Author’s response to reviewers

We appreciate the detailed reviews provided by both reviewers, which have significantly con-
tributed to improving the clarity of our manuscript.

We display the reviewers’ comments in black and italic and highlight our responses in green
and changes we made in blue in order to ensure clarity.

Best regards, Zavud Baghirov on behalf of the authors

1 Reviewer 1

The authors present a new global hybrid model (H2CM) that couples terrestrial water and car-
bon cycles by blending physically based equations with neural network components, constrained
by multiple observational data streams. The study is timely and potentially significant, given
growing interest in machine learning augmented Earth system models. The authors clearly
describe the model design, data constraints, and evaluation. The integration of a hybrid hydro-
logical model (H2MV) with a conceptual carbon cycle model is new. The results demonstrate
strong performance, notably in capturing seasonal carbon flux patterns that some process mod-
els miss. I find the work scientifically interesting and largely well executed. However, several
clarifications and improvements are recommended:

Dear reviewer 1,

Thank you very much for taking the time to review our manuscript and for providing feedback
that helps us improve its clarity.

1.1 Scientific significance and novelty

The authors propose the first global hybrid model explicitly coupling water and carbon cycles
with ML-quided parameters. This addresses a recognized gap, the integration of observational
constraints on both hydrology and carbon is novel. The model’s ability to reveal patterns (e.g.,
precipitation-use efficiency, water-use efficiency) demonstrate added value beyond traditional



models. The work thus represents a significant advance toward next-generation hybrid land-
surface models. I suggest that the authors should highlight more explicitly how H2CM differs
from and advances prior approaches. Similarly, highlight that hybrid modeling is still “young
and evolving” (1.47) and that most previous work was at the proof-of-concept stage, underscoring
H2CM’s novelty. If there are any other related models (even sub-global studies), a brief
comparison would strengthen the novelty claim.

We thank the reviewer for this helpful suggestion.
In the introduction we now mention that:

“However, it is important to note that this is still a young and evolving field and most current
works on hybrid modelling were at the proof-of-concept stage.”

We also added the following paragraph to the introduction to explain how H2CM differs from
and advances the most commonly used approaches for modeling global water and carbon cycle
components:

“H2CM advances the field by combining previous approaches—such as fully data-driven models
like FLUXCOM (Jung et al. 2019, 2020; Nelson et al. 2024) and fully process-based models
like TRENDY (Sitch et al. 2015, 2024)—by aiming at combining their strengths: it learns
directly from global observations through its machine learning component, while respecting
conceptual process understanding and mass balance.”

To the best of our knowledge, no hybrid model of the coupled water—carbon cycle existed at
global or subglobal (e.g., continental) scales prior to this work; here we present the first. For
framing and context relative to other emerging modelling strategies, please see our response
in Section 2.1.1.

1.2 Methodology and model design

The model architecture is generally well described. H2CM extends H2MYV hy-
drology by adding a carbon cycle (Egs. 1-4). Transpiration is computed from
FAPAR, potential ET, and a parameter alpha_ T (Eq. 1). GPP is linked to tran-
spiration via a NN learned WUE and a CO2-fertilization term beta (Eq. 2). NPP
uses a NN learned CUE (Eq. 3), and heterotrophic respiration (Rh) follows a
Q10 function (Eq. 4) with a NN learned basal respiration rate Rb. The modeling
choices are physically plausible, and the coupling (via WUE linking T and GPP)
is reasonable. Table 2 clarifies how each neural network is guided by selecting
meaningful inputs (e.g., WUE depends on soil moisture, VPD, radiation). This
guided-NN strategy improves interpretability.



1.2.1

Is there one NN for each output variable? (11.60) Why was it better to use several
models? Do you performed experiments using one model for several outputs with
various inputs? Please be more detailed here and explain why your approach was
best.

We thank the reviewer for this question. To clarify, we revised the H2CM conceptual figure (see
our response in Section 1.2.7) and now state explicitly that each NN predicts multiple, related
outputs, as detailed in Table 2. We chose a small set of task-specific networks rather than
a single LSTM that ingests all inputs to predict all outputs because such monolithic models
are prone to shortcut learning, which can induce implausible input—output relationships. By
separating networks according to tasks with theoretically justified input—output connections,
we introduce a soft causal regularization of the machine-learning component based on prior
knowledge. This rationale is reflected in the manuscript (current preprint, lines 163-171).

1.2.2

You name your target variables for the ML tasks model constraints — but indeed
there are no constraints in the model. Your constraints are predicted target
variables by a ML algorithm and controlled by the performance of the ML model.
What about out-of-sample inputs? They are not constrained and depend on the
generality of your model.

Thank you for this point. In the revised manuscript, we adopt the term “data constraints”
to better reflect their role in guiding predictions. Their influence indeed depends on the ML
model’s performance and generalization.

