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Abstract. Climate change impacts both lakes and their surrounding catchments, leading to altered discharge and nutrient
loading patterns from catchments to lakes, as well as modified thermal stratification and mixing dynamics within lakes. These
alterations affect biogeochemical processes and water quality in lakes. Coupled catchment-lake modeling provides both a
holistic evaluation of the effects of climate change on lakes and a framework for explicitly assessing the importance of how
catchments effect lakes. The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provides a framework for
projecting the impacts of climate change across multiple sectors (e.g. water, lakes, energy, health) of the Earth System
consistently, enabling integrated cross-sectoral assessments. However, climate impacts on lake dynamics are modeled in
ISIMIP without consideration of the links between lakes and the surrounding catchments. This is a significant limitation, as it
restricts assessments to only the direct impacts of climate change on lakes, overlooking the critical interactions between lakes
and their catchment areas. In this study, we establish the first dynamic connection between the Global Water and Lake Sectors
in ISIMIP, achieved by scaling the gridded modeled outputs of water fluxes from the Global Water Sector to the catchments
of the representative lakes of the Lake Sector. The streamflow to the representative lake of each grid cell, as defined by the
ISIMIP Global Lake Sector, was calculated based on runoff proportional to the catchment area of each representative lake. If
the lake surface area was larger than the grid cell area, water from upstream grid cells was included as the corresponding
proportion of river discharge. The methodology was applied to 70 lakes across Sweden covering a wide range of sizes,
hydrological settings and catchment characteristics. The estimated streamflow was validated against both the streamflow
outputs from the hydrological model HYPE and observed data. The comparison demonstrated good agreement in terms of
long-term streamflow mean and seasonal pattern, indicating that the proposed approach is capable of producing reliable
streamflow estimates without requiring high-resolution local models. This estimated streamflow, representing water flow into
lakes, will provide a valuable dataset for the scientific community within the ISIMIP Lake Sector supporting hydrological and

water quality modeling efforts aimed at understanding the impacts of climate change on lakes.


mailto:isabel.ayala.zamora@ebc.uu.se

35

40

45

50

55

60

1 Introduction

Climate change impacts both catchments and lakes in distinct yet interconnected ways, influencing their physical, chemical,
and biological processes. On one hand, alteration of precipitation patterns and increases in air temperature lead to hydrological
changes in catchments. At high latitudes, winter precipitation increases and increased air temperature shift precipitation from
snow to rain, reducing snowpack and leading to earlier spring snowmelt, resulting in greater streamflow and nutrients loading
during this period (Jiménez-Navarro et al., 2021). Higher air temperatures also lead to greater evapotranspiration rates
(Donnelly et al., 2017; Liu et al., 2021), which reduce streamflow and increase nutrient concentration during the summer.
Extreme precipitation leads to increased nutrient loading in both wet and dry areas, through increased runoff in wet areas, and
soil erosion and the mobilization of nutrients trapped in soils in dry areas (Costa et al., 2023). On the other hand, increases in
air temperature result in increased lake surface water temperature (O’Reilly et al., 2015) with stronger thermal stratification
and reduced mixing (Kraemer et al., 2015), earlier onset of summer stratification (Magee and Wu, 2017; Moras et al., 2019)
and shorter ice-cover periods (Sharma et al., 2019, 2021). Warmer water temperatures promote the growth of cyanobacteria,
leading to the formation of harmful algal blooms (Paerl and Huisman, 2008; Huisman et al., 2018).

Stronger lake stability and longer duration of thermal stratification lead to hypolimnetic oxygen depletion (Jane et al., 2021;
Jansen et al., 2024), resulting in increased internal loading (North et al., 2014) and greenhouse gas emission (Marotta et al.,
2014; Vachon et al., 2019; Jansen et al., 2022). Earlier ice loss leads to greater heat loss due to increased evaporation rates
(Wang et al., 2018; Li et al., 2022). Nonetheless, climate change affects lake ecosystems through a complex and dynamic
interplay of catchment loading and lake-internal processes. For instance, changes in the timing of streamflow and lake ice-off
lead to earlier onset of spring phytoplankton blooms (Gronchi et al., 2021; Mesman et al., 2024). Lake water level fluctuations
caused by dry conditions during periods of strong stratification limit vertical mixing, which contributes to pronounced
hypolimnetic hypoxia. This hypoxia is exacerbated by intense precipitation events that subsequently reduce oxygen
concentrations in the water column and lower the pH level (Saber et al., 2020).

The integration of catchments and lakes using coupled dynamic models provides valuable insights into the functioning of lake
ecosystems and the impacts of climate change, for example to understand how changes in the surrounding catchment area,
within the lake itself, and their interactions affect the lake's dynamics. Additionally, this modeling approach can inform the
development of adaptation and mitigation strategies.

