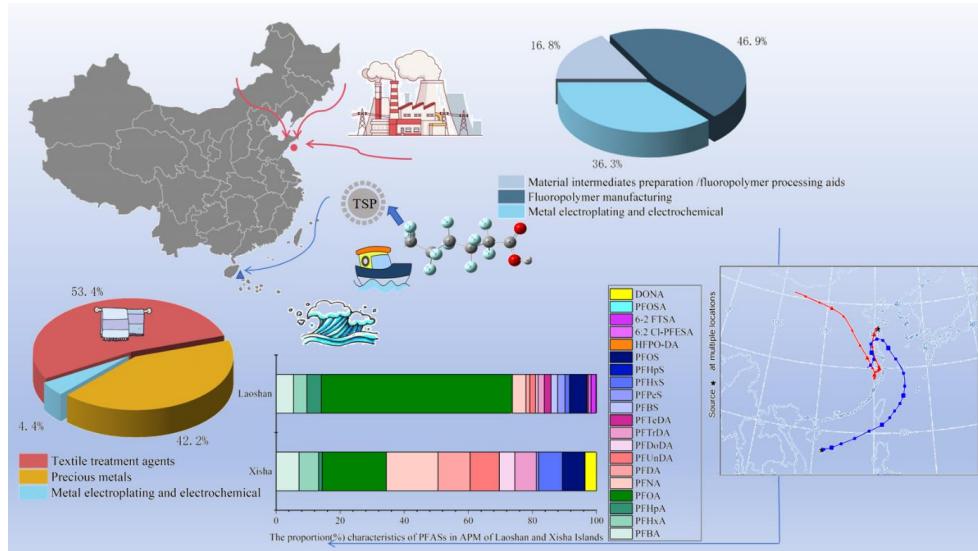


Characteristics of Legacy and Emerging Per- and Polyfluoroalkyl Substances in Atmospheric Total Suspended Particulate from The Coastal Areas in China


Shuhong Fang¹, Ximeng Zhao¹, Zhaohui Chen¹, Tingyu Yan², Caiqing Yan³

¹College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China

²College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China

³Environment Research Institute, Shandong University, Qingdao 266237, China

Correspondence to: Shuhong Fang (fsh@cuit.edu.cn)

TOC/Abstract art

1 **Abstract:** Per- and polyfluoroalkyl substances (PFASs) could be attached to particles and transported in
2 the atmosphere, it is necessary to investigate the characteristics of legacy and emerging PFASs in
3 atmospheric particulates in relatively clean, low pollution open ocean in China to reveal the transport
4 mechanism of PFASs in the atmosphere. Concentration characteristics of 30 legacy and emerging in total
5 suspended particulate (TSP, particles with aerodynamic diameters < 100 μm) from Laoshan in Shandong
6 and Xisha Islands in the South China Sea were analyzed. Σ PFASs in TSP ranged in 5.65 - 80.1 pg/m^3
7 and 3.59 - 18.2 pg/m^3 for Laoshan and Xisha Islands, respectively. Generally, the long-chained PFASs
8 were the most detected PFAS, with the detection frequency of 73.1% and 72.0%. Perfluorooctanoic
9 acid(PFOA) were the main PFAS, with the profiles of 57.1% and 21.0%, respectively. Principal
10 component analysis and multiple linear regression (PCA-MLR) showed that the Laoshan was dominated
11 by fluoropolymer manufacturing (46.9%) and metal electroplating/electrochemical processes (36.3%),
12 while the Xisha islands exhibited primary contributions from textile treatment sources(53.4%) and
13 precious metal sources (42.2%). The backward trajectory clusters for 24 h/120 h showed that air masses
14 in the Laoshan primarily originated from northern (23%) and southeastern (28%), the Xisha Islands were
15 predominantly sourced from the northeastern (80%), overlapping transport paths of air masses between
16 the two regions within the same altitude range. This suggests that the similarity of PFAS distribution
17 characteristics between Laoshan and Xisha may be related to long-distance atmospheric transport
18 between the two regions.

19 **Keywords:** Per- and Polyfluoroalkyl substances, Total suspended particulate (TSP), Coastal area in
20 China, Source apportionment, Long-distance transport

21 **1. Introduction**

22 Per- and polyfluoroalkyl substances (PFASs) are a large group of synthetic organic chemicals and
23 have been widely used in the chemical industry, leather, medicine, and other industrial and commercial
24 fields (Prevedouros et al., 2006) for more than 6 decades. They have been widely detected in the
25 atmosphere (Zhang et al., 2020), water (Li et al., 2022), soil (Wang et al., 2018), wildlife (Schuetze et al.,
26 2010) and human tissues (Kannan et al., 2004) in recent years. Previous studies have proved that PFASs
27 have endocrine toxicity, carcinogenicity, neurotoxicity, and reproductive toxicity, and have potential risks
28 to the environment and organisms (Yu et al., 2018b). Therefore, PFOS and PFOA, which are commonly
29 detected in environment, were listed in the Stockholm Convention in 2009 and 2019, respectively (UNEP,
30 2019).

31 Then, the short-chain and emerging PFASs have been applied in the market as alternatives.
32 Hexafluoropropylene oxide dimer acid (HFPO-DA, also called GenX) has been produced and used in
33 the production of fluoropolymer high performance materials as a substitute for PFOA (Wang et al., 2013).
34 Chlorinated polyfluorinated ether sulfonate (Cl-PFESA) has been used to replace PFOS in mist
35 suppressants in the metal plating industry (Wang et al., 2014). The emissions of PFASs alternatives have
36 increased significantly in recent years (Zhang et al., 2020), and the research results show that these
37 substitutes have certain bioamplification and bioaccumulation effects (Deng et al., 2018) and toxicity (Li
38 et al., 2018; Sheng et al., 2017), which has aroused public concern. Therefore, studies focusing on the
39 short-chain and emerging PFASs substitutes are needed.

40 As is known to all, organic pollutants in the atmosphere have adverse effects on human health in
41 direct, and respiration is one of the main exposure routes of PFASs (Liu et al., 2017). To date, few studies
42 have focused on atmospheric PFASs in China. PFASs can enter to atmosphere by volatility from water
43 and soils in areas, and then subject to long distances atmospheric transport to remote areas (Stock et al.,
44 2004; Wang et al., 2018). The ocean and atmosphere frequently exchange matter and energy, forming a
45 highly complex coupling system. At present, PFASs have been detected at varying concentrations
46 worldwide, including in atmospheric samples from Japan's northwestern coast (Piekacz et al., 2007),
47 marine waters and coastal urban areas of China (Fang et al., 2018; Yao et al., 2017), and Europe's
48 Mediterranean region (Jahnke et al., 2007). Atmospheric suspended particles often serve as carriers for
49 perfluoroalkyl and polyfluoroalkyl substances (PFASs), which are adsorbed onto these particles through
50 van der Waals forces and coordination reactions (Weinberg et al., 2011; Piekacz et al., 2007). Oceanic
51 processes (waves, storms, and biogenic activity) generate suspended sea-salt aerosols and organic
52 particulates (Gemma et al., 2020), which interact with atmospheric $PM_{2.5}/PM_{10}$ to transport PFAS. Thus,
53 as a critical source-sink interface, the ocean accelerates PFAS exchange between marine and atmospheric
54 systems, participating in global atmospheric circulation and altering atmospheric chemical composition
55 and physical properties. However, current studies predominantly focus on PFAS occurrence
56 characteristics and source apportionment within single regions, while long-range transregional transport
57 mechanisms remain insufficiently explored.