Regarding out-of-sample inputs, we assessed this with a new experiment that held out not
only spatial blocks but also two full years (see our response to Section 1.2.13 for details). This
comparison indicates robust generalisability, at least over short-term horizons (two years).

1.2.3

The Greek variables (e.g., alpha_ T) were trained by NNs — but it is not clear how
you trained these parameters. Which target variable was used? These parameters
seem to be hidden variables in the NNs, no target variables. Please be more
precise about your ML architecture and a detailed ML model description. How
is alpha__ T integrated in your NN7?

Thank you for this question. We have added the following paragraph when we introduce the
equation 1 to clarify this mechanism:



“Parameters such as a; are explicit NN outputs. During training, the NN predicts oy from
its inputs, and this value—together with variables like fAPAR—is passed to the process-based
component to estimate transpiration, which contributes to total ET. Because ET is constrained
by observations, training minimizes the loss between predicted and observed ET, thereby
adjusting o iteratively. Moreover, o is also shaped indirectly through other observational
constraints (e.g., TWS, GPP), so multiple datasets jointly influence its learning.”

For details on the full training procedure, please see our response in Section 1.2.7.

1.2.4

Please also clarify the CO2 dependency using beta in Eq. (2) so readers can
understand how fertilization enters the model.

Thank you for this suggestion. We added the following to the revised manuscript when we
introduce equation 2:

“.. The B¢, term is a globally constant, trainable parameter that regulates the strength of
the CO, fertilization effect on GPP.”

1.2.5

Also, how was the WUE learned in the model? On which spatial and temporal
resolution are these parameters learned? I feel like having not enough information
to fully understand your underlying ML architecture.

We thank the reviewer for this question. WUE is learned in the same way as . (please see our
responses in Section 1.2.3 and Section 1.2.7): the NN predicts WUE from inputs, which is then
used in the process-based module and iteratively adjusted through observational constraints.
WUE is estimated at daily temporal resolution and 1° spatial resolution. More generally, in
Eqgs. (1-4), variables with superscript < s > vary spatially but are temporally invariant,
those with < s,¢ > vary across both space and time, and parameters without superscripts are
globally constant. We highlight this in 1.99 of the current version of the preprint.

1.2.6

145ff.: Are you using time series or only single time steps as input for your LSTM?
I assume you were using time steps as the latter would not make sense. But it is
not clearly described and misunderstanding in your description.

Thank you for pointing this out. H2CM uses full time series as input to the LSTMs, not
isolated single steps. The LSTM processes the sequence recurrently, step by step. Our wording
at line 146 (“at time step t..”) was meant to illustrate the operation at one step, but the same



sequential processing applies across the entire series (¢,t+1,t+2,...). We revised the methods
section (145fF) to clarify this and prevent misunderstanding by adding the following sentence:

“Note that Fig. 2 illustrates this process for a single time step; however, it is executed
sequentially for each time step, starting from t = 0 until the final time step.”

1.2.7

I understand that you used a simplified overview of your model architecture. But
there is still missing more detailed information about the network architecture of
you NN components. It would be helpful to have another figure especially for these
components as well — as your model relies on the hybrid approach. How many
layers, number neurons, training epochs, learning rate, any dropout or weight
decay were used? How are the different NNs connected?

We thank the reviewer for this suggestion. We have prepared a new figure explaining the model
architecture in much greater detail and included it in the Appendix for readers interested in
these details:

“Figure A1 illustrates the overall architecture of H2CM:

(A) Static inputs and compression. Panel Al represents the static environmental inputs,
including land cover, soil properties, wetland extent, and digital elevation. These features are
passed through a fully connected neural network (FC-NN 1; A2) that compresses spatially
varying but temporally invariant information into a latent vector. FC-NN 1 has two hidden
layers with 150 and 12 units, respectively. The 12-unit latent vector is used as compressed
static features and serves as a shared input to all dynamic sequence layers. The outputs of
this static network (A3) include spatially varying parameters such as maximum soil moisture

capacity (SM,,,.) and ap,; controlling interception evaporation.

(B-E) Dynamic sequence models. H2CM includes three long short-term memory (LSTM)
networks and an additional fully connected neural network (FC-NN 2) to model time-varying
processes. Each LSTM contains one hidden layer with 100 units and is connected to a small
fully connected layer that transforms hidden states into physically interpretable parameters.
These dynamic modules produce spatio-temporal predictions:

e LSTM 1 (B1-B3): Receives the compressed static features together with dynamic drivers
such as net radiation, precipitation, relative soil moisture, snow, groundwater, and fA-
PAR at time t—1. It predicts coefficients (.45 Qpgus Qsmerr) that control soil recharge,
groundwater recharge, and snowmelt processes.

o LSTM 2 (C1-C3): Takes inputs including the static compressed vector, air temperature,
vapor pressure deficit, CO, concentration, relative soil moisture, and fAPAR and NPP
at time t — 1. It estimates carbon use efficiency and fAPAR.



o LSTM 3 (D1-D3): Uses static compressed features, net radiation, precipitation, fAPAR,
and NPP at time ¢t — 1 to predict the basal respiration rate and aj, parameter that
controls soil evaporation.

o FC-NN 2 (E1-E3): A fully connected neural network with two hidden layers (150 and 12
units) that predicts water use efficiency and the a parameter, which represents effective
conductance or stress response.