The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, https://www.isimip.org) is a collaborative framework for

assessing the impacts of climate change across temporal and spatial scales, by integrating climate models, impact models, and
direct human forcing data to provide insights into climate change risk and inform potential adaptation and mitigation strategies.
ISIMIP is organized into multiple sectors that represent natural and human components of the Earth system, that are both
regulators of climate and vulnerable to its changes, including agriculture, forests, fisheries and marine ecosystems, water,
lakes, energy, health, among others. To ensure consistency in impact modeling within and across sectors, ISIMIP provides a

common set of climate-related and direct human forcing data, and along with a modeling protocol sets up standardized
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experiments, spanning pre-industrial and historical periods and future projections (Frieler et al., 2024). This framework enables
multi-model impact simulations within sectors, enhancing the robustness and reliability of model projections (Rosenzweig et
al., 2017) and quantifying the sources of uncertainty in the projections (Krysanova et al., 2017; La Fuente et al., 2024a; Jones
et al., 2025). In addition, it enables cross-sectoral assessment of climate change impacts (Lange et al., 2020; Vanderkelen et
al., 2020). However, cross-sectoral integration remains a challenge within ISIMIP, which limits the potential for capturing
complex interdependencies, cascading effects, and feedback loops between sectors. For example, simulations from the Water
Sector and the Lake Sector are at present not connected to each other.

The ISIMIP Lake Sector modeling has focused on lake physics and thermal dynamics, including changes in water temperature
(Ayala et al., 2020, 2023b), loss of ice cover (Grant et al., 2021; Sharma et al., 2021), stratification phenology (Woolway et
al., 2021b, 2022b), alterations in mixing regimes (Woolway and Merchant, 2019), occurrence of lake heatwaves (Woolway et
al., 2021a, 2022a), shifts in lake thermal regions (Maberly et al., 2020), heat uptake (Vanderkelen et al., 2020), surface heat
fluxes (Ayala et al., 2023a) and lake evaporation (La Fuente et al., 2022, 2024b, a). Hydrodynamic lake model simulations
were performed under the premise that lake water temperature variation results solely from the exchange of energy between
the lake surface and the atmosphere (Golub et al., 2022). However, the advective fluxes are particularly relevant for water
bodies with significant water level fluctuations and rapid water exchange, such as reservoirs or lakes with short residence
times. Fenocchi et al. (2017) showed that in a deep subalpine lake a hydrodynamic lake model, when excluding through-flows,
required unrealistically low light extinction coefficient to reproduce temperatures in the epilimnion and upper metalimnion. In
contrast, incorporating through-flows together with a realistic light extinction coefficient improved the accuracy of temperature
predictions in the lower metalimnion and upper hypolimnion. Raman Vinna et al. (2018) investigated the tributary influences
on lakes in a study of Lake Biel and Lake Geneva and revealed that seasonal variations in river discharge and temperature
significantly affect lake warming and stratification, underscoring the importance of hydrologic inputs in thermal lake modeling.
Integrating the ISIMIP Water Sector and Lake Sector, incorporating hydrologic model outputs into lake model simulations,
can improve the accuracy of thermal stratification and mixing dynamics in lakes and the assessment of climate change impacts.
It will also provide the basis for more complex simulations of lake biogeochemistry and water quality parameters, for which
inputs from the upstream catchment are paramount.

The Global Water Sector in ISIMIP (Telteu et al., 2021; Muller Schmied et al., 2024a) focuses on assessing the impacts of
climate change on water fluxes, including discharge, total (surface + subsurface) runoff and evapotranspiration, among other
hydrological variables, with a global grid resolution of 0.5° by 0.5°. The Global Lake Sector in ISIMIP has assigned one
representative lake to each 0.5° grid cell, which simplifies the complexity of modeling all lakes globally. This ensures
computational feasibility while capturing variations in lake responses to climate change, and provides a practical way to include
lake-specific dynamics in a global-scale assessment.

Here, gridded water fluxes simulated by WaterGAP 2 following the ISIMIP phase 3a protocol were scaled to match the
individual lake catchment areas for estimating the streamflow of 71 lake catchments across Sweden. The catchment-scale

streamflow simulations were then validated against both the streamflow outputs of the hydrological model HYPE, which
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simulates hydrological processes at the catchment scale, and observed data. The use of HYPE provides an additional

benchmark, with its outputs serving as an established reference dataset where observational data are limited.

2. Material and methods
2.1. Gridded simulations of streamflow from the ISIMIP3a Global Water Sector

Water Global Assessment and Prognosis (WaterGAP) is a process-based hydrological model used for quantifying water
resources and water use on a global scale (Alcamo et al., 2003; Déll et al., 2003). WaterGAP 2 consists of three major
components, the global water use model, the linking model GroundWater-SurfaceWater USE (GWSWUSE) and the
WaterGAP Global Hydrology Model (WGHM) (Miller Schmied et al., 2021). The global water use model distinguishes five
water use sectors, i.e., irrigation, livestock, domestic, manufacturing and cooling of thermal power plants, quantifying both
consumptive waters use and water withdrawals. The linking model GWSWUSE computes the fractions of water withdrawals
and consumptive use for all five sectors, distinguishing whether the water is sourced from groundwater or surface water bodies,
such as lakes, reservoirs and rivers. The WGHM computes water flows (fast surface and sub-surface runoff, groundwater
recharge, evapotranspiration and river discharge) and storage across ten compartments. The vertical water balance covers the
canopy, snow and soil, while the lateral water balance includes groundwater, lakes, reservoirs, wetlands and rivers.

