

(1979) and later works by Ruina (1983), Tullis (1988) or Marone (1998) to model long-term earthquake catalogues in 

predefined boundary-element fault geometries. In the RSF constitutive law, 

𝜏𝑓𝑟𝑖𝑐𝑡 = 𝜎 [𝜇0 + 𝑎𝑙𝑛 (
𝑉

𝑉0
) + 𝑏𝑙𝑛 (

𝜃𝑉

𝐷𝑐
)]  (1) 

Τfrict is the shear stress-resisting motion, σ is the normal stress, μ0 is the steady state friction coefficient, V is the slip speed, V0 

is the reference slip speed, θ is the state variable, Dc is the characteristic slip distance, and a and b are the direct- and evolution 100 

effect parameters of the RSF law, respectively.  

In RSF, the relationship between a and b coefficients (a-b) determines the fault slip behavior.  (a-b) < 0 implies velocity 

weakening behavior, which is observed in most seismic slip – i.e., stick-slip. Conversely, (a-b)>0 implies velocity 

strengthening, which is related to stable sliding – i.e., fault creep. 

RSQSim works with discretized fault surfaces in the sense of Rice (1993) and the stresses are analyzed for each fault element 105 

throughout the whole computation. To model the seismic cycle, RSQSim considers three states – healing, nucleation and 

seismic rupture – that employ analytical equations to resolve the evolution of stresses, slip speed and the state variable at every 

state (Richards-Dinger and Dieterich, 2012). 
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Although RSQSim is not a fully dynamic rupture simulator, the code incorporates approximations to elasto-dynamics that 

allow to model the coseismic phase of the earthquake cycle realistically. These approximations include reduction of the direct 110 

effect constant of the RSF law a in slipping patches and the inclusion of a dynamic overshoot coefficient, which replicates the 

dynamic overshoot from fully dynamic rupture simulations (Richards-Dinger and Dieterich, 2012). 

All these features make RSQSim a strong tool to model not only simulated seismic sequences over many seismic cycles, but 

also to statistically analyze fault rupture patterns and fault interaction in fault systems at the earthquake cycle scale. 

2.2. Fault geometry and trace sinuosity 115 

We defined a set of fault plane geometric models that increase complexity in both fault connectivity and dip variability at 

depth, and along-strike trace sinuosity (Fig. 2). Fault trace sinuosity refers to the curvature of the fault traces at both the surface 

and base of the seismogenic thickness, which result in fault plane geometric roughness. We use a detailed fault mesh with 

300m-side triangular fault elements to better capture geometric fault trace complexities. In all models the seismogenic depth 

is set at 12 km, which is consistent with studies in the region (e.g., Lavecchia et al., 2016). 120 

In terms of fault connectivity, we define three levels. The simplest one is based on the segmentation of the Mt. Vettore fault, 

as proposed in the Fault2SHA Central Apennines Database (Faure Walker et al., 2021; Fig. 1). The fault model consists of 

four fault surfaces completely disconnected from the top to the bottom of the seismogenic layer and with a constant dip of 60º 

(Fig. 2). This model assumes that the observed surface segmentation is preserved at depth. The second level assumes that the 

fault surfaces observed from the segmentation link at depth at 7 km, which is constistent with interpretations of the Mt. Vettore 125 

by Lavecchia et al. (2016). Like in the previous model, the dip is constant throughout the whole seismogenic layer at 60º. The 

third level has the same characteristics as the second one in terms of linkage at depth, but with a listric geometry, from 60º to 

30º between 7 and 12 km. The listric geometry at these depths is also consistent with modeling data by Lavecchia et al. (2016). 

The three levels are referred to as D for Disconnected, C for Connected constant and L Connected listric, respectively, 

throughout the text. 130 

In terms of along-strike trace sinuosity, we consider four levels to capture the complexity in the fault surface. The first level is 

defined by fully linear fault traces at top and bottom, which define fully planar fault surfaces. From the second to fourth levels 

the surface trace is based on the mapped fault trace at surface from the CAD Database (Fig. 1), with smoothing to remove 

details below resolution of the 300m fault elements, while the bottom trace changes with different levels of complexity. The 

second level considers a straight trace at depth, the third one considers a smoothed fault trace at depth, and the fourth preserves 135 

the surface fault trace at depth. The four sinousity levels are defined as increasing numeric values for increasingnamed based 

on the sinuosity of boththeir top and bottom fault trace. From no sinuosity to maximum sinuosity these four levels are 0, 0.3, 



8 

 

0.6referred as Linear-linear, Trace-linear, Trace-smooth and 1Trace-trace, respectively. By combining all these levels, we 

define a matrix of 12 fault models that we explore in our study (Fig. 2). 
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Figure 2.  Geometric fault models explored in this study. Columns group models with the same fault connectivity and 140 

dip at depth, while rows group models with the same fault sinuosity defined by the fault surface and bottom trace.  
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2.3. Model parameters 

2.3.1. Initial stresses 

The initial stresses that RSQSim uses for the modeling are the effective normal and shear stresses σ’n and 𝜏, respectively, 

related through a static friction law:  τ = μσ’n, where the μ is the friction coefficient. The effective normal stress is computed 145 

through the relationship between the principal stresses (σ’1) and (σ’3). In an extensional regime, the maximum principal stress 

σ’1 follows a gravitational profile σ’1 = ρgz, where ρ is the rock density (2600 kg/m3 in this study considering a lithostatic 

gradient of 26 MPa/km in the Amatrice region; Montone and Mariucci, 2020), g is the gravitational acceleration and z is depth. 

As such, the minimum principal stress σ’3 can be derived from the formulations by Sibson (1985) 

σ′1

σ′3
=

(1+μcot θ)

(1−μtan θ)
  (2) 150 

where θ is 90º minus the dip angle in an extensional setting. Following Liao et al. (2024), from these equations we can compute 

the initial and shear stresses on the fault plane (equations 3 and 4, respectively). 

σ′𝑛 =
σ′1+σ′3

2
+

σ′1−σ′3

2
 cos 2θ  (3) 

τ =
σ′1−σ′3

2
 sin 2θ  (4) 

For this study, the initial stresses are uniform throughout the fault surfaces, computed for a depth equal to the half of the 155 

seismogenic thickness (6 km). The initial σn’ is set at 129.5 MPa and the initial τ at 45.9 MPa. The friction coefficient 

considered is 0.6. 

2.3.2. Frictional parameters 

Frictional parameters have a considerable impact on the simulated catalogues with RSQSim, especially the (a-b) relationship 

of the rate and state law. To objectively select the most suitable parameters, we employ a benchmarking method recently 160 

developed by Gómez-Novell et al. (2025a). This approach ranks the performance of simulated earthquake catalogues by 

quantifying their fit to a series of empirical benchmarks, namely earthquake scaling relationships and the shape of a target 

magnitude-frequency distribution with a  b-value of 1. 

To find the most suitable set of (a-b) parameters, we run benchmarking tests for the two geometric end members 

(D0Disconnected Linear-Linear and L1Listric Trace-Trace) using an exploration parameter tree, resulting in 11 models for 165 

each geometric configuration (Table 1). From these benchmark tests we obtain quality ranks for both geometric ends as a 

function of (a-b). To find the overall best model, we average both model ranks for each (a-b) combination and select the better 

performing one. In table 1 we show the resulting ranks of each (a-b) combination in a 0-1 scale (0 being the best and 1 the 

worst). The selected a and b values are 0.001 and 0.004, respectively. 
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a b (a-b) 
D0Disconnected 

Linear-Linear 

L1Connected 

listric Trace-Trace 

Final Rank 

(mean) 

0.001 0.002 -0.001 0.11 0.25 0.18 

0.001 0.003 -0.002 0 0.05 0.03 

0.001 0.004 -0.003 0.007 0 0 

0.001 0.005 -0.004 0.18 0.16 0.17 

0.001 0.006 -0.005 0.36 0.41 0.39 

0.001 0.007 -0.006 0.23 0.21 0.22 

0.001 0.008 -0.007 0.51 0.44 0.48 

0.001 0.009 -0.008 0.51 0.38 0.45 

0.001 0.01 -0.009 0.24 0.51 0.38 

0.01 0.015 -0.005 1 1 1 

0.001 0.015 -0.014 0.95 0.85 0.9 

Table 1. Benchmarking ranks for the two end-member fault geometric models considering different rate-and-state 

coefficients (a and b), and the mean final rank for both. 

For the remaining input parameters such as V, V0 , θ and Dc of the RSF law we use the default values defined by RSQSim. 

Check the full parameter list of the simulated catalogues in the data repository of this publication (Gómez-Novell et al., 2025b). 