(F) Global constants (learned). A set of globally learned parameters (Qqy, Sco2, Pbasefiows
Bsnow) Provide scaling relationships for temperature sensitivity of respiration, CO,, fertilization,
baseflow recession, and correction of snowfall.

(G) Coupled water—carbon cycle model. The outputs from the static and dynamic subnetworks
are passed to a differentiable, process-based water—carbon cycle model that enforces mass
balance between fluxes. This model represents the physical coupling between hydrological
and carbon processes, ensuring consistency between water storage, evapotranspiration, carbon
assimilation, and respiration.

(H) Constrained spatio-temporal predictions. During training, the entire hybrid architecture—
including the static and dynamic neural subnetworks and the differentiable process water—
carbon cycle model—is optimized end-to-end. The neural network components generate spa-
tially and spatio-temporally varying parameters that are passed into the process model, which
produces simulated water fluxes and storages and carbon fluxes. Some of these outputs (net
ecosystem exchange, gross primary productivity, fAPAR, terrestrial water storage, snow water
equivalent, evapotranspiration, and runoff) are compared against observational targets through
a composite loss function. Because the process-based component is fully differentiable, gradi-
ents of the loss propagate through the process equations back to the neural subnetworks via
automatic differentiation. This enables the networks to learn physically consistent parameter-
izations that minimize discrepancies between modeled and observed dynamics.”
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Figure 1: Detailed overview of the H2CM framework. Static inputs (e.g., land cover, soil, eleva-
tion) are processed through a fully connected neural network (two hidden layers: 150
and 12 units) to generate compressed static features. These features feed into three
LSTM networks (each with one hidden layer of 100 units) and an additional fully con-
nected network that predict spatio-temporal parameters regulating hydrological and
carbon processes, including .1, O gus Qsmerrs Vpss g, and ap. Globally learned
constants (Q10, Bco2, Boaseflows Bsnow) control temperature sensitivity, CO, fertil-
ization, baseflow recession, and snow corrections. Outputs from all subnetworks are
coupled through a differentiable, mass-balanced water—carbon process model. The
process layer produces water fluxes and storages and carbon fluxes, some of which
are directly constrained by observations, including NEE, GPP, fAPAR, TWS, SWE,
ET, and runoff.

Regarding hyperparameter tuning, such as the learning rate, we have added the following
details to Section 2.3.3:

We set the initial learning rate to 0.005 and used a step-wise learning-rate scheduler
(StepLR; (Paszke et al. 2019)) that decays the rate by a fixed factor at fixed epoch intervals.
Hyperparameters were tuned by training multiple model variants and selecting the configura-
tion that achieved strong validation performance with stable training.



1.2.8

You also mention a FCNN for data compression: What kind of architecture was
used here? Was it an unsupervised approach?

We thank the reviewer for this point. Briefly: the “compression” module is a fully connected
network with two hidden layers (150 and 12 units) that maps static environmental inputs (land
cover, soil properties, wetland extent, elevation) to a 12-dimensional latent vector. This vector
serves as compressed static features and is shared across the dynamic sequence modules. It is
not a separate unsupervised autoencoder; the compression is learned jointly with the rest of
the model during training. For details, please see our answer in Section 1.2.7.

1.29
I do not see any hyperparameter tuning in the manuscript. How were model
hyperparameters chosen and/or validated?

Please see the last paragraph of our answer in Section 1.2.7 where we have adressed this
point.

1.2.10

In Tab. 3 WUE and CUE are defined as ratios — but in Tab. 2 these variables are
defined as functions depending on multiple variables, trained by a NN. Please be
more precise here on how the definitions are meant for you approach.

Thank you for raising this point. We agree that clarification is needed.

WUE and CUE are predicted directly by the NNs and then used in the process-based com-
ponent to compute GPP and NPP, respectively. In Table 3, we show the conventional defini-
tions:

o WUE = GPP / Transpiration

« CUE = NPP / GPP

In Table 2, these appear as NN outputs expressed as functions of specific input variables. To
avoid confusion, in the revised manuscript we replaced WUE in Table 2 with oy .

Another difference is that Table 2 lists instantaneous, daily variables used as model inputs,
whereas Table 3 reports annual means computed in post-processing from the model outputs.



1.2.11

The results are well presented. I am missing a short paragraph on the evaluation
of the several trained NNs, for example on the performance of the WUE, CUE,
etc. prediction alone. To increase confidence in the performance of H2CM, a brief
description of the performance of the sub-variables would be helpful.