The computational grid of WaterGAP 2 is based on the CRU land-sea mask (Mitchell & Jones, 2005), which covers the global
continental area with the exception of Antarctica, comprising 67420 grid cells of 0.5° longitude x 0.5° latitude, and the
upstream—downstream relations among the grid cells are defined by the drainage direction map DDM30 (Déll and Lehner,
2002). Model input includes climate data, land use and land cover data, soil characteristics, location and extent of surface water
bodies (lakes, wetlands, dams and reservoirs), the river routine network (basins, flow direction and slopes) and human water
use data. Although WaterGAP 2 includes the representation of lakes in its simulations (Mdller Schmied et al., 2021),
accounting for their role in storing water, evaporation and downstream release, it does not explicitly resolve the amount of
water flowing into individual lakes from upstream locations. Instead, the model estimates water flows at the grid cell level,
without disaggregating them to accurately capture inflow to specific lakes. As a result, it lacks the spatial resolution needed to
track lake specific inflow in details.

WaterGAP 2.2e contributed to ISIMIP3a, specifically in the Global Water Sector (Muller Schmied et al., 2023), following the

ISIMIP3a simulation protocol. The protocol (https://protocol.isimip.org) outlines the required experiments, input data sets and

output variables necessary for participation. Input data (climate forcing, socioeconomic forcing and static geographic

information) and impact model outputs are available at https://data.isimip.org.

Here, we focused on the standard model evaluation experiment obsclim_histsoc_default (Frieler et al., 2024), which is based
on the observed climate-related forcing obsclim from the GSWP3-W5ES5 climate forcing dataset (Kim, 2017; Cucchi et al.,

2020; Lange et al., 2021) combined with the direct human forcing (e.g. land use and land cover changes and water
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management) histsoc. This experiment reproduces observed long-term changes in hydrological change and water use from

1901 to 2019. The impact model WaterGAP 2.2e (https://www.isimip.org/impactmodels) provided monthly total (surface +

subsurface) runoff, qo: [kg m2 s], groundwater runoff, qq [kg m? s?], and discharge, dis [m= s!]. Note that, g and gq
represent the runoff produced within a grid cell, which includes both surface and subsurface, and groundwater components.
Meanwhile, dis represent the routed (i.e. via river channels) discharge at a given grid cell, which includes the runoff generated
within that grid cell plus the contribution from upstream grid cells. This means dis accounts for both locally generated runoff

and the cumulative flow from upstream grid cells, which results in the total discharge flowing downstream.

2.2 Representative lakes in the ISIMIP3a Global Lake Sector

In the ISIMIP3a Global Lake Sector, each 0.5°grid cell was assigned a representative lake sourced from the HydroLAKES
database (Messager et al., 2016). The selection of the representative lake for each grid cell was based on the location of the
lake centroid. When multiple lakes were present within a grid cell, the representative lake was selected based on the lake depth
corresponding to the weighted median of all lakes within the respective grid cell (weighted by the area of the lake) (Golub et
al., 2022), resulting in a total of 41449 representative lakes. The catchment areas for these representative lakes were derived
from the HydroLAKES database (Messager et al., 2016).

2.3 Study sites

Our study sites comprised 70 lakes across Sweden, which correspond to representative lakes from the ISIMIP3a Global Lake
Sector (Figure 1). The site selection included lakes with a wide range of surface areas and catchments of varying sizes (Table
S1). Additionally, the lakes were located in different physiographic regions, ranging from agriculturally dominated lowland
areas in the south to boreal and subarctic regions in the north. Accordingly, the surface area, Ajake, ranged from 0.34 to 5486
km?, with mean and median values of 176.26 and 23.25 km?, respectively. The catchment area, Acatchment, Varied from 101 to
48421 km?, with mean and median values of 4542 and 1698.35 km?, respectively. The ratio between Acatchment and Ajake ranged
from 3.37 to 14962. The mean and median ratio Acatchment 10 Ajake Were 386.99 and 48.30.
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Figure 1. Study sites, marked either as crosses (small lakes) or blue lake shapes (large lakes).
2.4 Scaling streamflow from 0.5°grid cells to catchment scale

To estimate the streamflow into representative lakes, we applied a scaling approach that adjusts grid-based hydrological
outputs to the actual catchment area of the lakes. The method is structured into three approaches, depending on the size of the
catchment relative to the grid cell area where the lake centroid is located:

e Approach l.a: Applied when the catchment area is smaller than or equal to the area of the grid cell containing the lake

centroid.

e Approach I.b: Applied when the catchment area spans multiple grid cells.

e Approach II: Applied for large lakes where the lake area spans multiple grid cells.
The water flow into the representative lake was calculated based on total (surface + subsurface) runoff, qw: [m s], and
groundwater runoff, gq [m s], in proportion to the catchment area of the representative lake, Acachment [M?] (Figure 2). The
catchment was delineated using upstream grid cells based on the flow direction. The grid cells contributing water flow towards
the lake were classified into levels: grid cells partially occupied by the lake correspond to level 0; each level 0 grid cell received
water flow from one or more of its eight neighbouring grid cells, which were classified as level 1; this process continued, with

the neighbouring grid cells of level 1 classified as level 2, etc (Figure 4). The ratio (N) of catchment area, Acatchment, to grid cell
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area (grid cell area where the lake centroid is located), Agrig, indicated how many grids cell occupied the catchment and

determines the number of grid cells to be counted in the water flow calculation (Figure 2).

Representative lake
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Figure 2. Workflow for estimating streamflow to lakes by scaling grid cells to catchment scale.