58 In this study, 30 legacy and emerging PFASs were quantified in atmosphere TSP samples of Laoshan
59 and Xisha Islands. The objectives of this study are to: (1) investigate the occurrence and composition of
60 legacy and emerging PFAS in atmosphere samples from Laoshan and Xisha Islands; (2) identify the
61 sources of PFAS using principal component analysis and multiple linear regression (PCA-MLR) model;
62 (3) The backward trajectory (HYSPPLIT) model was used to investigate the source trajectory of PFASs
63 in the atmosphere of Laoshan Mountain and Xisha Islands and whether it has long-distance transport
64 behavior. Monitoring legacy and emerging PFAS in the air and has important implications for the

65 development of pollutant abatement measures taken by policy makers in the study area.

66 **2. Materials and methods**

67 **2.1. Sample collection**

68 Tisch-TE 5170 high-flow atmospheric comprehensive sampler and quartz membrane were used for
69 sampling. Before sampling, all the quartz fiberfilters (PALLFLEX Membrane Filters, 250 mm×200 mm,
70 TISSUQUARTZ-2500QAT-UP) were calcined for 4.5 h in a muffle furnace at 550°C. In March 2021,
71 atmospheric suspended particulate matter was sampled in the Xisha Islands with 12 h at day and 12 h at
72 night, with a total of 23 samples. From 16th April to 16th May in 2021, a total of 26 atmospheric samples
73 were collected in Laoshan, Shandong Province for one consecutive month. The sampling sites were
74 showed in Fig.1. Each sample was conducted for nearly 12h or 24 h at a flow rate of 40 L min⁻¹. The
75 sampled quartz membrane was folded, wrapped in aluminum foil, and placed in a sealed PP bag. Samples
76 were preprocessed immediately after returning to the laboratory, and the pretreated samples were stored
77 at 4 °C until analysis. Details regarding the sampling campaign are provided in Table S1-S2.

78 **2.2. Reagents, extraction, and analyses**

79 Methanol (HPLC grade, 99.9%, Chengdu Kelon Chemical Reagent Factory, China), ammonia water
80 (25%, Chengdu Kelon Chemical Reagent Factory, China), acetic acid (analytical reagent, purity:>99.5%)
81 and ammonium acetate (HPLC grade, purity>98.0%) was purchased from Chengdu Kelon Chemical
82 Reagent Factory. The standard sample used in the experiment is high purity mixed standard PFAC-MXB
83 (Wellington laboratories, Guelph, ON, Canada), including 11 perfluoroalkyl carboxylic acids (PFCAs),
84 7 perfluoroalkyl sulfonic acids (PFSAs), 3 n:2 FTSSs, 2 n:2 Cl-PFESAs, FOSA, FBSA, FHxSA, HFPO-
85 DA, N-MeFOSAA, N-EtFOSAA, and ADONA. MPFAC-MXA used in this study is a 19-mixed high-
86 purity internal standard (Wellington laboratories, Guelph, ON, Canada). Details regarding the standards
87 are provided in Table S3.

88 The details for sample preparation was provided in Text S1. Briefly, quartz membranes were
89 extracted twice with methanol in an ultrasonic bath. The two methanol extracts were combined,
90 evaporated to 5 mL under a gentle stream of dry nitrogen gas and then were purified by Cleanert PestiCarb
91 SPE cartridges (Bonna-Angla Technologies, China). The final concentrated extract was filtered through
92 a 0.22 µm nylon filter and transferred into an injection vial, and finally stored at 4 °C for analysis.

93 PFASs were confirmed and quantified using an ultra-high performance liquid chromatography
94 tandem triple quadrupole mass spectrometer instrument (Agilent, 1290-6470) fitted with a C18
95 chromatographic column (Zorbax SB-C18, 2.1 mm × 50 mm, 1.8 µm). The mass spectrometer was
96 operated in the negative electrospray ionization with multiple reaction monitoring (MRM). Details
97 regarding UPLC MS/MS analysis parameters are provided in Text S2.

98 **2.3. Quality assurance and quality control (QA/QC)**

99 To reduce the experimental background, all samples were avoided to contact Teflon containers
100 during the pretreatment process. The standard calibration curve samples were 0, 0.05, 0.1, 0.5, 1, 2, 5,
101 10, 20 and 50 ng/mL with the linear relationship $R^2 > 0.99$. All target analytes were quantified using an
102 internal standard except for 6:2 Cl-PFESA, 8:2 Cl-PFESA, HFPO-DA, and ADONA. In order to monitor

any process contamination, a total of three field blanks were sampled and two procedural blanks were set for each batch of 10 actual samples that were analyzed for target PFASs. To monitor the instrument background, methanol was injected after each batch of 12 samples as solvent blank and analyzed with the same instrumental method as the actual samples. The PFAAs were not detected in all the blank samples or were below their corresponding MDLs in the procedural blanks, field blanks, and methanol. Two different concentrations (spiking levels of 2 ng and 20 ng for each PFAS) were set in the recovery experiments, with 3 replicates for each concentration level. The recoveries of all target compounds were in the range of 69.3%-128.4% (Table S4). The method detection limits (MDLs) were defined as the lowest point on the calibration curve with a signal-to-noise ratio of 3, if the specific PFASs were not detected in procedural blanks. For the compounds detected in procedural blanks, MDLs were defined as the mean blank concentration plus three times the blank standard deviation. The method detection limits of all target compounds were in the range of 0.009-0.841 pg/m³. When calculating the total concentration, the MDL was substituted by dividing the $\sqrt{2}$ if the detected value is lower than the MDL, while it was substituted by zero when not detected.

117 **2.4. Statistical analysis**

118 Spearman correlation analysis was carried out to examine correlation between different PFASs,
119 principal component analysis and multiple linear regression (PCA-MLR) were implemented to analyzing
120 pollution sources of PFASs. All data analysis charts such as concentrations and components were
121 performed using the Origin 2019b software (USA). The spatial distributions map of the sampling sites
122 was illustrated using the ArcGIS 10.7 (USA).

123 **2.5. Backward Trajectory and source apportionment**

124 The hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT, Version 4, Air
125 Resources Laboratory) was used for backward trajectory analysis, and the PCA-MLR model was used
126 to reduce the dimensionality of the data through principal component analysis, and factors with
127 eigenvalues greater than 1 were selected as principal components. The source of pollution is inferred
128 according to the load of the principal component on each pollutant, the load greater than 0.8 is selected
129 as the main pollutant for source analysis. Multiple linear regression analysis was used to obtain the
130 average contribution rate of each pollution source, and the potential sources of perfluorinated compounds
131 in suspended particulates were predicted (Cohen et al., 2015).

132 The back trajectory of the air mass reaching 500 m above the surface was analyzed at intervals of
133 24 hours and 120 hours respectively. (Wang et al., 2017). Before treating large variations in total spatial
134 variance (TSV) as clusters of trajectories, wind direction and speed are added to the clusters based on the
135 geometric distances corresponding to individual trajectories. The MLR model equation is as Eq.(1), the
136 formula for calculating the average contribution rate is as Eq.(2) (Thurston & Spengler, 1985):

$$137 \quad y = \sum_{i=1}^p B_i X_i \quad (1)$$

$$138 \quad Z = \frac{B_i}{\sum B_i} \times 100\% \quad (2)$$

139 Where y is the total concentration of PFASs, p is the number of principal components, B_i is the
140 multiple linear regression coefficients, X_i is the factor score of the principal component, Z is the average
141 contribution rate of the source i.