2.3.3. Fault slip rates 175 

RSQSim requires to prescribe slip rates to each one of the fault elements for the simulation. In this study we use a tapered slip 

rate distribution throughout the fault plane (Fig. 3) to minimize stress singularities at the fault edges generated by the back-

slip loading approach that RSQSim employs (see Shaw, 2019). Our customized slip rate distributions are tapered in an 

elongated concentric shape across the whole fault, considering that the maximum slip rate is reached towards the bottom half 

of the seismogenic thickness (between 8-9 km), following the example from Delogkos et al. (2023). Unlike Delogkos et al. 180 

(2023), our slip rate distribution is tapered across the whole fault instead of the fault segment for several reasons. First, to 

ensure consistency across models and avoid large differences in slip rate distributions between disconnected and connected 

cases, which could introduce variability between catalogues and obscure strictly geometry-related effects. Second, to better 

test the control of fault geometry. That is, to better test whether the observed variability patterns in slip along-strike (e.g., 

general slip reduction at the fault segment tips; see section 4.4) can emerge in our models from fault geometry alone, rather 185 
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than from a pre-imposed slip rate profile. Third, to guarantee consistency with higher order structure because, despite the Mt. 

Vettore fault is segmented, it is widely regarded as a single fault structure in literature (see Faure Walker et al., 2021). 

We also ensure that surface slip rate in the central part of the trace is consistent with the geological slip rates derived from 

surface studies in the central part of the fault – around 0.9 mm·yr-1, which is the upper bound of the minimum slip rate (Pousse-

Beltran et al., 2022) (Fig. 3b).  190 

The average slip rate of all fault elements is 1 mm·yr-1. This value is the median between the lower and upper bounds of the 

minimum and maximum slip rates estimated by Pousse-Beltran et al. (2022), respectively: 0.6 - 1.4 mm·yr-1 (0.7 + 0.2/−0.1 

mm·yr-1 and 1.20.2 mm·yr-1). Supplement figures S1 and S2 show the input slip rate data considered for each model. 

 Figure 3. a) Slip rate distribution on the fault plane for the two end-member models of fault connectivity and sinuosity 

explored in this study. b) Down-dip slip rate distribution for the same end-member models as in panel (a). Each grey 195 

point of the graph corresponds to the slip rate value of a fault element in the model. The vertical red line indicates the 

upper slip rate bound of the minimum surface slip rate estimated for the Mt. Vettore fault in its central segment (0.9 
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mm·yr-1) by Pousse-Beltran et al. (2022). The average slip rate considering all fault elements is 1 mm·yr-1. Slip rate 

distributions of all twelve models considered in the study are shown in the Supplement figures S1 and S2. 

2.4. Simulations 200 

RSQSim models are run for 100,000 simulated years, of which we analyze only the last 50,000 years to ensure that the initial 

stresses have evolved sufficiently from the initial conditions and that the earthquake cycle has stabilized. We also perform a 

magnitude completeness analysis to remove earthquakes below that magnitude following the maximum curvature approach, 

and we also remove events that involve less than 10 fault elements. This is done to ensure that the rupture process of the 

simulated events is well resolved and thus the analyzed magnitudes are those that fit the best the empirical relations (e.g., see 205 

Zielke and Mai, 2023).  
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Figure 3. a) Slip rate distribution on the fault plane for the two end-member models of fault connectivity and sinuosity 

explored in this study. b) Down-dip slip rate distribution for the same end-member models as in panel (a). Each grey 

point of the graph corresponds to the slip rate value of a fault element in the model. The vertical red line indicates the 

upper slip rate bound of the minimum surface slip rate estimated for the Mt. Vettore fault in its central segment (0.9 210 

mm·yr-1) by Pousse-Beltran et al. (2022). The average slip rate considering all fault elements is 1 mm·yr-1. Slip rate 

distributions of all twelve models considered in the study are shown in the Supplement figures S1 and S2. 

 

2.5. Catalogue analysis 

The probabilities of surface rupture are obtained by filtering the catalogue data on the fault elements located at the surface 215 

analyzed with respect to the data registered throughout the whole fault. The likelihood of surface rupture is computed for the 

whole fault as the quotient between the number of events of magnitude m equal to a reference magnitude M (m=M) reaching 

the surface and the total number of events of m=M occurred in the fault (light grey and dark grey histograms, respectively in 

Figure 4a). Surface ruptures are accounted regardless of the number of surface fault elements involved or their slip. Then, we 

compute the conditional probability of surface rupture for m=M at the whole fault by fitting a logistic regression to the discrete 220 

data points, as introduced by Youngs et al. (2003) 

𝑃 =  
𝑒𝑎+𝑏∗𝑀

1+𝑒𝑎+𝑏∗𝑀   (5) 

where P is the conditional probability of primary surface rupture, and a and b are the fit coefficients of the regression, not to 

be confused with the RSF law coefficients. 

We also analyze the probability of surface rupture variations along strike. For each fault element at surface, we compute the 225 

ratio between the number of events of m ≥M affecting that patch and the total number of events of m≥M in the whole fault. In 

figure 4b the dotted line is the number of events of m≥M in each patch at the surface along strike, while the red line represents 

the total number of events for m≥M in the whole fault (reported as a line for better visualization). 

For the different surface rupture probability analyses, we use different magnitude thresholds. Regressions are computed for 

Mw ≥4.0 to ensure all magnitudes are considered without biasing the regressions, including those with lower probability. 230 

Along-strike surface rupture probabilities are computed for Mw ≥ 6.0 as these magnitudes have larger probability of surface 

rupture and, thus, ensure a better visualization of the spatial variability patterns along strike and the effect of fault segmentation. 

We compare the regressions of surface rupture probability with the empirical curves for normal faults in the Great Basin by 

Youngs et al. (2003) and worldwide normal faults by Pizza et al. (2023), and the numerical curves for normal faults by 

Mammarella et al. (2024), considering the Thingbaijam et al. (2017) scaling equations and site-specific inputs for our study 235 
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area: a seismogenic depth of 12±1 km, a dip angle of 60±5º and the hypocentral depth ratio of Italian normal faults (i.e., peak 

of hypocentral depths at around 67% of the seismogenic depth). See Mammarella et al. (2024) for details on input parameters. 

The analysis of the catalogues is performed for their entire 50,000 year length as well as for shorter time windows to capture 

potential variability in the earthquake rates (see section 3.2). All probabilities computed in the paper refer to primary surface 

rupture on the principal fault; modeling secondary faulting or off-fault deformation is beyond of our scope.  240 
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Figure 4. Method to calculate the likelihood of surface rupture for discrete magnitudes in the a) whole fault and b) 

along-strike in a given simulated catalogue. In panel (a) the likelihood of surface rupture is computed as the ratio 

between the number of earthquakes of magnitude M rupturing the surface at any fault location and the total number 

of events of that magnitude M occurring anywhere in the fault (rupturing the surface or not). In panel (b), the 245 

probability of surface rupture is computed for each fault element at surface and along strike using the same ratio as 

for the whole fault but considering all magnitudes m equal or larger than a given magnitude threshold M (m≥M). 

 

2.6. Comparison with observations 

We quantitatively compare the outputs of the simulations with surface geological observations of coseismic slip distribution 250 

of the largest main shock of the 2016 earthquake sequence (30 october Mw 6.5; Chiaraluce et al., 2017) and the cumulative 

throw for the past 18 kyr (approximately the age of the Mt. Vettore fault scarp in the Central Apennines; Puliti et al., 2020). 

To do this, we assign each field measurement to the nearest surface fault element in the model. If multiple measurements fall 

within the same element, their values are averaged. Because each fault model has a slightly different geometry and mesh 



17 

 

configuration, the assignment of field data points to fault elements can vary, leading to small differences in the coseismic and 255 

cumulative throw profiles. 

The coseismic slip distribution of the 2016 Mw 6.5 earthquake, obtained from the SURE 2.0 database (Nurminen et al., 2022), 

is compared against the net surface slip distributions along strike for all simulated earthquakes with magnitudes compatible 

with the 2016 coseismic magnitude. Given that the maximum magnitudes (Mmax) of the simulated catalogues do not exceed 

Mw 6.6 (see details in section 3.1.3), we use the 2016 magnitude toWe select such magnitudes following the condition: Mmax-260 

0.1 ≤ M ≤ M2016 + 0.1. 

The cumulative throw along strike is obtained from the measurements reported by Puliti et al. (2020) on the main fault and 

compared against the cumulative throw of all events of Mw≥ 5.5 that rupture the surface in the simulations. Because RSQSim 

computes the net slip of earthquakes in the dip direction on all fault elements, we convert them them to fault throw considering 

the dip of the elements in the fault model (60º). 265 

In both cases, the agreement between simulated values and observations is evaluated using the mean absolute error (MAE) – 

i.e., the average of the differences between model and observation. 