For N <1 (Approach l.a), the catchment area was smaller or equal to the grid cell area where the lake centroid was located.
Note that, N was rounded down to the nearest integer number, meaning the catchment area can be slightly greater than the lake
grid cell area. Only grid cells partially occupied by the lake (grid cells of level 0) were counted (i) (Figures 2 and 3). For
175 example, lake 12247 (Figure 3) had an Ajke of 22.46 km? and partially occupied 2 grid cells. Acachment Was 1662 km?, which
was slighter greater than the Agrig of the grid cell where the lake centroid was located, which was 1415.32 km?, resulting in a

N equal to 1. Therefore, the grid cells occupied by the lake (grid cells of level 0) were included in the count (i = 2).
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Figure 3. Catchment-lake scheme for lake 12247 (Aiake = 22.46 Km?, Acatchment = 1662 km?, Agria = 1415 km? and N = 1). The dot denotes
the lake centroid, respectively. The arrows indicate the flow direction, and the numbers indicate the grid cell levels. The blue-shaded
grid cells represent those selected for the streamflow estimation, according to the workflow (Figure 2).

However, for N > 1 (Approach 1.b), the catchment occupied multiple grid cells. As a result, both grid cells partially occupied
by the lake and upstream grid cells were counted. In addition to the grid cells of level 0 (i), the number of upstream grid cells,
j =N - i, were counted by levels, selecting as many grid cells as indicated by j. This ensures that the total contributing area,
represented by i + j grid cells, approximates the scaled catchment size N. Once all level 1 grid cells have been counted, we
proceed to the next level, continuing the process until j grid cells have been counted (Figure 4). If not all grid cells at the same
level can be counted (when the available grid cells at a given level exceed j or the remaining j), those with the steepest slope
were prioritized (Figure 2). For example, lake 11693 (Figure 4) has an Acatchment OF 11316 km?, while the grid cell where the
lake centroid is located has an Agrig of 1220.18 km?, resulting in N = 9. Of the 9 grid cells counted, 2 corresponded to level 0
(i = 2), representing grid cells partially occupied by the lake. For the upstream grid cells (j = 7), 2 of the 7 grid cells
corresponded to level 1, 2 to level 2, and 3 to level 3.
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Figure 4. Catchment-lake scheme for lake 11693 (Alake = 21.05 km?, Acatchment = 11316 km?, Agrig = 1220 km? and N = 9). The dot
denotes the lake centroid and the pour point, respectively. The arrows indicate the flow direction, and the numbers indicate the grid
cell levels. The blue-shaded grid cells represent those selected for the streamflow estimation, according to the workflow (Figure 2).



For large lakes where the surface area, Ak, exceeded the Agrig (Approach I1) the water flow from upstream grid cells was
included as river discharge, dis [m®s™], at the catchment grid cells bordering the lake grid cells (k, grid cells classified as level
1), in addition to g [M 5] and gq [m s proportional to the land area of the grid cells partially occupied by the lake (i, grid
cells classified as level 0), Acachmend™® [M?] (Figures 2 and 5). The inclusion of dis was necessary because, in large lakes, a
200 significant portion of inflow enters not as diffuse runoff from adjacent land areas, but as a concentrated river discharge
delivered through from upstream flow paths or tributaries. Lake grid cells (i) that did not flow into the lake, such as the grid
cell where the outlet of the catchment is located or grid cells acting as sinks (usually to the ocean), were excluded. For example,
lake VVanern — 105 (Figure 5) spans 12 grid cells (i) with an additional 18 upstream grid cells. Of the i lake grid cells, the pour
point grid cell was excluded because it was flowing out of the lake. Streamflow was calculated as the product of gwr+gg and
205  Acachmen®™@ for each of the remaining 11 grid cells at level 0 (i = 11). Additionally, the dis contribution from 7 bordering grid

cells within the 18 upstream cells (k = 7, level 1 grid cells) was included.
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Figure 5. Catchment-lake scheme for lake Vanern — 105 (Aake = 5486 km?, Acatchment = 48421 km? and Agria = 1604 km?). The dot and
cross denote the lake centroid and the pour point, respectively. The arrows indicate the flow direction, and the numbers indicate the
grid cell levels. The blue-shaded grid cells represent those selected for the streamflow estimation, according to the workflow (Figure
2).

2.5 Validation of streamflow at catchment scale

Historical simulations of daily river discharge of the hydrological model HYPE (Hydrological Predictions for the Environment;
Lindstrom et al., 2010), which is used operationally and was developed by Swedish Meteorological and Hydrological Institute
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(SMHI), are openly available for 35447 sub-catchments across Europe over a 30-year period (1981-2010) (Donnelly et al.,
2016; https://hypeweb.smhi.se/explore-water/historical%20data/europe-time-series). The HYPE discharge simulations

(hereafter referred to as the reference dataset) were used to evaluate the performance of the developed methodology for scaling
streamflow from grid cells to catchment scale.

The HYPE model was forced with ERAS reanalysis climate data (Donnelly et al., 2016), ensuring that the simulations provided
an independent dataset for validation. Daily HYPE outputs were averaged to produce monthly and annual discharge values,
which were then compared to our monthly estimations and derived annual averages calculated from the monthly values over
the common period (1981-2010) across 70 study sites.