142 **3. Results and discussion**

143 **3.1. Concentrations and profiles of PFASs in APM of Laoshan**

144 Nineteen per- and polyfluoroalkyl substances were detected in the atmospheric samples of Laoshan.
145 Legacy PFASs including PFHxS, PFOA, PFOS, PFNA, and PFUnDA were detected in all samples,
146 followed by PFHxA (96.2%), PFDA (96.2%), PFDODA (92.3%), PFHpA (88.5%), PFBA (84.6%) and
147 the precursor PFOSA (88.5%), while PFPeA was not detected in any samples. Concentration of Σ_{19}
148 PFASs ranged from 5.65 to 80.1 pg/m³, with the mean and median values of 27.7 and 21.3 pg/m³
149 respectively (See Fig.2. and Table S5). The main PFASs were PFOA, PFBA, PFHxA and PFOS. The
150 concentration was the highest on April 19th and the lowest on May 9th. The wind direction on April 19
151 was southwest, the wind speed was 4.3 m/s, and the weather was clear. On May 9th, there was rainfall
152 and a southeast wind with a wind speed of 4.7 m/s. Under similar meteorological conditions, the rainfall
153 scavenging exhibits enhanced efficiency in atmospheric PFAS removal compared to dry deposition.

154 The primary substances detected in other areas of TSP, such as Bohai Sea and Yellow Sea, were
155 FTOH (Zhao et al, 2017), PFBS and PFOS (Billah et al, 2016). But the PFOA displayed the highest
156 concentration (3.18-48.0 pg/m³, mean: 16.5 pg/m³), with the profiles of 57.1% (27.1%-83.6%) in
157 Laoshan. This may be attributed to regional industries such as chemical manufacturing, metal plating, or
158 textile processing, which directly release PFOA into the atmosphere. In general, the levels of PFOA in
159 Laoshan APM were slightly higher than in China Nanjing (11.6 pg/m³), Beijing (12.5 pg/m³), Guiyang
160 (2.07 pg/m³), Shenzhen (15 pg/m³), Guangzhou (11.7 pg/m³) and Yancheng (8.3 pg/m³) (Yu et al., 2018a).
161 In addition, Kjeller (Norway, 1.54 pg/m³), Mace Head (Ireland, 8.9 pg/m³) (Barber et al., 2007),
162 Geesthacht (Germany, 0.7 pg/m³) (Dreyer et al., 2015) and Toronto(Canada, 0.01 pg/m³) (Ahrens et al.,
163 2012) also displayed lower PFOA concentrations than Laoshan. The levels of PFOA in Laoshan were
164 lower than in Qingdao China (73.8 pg/m³), Jinan (China, 325 pg/m³) and Yantai (China, 30.7 pg/m³), as
165 well as Oyamazaki in Japan (267.2 pg/m³) (Harada et al., 2005), Hazelrigg (552 pg/m³) and Manchester
166 (341 pg/m³) in the UK (Barber et al., 2007).

167 HFPO-DA, an alternative of PFOA, has been found in TSP in Laoshan, with the concentration and
168 detection frequency of nd.-0.95 pg/m³ and 38.5%. Some studies have found that when HFPO-DA
169 meets OH, oxidation reaction may occur, resulting in the break of some chemical bonds in the molecule,
170 which making it difficult to exist stably in the atmosphere for a long time. As the alternative of PFOS,
171 6:2 Cl-PFESA (nd.-1.12 pg/m³) and 6:2 FTSA (nd.-3.07 pg/m³) were both detected in the atmospheric
172 samples, with the detection frequencies of 30.7% and 80.6% respectively. The concentration of Cl-
173 PFESA detected in particulate matter in the air in Dalian ranges of 85.9 to 722 pg/m³, which is
174 significantly related to the large number of electroplating industrial areas in the region, and also indicates
175 the widespread use of emerging PFAS in China (Liu et al, 2017).

176 It was worth noting that the long-chain PFCAs(C₈-C₁₄) accounted for the largest proportion (73.1%,
177 mean value) in Laoshan atmosphere among which PFOA is the predominant substance, indicating that
178 long-chain PFCAs were more inclined to be adsorbed by particulate matter in the atmosphere than short-
179 chain (C₄-C₇) PFCAs and PFSAs. PFBA was the dominant short-chain PFCA with concentrations of nd.-
180 5.56 pg/m³, followed by PFHpA (nd.-6.62 pg/m³).

181 **3.2. Concentrations and profiles of PFASs in APM of Xisha Islands**

182 The levels of PFASs in each sample of Xisha Islands were showed in Fig.3. and Table S6. Fourteen

183 PFASs were widely detected in APM samples, demonstrating the widespread of PFASs in the Xisha
184 Islands atmosphere. PFHpA, PFOA, PFNA, PFDA, PFUnDA and PFDoDA were detected in all samples,
185 then were PFHxA (95.7%), PFOS (95.7%), PFBA (87.0%) and PFHxS (87.0%), while PFPeA and PFBS
186 were not detected in any samples. The total concentration of PFASs ranged from 3.59 to 18.2 pg/m³, with
187 the mean and median concentrations of 8.56 and 6.93 pg/m³ respectively, which were slightly lower than
188 Laoshan. It is due to fewer pollutions around the Xisha Islands. Same as Laoshan, PFOA (0.92-4.42
189 pg/m³) was predominant with an average contribution of 21.0% (14.5%-33.1%) in Xisha Islands
190 atmosphere samples, followed by PFNA (0.64-2.56 pg/m³), which accounted for 17.3% (10.8%-23.7%)
191 of \sum_{14} PFASs. There were two emerging PFASs detected in APM samples from Xisha Islands. The
192 detection frequencies of 6:2 FTSA (nd.-0.04 pg/m³) and ADONA (nd.-4.23 pg/m³) were 56.5% and 13%,
193 respectively.

194 In general, the concentration of PFASs in the daytime was higher than at night, especially in the
195 14th and 16th. The light and temperature in daytime you are conducive to induce precursor conversion.
196 The highest average daily concentration was on 14 days, which was mainly due to higher PFOA levels.
197 While the concentration was slightly lower during the day such as 7th, 12th and 15th, it is speculated that
198 the corresponding night samples during this period are collected when the ship stops, and the
199 concentration of pollutants will be higher than the samples collected during the sailing. The daytime
200 concentration was the highest on the 16th, and the difference between day and night concentration was
201 significant, mainly because the day and night samples were collected when the ship was stationary and
202 sailing. It has been confirmed that air flow rate is the key factor to affect the diffusion of pollutants in
203 atmosphere, and higher flow rate would induce a wider diffusion range and reduce the concentration per
204 unit volume (Qin et al., 2021). Thus, it can be inferred that the ship's operation speeds up the air flow,
205 which could quickly carry away the pollutants around the sampling site, and play a dilution role.

206 As showed in Fig.S2, the L-PFCAs also accounted for a large proportion(72.0%, mean value), which
207 also provided an evidence that long-chain PFASs were more inclined to be adsorbed by particulate matter.
208 Overall, the proportional characteristics of the daytime were consistent with night. However, the
209 proportion characteristics of daytime on different days changed relatively greatly, and the main difference
210 was reflected in the detection of 6:2 FTSA and ADNOA.