3 Results 

In this section we describe the main results from the simulated catalogues as well as the results from the probability of surface 

rupture analyses. 270 

3.1. Observations on the simulated earthquake catalogues 

3.1.1. Agreement with scaling relations 

As a first step and to ensure optimal performance of the simulated earthquake catalogues for the different fault models explored, 

we analyze how well the simulated catalogues match the predicted values of the rupture area-seismic moment scaling 

relationship by Leonard (2010) for normal faults. Figure 5 shows the analysis for the two geometric end members analyzed 275 

for the model parametrization: D0Disconnected linear-linear and L1.Connected listric trace-trace. The analysis for the 

complete set of geometric models can be found in figure S3.  

Figure 5 shows that all models have a good agreement with the scaling relationship, as all the simulated events fall within the 

two standard deviation range of the relationship. The agreement between model and empirical data improves in higher 

magnitudes (higher rupture areas) with most events falling around the mean value of the scaling relationship. This behavior is 280 
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linked to the better numerical resolution of the fault rupture process for higher rupture areas that involve a larger number of 

fault elements (Zielke and Mai, 2023).  

 

Figure 5. Rupture area – seismic moment scaling relationship from the simulated catalogues of the two end-member 

models of fault connectivity and sinuosity explored in this study. These scaling relationships are plotted together with 285 

the two sigma uncertainty ranges of the rupture area – moment magnitude empirical relationship (normal faults) by 

Leonard (2010). Scaling relationship figures for all twelve models are shown in figure S3 of the Supplement. 

 

3.1.2. Hypocenter depth of the earthquakes 

We analyze the hypocenter depth of the earthquakes in the simulations for earthquakes of Mw≥5. The hypocenter depth 290 

distribution is primarilyprimarly influenced by the geometric assumptions, particularly fault connectivity at depth.  Significant 

changes in earthquake nucleation depth happen between the disconnected and connected models, regardless of the fault dip 

variability (constant or listric). In the disconnected models, hypocenters show a depth distribution closely correlated with the 

slip rate depth distribution, peaking at around 9 km (Fig. 3b and Fig. 6). Conversely, in the connected models, hypocenter 
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depth is less influenced by slip rate and more by the connection depth of the fault segments, with a peak located between 7-8 295 

km, corresponding to the linking depth of the segments.  

Figure 5. Rupture area – seismic moment scaling relationship from the simulated catalogues of the two end-member 

models of fault connectivity and sinuosity explored in this study. These scaling relationships are plotted together with 

the two sigma uncertainty ranges of the rupture area – moment magnitude empirical relationship (normal faults) by 

Leonard (2010). Scaling relationship figures for all twelve models are shown in figure S3 of the Supplement. 300 
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Regarding sinuosity, its influence on the depth hypocenter distribution is weaker than fault connectivity, but still noticeable. 

Introducing fault sinuosity increases the number of events Mw≥5 shallower than the peak of the hypocenter depth distribution, 

an effect that is more evident in connected models than the disconnected ones. For models with surface fault sinuosity, 

increases in trace sinuosity at the seismogenic depth lead to a more balanced, smoother, hypocenter depth distribution. 305 

Interestingly, the listric fault dip slightly reduces shallower nucleations of smaller magnitudes between Mw < 6.0 (Fig. 6). 
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Figure 6. Magnitude-dependent hypocenter depth distributions of the different geometric models explored in this study. 

The dashed curve corresponds to the empirical hypocentral depth distribution for extensional faults in Italy from 

Mammarella et al. (2024). 

We compare the hypocenter depth distribution of the simulations with the probability density function (PDF) of the empirical 310 

hypocenter depth distribution for normal faults in Italy from Mammarella et al. (2024) (Fig. 6). The hypocenter depth 

distributions modeled are generally consistent with the empirical ones for all models. Among those, the connected models, 



22 

 

especially those with listric geometry (L),, show the best agreement, with coincident peak hypocenter depths between 6 and 9 

km.  

Figure 6. Magnitude-dependent hypocenter depth distributions of the different geometric models explored in this study. 315 

The dashed curve corresponds to the empirical hypocentral depth distribution for extensional faults in Italy from 

Mammarella et al. (2024). 
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The same observations apply for the hypocenter depths of smaller magnitude earthquakes of Mw 4-5 (see figure S4), implying 

that the control of geometry in earthquake nucleation depth affects all magnitude ranges. 

3.1.3. Magnitude-frequency distributions and maximum magnitudes 320 

The magnitude frequency distributions (MFDs) of the simulated catalogues show a clear impact of the fault geometry into the 

shape of the MFDs and earthquake frequency. The shape of the MFDs is primarily controlled by the fault sinuosity. In the 

depth-connected models, the earthquake frequency decreases with decreased sinuosity, up to almost one order of magnitude 

between end-member sinuosity models (Fig. 7a). For instance, in the Cconnected constant model, the number of Mw ≥ 4 events 

drops from around 12,000 events to 3,000 between the sinuosity level 1trace-trace and 0linear-linear models, respectively. 325 

Moreover, decreasing sinuosity deviates the MFD shape from a Gutenberg-Richter to a characteristic shape, with a pronounced 

event deficit in the middle magnitude range (from Mw 4.5 to 6). Conversely, in the disconnected models, the impact of sinuosity 

is more limited. The shape of the MFD remains invariable with a slight characteristic geometry, while earthquake frequency 

decreases modestly with decreasing sinuosity. For instance, for Mw≥ 4 the earthquake number changes from 10,000 to 8,400 

in the level 1trace-trace and 0linear-linear models, respectively.  330 

The maximum magnitude is directly proportional to the fault connectivity at depth and inversely proportional to fault sinuosity. 

The connected models (both Cconstant dip and Llistric) yield higher Mmax values overall compared to the disconnected ones, 

with values varying from Mw 6.4 to around 6.6 in the connected models, and Mw 6.3 to 6.46 in the disconnected (Fig. 7b). 

Among all models, the Lconnected listric ones are those with higher magnitudes all Mw≥ 6.5, which is expected given that the 

available area for rupture is larger. Contrarily, fault sinuosity results in a decrease of 0.1 to 0.2 magnitude units between end-335 

member models (sinuosity levels 0linear-linear and 1trace-trace) of a same depth-connectivity model (Fig. 7b). Such sinuosity 

introduces roughness to the fault surfaces that might attenuate stress transfer and rupture propagation, decreasing the expected 

maximum magnitudes. 

For comparison, we evaluated whether the maximum magnitudes of the simulated catalogues reach the Mw 6.5 earthquake 

produced by the Mt Vettore fault. None of the disconnected models reach the observed magnitude; the sinuosity 0linear-linear 340 

model yields the highest Mmax among them, at  Mw 6.46. In the Cconnected constant dip models, only the two with lower 

sinuosity, -C0linear-linear and C0.3trace-linear- produce events comparable to the 2016 earthquake, with Mmax values of Mw 

6.59 and 6.51, respectively. In contrast, all sinuosity models in the Llistric category, reach or exceed the magnitude of the 2016 

event. 

 345 
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Figure 7. a) Magnitude-frequency distributions (MFD) and b) maximum magnitudes of each one of the models grouped 

by their depth connectivity level and dip. Dashed red line in panel (b) corresponds to the magnitude of the largest event 

of the Mw 6.5 2016 Central Italy sequence. 
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3.2. Probability of surface rupture 

3.2.1. Regressions of surface rupture probability for the whole fault 350 

Earthquake surface rupture probabilities are magnitude-dependent, increasing accordingly with increasing magnitude. 

However, the probability of surface rupture is independent of the number of earthquakes occurred in the analyzed period. 

Figure 8 shows the variation in total earthquake rate (i.e., the sum of earthquake rates across all magnitude bins) over equal-

length time windows along the catalogue, as a function of earthquake surface rupture probability. The figure demonstrates that 

periods with higher earthquake productivity of a given magnitude—meaning a higher number of earthquakes—do not 355 

necessarily correspond to higher surface rupture probabilities in that magnitude bin. In other words, surface rupture probability 

is primarily controlled by earthquake magnitude, not by how many events occur in a given time window. 
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Figure 7. a) Magnitude-frequency distributions (MFD) and b) maximum magnitudes of each one of the models grouped 

by their depth connectivity level and dip. Dashed red line in panel (b) corresponds to the magnitude of the largest event 

of the Mw 6.5 2016 Central Italy sequence. 360 
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Figure 8. Rate-independent probabilities of surface rupture for the two end-member geometric models. The catalogue 

is split into 18 kyr-long sub-catalogues resulting from moving 18 kyr-long time windows throughout the whole 50 kyr 

of the catalogue. Each sub-catalogue from a time-window is colored by the logarithm of the total earthquake rate (Mw 

≥ 4.0) for that whole time window. 365 

 

We fit logistic regressions to the magnitude-specific likelihood of surface rupture data points (see figure S5S4 for data points 

used to fit the regressions). The logistic regressions (Fig. 9) quantify the influence of fault connectivity and sinuosity on surface 

rupture probability. As shown in Table  2, the regressions for each model are expressed by the regression coefficients a and b 

(intercept and slope, respectively; not to be confused with the rate and state friction law coefficients), the coefficient of 370 

determination r2 and the p-value indicating statistical significance. 