Monthly and annual averages derived from daily observed river discharge at stations downstream of 10 lakes, which are also
representative lakes within the ISIMIP Global Lake Sector (lakes: Vanern — 105, Vattern — 104, Mélaren — 102, Siljan — 1150,
lake 12423, lake 12791, Erken — 12809, Roxen — 12965, lake 142240, and Hasselasjon — 152977), available from the Swedish

Meteorological and Hydrology Agency (SMHI; https://www.smhi.se/data), were also compared with the corresponding

monthly and annual average simulated and reference streamflow. Although the observed data represent discharge downstream
of the lakes (lake outflows), while the simulations estimate lake inflows, we assume that the atmospheric water exchange
(precipitation and evaporation) over the lake surfaces in Sweden are relatively minor compared to total inflow and outflow
volumes, particularly at monthly and annual timescales (Text S1).

Performance was assessed using the Kling-Gupta efficiency, KGE, metric. KGE decomposes model performance into three
aspects: the linear correlation coefficient, KGE;, the bias ratio, KGEy, and the variability ratio, KGEg, which assess the model’s

ability to reproduce timing, mean and variability, respectively (Gupta et al., 2009; Kling et al., 2012).

KGE =1— \/(KGEr —1)% + (KGE, — 1)* + (KGE, — 1)2 €))
KGEb — Hsim (2)
obs
cv Osim
_ sim _ Hsim
KGE, = CVor. = Tobs 3)
Hops

where Wsim and pobs are simulated and observed mean, and osim and aops are simulated and observed standard deviation. All three
metrics have an optimum value of 1. The three individual metrics are combined into an overall model performance, KGE, by
calculating the Euclidean distance from the ideal point. The error term is subtracted from unity to constrain the metric between
1 (perfect agreement) and —o. Based on Knoben et al. (2019), KGE is interpreted as: KGE=1 perfect agreement, 0.75<KGE<1
very good performance, 0.50<KGE<0.75 good performance, 0.25<KGE<0.50 acceptable performance and KGE<0.25 poor
performance.

Additional goodness-of-fit metrics for comparing reference and simulated values, such as the Mean Bias Error (MBE), Root
Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE) and Nash-Sutcliffe Efficiency (NSE; Nash &
Sutcliffe, 1970), can be found in the Supplementary Material.
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3. Results

The performance of the scaled streamflow simulations from grid cells to the catchment scale (hereafter referred to as
simulations) was evaluated for monthly time series over the period 1981-2010 across 70 study sites (Figure 6A; Table S2).
The average Kling-Gupta efficiency, KGE, was 0.59+0.18 (mean + standard deviation), with individual values ranging from -
0.07 to 0.86. For all study sites, the KGE exceeded -0.41, indicating that the simulated streamflow provided added value
compared to simple prediction based on the long-term mean streamflow.

To better diagnose performance, KGE was decomposed into its three components: correlation (KGE;), bias (KGEy) and
variability (KGEg). The average KGE, was 0.79+0.08, suggesting generally strong agreement between reference and simulated
streamflow timing. A total of 52 out of 70 sites (74 %) exhibited a KGE; greater than 0.75, reflecting very good representation
of seasonal and interannual flow dynamics. The bias component, KGEy, averaged 1.06+0.30, was close to the optimal value
of 1, indicating that the overall volume of streamflow was, on average, well captured. However the relatively high standard
deviation highlights substantial variability in bias among the study sites. Only 39 study sites (56%) had a KGEy within the
range of 0.75 to 1.25, indicating that for a significant number of study sites, deviations in simulated streamflow volumes were
a key source of reduced performance. The variability component, KGEg, averaged 0.88+0.22, indicating generally very good
representation of streamflow variability, though with some underestimation of streamflow. Similar to KGE;, 52 sites (72%)
had KGEg values within the range of 0.75 to 1.25. In summary, the simulations demonstrated generally very good performance
in reproducing time and variability of monthly streamflow across study sites. However, discrepancies in the magnitude of the
simulated streamflow, reflected in the higher variability of KGEy, where the bias component more frequently deviated from
its optimal range compared to the correlation and variability components (Figure 6A).

The inter-annual variability of streamflow was assessed by comparing the simulated and reference annual average streamflow
(Table S2; Figure S2). The average values of the KGE components were KGE, of 0.77+£0.14, KGE, of 1.06+0.30, KGEy of
1.06£0.31, indicating an overall very good performance in responding differently to wet and dry years. The relatively high
KGE; suggest that the simulated streamflow timing was very well captured. However, the standard deviations of both KGE,
and KGEq4 were relatively large, reflecting considerable variability in the ability to simulate annual streamflow volumes and
variability. While the mean values of KGE, and KGE4 were close to the optimal value of 1, these high standard deviations
indicate that performance differed substantially among study sites, with some ties showing over- or underestimation of
interannual streamflow characteristics. The combined KGE for interannual streamflow was 0.54+0.23, which is slightly lower
but comparable to the KGE (0.59+0.18) for monthly streamflow, suggesting that the model maintained reasonable skill across
both temporal scales.