211 The monitoring point was extended to the surrounding area, and the geographical distribution of
212 concentrations characteristics in the area was predicted based on the detection of PFOA, PFNA, L-
213 PFCAs and \sum_{14} PFASs, as shown in Fig.4. Generally, the target concentration on land was higher than
214 ocean, suggesting a influence of industrial and human activities. And it showed a increasing trend from
215 northeast to southwest. It may be due to that the prevailing wind here is northeasterly, resulting in a
216 higher concentration at downwind areas. PFOA showed the highest concentration levels in the northwest
217 and the northwest of Xisha Islands, and then displayed the decreasing trend to the seat, indicating industry
218 and human activities emission were the main sources of PFOA to TSP (Fig.4a). PFNA showed a lower
219 concentration in the northwest, while in the northeast and southwest is higher, suggesting that PFNA in
220 this atmosphere may not be directly affected by local industrial and human activities but long distance
221 atmospheric transporting(Fig.4b). The levels of L-PFCAs and \sum_{14} PFASs showed a similar distribution
222 pattern which highest concentration in northwest area(Fig.4c and 4d). The results indicated that
223 traditional and long-chain PFASs were still the dominating PFASs.

224 **3.3. Component correlation and source apportionment**

225 The Pearson correlation coefficients were further investigated between the PFASs in APM (Table
226 S7-S8), a significant correlation generally indicated similar sources, transport processes and
227 transformation processes for the two components(Lai et al., 2016). Moderate to strong correlations were
228 shown between PFCAs, suggesting that PFCAs in the atmosphere from Laoshan and Xisha Islands may
229 originate from common sources, such as atmospheric transport. In Laoshan, PFOS showed moderate to
230 strong correlations with PFCAs, especially PFOA ($r = 0.832$, $p = 0.000$) and PFDA ($r = 0.806$, $p = 0.000$).
231 HFPO-DA was found to be moderately correlated with PFBA ($r = 0.588$, $p = 0.002$), PFOA ($r = 0.668$, p
232 = 0.000) and PFTeDA ($r = 0.582$, $p = 0.002$), while PFOSA only showed moderate correlation with
233 PFTrDA ($r = 0.671$, $p = 0.000$). Both 6:2 Cl-PFESA and 6:2 FTSA showed weaker and less significant
234 correlations with others, except for 6:2 FTSA and PFBA ($r = 0.646$, $p = 0.000$). In Xisha Islands, PFOA
235 as the predominant PFASs showed significantly positive correlations with PFHxA ($r = 0.868$, $p = 0.000$),
236 PFNA ($r = 0.855$, $p = 0.000$), PFDA ($r = 0.906$, $p = 0.000$) and PFDoDA ($r = 0.907$, $p = 0.000$). As two
237 alternatives to PFOA and PFOS, ADONA and 6:2 FTSA($r = 0.639$, $p = 0.001$) was found to be moderately
238 correlated with with PFPeS($r = 0.788/0.669$, $p = 0.000$), and ADONA also showed a moderate correlation
239 with PFHxS ($r = 0.541$, $p = 0.000$).

240 To explore the potential sources of PFASs in APM from the sampling regions, a principal component
241 analysis (PCA) was applied to the factor extraction. The species with poor linear correlation and Kaiser-
242 Meyer-Olkin (KMO) value less than 0.5 were excluded to participating in principal component analysis,
243 and finally 13 and 12 PFASs were extracted from the three principal components of Laoshan and Xisha
244 Islands, respectively (Table S9-S10).

245 In Laoshan, three principal components explain the sources of 82.6% of PFASs in the atmosphere
246 at this sampling site. FL1 accounted for 56.7% of the total variances, among which PFUnDA and PFNA
247 are in high loading of 0.976 and 0.930, respectively. PFUnDA was used for the preparation of material
248 intermediates (Xiao et al., 2012); PFNA has been used for many decades as an essential “processing aid”
249 in the manufacture of pfluoropolymers (Buck et al., 2011), thus FL1 was interpreted as the source of
250 material intermediates preparation and fluoropolymer processing aids. FL2 explained 15.2% of the total
251 variances and was characterized by HFPO-DA with high loading of 0.938, which was used as PFOA
252 alternative in the fluoropolymer manufacturing industry(Wang et al., 2013). FL3 explained 10.7% of the
253 total variances, among which PFHpS and PFOS are the marker of pollutants with loading of 0.948 and
254 0.801, respectively. PFOS has been widely used in the metal electroplating industry in Qingdao
255 city(Wang et al., 2020), and the fluorine industry usually produces PFOS and other PFSAs by
256 electrofluorination derivatization(Liu et al., 2015), therefore, FL3 was defined as the source of metal
257 electroplating and electrochemical industry.

258 In Xisha Islands, three principal components explain the sources of 84.8% of PFASs in the
259 atmosphere at this sampling site. FX1 accounted for 56.1% of the total variances, among which long-
260 chained PFCAs, specifically PFDoDA, PFUnDA, PFOA and PFDA with high loading of 0.952, 0.895,
261 0.867, and 0.861, respectively. Long-chained PFCAs ($C_{10}-C_{16}$) were commonly used as impregnation
262 sprays for automotive textile upholstery, thus FL1 was defined as the source of textile treatment
263 agents(Cai et al., 2012). FX2 explained 18.8% of the total variances and was characterized by PFBA with
264 high loading of 0.822, which was mainly used as a flotation agent in the synthesis of precious metals
265 (Campo et al., 2015). FX3 explained 9.88% of the total variances, among which PFPeS and 6:2 FTSA
266 are the marker of pollutants with the loading of 0.904 and 0.864, respectively. 6:2 FTSA was the main
267 degradation product of fluorotelomer surfactants and was widely applied as alternative to PFOS in metal

268 plating(Hoke et al., 2015; Yu et al., 2018a), therefore, FX3 was defined as the source of metal
269 electroplating and electrochemical industry, too.

270 Using the MLR method to regress the standardized \sum PFASs and PCA factor scores, the regression
271 equation of Laoshan and Xisha Islands can be expressed as Eq.(5) and Eq.(6), respectively(Qi et al.,
272 2017):

273 $Z_L = 0.263FL1 + 0.736FL2 + 0.57FL3 \quad (R^2=0.935, P=0.000) \quad (5)$

274 $Z_X = 0.779FX1 + 0.615FX2 + 0.064FX3 \quad (R^2=0.989, P=0.000) \quad (6)$

275 The results showed that in Laoshan, the fluoropolymer manufacturing sources FL2 contributed 46.9%
276 to the \sum_{13} PFASs, followed by the metal plating and electrochemical sources (36.3%, FL3), the metal
277 electroplating and electrochemical sources (16.8%, FL1) the material intermediates preparation and
278 fluoropolymer processing aids. The 100% (25.6 pg/m³) of the observed \sum_{13} PFASs was explained by
279 PCA-MLR model. These three sources represented the average concentration contributions of 4.3, 12.0
280 and 9.6 pg/m³ to the \sum_{13} PFASs, respectively (Table S9). In Xisha Islands, the textile treatment sources
281 FX1 contributed 53.4% to the \sum_{12} PFASs, followed by the precious metals sources (42.2%, FX2), the
282 metal electroplating and electrochemical sources (4.39%, FX3), which could indicate that long-distance
283 transport of PFASs from northeastern areas may be a main source of PFASs in Xisha Islands atmosphere.
284 The 100% (8.56 pg/m³) of the observed \sum_{12} PFASs was explained by PCA-MLR model. These three
285 sources represented the average concentration contributions of 4.57, 3.70 and 0.38 pg/m³ to the
286 \sum_{12} PFASs, respectively (Table S10). There were significant differences in the sources of PFASs between
287 Laoshan and Xisha Islands Fig.5. (a), (b). The main sources of PFASs in Laoshan area are fluoropolymer
288 manufacturing and metal electroplating and electrochemistry. The Xisha Islands are mainly based on
289 textile treatment and precious metals, but a small part is still derived from metal plating and
290 electrochemistry. This is due to the industrial structure in different regions.