The regression analysis shows that earthquake magnitude is a statistically significant predictor of probability of surface rupture 

across all fault geometric configurations explored (p-values ≤0.03).  Moreover, r2 expresses the quality of the fits, which show 

good fit values ranging from 0.5 to 0.7 depending on the fault geometric model, but most frequently between 0.6 and 0.7.  

 375 
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Model Sinuosity a a error b b error r2 p-value 

DDisconnected 

0Linear-linear -30.4 13.3 5.3 2.3 0.7 0.02 

0.3Trace-linear -25.5 11.1 4.6 2.0 0.7 0.02 

0.6Trace-smooth -25.8 11.5 4.6 2.1 0.7 0.03 

1Trace-trace -19.6 8.4 3.5 1.5 0.6 0.02 

CConnected 

constant 

0Linear-linear -22.0 9.5 3.7 1.6 0.7 0.02 

0.3Trace-linear -15.3 5.9 2.8 1.1 0.5 0.01 

0.6Trace-smooth -19.7 7.6 3.6 1.4 0.6 0.01 

1Trace-trace -28.2 12.1 5.1 2.2 0.7 0.02 

LConnected 

listric 

0Linear-linear -19.7 8.0 3.4 1.4 0.6 0.02 

0.3Trace-linear -22.2 8.6 4.0 1.5 0.7 0.01 

0.6Trace-smooth -21.5 8.5 3.8 1.5 0.6 0.01 

1Trace-trace -31.3 13.7 5.5 2.4 0.7 0.02 

Table 2. Logistic regression coefficients a and b, respective errors, coefficient of determination r2 and p-value of each 

model explored in the study. 

For all models, surface rupture probability regressions (Fig. 9) show a sharp increase between Mw 5.0 and Mw 6.0. Above Mw 

6.0, nearly all ruptures reach the surface, while below Mw 5.0, fewer than 10–20% do. 

Surface rupture probabilities are largely impacted by geometry, both in terms of fault connectivity at depth and sinuosity. 380 

Disconnected models generally give more negative intercepts and higher slopes (a and b coefficients of the regressions, not to 

be confused with Gutenberg-Richter distribution parameters), which means that surface ruptures in these configurations require 

larger magnitudes. Connected models, especially those with constant dip (C),, generally show less negative intercepts and 

lower slopes, indicating that connectivity facilitates lower magnitudes to rupture the surface. 
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Figure 9. a) Regressions of surface rupture probability for the different sinuosity models grouped by their depth-385 

connectivity level and dip. The simulated regressions are compared with the empirical regressions for normal faults 

from Pizza et al. (2023) (PEtAl2023) and Youngs et al. (2003) (YEtAl2003), and with the numerical regressions from 
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Mammarella et al. (2024) (MEtAl2024). b) Residuals (differences) between regressions of panel (a) taking the sinuosity 

level 0 models as reference, i.e., each line is the result of subtracting the level 0 model from the corresponding sinuosity 

model. 390 

Fault sinuosity also plays a key role in surface rupture probabilities. For a same connectivity level, the models without fault 

trace sinuosity (i.e., level 0linear-linear) consistently return lower surface rupture probabilities for the range of Mw 5-6 

compared to the models with sinuosity (Fig. 9).  This observation is especially apparent in the connected models, where the 

surface rupture probability differences between sinuosity end members can exceed 0.3 in the Mw 5-6 range (Fig. 9b). Increasing 

fault sinuosity also results in steeper regression slopes (b coefficients; table 2) in the connected models, thus shifting and 395 

narrowing the range affected by these differences towards larger magnitudes. For instance, in the Cconnected constant dip 

group, the C1trace-trace model yields higher slopes than the C0linear-linear (b coefficients) increasing from 3.7 to 5.1, 

respectively. Contrastingly, the disconnected models show smaller differences regardless of their sinuosity, with maximum 

variation in predicted probabilities between sinuosity end members around 0.1 (Fig. 9b). This suggests that fault sinuosity has 

a secondary role when segments are disconnected at depth. 400 
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Figure 9. a) Regressions of surface rupture probability for the different sinuosity models grouped by their depth-

connectivity level and dip. The simulated regressions are compared with the empirical regressions for normal faults 
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from Pizza et al. (2023) (PEtAl2023) and Youngs et al. (2003) (YEtAl2003), and with the numerical regressions from 

Mammarella et al. (2024) (MEtAl2024). b) Residuals (differences) between regressions of panel (a) taking the linear-

linear models as reference, i.e., each line is the result of substracting the linear-linear model from the corresponding 405 

sinuosity model. 

 

When comparing equal sinuosity levels (Fig. S6S5 in the Supplement), we identify that considering fault trace sinuosity, 

always returns higher probabilities in the range of Mw 5-6 (0.1-0.2 differences in probability) for the Cconnected model. with 

constant dip. Conversely, when removing sinuosity (level 0linear-linear), the Ddisconnected model returns higher probabilities 410 

(differences up to 0.3 in probability), while Cconnected constant and Lconnected listric models produce nearly identical 

regressions (differences <0.05 in probability). This behavior is reflected in the logistic coefficients, with the D0disconnected 

linear-linear model being the one with the highest slope (b=5.34), while in the connected counterparts the highest slopes are 

for the sinuosity level 1trace-trace members (e.g. b= 5.5 in the Lconnected listric model). Moreover, introducing fault dip 

variability slightly dampens probability of surface rupture for the Mw 5-6 range in the models with sinuosity. This results in 415 

probability reductions up to 0.15 and by a shift in the regressions towards larger magnitudes (Fig. S6S5), as shown by more 

negative a regression coefficients (Table 2). 

Hypocenter depth, governed by the geometric assumptions of the models, is the principal cause for changes in surface rupture 

probabilities. In the connected models, introducing fault trace sinuosity increases the density of shallow nucleations of larger-

magnitude events (around Mw 6), which explains the higher surface rupture probabilities and steeper logistic slopes as sinuosity 420 

increases (Fig. 6). Conversely, lower sinuosity models nucleate smaller magnitudes in shallower locations, which results in 

flatter logistic slopes and more gradual increases in probability. In the disconnected models, the relative invariability in the 

hypocenter depth distributions explains the convergence in their regressions regardless of their geometry. In addition, 

introducing fault dip variability at depth slightly reduces the density of shallower nucleations, which shifts the regressions 

slightly towards larger magnitudes; that is, surface rupture becomes more likely only for larger magnitude events. 425 

In summary, the larger impacts in the regressions are related to the consideration of fault trace sinuosity (especially the one at 

surface) and with the linkage of fault segments at depth together. Considering both parameters consistently returns higher 

surface rupture probabilities for the Mw 5-6 range and steeper regression slopes compared to considering just one. In contrast, 

removing surface trace sinuosity or introducing listric geometry in connected models reduces surface rupture probabilities, 

while varying sinuosity of the fault at the base of the seismogenic depth has a limited impact on these probabilities. 430 

3.2.2. Space-variable surface rupture probabilities 

Figure 10 shows the surface rupture probabilities along strike for all the models explored in this study and for Mw≥6 events; 

those with higher chance of surface rupture according to the regressions (Fig. 9). The geometric connectivity of the faults at 
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depth has the largest control on the spatial distribution of the surface rupture probabilities along fault (Fig. 10). Assuming that 

fault segments are disconnected at depth results in lower spatial rupture probabilities compared to the connected models.  435 
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Figure 10. Along-strike surface rupture probabilities for earthquakes of Mw ≥ 6.0 for the different geometric 

configurations explored in this study. Each row shows the surface fault trace of each model colored by their rupture 
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probability. The geological fault segments (see Fig. 1) are indicated in the first model for reference. CU: Cupi-Ussita; 

MB: Mt. Bove; MP: Mt. Porche; V: Vettoretto. 