Performance was further analysed based on the streamflow scaling approach. Of the 70 study sites, 68 were analysed using
Approach | (Ajake < Agrig), with 39 study sites following Approach l.a (N < 1) and 29 study sites following Approach I.b (N >
1). The average KGE was 0.56+0.15 for Approach l.a and 0.60+0.21 for Approach L.b, indicating similar performance across

these two subcategories. In 5 of the Approach I.b study sites, an additional comparison was made between counting all grid
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cells at the last level versus only those with the steepest slope. In both cases, the performance was acceptable, and the
differences between KGE and its components were marginal. When all grid cells were counting at the last level, the KGE was
0.49+0.31, with KGE;, of 0.76x0.05, KGE,, of 0.87+0.17, KGE,4 of 1.23+0.49; when only the steepest grid cells were counted
the KGE was 0.48+0.31, with KGE; of 0.74+0.07, KGE;, of 0.85+0.15, KGE, of 1.22+0.49). These small differences suggest
that the method is robust to the choice of how grid cells are selected at the last level.

The Approach Il (A > Agria) was applied to the two largest lakes in this study: Véanern (105) and Véttern (104), the
performance was very good in both Véanern and Vattern (Figure 6), with a KGE of 0.77 (KGE; of 0.85, KGE; of 0.97, KGE,
of 1.17) and 0.79 (KGE; of 0.79, KGEy of 0.97, KGE4 of 1.00), respectively. Lake Mélaren (102), the third largest lake in
Sweden, extends over 9 grid cells (Figure S1); however, its Ajae (0f 1083 km?) does not exceed the Agrig of 1580 km? due to
its irregular and branched shape. Scaling streamflow Approach 1.b (Ajake < Agria for N > 1) and Approach Il (Ajake > Agrig) Were
tested (Figure 2). For Approach I.b, simulated streamflow showed good performance at the seasonal scale, with KGE of 0.71
(KGE; of 0.72, KGE, of 1.04, KGE4 of 1.06); however, errors in reproducing the timing of flow reduced the overall
performance. In Approach I1, the simulated seasonal streamflow was less accurate, with a KGE of 0.47 (KGE, of 0.52, KGEp
of 0.98 and KGE4 of 0.80). The errors were caused by either a reduced ability to accurately reproduce the timing of flow

increases and decreases; and an underestimation of the magnitude of the variability, although it was still acceptable.
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Figure 6. Kling-Gupta efficiency (KGE)and its components, timing (KGEr), bias (KGEb) and variability (KGEg), when comparing
monthly simulations of scaled streamflow with reference data from the HYPE model (A) and observed data (B) of streamflow. Filled
dots correspond to study sites where Alake < Agrid (@pproach 1) and unfilled dots corresponds to study sites where Ajake > Agrid (@pproach
I1). The horizontal dashed line marks where KGE and its components equal 1, representing a perfect match

In addition, the performance of simulated streamflow was assessed by comparing simulations with observations for 10 study
sites, which are both representative lakes in the ISMIP3 Global Lake Sector and for where observations are available (Figure
6B; Table S3). At the seasonal scale, the average KGE was 0.46+0.21, with KGE; of 0.65+0.12, KGE;, of 1.10+0.20, KGE; of
1.07£0.40. Overall performance was acceptable but was primarily limited by mismatches in flow timing. At the annual scale,
the performance of the scaling streamflow from grid cells to catchment scale was good (KGE of 0.70+0.15, with KGE; of
0.85+0.05.83+0.05, KGE, of 1.10+0.20, KGE, of 0.98+0.20), indicating strong agreement in timing, bias and variability across
study sites (Figure S2).

Finally, a further evaluation was conducted by comparing reference and observed streamflow for 9 study sites (note that the
reference and observations datasets cover different time periods, which limited direct comparability in the 10 study sites for
which observations were available) (Table S4). At the monthly scale, the average KGE was 0.44+0.44 (with KGE, of
0.65+0.23, KGE; of 1.12+0.34, KGEy of 1.13+0.46), indicating on average acceptable agreement with substantial inter-site
differences. At the yearly scale, performance improved to KGE of 0.55+0.26 (with KGE; of 0.78+0.12, KGE; of 1.12+0.34,
KGEy of 0.77+0.19). Overall, these results demonstrate that the scaling method provides added value, improving the
simulations of streamflow compared with standard catchment-scale hydrological models.

We conclude that the overall performance of the scaled streamflow simulations matched satisfactorily to both reference
(derived from the hydrological model HYPE) and observed streamflow (Figure 7; Figures S3-S11).
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Figure 7. Monthly (upper row) and annual (lower row) comparison of simulated (black), reference (blue) and observed (red)

streamflow for lake VVanern (105) over a 30-year period (1981-2010).
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4, Discussion