291 **3.4. Air mass trajectory tracking**

292 The backward trajectory clusters for 24h during the sampling period are shown in Fig.6. (a), (b). In
293 Laoshan, the air masses were transported from all directions. Of these, north (23%), southeast and south
294 (28%+10%) had a relatively high contribution of the total calculated trajectories. In addition, the winds
295 from the north (both northwest and north) and southwest passing through fluorine chemical plants in
296 eastern China and winds from the northeast passing through industrial zones on the Korean Peninsula
297 may exert the influence of PFASs pollution. It was also found that the predominant species of PFAS in
298 the air of Asan Lake area in South Korea was PFOA, accounting for 75.9% of the total (lee et al., 2020),
299 which was consistent with the results of this study. In Xisha Islands, the directions of air masses were
300 generally dominated by the northeast wind, which contributed over 80% of the total calculated
301 trajectories. In addition, a small portion of the air masses was transported from the southeastern over a
302 short or moderate distance. The prevailing directions of air masses transport indicated the potential
303 sources from the open seas. The prevailing direction of air mass transport indicates the potential source
304 from urban industrial areas along the southeast coast and high seas.

305 Despite geographical separation, the detection of PFAS in Laoshan and Xisha shows a certain degree
306 of similarity, such as PFOA, PFBA, PFDA, PFNA and others. Source apportionment revealed divergent
307 local origins, indicating that their chemical similarity originated from external transport rather than local
308 pollution sources. The dual-source backward trajectory clusters during the 120-hour sampling period at
309 the two locations are shown in Fig.6. (c), (d) . It is consistent with the results of single-source backward
310 trajectory clusters. Combined with real-time meteorological data from Ventusky, demonstrated

311 overlapping transport paths between the two regions within the same altitude range. Consequently,
312 PFASs migrated from Laoshan to Xisha via atmospheric air mass transport, which synchronized changes
313 in pollutant composition across both areas. This finding revealed the synchronicity of pollutant transport
314 between the two regions and highlighted the potential influence of air mass trajectories on variations in
315 pollutant concentrations.

316 **4. Conclusions**

317 The results demonstrated that legacy PFASs and novel alternatives widely exist in ocean atmosphere,
318 and the main PFASs was PFOA in Laoshan and Xisha Islands. The distribution of PFASs in Xisha Islands
319 atmosphere showed an increasing trend from northeast to southwest, which could be caused by the
320 northeasterly prevailing wind direction. Meanwhile, PCA-MLR models suggested that the three main
321 sources of Laoshan atmospheric were material intermediates preparation and fluoropolymer processing
322 aids sources contributed (16.8%), fluoropolymer manufacturing sources (46.9%), and metal
323 electroplating and electrochemical sources (36.3%), while Xisha Islands were the textile treatment
324 sources contributed (53.4%), precious metals sources (42.2%) and metal electroplating and
325 electrochemical sources (4.39%). The backward trajectory model demonstrated that atmospheric
326 transport to the Laoshan primarily originated from northern, southern, and southeastern, whereas
327 northeastern air masses was the main transport path of the atmosphere in the Xisha Islands. Furthermore,
328 the dual-source trajectory model demonstrated overlapping air mass trajectories between both regions at
329 the same altitude range. Combined with the similarity of PFAS distribution characteristics between the
330 two regions, it revealed that long-distance atmospheric PFAS transport builds Bridges between these
331 geographically different coastal systems.

332 **Data availability**

333 All raw data can be provided by the corresponding authors upon request.

334 **Author contributions**

335 FSH, ZXM, CZH, YTY and YCQ planned the campaign; YTY conducted sample collection; ZXM,
336 and CZH performed the measurements; ZXM, and CZH analyzed the data; ZXM and CZH wrote the
337 manuscript draft; FSH supervised the research and provided intellectual guidance.

338 **Competing interests**

339 The authors declare that they have no conflict of interest

340 **Acknowledgments**

341 This work was supported by the National Natural Science Foundation of China (NSFC 21607018),
342 Chengdu Science and Technology Bureau Key R&D Program (2023-YF09-00013-SN). We thank A/Prof.

343 Shuhong Fang (Chengdu University of Information Technology) for manuscript refinement guidance and
344 Prof. Caiqing Yan (Shandong University) for sample collection support.

345 **Supplementary data**

346 Supplementary data related to this article can be found in the online version.

347 **References**

348 Ahrens, L., Harner, T., Shoeib, M., Lane, D.A., & Murphy, J.G. 2012. Improved characterization of gas-
349 particle partitioning for per- and polyfluoroalkyl substances in the atmosphere using annular
350 diffusion denuder samplers. *Environmental science & technology*, 46(13), 7199-7206.

351 Barber, J.L., Berger, U., Chaemfa, C., Huber, S., Jahnke, A., Temme, C., & Jones, K.C. 2007. Analysis
352 of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. *Journal of
353 Environmental Monitoring*, 9(6), 530-541.

354 Billah, M.B. 2016. Determination of perfluorinated compounds (PFCs) in the fine particulate matter
355 (PM2. 5) in China. *Jahangirnagar University Journal of Biological Sciences*, 5(1), 21-27.

356 Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A., Kannan, K.,
357 Mabury, S.A., & van Leeuwen, S.P. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the
358 environment: terminology, classification, and origins. *Integr Environ Assess Manag*, 7(4), 513-
359 541.

360 Cai, M., Yang, H., Xie, Z., Zhao, Z., Wang, F., Lu, Z., Sturm, R., & Ebinghaus, R. 2012. Per- and
361 polyfluoroalkyl substances in snow, lake, surface runoff water and coastal seawater in Fildes
362 Peninsula, King George Island, Antarctica. *Journal Of Hazardous Materials*, 209-210, 335-342.

363 Campo, J., Perez, F., Masia, A., Pico, Y., Farre, M., & Barcelo, D. 2015. Perfluoroalkyl substance
364 contamination of the Llobregat River ecosystem (Mediterranean area, NE Spain). *Science of
365 the Total Environment*, 503-504, 48-57.

366 Cohen, M.D., Stunder, B.J.B., Rolph, G.D., Draxler, R.R., Stein, A.F., & Ngan, F. 2015. NOAA's
367 HYSPLIT Atmospheric Transport and Dispersion Modeling System. *Bulletin of the American
368 Meteorological Society*, 96(12), 2059-2077.

369 Deng, M., Wu, Y., Xu, C., Jin, Y., He, X., Wan, J., Yu, X., Rao, H., & Tu, W. 2018. Multiple approaches
370 to assess the effects of F-53B, a Chinese PFOS alternative, on thyroid endocrine disruption at
371 environmentally relevant concentrations. *Science of the Total Environment*, 624, 215-224.

372 Dreyer, A., Kirchgeorg, T., Weinberg, I., & Matthias, V. 2015. Particle-size distribution of airborne poly-
373 and perfluorinated alkyl substances. *Chemosphere*, 129, 142-149.

374 Duan, X.L., Zhao, X., Wang, B., Chen, Y., & Cao, S. 2015. Highlights of the Chinese exposure factors
375 handbook. China Environmental Science Press, Beijing, China.

376 Fang, S., Li, C., Zhu, L., Yin, H., Yang, Y., Ye, Z., & Cousins, I.T. 2019. Spatiotemporal distribution and
377 isomer profiles of perfluoroalkyl acids in airborne particulate matter in Chengdu City, China.
378 *Science of the Total Environment*, 689, 1235-1243.