Thank you for highlighting the importance of evaluating the direct predictions of water—carbon
cycle variables. Direct assessment of variables such as WUE and CUE is challenging due to
the lack of large-scale observational datasets at the resolution of our model. These variables
are usually derived indirectly through data-driven or process-based approaches. Therefore,
in Section 3.1.4 (in the current version of the preprint) we chose to provide a qualitative
evaluation by comparing our results with existing literature.

1.2.12

The NNs are trained by MSE Loss (Eq. 5) averaged equally over all data con-
straints. This implies that all constraints (TWS, SWE, ET, runoff, FAPAR, GPP,
NEE, etc.) are treated with the same priority, regardless of their units or uncer-
tainties. The authors should comment on this. might some constraints dominate
the loss? Have the authors normalized each variable or adjusted for data uncer-
tainty? Some acknowledgment of observational errors (and how they might affect
the loss weighting) is appropriate.

Thank you for raising this point. To address unit differences, we apply a Z-transformation to
both predicted and target variables before computing the loss (as discussed in lines 204-205
of the preprint). This centers the data at zero, scales it to unit variance, and removes unit
dependence.

Currently, we do not apply explicit weighting across observational targets during optimization,
so all constraints are treated with equal priority. This choice was based on the observation
that performance across variables remained balanced, with the model capturing key patterns
for each constraint.

Regarding observational uncertainty, we focus on robust patterns in the datasets. For example,
FLUXCOM products are known to have uncertainty and bias in interannual variability of water
and carbon fluxes. To reduce bias, we constrain the model against the mean seasonal cycle
of GPP and ET from FLUXCOM-X-BASE rather than their full interannual variability (we
discuss this in lines 88-89). While this approach mitigates bias, we acknowledge it does not
fully resolve observational uncertainty. We already discuss this aspect in Section 3.4 of the
preprint.



1.2.13

The 10-fold CV is spatial only. Thus, it is not clear how well the model would
predict an unseen year (e.g., a future year). I encourage the authors to comment
on this limitation. If possible, as a future step, holding out later years for test
could provide insight into model stability under changing climate.

Thank you for raising this important point. We agree that it is currently unclear whether
H2CM can generalize to unseen years. We chose spatial-only cross-validation due to incon-
sistencies in temporal coverage of observational datasets, which complicate a proper spatio-
temporal split. For instance, one key carbon cycle constraint comes from OCO-2 inversions
available only from 2014 onward, while our model uses data from 2001-2019. Holding out
specific years would result in folds lacking critical data.

As an additional experiment to get a sense of whether the model can be applied to unseen
years, we trained the model on years 2001-2017 and tested it on the subsequent 2 years (2018-
2019) to assess generalization. We added the following text in the section where we describe
our cross validation set up:

“.. To assess the model’s generalizability across both space and time, we conducted an addi-
tional experiment in which the model was trained using data from 2001 to 2017 and evaluated
on the subsequent two years (2018-2019; Appendix D).

In the section where we discuss results we added the following paragraph:

“Note that, although the results discussed here are based on the spatial-only cross-validation
setup, Appendix D demonstrates that the model also generalizes well to unseen years, at least
over short-term future periods.”

And in Appendix, we added a new section:

“Figure D1 shows the performance comparison between spatially split and spatio-temporally
split cross-validation folds using post-2017 time-series data. In the spatial split experiment,
the model was trained on the complete 2001-2019 time series while holding out specific spatial
grid cells for testing. In contrast, the spatio-temporal split experiment was trained on data
from 20012017, with all data after 2017 withheld for spatio-temporal testing.”

“Overall, the results suggest that the model maintains consistent performance when evaluated
on the two unseen years, demonstrating generalisability not only across space but also over
time—at least when tested on short-term future periods. In the spatio-temporal split experi-
ment, neither the testing grid cells nor the final two years (2018-2019) were included in model
training or validation, ensuring a fully unseen temporal and spatial domain during testing.”

10
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Figure 2: Model performance evaluated on the testing set comprising post-2017 time-series
data, averaged over the testing grid cells. In the spatial split experiment, the model
was trained on the full 2001-2019 dataset while holding out specific spatial grids
for testing. In contrast, the spatio-temporal split experiment was trained only on
data from 2001-2017, ensuring that no post-2017 information was included during
training. Boxplots illustrate the distribution of errors across 10 cross-validation folds.

1.2.14

To you considered to use e.g., Physical Informed Neural Networks (PINNSs) instead
of simple FCNN to better control and constrain the physical processes behind?

Thank you for this suggestion. We did not use Physics-Informed Neural Networks (PINNs) in
the current study, but we plan to explore their integration in future model developments.

11



1.2.15

Overall, the methodology is sound and described in good detail. Small clarifi-
cations and additional details (especially on the neural-network implementation)
would improve reader understanding and reproducibility.