This study demonstrates a scaling approach that reliably estimates streamflow to individual lakes from gridded streamflow
data, showing strong agreement between simulations, reference data, and observations. The fit of our simulated scaled
streamflow was acceptable regardless of temporal scale (monthly, Figure 6; annually, Figure S2), and geospatial configuration
i.e. the location and size of the lake and its catchment, corresponding to the scaling Approaches l.a, I.b and 11 (Figure 6; Figure
S2). The simulated scaled streamflow also fitted reference data as well as observations equally well (Figures 6-7; Figures S3-
S11). These conclusions are based on the evaluation of the performance of scaled streamflow simulations across 70 study sites
in Sweden, and the country’s diverse landscape, which includes a wide range of lake sizes, catchment sizes and land covers,
climate conditions and topography, thus providing a robust basis for assessing model performance. This diversity enhances
the generalizability of the validation results across different hydrological settings. Further, Donnelly et al. (2016) demonstrated
that Sweden has a well-established hydrological modeling framework, particularly through the HYPE (Hydrological
Predictions for the Environment) model, which has been extensively applied and validated in the region, and which was used
as a reference data source in this analysis. In addition, Sweden has long-term, high-resolution datasets for precipitation,
temperature and streamflow, which are essential for ensuring robust hydrological simulations, making the HYPE model
optimal for testing the accuracy of scaled streamflow simulations. We feel that the regionally focused nature of HYPE should
provide an excellent comparative data set to the globally applied WaterGAP 2 model. Comparisons to HYPE were used to
judge our scaling approach, since HYPE simulations are readily available for the catchment associated with lake inflows, while
measured lake inflow data are far less common.

While this study focuses exclusively on Swedish lakes, the wide range of topographic and geomorphological conditions
represented in the datasets supports the potential global applicability of the scaling approach (Table S1). The dataset spans
more than three orders of magnitude in lake surface area (from 0.34 to 5486 km?) and are embedded in catchments ranging
from 101 to 48421 km?, with catchment-to-lake area ratios varying from 3.37 to 14962. These systems span a broad latitudinal
gradient, from approximately 55°N to 69°N, encompassing temperate subarctic climates, and also cover a wide elevational
range, from lowland lakes near sea level to high altitudes systems. This introduces variability in temperature regimes, snow
accumulation and runoff dynamics. Catchment topography is similarly diverse, with mean catchment slopes ranging from
0.000001 to 0.012 m m?, and a wide spread in both minimum and maximum catchment slopes that influence flow
concentration and hydrologic connectivity. This richness in latitude, elevation, slope, area and catchment configuration reflects
a broad spectrum of geomorphic and hydrological settings. Since these land-based drivers are primary controls on surface
hydrology and lake water balances, their strong representation in the Swedish dataset supports the scaling approach’s
transferability to other regions.

Although our scaling approach is effective for estimating how much water flows into lakes, it does not account for the full
routing of water through rivers. A key limitation comes from differences in the spatial detail of the datasets we used. Water

fluxes (qwt, qg and dis) are provided by WaterGAP 2.2e on a coarse grid (0.5°grid cell), while geometry of lake boundaries in
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the HydroLAKES dataset is represented at a much finer scale. This mismatch in resolution can lead to inconsistencies, for
example: an inflowing stream might appear to flow into a lake in the gridded data, even though in reality it joins the river
downstream. These issues are especially common in small lake systems. To reduce their impact, we used known catchment
areas to adjust our streamflow estimates and avoid large overestimations. However, this approach does not fully resolve the
mismatches, and it breaks the water mass balance, meaning we may misrepresent how much water flows through the system.
If the objective is to model the transport of water through river and lake networks, additional considerations would be required
to ensure an accurate mass balance.

The task of linking ISIMIP Global Water Sector and Lake Sector models requires the use of gridded models and gridded data.
One critical factor influencing the accuracy of the simulated streamflow is the structure and potential limitations of the gridded
hydrological model. In this study, the gridded water flux (gwt, 0y and dis) simulations were obtained from WaterGAP 2.2e
(Muller Schmied et al., 2023), a global hydrological model that simulates water availability and use at a global scale. The
performance of the scaling approach, when the simulated streamflow is compared to reference values or observations, is thus
inherently linked to the accuracy of WaterGAP 2.2e outputs. The WaterGAP 2.2e model achieved a global monthly streamflow
performance with a median KGE of 0.58 (Muller Schmied et al., 2023). The scaled streamflow simulations performed
similarly, with a median KGE of 0.59 compared to the reference and a median KGE of 0.46 against observations. Regarding
KGE components, the bias ratio (KGEy) showed a median value close to the optimal value of 1 in all cases (for WaterGAP
2.2e: median KGE; of 1.01 and for scaled streamflow: median KGEy of 1.04 compared to the reference and median KGE;, of
1.00 compared to observations). KGEy deviates from 1, indicating that streamflow variability is not well simulated, the median
KGEy was 0.86 for WaterGAP 2.2e, while the scaled streamflow showed median KGEg values of 0.84 compared to the
reference and 0.96 compared to observations. This underestimation of streamflow variability suggests that hydrological
extremes, including peak and low flows, may not be fully captured when using a gridded model with gridded meteorological
forcing, potentially leading to a smoothing effect in the simulations. In the Képpen-Geiger climate region D, which includes
Sweden, 47 % of the gauging stations used for the calibration of WaterGAP 2.2e showed KGEg4 values between 0.5 and 0.9.
For the scaled streamflow, 61 % of the study sites fell within 0.5-0.9 range when compared to the reference, while 40 % did
so when compared to observations. The ability to capture the timing of streamflow increases and decreases was generally good
in WaterGAP 2.2e, with a median KGE; of 0.78. In the Képpen-Geiger climate region D, 27 % of gauging stations showed a
KGE; below 0.5, indicating moderate timing errors. The scaled streamflow showed improved timing accuracy when compared
to the reference, with a median KGE; of 0.81 and only 11% below 0.5. However, when compared to observations, the median
KGE; decreases to 0.67, with 60% of study below 0.5, suggesting that while the scaling approach improves consistency with
the reference, discrepancies remain when validated against observed streamflow.