379 Harada, K., Nakanishi, S., Saito, N., Tsutsui, T., & Koizumi, A. 2005. Airborne perfluorooctanoate may
380 be a substantial source contamination in Kyoto area, Japan. *Bulletin of Environmental
381 Contamination and Toxicology*, 74(1), 64-69.

382 Hoke, R.A., Ferrell, B.D., Ryan, T., Sloman, T.L., Green, J.W., Nabb, D.L., Mingoia, R., Buck, R.C., &
383 Korzeniowski, S.H. 2015. Aquatic hazard, bioaccumulation and screening risk assessment for
384 6:2 fluorotelomer sulfonate. *Chemosphere*, 128, 258-265.

385 Jiang, Q.T., Lee, T.K., Chen, K., Wong, H.L., Zheng, J.S., Giesy, J.P., Lo, K.K., Yamashita, N., & Lam,
386 P.K. 2005. Human health risk assessment of organochlorines associated with fish consumption
387 in a coastal city in China. *Environmental Pollution*, 136(1), 155-165.

388 Kannan, K., Corsolini, S., Falandysz, J., Fillmann, G., Kumar, K.S., Loganathan, B.G., Mohd M, A.,
389 Olivero J., Van Wouwe N., & Yang JH. 2004. Perfluorooctanesulfonate and related
390 fluorochemicals in human blood from several countries. *Environmental science & technology*,
391 38(17), 4489-4495.

392 Lai, S., Song, J., Song, T., Huang, Z., Zhang, Y., Zhao, Y., Liu, G., Zheng, J., Mi, W., Tang, J., Zou, S.,
393 Ebinghaus, R., & Xie, Z. 2016. Neutral polyfluoroalkyl substances in the atmosphere over the
394 northern South China Sea. *Environmental Pollution*, 214, 449-455.

395 Li, Y., Niu, Z., & Zhang, Y. 2022. Occurrence of legacy and emerging poly- and perfluoroalkyl substances
396 in water: A case study in Tianjin (China). *Chemosphere*, 287(Pt 4), 132409.

397 Liu, B., Zhang, H., Yao, D., Li, J., Xie, L., Wang, X., Wang, Y., Liu, G., & Yang, B. 2015. Perfluorinated
398 compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and
399 health risk assessment. *Chemosphere*, 138, 511-518.

400 Liu, Z., Lu, Y., Shi, Y., Wang, P., Jones, K., Sweetman, A.J., Johnson, A.C., Zhang, M., Zhou, Y., Lu, X.,
401 Su, C., Sarvajayakesavaluc, S., & Khan, K. 2017. Crop bioaccumulation and human exposure
402 of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial
403 park, China. *Environment international*, 106, 37-47.

404 Prevedouros, K., Cousins, I.T., Buck, R.C., & Korzeniowski, S.H. 2006. Sources, fate and transport of
405 perfluorocarboxylates. *Environmental science & technology*, 40(1), 32-44.

406 Qi, Y., He, Z., Huo, S., Zhang, J., Xi, B., & Hu, S. 2017. Source apportionment of perfluoroalkyl
407 substances in surface sediments from lakes in Jiangsu Province, China: Comparison of three
408 receptor models. *J Environ Sci (China)*, 57, 321-328.

409 Schuetze, A., Heberer, T., Effkemann, S., & Juergensen, S. 2010. Occurrence and assessment of
410 perfluorinated chemicals in wild fish from Northern Germany. *Chemosphere*, 78(6), 647-652.

411 Stockholm Convention on Persistent Organic Pollutants (POPs) Annex A&B [Z], UNEP,2019.

412 Stock, N.L., Lau, F.K., Ellis, D.A., Martin, J.W., Muir, D.C., & Mabury, S.A. 2004. Polyfluorinated
413 telomer alcohols and sulfonamides in the North American troposphere. *Environmental science
& technology*, 38(4), 991-996.

415 Thurston, G.D., & Spengler, J.D. 1985. A quantitative assessment of source contributions to inhalable
416 particulate matter pollution in metropolitan Boston. *Atmospheric Environment* 19(1), 9-25.

417 Wang, Q., Zhao, Z., Ruan, Y., Li, J., Sun, H., & Zhang, G. 2018. Occurrence and distribution of
418 perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in natural forest soils:
419 A nationwide study in China. *Science of the Total Environment*, 645, 596-602.

420 Wang, S., Zhao, W., Xu, X., Fang, B., Zhang, Q., Qian, X., Zhang, W., Chen, W., Pu, W., & Wang, X.
421 2017. Dependence of columnar aerosol size distribution, optical properties, and chemical
422 components on regional transport in Beijing. *Atmospheric Environment*, 169, 128-139.

423 Wang, Z., Cousins, I.T., Scheringer, M., Buck, R.C., & Hungerbühler, K. 2014. Global emission
424 inventories for C4 –C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030,
425 Part I: production and emissions from quantifiable sources. *Environment international*, 70.

426 Wang, Z., Cousins, I.T., Scheringer, M., & Hungerbuhler, K. 2013. Fluorinated alternatives to long-chain
427 perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their
428 potential precursors. *Environment international*, 60, 242-248.

429 Wang Z., Wu T., Duan X., Wang S., Zhang W., Wu X., & Yu Y. 2009. Research on inhalation rate exposure
430 factors of Chinese residents in environmental health risk assessment. *Research of
431 Environmental Sciences*, 22(10), 1171-1175.

432 Xiao, F., Halbach, T.R., Simcik, M.F., & Gulliver, J.S. 2012. Input characterization of perfluoroalkyl
433 substances in wastewater treatment plants: source discrimination by exploratory data analysis.
434 *Water Research*, 46(9), 3101-3109.

435 Yu, N., Guo, H., Yang, J., Jin, L., Wang, X., Shi, W., Zhang, X., Yu, H., & Wei, S. 2018a. Non-Target and
436 Suspect Screening of Per- and Polyfluoroalkyl Substances in Airborne Particulate Matter in
437 China. *Environmental science & technology*, 52(15), 8205-8214.

438 Yu, S., Liu, W., Xu, Y., Zhao, Y., Wang, P., Wang, X., Li, X., Cai, C., Liu, Y., Xiong, G., Tao, S., & Liu,
439 W. 2018b. Characteristics of perfluoroalkyl acids in atmospheric PM10 from the coastal cities
440 of the Bohai and Yellow Seas, Northern China. *Environmental Pollution*, 243(Pt B), 1894-1903.

441 Zhang, B., He, Y., Huang, Y., Hong, D., Yao, Y., Wang, L., Sun, W., Yang, B., Huang, X., Song, S., Bai,
442 X., Guo, Y., Zhang, T., & Sun, H. 2020. Novel and legacy poly- and perfluoroalkyl substances
443 (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: The emergence
444 of PFAS alternatives in China. *Environmental Pollution*, 263(Pt A), 114461.

445 Zhang, T., Sun, H.W., Wu, Q., Zhang, X.Z., Yun, S.H., & Kannan, K. 2010. Perfluorochemicals in meat,
446 eggs and indoor dust in China assessment of sources and pathways of human exposure to
447 perfluorochemicals. *Environmental science & technology*, 44(9), 3572-3579.

448 Li, L., Zheng, H., Wang, T., Cai, M., Wang, P., 2018. Perfluoroalkyl acids in surface seawater from the
449 North Pacific to the Arctic Ocean: contamination, distribution and transportation. *Environ.
450 Pollut.* 238, 168–176.

451 Sheng, N., Zhou, X., Zheng, F., Pan, Y., Guo, X., Guo, Y., Sun, Y., Dai, J., 2017. Comparative
452 hepatotoxicity of 6: 2 fluorotelomer carboxylic acid and 6: 2 fluorotelomer sulfonic acid, two
453 fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice. *Arch. Toxicol.*
454 91 (8), 2909–2919.