The authors treat global parameters e.g., beta as learnable. Section 3.1.5 shows
the learned Q10 is about 1.24, which is lower than typical literature values (1.4—
2). Similarly, the learned beeta values greatly exceed observational estimates.
The authors rightly note this discrepancy and attribute it to equifinality and
insufficient constraints. Please briefly discuss the implications: e.g., a high beta
means the model might overestimate CO2 sensitivity if used for future scenarios.
Emphasize that these global parameters are effectively unconstrained by data and
could be fixed based on independent knowledge.

Thank you for this suggestion. To address this, we explored an alternative approach where
strong priors—based on observational studies—are imposed on globally learnable parameters
(see lines 321ff and Appendix C of the preprint). These experiments show that predictions
closely follow the priors, indicating that equifinality prevents the model from departing signif-
icantly from these prescribed values.

We clarified this in the revised manuscript (Section 3.1.5):

“... These results indicate that, without such priors, the available data and process constraints
leave the global parameters largely unconstrained; thus, knowledge-based priors are important,
especially for analyses of future projections.”

1.3 Model evaluation and benchmarking
1.3.1

Correlation and RMSE are mentioned, but it would help to provide bias or error
values in the text or supplementary tables. E.g., “small RMSE for NEE TAV?”
(1.236), but exact numbers or global bias would be useful. A table summarizing
global or zonal RMSE and bias for GPP, NEE, etc., in comparison to benchmarks
would complement the discussion.

We thank the reviewer for this suggestion. We have added the following table in the Appendix,
which presents global RMSE and bias values for carbon fluxes:
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Table 1: Benchmarking metrics (RMSE and Bias) for modeled carbon fluxes against data
constraints. Metrics are reported for gross primary productivity (GPP) and for net
ecosystem exchange (NEE) benchmarked against OCO-2 and CarboScope inversion
products. Each section (GPP, NEE (OCO-2), NEE (CarboScope)) summarizes results
for Monthly, mean seasonal cycle (MSC), and Anomaly data. All metrics are based on
globally averaged, area-weighted time series. Reported values represent the median
across 10-fold cross-validation runs, with values in brackets indicating the minimum
and maximum across folds.

Metric ‘ Monthly ‘ MSC ‘ Anomaly

GPP
RMSE [gC m-2 day-1] | 0.09, [0.07, 0.17] | 0.08, [0.06, 0.16] | 0.05, [0.04, 0.06]
Bias [gC m-2 day-1] 0, [-0.15, 0.07] 0, [-0.15, 0.07] 0, [0, 0]

NEE (0OCO-2)
RMSE [gC m-2 day-1] | 0.04, [0.03, 0.06] | 0.03, [0.02, 0.05] | 0.02, [0.02, 0.02]
Bias [gC m-2 day-1] 0, [-0.05, 0.03] 0, [-0.05, 0.03] 0, [0, 0]

NEE (CarboScope)
RMSE [gC m-2 day-1] | 0.07, [0.06, 0.08] | 0.06, [0.05, 0.07] | 0.03, [0.03, 0.03]
Bias [gC m-2 day-1] 0.02, [-0.02, 0.06] | 0.02, [-0.02, 0.06] | 0, [0, O]

Additionally, we have included the following paragraph in Section 3.1.1 to explicitly report the
relevant numbers:

“Globally, H2CM reproduces GPP patterns from FLUXCOM-X-BASE with RMSEs of 0.09,
0.08, and 0.05 gC m~2 day~! for monthly data, mean seasonal cycles (MSC), and monthly
anomalies, respectively. For NEE from OCO-2 satellite inversions, RMSEs are 0.04, 0.03,
and 0.02 gC m~2 day " for the same categories. Compared to CarboScope in-situ inversions,
H2CM yields RMSEs of 0.07, 0.06, and 0.03 gC m~2 day . Bias is negligible (close to 0) for
GPP and NEE (OCO-2), and for NEE (CarboScope) is 0.02 gC m ™2 day~! for monthly and
MSC data, and zero for monthly anomalies (Table C1).

1.4 Reproducibility and transparency
1.4.1

It would be helpful to have additional documentation (README, installation
instructions) and example scripts/notebooks to run the model. Now, all daily
outputs are shared.

Thank you for touching on this important aspect of reproducibility. We believe we have
already addressed it by making all necessary components publicly available, including model
code, inputs, observational targets, outputs, and documentation:
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o Developmental model code (including a README.md with installation and run instruc-
tions): [GitHub: https://github.com/zavud/h2cm]

e Model version used in the preprint (including a README.md with installation and run
instructions): [Zenodo, DOI: 10.5281 /zenodo.15784689]

e Model inputs and observational targets: [Zenodo, DOI: 10.5281/zenodo.16575309]
o Daily model outputs: [Zenodo, DOI: 10.5281/zenodo.16572166]

1.5 Interpretation and discussion of results
1.5.1

The authors could strengthen the interpretation by commenting on potential fu-
ture applications. E.g., since the model currently lacks an energy cycle (mentioned
as future work), are there plans to incorporate dynamic vegetation or disturbances
(aside from fire emissions)?