Another factor influencing the performance of streamflow simulations was the data source used for validation. E-HYPE, the
European-scale implementation of the HYPE model, utilized gauged streamflow data for catchments larger than 5000 km?,
while for smaller catchments, it relies on modelled ungauged streamflow (Donnelly et al., 2016). This distinction is important

because it might explain why the accuracy of streamflow simulations tended to be higher in well-gauged large catchments,
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whereas streamflow simulations in smaller catchments were inherently more uncertain due to the reliance on hydrological
modeling rather than observations. Among the 70 study sites, 23 had a catchment area larger than 5000 km?, yielding a mean
KGE of 0.60+0.22, while the remaining 47 study sites (< 5000 km?) exhibited a comparable performance, with a mean KGE
of 0.58+0.15. However, for the 10 study sites where scaled streamflow was compared directly with observations, performance
varied: 6 study sites with catchments larger than 5000 km? showed a mean KGE of 0.41+0.20, whereas another 4 study sites
(< 5000 km?) achieved a mean KGE 0f0.52+0.22. This suggests that while scaled streamflow simulations performed similarly
across different catchment sizes when compared to a streamflow reference, their accuracy was more variable when directly
validated against observations.

It is important to point out the difference between the reference (E-HYPE discharge simulations) and scaled streamflow are
due not only to potential inaccuracies in the scaling approach itself, but also to differences in the performance of E-HYPE and
WaterGAP 2.2e models, and meteorological data used to force both models. The good agreement between the reference and
simulated scaled streamflow, despite multiple potential sources of errors, therefore, suggests that the scaling approach
presented here is likely to perform similarly well in another region of the world.

When scaling streamflow from gridded data to the catchment scale, three different approaches (Approach l.a, Approach 1.b
and Approach I1) were employed to account for differences in the size and location of lakes and their catchments in relation to
grid cells. These approaches are essential due to the significant differences in lake size, shape and catchment area relative to
the model grid resolution. The performance of the scaling approach was further assessed across different catchment and lake
sizes. For lakes where Ajae < Agrig, both sub-approaches (l1.a and 1.b) yielded similar results, demonstrating the robustness of
the method across different grid configurations. In large lakes where Ajae > Agria (Approach I1), such as Vénern and Vattern,
the performance was strong with KGE values of 0.77 and 0.79, respectively. In contrast, for Lake Mélaren, which has a highly
irregular shape (Figure S1), the choice of scaling approach significantly affected performance. The better performance of
Approach 1.b (KGE=0.71) compared to Approach Il (KGE=0.47) highlights the importance of accounting for complex lake
morphologies in streamflow scaling. Nevertheless, both scaling approaches achieved satisfactory performance comparable to
other lakes with less complex morphologies, indicates that, although lake morphology can influence performance, it is not the
sole determining factor, further supporting the robustness and practical applicability of the scaling approaches even for lakes
with complex morphologies.

Although validation against observed streamflow is constrained due to data availability, the 10 lakes used for validation are
broadly representative of the 70 lakes included in the study. Geographically, these lakes are distributed across latitudes from
58.33° to 66.66°, covering southern, central and northern regions of Sweden (Table S3). The lake area spans three orders of
magnitude from 7.68 km? (lake 142240) to 5486 km? (lake Vanern), with catchment areas that vary independently of lake size
(Acatchment raged from 138.7 km? to 48421 km?). This includes both small lakes with small catchments (Acatchment Alake > 0f 5.99
— lake Erken) and large catchments (Acatchment Alake™™ OF 139.91— lake Roxen), as well as large lakes with small catchments
(Acatchment Alake* 0F 3.37 — Lake Vattern) and large catchments (Acatchment Aake* 0f 20.94 — Lake Malaren), reflecting the diverse

hydrological characteristics of the study region. Validation against observed streamflow data for these representative lakes
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(Figure 6B; Table S3) confirmed the ability of the scaled simulations to match not only reference data, but also observed data.
Seasonal-scale performance was slightly lower (KGE of 0.46+0.21) due to timing errors, compared to stronger annual-scale

performance (KGE of 0.70£0.15), indicating that the method effectively captures long-term hydrological trends.

5. Conclusion

The results of this study demonstrate that the developed scaling approach is reliable and robust for global applications, showing
good performance across a wide range of hydrological settings. By implementing three distinct approaches (l.a, I.b and I1), the
methodology effectively accounts for varying lake sizes and catchment configurations, from small single-grid lakes and
catchments to large, complex multi-grid systems such as Vanern, Véttern and Mélaren. This flexibility enables consistent
application across diverse hydrological regimes and supports the use of the method in a large-scale modelling framework.
While the overall performance was satisfactory, evidence by strong average KGE values, some limitations remain, particularly
in capturing flow variability and timing in more complex systems.

This study also addresses a key limitation in the ISIMIP framework by introducing a method to dynamically link gridded
catchment hydrology with lake inflows. The approach allows lake simulations to reflect not only direct climate impacts but
also changes in upstream hydrological processes, enabling more realistic assessments of climate change impacts on lakes
globally. By bridging the gap between catchment and lake dynamics, this methodology provides a valuable tool for improving

integrated hydrological and biogeochemical lake modelling within ISIMIP and beyond.
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