 440 

Disconnected, D, models show peak probabilities from 0.45 to 0.52, depending on the sinuosity. In contrast, connected models 

show probabilities ranging from 0.67 to 0.88, and from 0.62 to 0.91 for the Cconnected constant and Lconnected listric models, 

respectively. 

The disconnected assumption implies a large control of the segmentation on the spatial variability of the surface rupture 

probabilities. This configuration generates regions along the fault, like the Mt. Porche segment (Fig. 10) where probabilities 445 

are close to zero. This indicates that the disconnected geometry does not favor the generation or propagation of Mw≥6.0 in this 

segment. Conversely, the connected models produce higher surface rupture probabilities and show an along-strike distribution 

that tapers toward the fault tips. This pattern mirrors the slip rate distribution (Fig. 3), which is not observed for the 

disconnected model. 

Regarding the effect of sinuosity, this parameter has little influence on the spatial distribution of the probability in the 450 

disconnected models. However, in the connected models the relationship between surface trace and bottom trace significantly 

impacts this distribution. Among the Cconnected constant and Lconnected listric scenarios, the sinuosity level 0.3trace-linear 

configuration yields the highest spatial probabilities. This is attributed to a higher proportion of shallow nucleations (<7km; 

peak of hypocenter depth) of earthquakes Mw ≥ 6.0 in the level 0.3trace-linear models (Fig. 6). These shallow nucleations 

might be related to the fact that, in this fault model, the sinuosity increases sharply from the linking depth of the segments (at 455 

7km) toward the surface. Conversely, the sinuosity levels 0.6trace-smooth and 1trace-trace models show more gradual 

sinuosity changes, which might reduce the generation of shallow large magnitude nucleations, thus lower spatial probabilities 

(Fig. 10). 

While the influence of sinuosity on spatial probabilities differs from the trends observed in the magnitude-dependent 

regressions described in section 3.2.1, both approaches provide complementary insights. Spatial probabilities aggregate all 460 

events with magnitudes equal to or above the given threshold (Mw ≥ 6), offering an estimate of where a large event is more 

likely to rupture. Conversely, regressions are evaluated for discrete magnitude bins and indicate how surface rupture 

probabilities scale with individual event magnitudes. This means that, unlike the regressions, the spatial probabilities not only 

correlate with earthquake nucleation depth but also with the magnitude range above the threshold captured by the catalogue 

(i.e., the number of earthquakes with magnitudes above that threshold). Therefore, for models with similar predominant 465 

nucleation depths (i.e., sinuosity levels 0.3 trace-linear to 1trace-trace in both Cconnected constant and Lconnected listric 

configurations) those with larger Mmax (i.e., lower sinuosity) will show higher spatial probabilities. 



37 

 

Figure 10. Along-strike surface rupture probabilities for earthquakes of Mw ≥ 6.0 for the different geometric 

configurations explored in this study. Each row shows the surface fault trace of each model colored by their rupture 

probability. The geological fault segments (see Fig. 1) are indicated in the first model for reference. CU: Cupi-Ussita; 470 

MB: Mt. Bove; MP: Mt. Porche; V: Vettoretto. 
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4 Discussion 

In this section we discuss the implications of considering different geometric fault models into the simulated statistics of the 

earthquake catalogues. We also discuss the agreement of our simulations with observations as well as their methodological 

applicabaility to PFDHA. 475 

4.1. Impact of fault geometry on the earthquake catalogues 

Fault geometry plays a key role on the characteristics of the resulting simulated earthquake catalogues. The depth connectivity 

assumptions primarily influence the earthquake nucleation depth; while disconnected models nucleate earthquakes primarily 

following the depth-variable fault slip rate distribution prescribed to the models, the connected models primarily nucleate 

earthquakes at the depth where the fault segments merge. The sinuosity, on the other hand, favors shallower larger magnitude 480 

earthquake nucleations in models with depth connectivity.  

Delogkos et al. (2023) recently investigated the impact of variable fault geometries and slip rates on simulated RSQSim 

earthquake catalogues and found outcomes consistent with those in our study. For one, they show how pre-imposing variable 

slip rate distributions, tapered toward the fault edges, enables a more realistic modeling of hypocenter depth distribution. For 

another, they demonstrate that increasing fault complexity (e.g., through the inclusion of antithetic structures or fault trace 485 

sinuosity) not only promotes shallower earthquake nucleations but also results in a more distributed hypocenter pattern across 

depth, rather than a single dominant nucleation level. Our models exhibit these same features. In addition, the depth 

distributions of more complex models  (i.e., connected and with sinuosity) show  better agreement with empirical distributions 

from Mammarella et al. (2024), compared to simpler configurations (Fig. 6). 

In terms of earthquake catalogue statistics, we observe that the explored geometric features imply large differences in Mmax 490 

and MFD shape. Higher connectivity generally increases the Mmax due to the larger available rupture areas and a reduction in 

rupture segmentation barriers. In this context, there are models, especially the disconnected ones, that fail to reproduce 

magnitudes observed in the system, such as the Mt Vettore 2016 Mw 6.5 earthquake. This discrepancy indicates that the 

disconnected models underperform in terms of Mmax compared to their connected counterparts, and could serve as a criterion 

for assessing fault model plausibility in the region. 495 

Sinuosity, on the other hand, tends to reduce the Mmax by acting as a frictional barrier that can inhibit slip and preclude full 

growth of large earthquakes over the entire fault (Dieterich and Richards-Dinger, 2010). This explains why smooth faults yield 

characteristic MFDs, while rough or geometrically more complex faults produce MFDs closer to a Gutenberg-Richter (e.g., 

Delogkos et al., 2023). Dieterich and Richards-Dinger (2010) already observed that fault roughness progressively shifts the 

characteristic peak to shorter inter-event times and increases the rates in the magnitude gap between the power-law and the 500 

characteristic domains of the MFD. However, fault roughness alone does not fully overcome the tendency towards 

characteristic behavior, as we also observe in our results. According to the authors, other model parameters such as fractal 
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segmentation have a stronger impact on aiding this earthquake deficiency, and therefore is a feature that should be explored in 

future investigations.  

4.2. Geometric controls on surface rupture probabilities 505 

One of the key outcomes of our analysis is that fault geometric assumptions are the primary control on surface rupture 

probabilities. Moreover, our findings are transferrable beyond the modeled case because they are independent of the earthquake 

rate along the catalogues.  

Hypocenter depth is the key driver of surface rupture probability changes in our models. This observation is consistent with 

the conclusions on the numerical approach introduced by Mammarella et al. (2024). The authors identified the seismogenic 510 

depth as the main factor controlling the surface rupture probabilities, which controls the hypocenter depth. In line with this, 

the relatively short seismogenic depth in our models, combined with stable nucleation depths, explain why regressions show 

sharp increases in probability in a relatively narrow magnitude range between Mw 5 and 6. Shorter seismogenic depths nucleate 

shallower earthquakes, favoring the saturation of the seismogenic layer faster and thus allowing ruptures of a same magnitude 

to reach the surface easier than for deeper seismogenic depths.  515 

Another important factor regarding nucleation is the location relative to the fault plane. The slip rate distribution, tapered to 

the whole fault, generates slip rate concentrations in the fault segment edges that lead to a significant number of earthquake 

nucleations in these regions (see figure S7), a phenomena that has been widely described in simulators (Shaw, 2019). However, 

the impact of these earthquakes is minimal in the surface rupture probabilities. First, most of these nucleations correspond to 

low magnitude earthquakes (Mw 4-5), which nucleate at consistent depths with depth distributions in the region (see figure S4) 520 

and rarely generate surface ruptures (Fig. 9a). For larger magnitudes Mw ≥ 5.0, these anomalous nucleations are significantly 

reduced (Fig. S7). Second, even though local probability increases at segment boundaries (Fig. 10) could be linked to the few 

Mw ≥ 6.0 earthquake nucleation at fault edges, these can also be explained by geometric complexities, such as fault bends and 

segment connection at depth. Such geometric controls on nucleation have been previously described in the Mt. Vettore fault. 

For instance, Lavecchia et al. (2016) documents that the 2016 Mw 6.0 Amatrice earthquake nucleated at an inter-segment 525 

zone, where two fault segments link at depth. Third, even if surface rupture probabilities along-strike are slightly affected by 

anomalous earthquake nucleation, in a full PFDHA application the fault displacement hazard is ultimately driven by the slip 

recorded in each site. Our models show that both coseismic and cumulative throw taper toward segment edges (Figs. 11 and 

12) independently of nucleation location, suggesting that localized increases of surface rupture probability are unlikely to bias 

fault displacement hazard. 530 

Fault geometry, especially trace sinuosity and segmentation, also has a critical impact on earthquake rupture behavior. 