Thank you for raising this important point. We have broadened the last paragraph of the
Conclusion section as follows:

“H2CM opens new avenues for studying the global carbon—water cycle and lays the ground-
work for further development toward a hybrid land-surface model. Advancing in this direction
will require integrating the surface energy cycle, incorporating dynamic vegetation and ex-
plicit carbon pools with turnover, representing additional key processes and disturbances (e.g.,
permafrost, fire, and land use/management), and increasing temporal resolution to resolve
sub-daily dynamics. These are forward-looking requirements, and meeting them will be a
substantial long-term effort beyond the scope of this study.”

1.6 Minor stuff
1.6.1

104: Please write Transpiration T to introduce the variable.

Thank you for the suggestion. We explicitly introduced Transpiration (T).
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1.6.2

Figure 4: Too small and the solid black background confuses. I suggest to make
clean figures on white background. The title is also too small and does not fit to
the explanations given in the caption. Please double check that your presented
data fit to the presented titles in the figure.

Thank you for pointing this out. We revised Figure 4 accordingly.

1.6.3

In Tab. 1 the meteorological forcing data are described. Please briefly explain
why you decided for this mixture of data sources.

Thank you for this suggestion. We agree that the rationale for selecting the meteorological
forcing datasets should be clarified. We added a brief explanation in the Section 2.1:

“In general, we selected meteorological and static datasets that are widely used in the commu-
nity, quality-checked, and offer the best compromise between spatial /temporal resolution and
observational accuracy for each variable.”

1.6.4

100: You use the Greek letter for globally constant parameters. Does it include
spatially and temporally constant?

We thank the reviewer for pointing this out. Yes, globally constant learnable parameters
(typically 8 parameters or (),) are invariant across both space and time. Another way to
recognise the variability in space and time is that globally constant parameters do not have
superscript (such as s for space and s,t for space and time). We highlighted this aspect in the
revised version (Section 2.2.1):

“... Parameters without any superscript represent globally constant parameters (denoted by
the Greek letter 8 or Q10) that do not vary either in space or time and are learned by the
neural network.”

1.6.5

As the various datasets span different periods, the manuscript should explicitly
state the time period used for training/evaluation. Ensure it is clear how these
are aligned.

Thank you for this suggestion. We explicitly specified the temporal coverage of datasets in
Table 1.
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1.6.6

The authors may note that dynamic vegetation changes are not included due to
static land use input, though FAPAR input does implicitly capture some pheno-
logical variability.

We thank the reviewer for this helpful suggestion. We have added a brief note where the
equation for modeling transpiration is introduced:

“.. Note that dynamic vegetation changes are not explicitly represented in H2CM; however,
temporal variations in fAPAR provide an implicit representation of phenological changes.”

1.6.7

Median and range of Q10 across folds is mentioned. It may be useful to similarly
report the spread of prediction metrics across the 10 CV models. This would
indicate robustness.

In the current version of the manuscript, we already include the Fig. 3 with cross bars showing
the minimum, maximum, and average prediction metrics across the 10-fold cross-validation,
based on spatially averaged values over the testing grid cells.

1.6.8

the conclusion asserts that H2CM “accurately reproduces the monthly patterns”
and “global patterns” of GPP and NEE. While this is supported by the results,
it may sound slightly overconfident given some know biases. Perhaps soften to
“reproduces major features of the seasonal and spatial patterns...”

We agree with the reviewer and have revised the text to better reflect this point:

“... Our results indicate that the model captures the major features of the monthly, seasonal,
interannual, and global (mean annual) patterns of both GPP and NEE.”

1.6.9

Overall, the writing is professional and detailed, with only minor edits needed for
polish.

Thank you for your positive feedback.
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1.7 Recommendation

I recommend major revisions before acceptance based on the recommendations
above. The reported revisions will strengthen the papers clarity and reproducibil-
ity but do not undermine the core findings.

Thank you for your thorough review and constructive feedback.

2 Reviewer 2

The manuscript “H2CM (v1.0): hybrid modelling of global water-carbon cycles...”
by Baghirov et al. addresses a relevant and timely topic: the hybrid modelling of
the land surface and terrestrial biosphere. It reports on the architecture, training
and evaluation of a hybrid prototype. In principle, I consider the paper suitable
for the journal.

I also have a substantial number of general and specific questions however that
the current version leaves open. In my opinion, the manuscript would be much
clearer and more useful if they are addressed in the general framing and writing.

Dear reviewer 2,

Thank you very much for taking the time to review our manuscript and for providing valuable
feedback to help us improve its clarity.

2.1 General points
2.1.1

I find it hard to understand to what extent this model can actually be considered
“hybrid”. I hardly see any process-based components in the model description.
There are equations 1-4, but they are highly simplistic and high-level multiplica-
tive relationships, far simpler than the complexity of the machine learning com-
ponents, or typical components of process-based land surface models.