455 Zhao, Zhen; Tang, Jianhui; Mi, Lijie; Tian, Chongguo; Zhong, Guangcai; Zhang, Gan; Wang, Shaorui;
456 Li, Qilu; Ebinghaus, Ralf; Xie, Zhiyong; Sun, Hongwen . 2017. Perfluoroalkyl and
457 polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai
458 Sea, Yellow Sea, and Yangtze River estuary. *Science of The Total Environment*, 599-600, 114–
459 123.

460 Liu, W., Qin, H., Li, J., Zhang, Q., Zhang, H., Wang, Z., He, X., 2017. Atmospheric chlorinated
461 polyfluorinated ether sulfonate and ionic perfluoroalkyl acids in 2006 to 2014 in Dalian, China.
462 *Environ. Toxicol. Chem.* 36, 2581–2586.

463 Young-Min Lee, Ji-Young Lee, Moon-Kyung Kim, Heedeuk Yang, Jung-Eun Lee, Yeongjo Son,
464 Younglim Kho, Kyungho Choi, Kyung-Duk Zoh, 2020. Concentration and distribution of per-
465 and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. *Journal of
466 Hazardous Materials*, Volume 381, 120909.

467 Cuihong Qin , Wei Zhang , Zheng Wan. 2021. Research on the Diffusion of Harmful Gases from Ships
468 Based on Gaussian Plume Model. *IOP Conference Series: Earth and Environmental Science*.
469 781, 032034

470 Weinberg, I., Dreyer, A., Ebinghaus, R., 2011. Waste water treatment plants as sources of polyfluorinated
471 compounds, polybrominated diphenyl ethers and musk fragrances to ambient air. *Environ.*
472 *Pollut.* 159, 125e132.

473 Piekarz A M, Primbs T, Field J A, et al, 2007. Semivolatile fluorinated organic compounds in Asian and
474 western U.S. air masses. *Environ Sci Tech*, 41: 8248–8255.

475 Gemma Casas, Alicia Martínez-Varela, Jose L. Roscales, Maria Vila-Costa, Jordi Dachs, Begoña
476 Jiménez., 2020. Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-
477 spray aerosols in the Southern Ocean, *Environmental Pollution*, 267, 115512, 0269-7491.

478 Fang X, Wang Q, Zhao Z, et al, 2018. Distribution and dry deposition of alternative and legacy
479 perfluoroalkyl and polyfluoroalkyl substances in the air above the Bohai and Yellow Seas, China.
480 *Atmos Environ*, 192: 128–135.

481 Yao Y, Chang S, Zhao Y, et al, 2017. Per- and poly-fluoroalkyl substances (PFASs) in the urban, industrial,
482 and background atmosphere of Northeastern China coast around the Bohai Sea: Occurrence,
483 partitioning, and seasonal variation. *Atmos Environ*, 167: 150–158.

484 Jahnke A, Berger U, Ebinghaus R, et al, 2007. Latitudinal gradient of airborne polyfluorinated alkyl
485 substances in the marine atmosphere between Germany and South Africa (53°N–33°S). *Environ*
486 *Sci Tech*, 41: 3055–3061.

Figure captions:

Fig 1. The sampling sites at Laoshan and Xisha Islands, China.

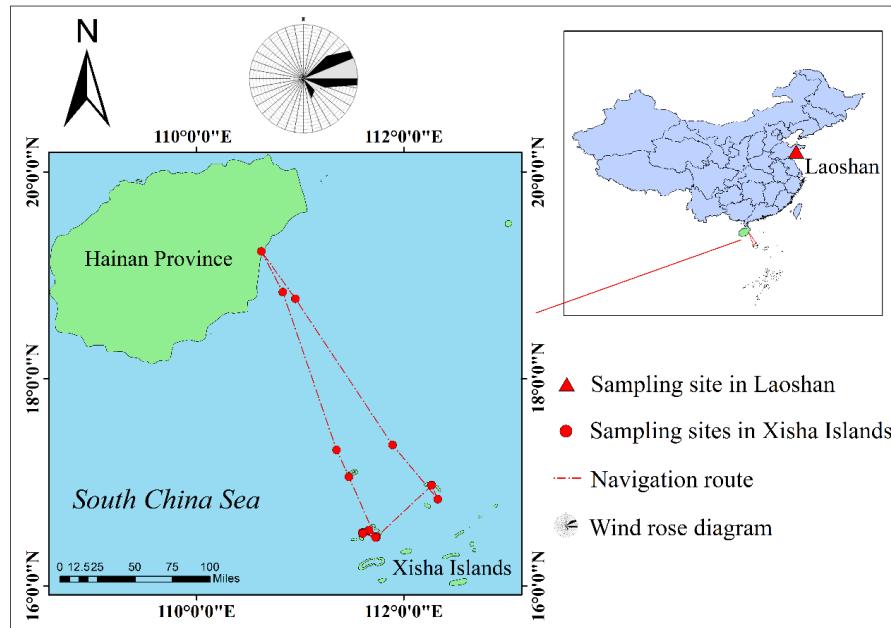

Fig 2. Concentrations of legacy and emerging PFASs in APM of Laoshan (pg/m³), China.

Fig 3. Concentrations (pg/m³) and proportion(%) characteristics of PFASs in APM of Xisha Islands, China.