Geometric roughness acts as a physical barrier that affects how ruptures propagate (e.g., Dieterich and Richards-Dinger, 2010; 

Zielke and Mai, 2025). For instance, introducing fault trace sinuosity in our models hinders lateral rupture propagation and 

instead favors along-dip rupture, which raises the probability of surface rupture in connected configurations. Likewise, fault 
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connectivity favors segment-to-segment rupture propagation. When combined with no sinuosity (i.e., level 0linear-linear) 535 

surface rupture probabilities are reduced as ruptures are able to propagate laterally, which is not observed for the disconnected 

counterparts that still preserve lateral geometric barriers (segmentation). Similarly, listric fault geometries generally reduce 

the probabilities of surface rupture in the regressions because the fault area available is larger, requiring larger magnitudes to 

reach the surface. 

These modeling results are consistent with numerous field observations indicating that fault surface geometry strongly controls 540 

rupture propagation and slip patterns (e.g., Lettis, 2002; Rockwell and Klinger, 2013; Rodriguez Padilla et al., 2024). For 

example, the recent study by Rodriguez Padilla et al. (2024) showed that geometrical features, such as step-over width, are 

key locations for rupture arrest. This is consistent with the observed drop in surface rupture probabilities of Mw ≥ 6.0 

earthquakes across the step-over between the Mt. Porche and the Mt. Bove segments (Fig. 10). This agreement between 

simulation and observations reinforces the reliability of earthquake simulators for characterizing fault rupture behavior at the 545 

surface. In addition, earthquake simulators offer the opportunity to systematically quantify the influence of fault geometric 

features on rupture propagation, such as earthquake jump distance as a function of the fault slip. This is an issue that might be 

investigated in the future. 

Our results also indicate that surface fault trace geometry has a stronger influence on magnitude-dependent rupture probability 

than the subsurface fault trace. In this sense, constraining fault traces at surface should be prioritized over subsurface traces. 550 

This finding supports recent conclusions by Zielke and Mai (2025), who demonstrated how models with a same surface fault 

trace produce long-term fault behavior results that are interchangeable, even if their subsurface geometry differs significantly.  

That said, fault segment connectivity at depth, especially when paired with surface fault trace sinuosity, remains a dominant 

factor controlling surface rupture probabilities in our models and therefore should not be neglected. 

The strong influence of fault geometry in earthquake surface rupture statistics contrasts with the frequent lack of constraints 555 

on the subsurface geometric features of faults, often very expensive and difficult to image. In addition, frequent challenges in 

the identification of primary fault traces and uncertainties in fault trace location can also become a limitation for the correct 

characterization of fault geometries and, thus, for the implementation of the proposed approach. To tackle these issues in a 

hazard evaluation context, exploratory analyses represent the most suitable approach. For instance, asAs noted by Zielke and 

Mai (2025), exploring multiple realizations of fault geometries, including fault trace hypotheses, may be a practical solution 560 

to account for the epistemic uncertainties linked to the poor knowledge of subsurface fault geometries. 

4.3. Comparison with empirical and numerical regressions 

Our surface rupture probability regressions are generally closer to those derived from numerical approaches (Mammarella et 

al., 2024) than those from empiricalempicial earthquake data (Pizza et al., 2023; Youngs et al., 2003). On the one hand, 

simulation and numerical approaches generally show steeper slopes than the empirical regressions due to fault-specific 565 

modeling assumptions. That is, in both approximations the models are constrained to a single seismogenic depth (12 km), fault 
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dimensions, and similar hypocenter depth distribution. This is further corroborated by the higher coincidence between the 

C0connected constant and L0connected listric linear-linear regressions and the numerical regressions. The geometric 

considerations of the sinuosity level 0linear-linear models are closer to the ones by Mammarella et al. (2024), where fault 

sinuosity is not considered. Interestingly, such a coincidence between regressions is not observed for the D0disconnected 570 

linear-linear model probably because the strict fault segmentation limits earthquake lateral growth. 

On the other hand, empirical regressions are based on mixed datasets of global earthquakes occurring on faults with different 

seismogenic depths, hypocentral distributions and geometries, which may smooth out the regressions. Modeling several fault 

systems would return regressions closer to the empirical ones, as they would result from a broader range of tectonic settings 

and parameters that do not change so much in a single fault system. To prove this, we tested how mixing fault models with 575 

different geometries and seismogenic depths influences the regressions (Fig. S8S6). We combine the catalogues from six 

different geometric models into a unified dataset to better approximate large-scale (multi-fault system) analyses in PFDHA. 

These models are selected to capture the broadestboradest range of variability in regression behavior (Fig. 9), and we include 

two new models with seismogenic depths that differ from those assumed in our study. This analysis shows how mixing fault 

models with different seismogenic depth and geometric considerations generally smoothes out the regression slopes and shifts 580 

them toward larger magnitudes, similar to what is observed for empirical regressions (Fig. S8S6). 

Generally speaking, the regressions of surface rupture we obtain are visibly off the empirical and numerical regressions 

available in literature. There are several modeling factors and assumptions that may contribute to this effect. 

First, the geometric components explored in this study are a sample of the whole spectrum of potential geometrical 

complexities to be combined and explored. Here we focused on fault connectivity and trace-scale complexities, but smaller 585 

scale variability might also be explored. For instance, Zielke and Mai (2016) demonstrated how incorporating sub-patch 

geometrical roughness – i.e., roughness at spatial scale below fault element size – impacts earthquake behavior in earthquake 

rupture simulations. Similarly, exploring the impact of fractal roughness as in Allam et al. (2019) might provide new insights 

into fault surface rupture behavior. 

Second, the model parameters, namely the uniformity in the initial stresses and rate-and-state coefficients (a-b), are 590 

considerable simplifications. Initial stresses are uniformly distributed throughout all elements in the simulations, while in 

reality stresses change at depth (e.g., normal stress increases as a function of depth and is also dependent on fluid pore pressure). 

This implies that stress conditions equivalent to 6 km depth are assigned to all fault elements, including near surface. Even 

though in RSQSim the initial stress conditions evolve throughout the simulation, these initial conditions affect how ruptures 

propagate (e.g., Liao et al., 2024), thus how they manifest at the surface. 595 

We assumed uniform stresses to prevent shallow-dominated hypocenter nucleations caused by small stress values near surface 

in heterogeneous stress models. As identified by Liao et al. (2024), heterogeneous stresses would shift the hypocenter 

nucleations to unrealistically shallow depths, ultimately increasing the probability of surface rupture for all models. Even 
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though depth-variable stresses might yield more realistic fault slip distributions, we decided to prioritize accuracy in nucleation 

depth given its impact in our analysis. Building on this idea, Hughes et al. (2024) used uniform initial stresses for RSQSim-600 

based tsunami models to avoid shallow nucleation depths of heterogeneous stress models and to ensure more conservative 

(higher) wave heights for the hazard assessment, even if their earthquake slip patterns are less realistic. 

Similarly to the initial stresses, RSF law coefficients a and b have been assumed uniform for all fault elements with velocity 

weakening conditions (a-b<0). In nature, however, these coefficients follow depth dependent profiles, with typical regions 

near surface under velocity strengthening conditions (a-b>0; e.g., Lapusta et al., 2000). While introducing such variability can 605 

improve some catalogue features like the depth distribution of earthquakes (especially when paired with depth-variable 

stresses; Liao et al., 2024) and rupture propagation, it would also add complexity to our analysis. Data on the depth variability 

of RSF parameters is generally not available in most regions, which would likely require adopting unvalidated assumptions in 

the model parametrization. 

The roles of stress and frictional parameters are definitely topics to be explored in the future given the demonstrated impact 610 

they have shown in simulated catalogues (e.g., Delogkos et al., 2023; Gómez-Novell et al., 2025a; Liao et al., 2024). As an 

example, we have tested the influence of varying (a-b) in the regressions of our end-member models used for the benchmarking 

tests (see Table 1). We observe that these parameters have a strong influence in the probabilities of surface rupture (Fig. S9S7 

in the Supplement), but not so much in the shapes of the regressions. In general, more negative (a-b) decrease the probabilities 

of surface rupture by shifting the regressions toward larger magnitudes. In addition, the regression variability linked to the (a-615 

b) variations depends on the fault geometric model; higher in the Lconnected listric geometry compared to the Ddisconnected 

(Fig. S9S7). This lower sensitivity to geometric changes in the disconnected model is consistent with the observations made 

in section 3.2. Although the (a-b) parameters used in our study are the ones that better match magnitude-area empirical 

relations, we underscore the importance of constraining these physical parameters where earthquake simulation studies are 

conducted. 620 

Despite the modeling factors, it is important to remark that part of the misfit between simulated and empirical regressions may 

also be linked to observational biases affecting empirical data. That is, surface ruptures with short rupture lengths, small 

displacements or those occurred in remote regions or historical times are more likely to be underreported or missing in 

databases. These omissions can ultimately lead to underestimated empirical regressions. Other causes for lower surface rupture 

probabilities in empirical models can be related to near-surface soil conditions. For instance, the presence of soft sediments, 625 

uncompressed rocks or loose materials can lead to fault offset attenuation and accommodation through warping or folding, 

ultimately decreasing the imprint or even recognition capabilities of surface ruptures. 