We thank the reviewer for this insightful comment. We refer to H2CM as a hybrid model
because it integrates machine learning with process-oriented principles. We agree that the
process representations are conceptual rather than detailed parameterizations of sub-processes.
This simplification reflects a deliberate trade-off between process complexity and parameter
identifiability given the available data constraints, enabling the model to represent first-order
processes while reducing uncertainty.
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Importantly, the scope of H2CM is to provide an observation-constrained carbon—water reanal-
ysis by fusing multiple data streams, rather than to serve as a fully mechanistic land-surface
model for coupling within ESMs or for producing unconstrained long-horizon climate projec-
tions. Achieving those aims would require more complete and detailed process-based compo-
nents. H2CM should therefore be regarded as a process-aware machine learning framework
that links carbon and water data streams to provide a consistent, data-informed interpretation
of their interactions, conceptually related to data-assimilation approaches.

In the revised manuscript, we added the following paragraph clarifying the rationale, design
choices, and positioning of H2CM within the broader context of modeling and model-data
integration strategies:

“H2CM is a process-aware hybrid framework that integrates machine learning with simplified
process-based formulations, and can be positioned within the broader family of model-data
integration strategies that aim to combine physics with machine learning. This family includes
approaches such as physics-informed neural networks (Raissi, Perdikaris, and Karniadakis 2019;
Tartakovsky et al. 2020; Wang et al. 2020), physics-guided machine learning (Khandelwal et
al. 2020; Pawar et al. 2021; Karpatne et al. 2017), and differentiable modeling (Shen et al.
2023). Rather than reproducing the detailed parameterizations used in comprehensive land-
surface models, H2CM employs conceptual process formulations to maintain interpretability
and ensure parameter identifiability under the available observational constraints. The primary
objective is to deliver a consistent, observation-constrained ‘reanalysis’ of coupled carbon—
water states and fluxes over recent decades by fusing diverse data streams within a process-
informed ML architecture. H2CM is not intended to replace or be coupled into Earth system
models, nor to provide long-horizon projections; such applications would require more complete
representations of processes and feedbacks. In this way, H2CM captures first-order processes
while reducing uncertainty via data constraints, providing a bridge between empirical and
process-based modeling and enabling a coherent interpretation of coupled carbon—water cycle
variability and interactions.”

2.1.2

Moreover, the model supposedly captures the “water cycle” and “carbon cycle”.
Besides the fact that cycles would include atmosphere and ocean (otherwise the
cycle is not closed), the model does not seem to simulate any carbon pools -
only fluxes. If this model is supposed to be a step toward hybrid land surface
modelling (that’s how I understand the framing and motivation), what should be
the approach to model differential equations where state variables have memory?
How would one implement a similar model into an Earth system model, and
what conclusions do the authors draw from their results to this end? What is it
in the results that allows conclusions about the best approaches to such hybrid
modelling?
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We thank the reviewer very much for raising these points, which reflect a lack of clarity in the
manuscript. As detailed in our response to the previous comment (Section 2.1.1), H2CM is
intended for a “reanalysis” of the recent past rather than for integrating into Earth System
Models for future projections. We apologize for this apparent misunderstanding, which is
clarified by the section on the scope and rationale of H2CM (Section 2.1.1). This section
includes a framing of H2CM within different emerging strategies of combining machine-learning
with process-based modelling such as physics-informed neural networks.

Moreover, we expanded the discussion on the structural limitations of H2CM (the limitations
section) from a process-representation perspective, emphasizing that explicit integration of
carbon pools is essential for simulating longer-term dynamics, which are indeed a prerequisite
for implementing a hybrid land model into an ESM:

“Currently, H2CM lacks several important components of the land system, which are relevant
for the coupled water and carbon cycles. For example, it does not yet explicitly model vegeta-
tion and soil carbon pools, as the current focus has been on spatial variations of carbon fluxes
from sub-seasonal to interannual time scales. Furthermore, H2CM does not incorporate the
effects of disturbances such as fire, or other drivers including land-use change. These processes
are critical for a comprehensive understanding of Earth system dynamics and would signifi-
cantly enhance the applicability of our framework for studying broader system interactions.
Addressing these limitations will be a key focus of future developments of H2CM.”

Additionally, we added a paragraph to the conlusion section where we outline forward-looking
requirements and challenges for evolving H2CM toward a hybrid land-surface model:

“H2CM opens new avenues for studying the global carbon—water cycle and lays the ground-
work for further development toward a hybrid land-surface model. Advancing in this direction
will require integrating the surface energy cycle, incorporating dynamic vegetation and ex-
plicit carbon pools with turnover, representing additional key processes and disturbances (e.g.,
permafrost, fire, and land use/management), and increasing temporal resolution to resolve
sub-daily dynamics. These are forward-looking requirements, and meeting them will be a
substantial long-term effort beyond the scope of this study.”

While we acknowledge that the global carbon and water cycles encompass the ocean and
atmosphere, it is common practice in the literature to use the term “terrestrial carbon—water
cycle models” when referring specifically to the land component.