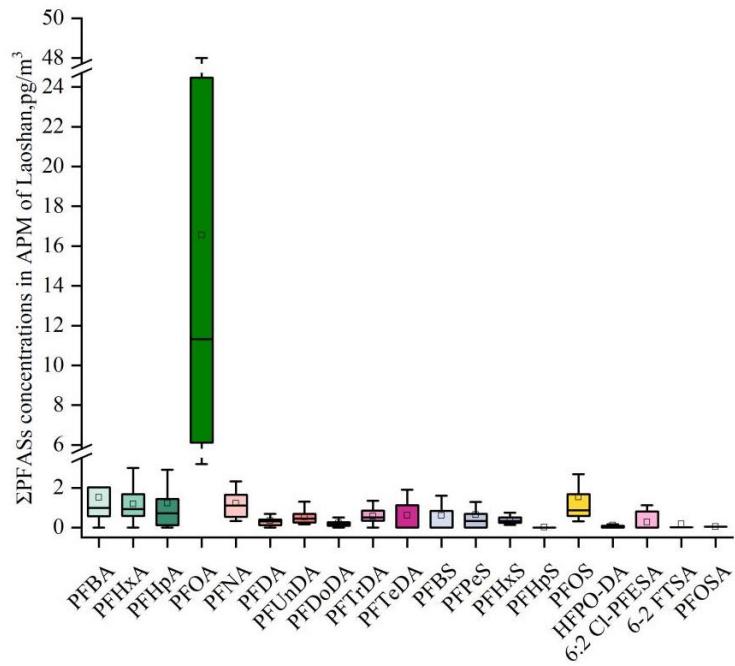
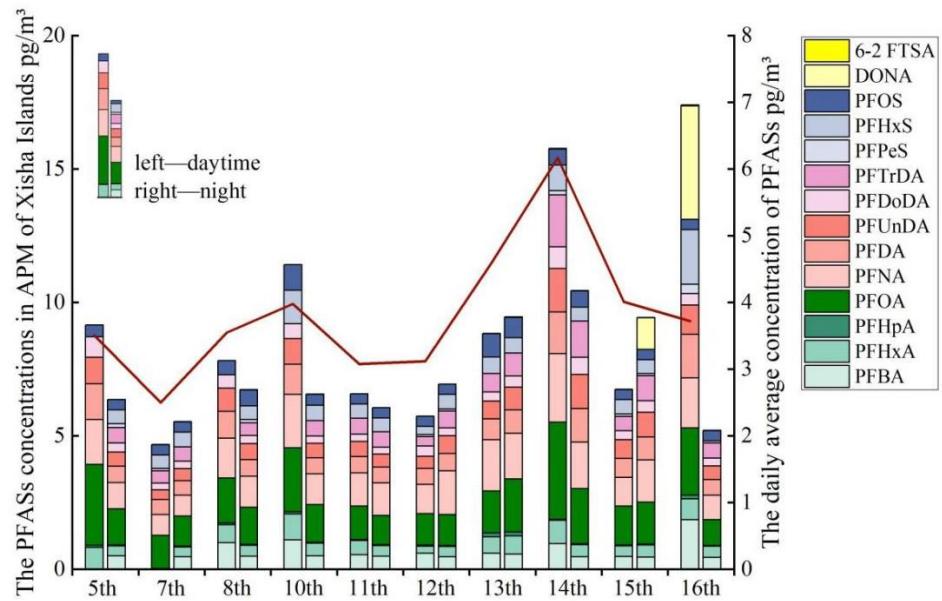
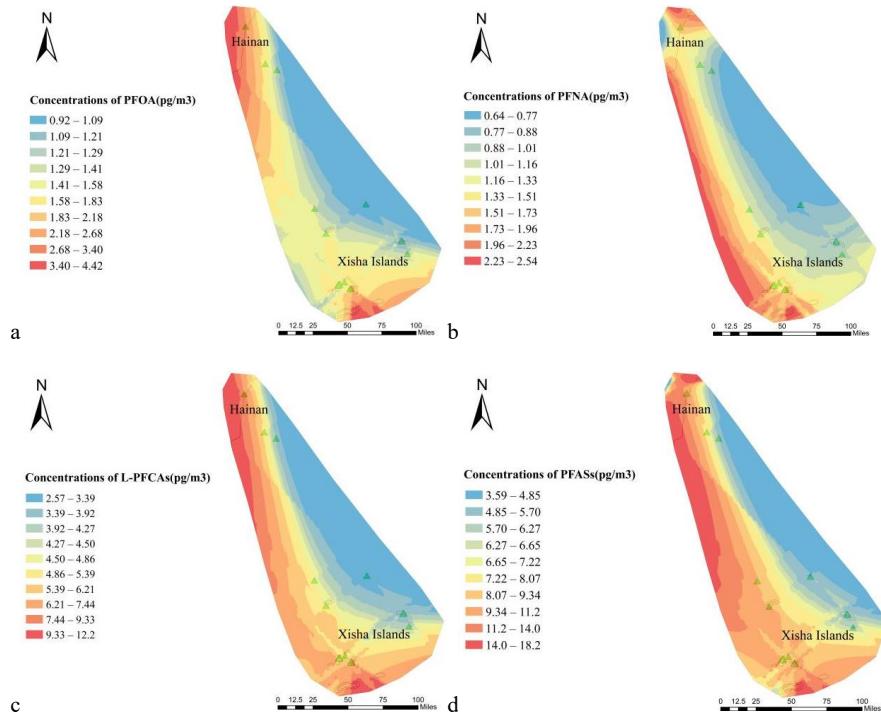
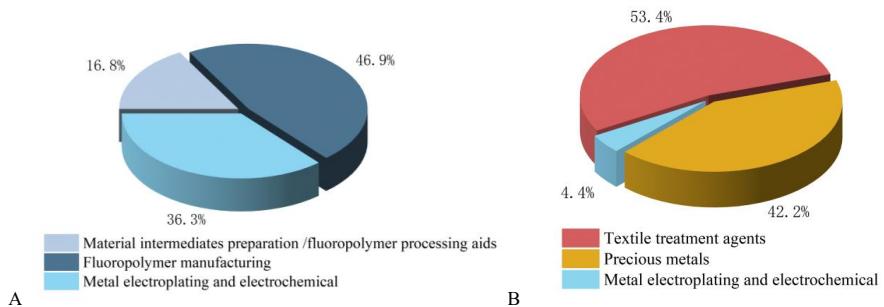

Fig 4. Geographic distribution of PFASs in atmosphere form Xisha Islands including PFOA(a), PFNA(b), the sum of L-PFCAs(C₈-C₁₄) (c) and Σ14PFASs (d).

Fig 5. Sources of PFAS in the atmosphere of Laoshan (a) and Xisha Islands (b), China.

Fig 6. Backward clustering trajectories at the sampling sites of Laoshan (a) and Xisha Islands (b). Dual-source backward clustering trajectories at the sampling sites of Laoshan (c) and Xisha (d) Islands in different time periods.

Fig. 1. The sampling sites at Laoshan and Xisha Islands, China

Fig. 2. Concentrations of legacy and emerging PFASs in APM of Laoshan (pg/m³), China.

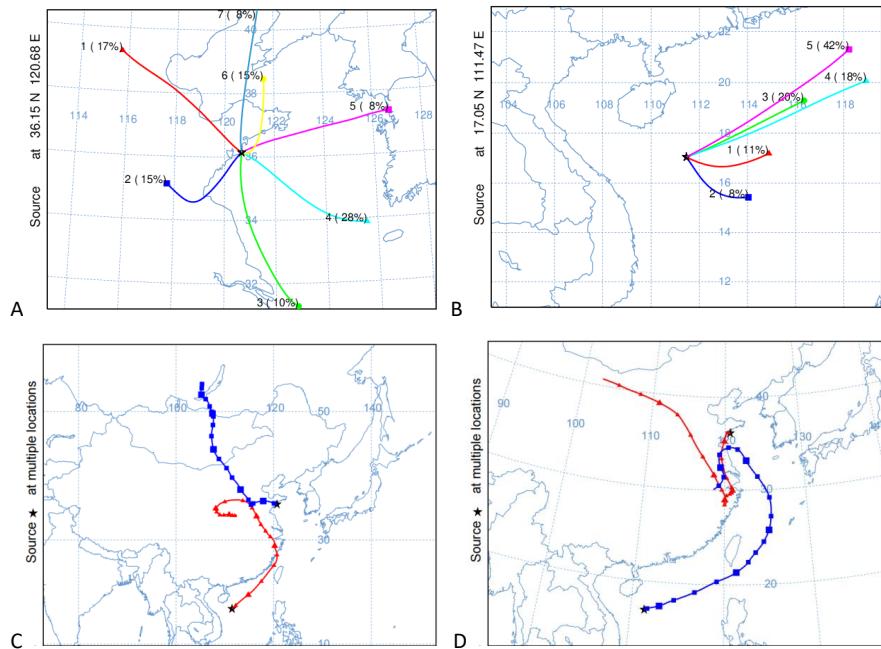

Fig.3. Concentrations (pg/m^3) and proportion(%) characteristics of PFASs in APM of Xisha Islands, China.

Fig.4. Geographic distribution of PFASs in atmosphere form Xisha Islands including PFOA(a), PFNA(b), the sum of L-PFCAs(C₈-C₁₄) (c) and Σ_{14} PFASs (d).

Fig.5. Sources of PFAS in the atmosphere of Laoshan (a) and Xisha Islands (b), China.

Fig.6. Backward clustering trajectories at the sampling sites of Laoshan(a) and Xisha Islands(b).

Dual-source backward clustering trajectories at the sampling sites of Laoshan and Xisha Islands in different sampling time

periods including (c) and (d)