A final limitation is that out study focuses solely on on-fault surface displacements, while distributed rupturing and off-fault 

deformation are important components of empirical PFDHA models. While the implementation of such components is beyond 

our scope, our work can serve as a basis for future work in this direction. For instance, the simulated surface displacements on 630 
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the principal fault can be combined with empirical distributed faulting regressions (e.g., Visini et al., 2025) to develop 

probabilistic models of distributed fault ruptures. An example of that is the work by Daglish et al. (2025), where they use the 

simulated on-fault displacements to scale across-fault displacement based on empirical data on surface rupturing earthquakes.  

4.4. Suitability of the models based on observations 

We compare how well our models reproduce surface geological observations of the fault to test the suitability of our model 635 

parameters and future applicability to PFDHA. 

4.4.1. Cosesismic ruptures 

We compare the modeled along-strike coseismic surface slip distributions of large magnitude events with the observed 

coseismic slip of the 2016 Mw 6.5 Mt. Vettore earthquake (Fig. 11). Overall, the simulated coseismic slip values agree with 

observations along most of the fault, except in the southern sector of Mt. Vettore. In this region, the simulated models 640 

systematically underestimate the slip recorded during the 2016 event, which was described as an anomalously high slip by 

several authors (e.g., Brozzetti et al., 2019; Puliti et al., 2020; Villani et al., 2018). The causes for this high surface slip have 

been attributed to local fault geometric features such as persistent fault dip irregularities at depth (Brozzetti et al., 2019), all 

features that we did not consider in our modeling. Other authors have considered also the influence of gravitational processes 

on the total slip recorded in this sector of the fault (e.g., Di Naccio et al., 2019), a phenomena that is not considered in 645 

earthquake cycle modeling. 

Fault trace sinuosity at surface clearly improves agreement with the 2016 cosesmic slip observations, reducing the mean 

absolute error (MAE) by 30-40% (Fig. 11). Sinuosity generates geometric barriers along fault surfaces that likely attenuate 

stress transfer and rupture growth, decreasing earthquake slip at the surface in comparison to the smoother fault surfaces. 

Another relevant observation is that sinuosity generates higher spatial variability – i.e., along-strike fluctuations – in the 650 

coseismic slip distributions compared to the smoother fault models. However, the simulated cosesmic distributions event to 

event show overall less dispersion, higher convergence and higher predictability in all models with fault trace sinuosity, 

regardless of the depth geometric assumptions (Fig. 11). These findings are consistent with RSQSim simulations performed 

by Allam et al. (2019) on fractally rough faults, which established a quantitative link between fault fractal roughness and 

earthquake properties such as increasing coseismic slip variability. All these features are consistent with observations on 655 

earthquake behavior and suggest that geometrically rougher surfaces might be more realistic in simulating coseismic events. 
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Figure 11. Comparison between the observed surface coseismic slip along strike of the 2016 Mw 6.5 Central Italy 

earthquake on the Mt. Vettore main fault (from Nurminen et al., 2022) and the stack of surface coseismic slip profiles 

from simulated events of similar magnitude in the whole 50 kyr-long catalogue. Each column groups the results of 
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models with the same connectivity and dip at depth and the rows group models by their sinuosity level. The agreement 660 

between observation and simulations is represented by the mean absolute error (MAE): the average of differences 

between the simulated slip values and the observed ones. Lower MAE means better agreement. Along strike distances 

are calculated from the NW to SE (see map in figure 1). 

 

While the surface fault trace plays a crucial role in the coseismic slip response of the models, the impact of the trace at the 665 

base of the seismogenic depth is more modest, leaving MAE values practically invariable across models; i.e., MAE variations 

in the order of <10 cm slip (Fig. 11). We observe  this behavior beyond the coseismic observations. For instance, the variations 

in MFD shape and Mmax, as well as the surface rupture regressions are less significant across models that share the same fault 

trace at surface than compared to those that consider a straight fault trace (without sinuosity).  Such similarities in the 
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catalogues that share the same fault trace at surface but with varying geometry at depth is a model behavior that is again 670 

consistent with recent analyses made with the MCQsim earthquake cycle simulator by Zielke and Mai (2025).  

Figure 11. Comparison between the observed surface coseismic slip along strike of the 2016 Mw 6.5 Central Italy 

earthquake on the Mt. Vettore main fault (from Nurminen et al., 2022) and the stack of surface coseismic slip profiles 
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from simulated events of similar magnitude in the whole 50 kyr-long catalogue. Each column groups the results of 

models with the same connectivity and dip at depth and the rows group models by their sinuosity level. The agreement 675 

between observation and simulations is represented by the mean absolute error (MAE): the average of differences 

between the simulated slip values and the observed ones. Lower MAE means better agreement. Along strike distances 

are calculated from the NW to SE (see map in figure 1). 

 

Regarding the fault connectivity, we do not observe a significant impact on the agreement with coseismic observations. 680 

However, some models, especially the disconnected ones, fail to reproduce magnitudes in the order of the 2016 event, contrary 

to the connected counterparts (Fig. 7b). This issue inherently limits the performance of the disconnected models in reproducing 

coseismic behavior. 

Our findings on coseismic rupture behavior have important implications for both seismic hazard and, in particular, PFDHA. 

The common practice of simplifying fault traces for modeling purposes – removing fault geometric roughness – might lead to 685 

less realistic simulations of surface displacement. This limitation is especially relevant for fault displacement forecasts in 

PFDHA, where capturing the spatial behavior of the surface ruptures is key. 

As discussed earlier, introducing local scale fault geometric complexities could help aid geometric discrepancies observed in 

the coseismic slip distributions at the southern end of the fault (Fig. 11). However, resolving more detailed geometries implies 

a much higher fault discretization level that directly translates into higher computational demands, while its translation to more 690 

accurate and realistic simulations is not necessarily straightforward. 

4.4.2. Cumulative throw 

The comparison between simulated and observed cumulative throw highlights several important insights regarding model 

performance and fault behavior. 

In all models, the simulated cumulative throw of Mw≥5.5 events for 18 kyr time windows of the catalogue considerably 695 

overestimates the measured values for most of the fault trace, except for the southern sector, where it is underestimated (Fig. 

12). The along-strike trend of the cumulative throw is comparable to the simulated one, especially in the inter-segment regions 

where both simulated and observed cumulative throw drop. This evidences that the simulations are able reproduce geometric 

slip patterns that are observed in these critical regions along fault. Importantly, these inter-segment regions control earthquake 

surface rupture probabilities, especially in disconnected geometric configurations. As for the coseismic slip, the large 700 

discrepancy in the southern tip of the fault this is likely due to geometric complexities of the fault at depth that have not been 

accounted in our models (see section 4.4.1). 

The variability between the simulated and observed cumulative throw across models is significantly smaller than for the 

coseismic case, with MAE values that vary around 10-15%  between geometric assumptions (Fig. 12). Even though the 

geometric assumptions of the different models slightly affect the fit to cumulative throw observations, there is no clear 705 
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correlation between model fit and geometric assumptions. In fact, cumulative throw is mainly correlated to the intial slip rate 

conditions of the model (Fig. 3), which are virtually equalequall across all geometric configurations. The tapered shape in the 

cumulative throw toward the fault edges replicating that of the slip rate evidences this correlation (Fig. 12). RSQsim employs 

the back-slip approch, in which the total amount of slip at the end of the simulation can be predicted by the product of the slip 

rate and the catalog length (assuming all slip is seismic).  710 

Slight variations in the MAE come from geometric assumptions that: 1) might act as local barriers for slip, adding or removing 

variability in the cumulative throw curve accordingly, and 2) change the triangular mesh configuration at the surface, thus 

changing the field data points that are assigned to each fault element (see details in section 2.6). 

Generally speaking, cumulative throw is a less reliable measurement to confront simulations with because it is subject to long-

term geologic phenomena not related to tectonics, such as erosion or gravitational movements. Erosion is quite important in 715 

the Mt. Vettore region. For instance, the erosive phenomena in the Ussita Valley (northern sector; Fig. 1) obliterates 

geomorphic footprints of long-term fault activity as recognizable by the lack of cumulative throw data in the profile (e.g., Puliti 

et al., 2020). Gravitational phenomena such as landslides are also present in the high-mountain setting of the fault, which can 

severely modify tectonic deformation evidence (e.g., Di Naccio et al., 2019). Along this line of reasoning, a large part of the 

systematic overestimation from the simulated cumulative throw along fault can be explained by the absence of erosion 720 

correction in our models, a feature that is beyond the scope of this work. 

Overall, although cumulative throw trends are partially captured, their value as a modeling constraint is limited due to long-

term geomorphic modification and data gaps. Accounting for geomorphic – e.g., erosive –   corrections as well as increasing 

data sample points in future work would help widen the applicability of geomorphic markers to constrain earthquake 

simulations. Nonetheless, the impact of this issue is manageable in our study because matching single earthquake (coseismic) 725 

behavior is more relevant for PFDHA than the long-term cumulative one. 
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Figure 12. Comparison between the measured cumulative throw along the main fault of the Mt. Vettore fault system 

for the past 18 kyr (from Puliti et al., 2020) and the simulated cumulative throw (Mw ≥ 5.5) for 18 kyr time windows 

along the whole 50 kyr catalogue. Each column groups the results of models with a same connectivity and dip at depth 
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and the rows group models by their sinuosity level. Like in figure 11, the agreement between observed and simulated 730 

values is expressed by the mean absolute error (MAE). The Ussita Valley location along strike is indicated in the first 

panel (upper left). See figure 1 for map location. Along strike distances are calculated from the NW to SE. 

 

4.5. Insights on applicability of earthquake simulators to PFDHA 

This study demonstrates that earthquake cycle simulators like RSQSim are a valuable tool for advancing PFDHA, in line with 735 

Daglish et al. (2025).. While the current models are implemented for a specific fault system, our methodological approach 

provides insights that are transferable to PFDHA applications in general. 

First, our simulations produce coseismic slip patterns that are reasonably coherent with observed data on the 2016 Mw 6.5 Mt. 

Vettore earthquake. 

Second, even though we have omitted long-term geomorphic processes and structural complexities at depth, the cumulative 740 

throw is partially captured by our models and its spatial trends are preserved with respect to observations (e.g., segment limits). 



51 

 

Third, the hypocenter depth distributions modeled match the regional observations in Italy and demonstrate its controlling role 

in the probability of surface rupture, findings that are in agreement with previous numerical approximations. 

Figure 12. Comparison between the measured cumulative throw along the main fault of the Mt. Vettore fault system 

for the past 18 kyr (from Puliti et al., 2020) and the simulated cumulative throw (Mw ≥ 5.5) for 18 kyr time windows 745 
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along the whole 50 kyr catalogue. Each column groups the results of models with a same connectivity and dip at depth 

and the rows group models by their sinuosity level. Like in figure 11, the agreement between observed and simulated 

values is expressed by the mean absolute error (MAE). The Ussita Valley location along strike is indicated in the first 

panel (upper left). See figure 1 for map location. Along strike distances are calculated from the NW to SE. 

 750 

Earthquake cycle simulators can also help to overcome inherent completeness issues of earthquake databases for fault 

displacement hazard, enabling enrichment of earthquake databases, the systematic exploration of fault parameters like 

subsurface geometry and allowing fault-specific analyses. By extension, the explicit consideration of earthquake rupture 

physics and the high-resolution earthquake displacement data generated by the simulations allows the implementation of site-

specific analysis with the displacement approach, one of the key challengesaims of PFDHA. 755 

Consequently, as anticipated by Valentini et al. (2025b), simulation-based studies Studies like the present one might contribute 

to the implementation of earthquake simulators into PFDHA in the future and to the overall enhancement of their capabilities. 

This enhancement potential, as it has already been demonstrateddone for seismic hazard (e.g., Herrero-Barbero et al., 2023; 

Rafiei et al., 2022; Shaw et al., 2018) and tsunami hazard applications (e.g., Álvarez-Gómez et al., 2023; Hughes et al., 2024). 

Despite the advantages, the use of earthquake simulators has limitations for PFDHA applications, some of which already 760 

described by Daglish et al. (2025). These include i) less extensive statistical validation with respect to empirically-based 

seismic hazard Although earthquake cycle models, ii) rate- are not equivalent to fully dynamic rupture simulations and-state 

parameters being calibrated to match magnitude-area scaling used for empirical approaches, preventing from a fully-

independent analysis, and iii) imply important simplifications in the physics of earthquake rupture propagation, compared to 

fully dynamic rupture simulations. In addition, the general lack of site-specific data on the fault systems, like in many numerical 765 

approaches, can become a challenge for the successful implementation and validation of the analyses proposed here. Having 

said that, to date these models offer the most computationally efficient solution to model earthquake cycles. These models 

provide a balance between reasonable earthquake rupture physics and the ability to generate near-surface displacements over 

several seismic cycles (e.g. Daglish et al., 2025),datasets necessary for robust long-term fault statistics in PFDHA. Earthquake 

simulators are thus a promising tool for the development of next-generation PFDHA  In this line, the emergence of newer and 770 

improved earthquake cycle simulators such as MCQsim (Zielke and Mai, 2023), which allows the explicit incorporation of 

fault roughness and visco-elastic relaxation, or Tandem  (Uphoff et al., 2022), which enables fully-dynamic multi-cycle rate-

and-state friction, could further enhance the capability of simulators to reproduce more realistic earthquake rupture sequences 

in the future. Additionally, when fault data is scarce, earthquake simulators offer the opportunity to systematically explore 

epistemic uncertainties in many fault model parameters, making it a strong alternative to fully empirically-based approaches 775 

in PFDHAmethodologies. 
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5 Conclusions 

In this study, we explore the influence of fault geometry on coseismic surface rupture probabilities using RSQSim earthquake 

cycle simulations at the Monte Vettore Fault System in Central Italy.  

Our results evidence that fault geometry, specifically fault segment connectivity at depth and fault sinuosity, is a primary 780 

control on the probability of coseismic surface rupture.  

Models with connected fault segments at depth increase surface rupture probabilities for the Mw 5-6 range compared to their 

disconnected counterparts, particularly when combined with surface fault trace sinuosity (i.e., fault plane roughness driven by 

the fault traces) and constant dip. Both connectivity at depth and sinuosity promote shallower earthquake nucleation and favor 

rupture propagation toward the surface rather than laterally. In contrast, listric geometries and, especially, connected faults 785 

without sinuosity reduce probabilities of surface rupture due to greater available rupture area and reduced barriers for lateral 

rupture propagation, respectively. 

The depth distribution of earthquake hypocenters is the dominant physical parameter controlling surface rupture probability, 

which is driven by the geometric assumptions of the models. Variations in hypocenter depth strongly correlate with the ability 

of ruptures reaching the surface, a result that is consistent with recent numerical approaches. Fault segmentation assumptions 790 

also impact significantly on the spatial distribution of surface rupture probabilities in disconnected models, as they impose 

physical limits on maximum magnitudes and therefore reduce surface rupture potential. These findings highlight the 

importance of accurately representing fault geometry in fault-specific displacement hazard assessments. 

Comparisons with empirical and numerical surface rupture regressions reveal that our simulation approach matches numerical 

results better than empirical ones. This is due to the consistent seismogenic parameters and fault-specific setup in both 795 

simulation and numerical models, as opposed to the broader intrinsic dataset variability of empirical models.  

Our simulation outputs also show strong agreement with geological observations in the region tested. Models generally agree 

with the observed coseismic slip of the 2016 Mw 6.5 earthquake at the Monte Vettore, especially those that consider both depth 

connectivity and fault trace sinuosity. Cumulative throw patterns are less accurately reproduced due to long-term geomorphic 

processes not accounted for in our models. However, general spatial trends such as segment limits are consistent with field 800 

observations. These results support the validity of our approach to investigate site-specific surface rupture statistics for hazard 

evaluation purposes. 

Our findings demonstrate the potential of earthquake cycle simulators like RSQSim for improving probabilistic fault 

displacement hazard analysis (PFDHA), especially when empirical data are sparse or fault-specific assessments are needed. 

Our study indicates that physics-based simulators can strongly complement empirical regressions in PFDHA, particularly when 805 

used to investigate the spatial variability of surface rupture and the influence of fault geometric features in specific fault 

systems. 
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Future work should explore the inclusion of depth-dependent stress conditions, variable frictional parameters, and finer-scale 

geometric complexities to further approximate real fault behavior. Extending this framework to other fault systems could help 

generalize our conclusions and support the development of next-generation PFDHA methodologies.  810 
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