2.1.3

It is also unclear to me how soil moisture is modelled. There is reference to
another recent study on what is called H2MV (Baghirov et al., 2025). I had a
look there, but it seems to follow a similar approach in the sense that the model’s
mechanistic complexity and structure is rather simple, while model results seem
to be mainly determined by the machine learning components.
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We appreciate the reviewer’s observation. Please also see our earlier responses to Section 2.1.1
and Section 2.1.2 regarding the overall scope and rationale of H2CM. Reviewer 2 is correct
that the soil moisture module in H2CM adopts a relatively simple structural formulation.
However, the machine learning component, in combination with observational constraints, can
compensate for structural simplifications and enables the model to reproduce realistic and, in
part, complex soil moisture dynamics. This behavior has been demonstrated and discussed in
detail in our previous works, Kraft et al. (2021) and Baghirov et al. (2025).

2.1.4

Achieving a good match with observations with such a model is of course beneficial,
but I wonder how well the model is able to extrapolate to different climates. For
example, will it generate realistic trends when forced with data from the historical
period over several decades, including the global warming trend? If not, why do
we need a hybrid approach at all? To what extent do the process-based parts
in the model contribute to the good performance? What makes H2CM better
than Fluxcom-X-base in some cases — is it really the process-based part or is it a
better machine learning approach or data? And whatever the answer is: Can the
authors show this somehow? They say that a hybrid model is not a “black box”
like ML models, so this may be possible? If the performance overall is largely
determined by the data-driven parts (including the way different neural networks
are combined), I wonder whether the framing of “hybrid modelling” is really
helpful, in contrast to pure data-driven modelling with a specific architecture.

Reviewer 2 raises several relevant and insightful questions; however, many of these appear to
stem from a misunderstanding regarding the scope and rationale of H2CM. These aspects are
clarified in our responses to comments Section 2.1.1 and Section 2.1.2.

In the revised manuscript, we will further address the reviewer’s specific points concerning the
relative roles of the process-based, data-driven, and neural network components of the model.
To do so, we will include a new paragraph that provides a qualitative comparison with other
studies in the literature, as a comprehensive quantitative assessment would require extensive
factorial experiments beyond the scope of this paper.

2.1.5

Regarding the general architecture of the model, Fig. 2 is helpful, but it is difficult
for me to understand how the model is actually trained. The neural networks seem
to generate inputs to what the authors call the “process-based water-carbon cycle
model”, which then generates observable variables. When the loss function is
minimised during training, in what way is the process-based component used?
Does it not need to backpropagate information somehow in order to feed back to
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the neural networks and let them learn? Also, how do the authors use information
on observational errors, specifically where different datasets on the same quantity
(the two atmospheric co2 inversions) are used at the same time?

Please see our response to Reviewer 1 (Section 1.2.7), where we clarify the methodology by a
new appendix section and accompanying figure to provide a more detailed explanation of the
model architecture and training procedure.

Regarding the treatment of observational errors, we designed the training to emphasize the
most robust aspects of each dataset rather than their full variability. For example, for FLUX-
COM GPP we constrain the model only to the mean seasonal cycle, thereby avoiding potential
biases from its uncertain interannual anomalies. For atmospheric C'O, inversions, we use the
ensemble median of multiple OCO-2 inversion products to mitigate errors associated with
individual inversion setups and transport models. In addition, we incorporate the globally
averaged signal from the in situ—based CARBOSCOPE inversion, which provides a stable,
large-scale constraint that is less sensitive to local retrieval uncertainties. The local, grid-scale
patterns are primarily learned from the satellite-based inversion ensemble, which is available
from 2014 onward following the launch of OCO-2. We acknowledge that residual observational
uncertainties may still influence the model results, as discussed in Section 3.4 of the current
preprint.

2.1.6

All observational datasets seem to always be used at the same time to train the
model? Some parameters seem to be overconstrained. Which training data is
actually important? How are physical constraints regarded, e.g. the conservation
of mass? And why do the authors only train on a subset of grid cells but not time
points?

Short answers is that yes, all available observational datasets are used simultaneously to con-
strain different aspects of the model. This multi-constraint setup is advantageous rather than
problematic, as long as the constraints are valid — it helps the model become more robust
and less sensitive to uncertainties or biases in any single dataset. Physical constraints are
respected because the coupled water—carbon cycle model is fully differentiable and integrated
end-to-end with the learning framework, allowing gradients to flow through all process-based
components.

For further details, please see our responses to Reviewer 1 in Section 1.2.7 for details on
how model training is implemented and how the process-based component is integrated, in
Section 1.2.12 for the description of the loss function and the use of multiple observational
datasets, and in Section 1.2.13 for the rationale behind spatial cross-validation and the new
experiment where we held out several years to test model generalisability in future time.
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2.1.7

Lastly, Section 3 in general shows seveal metrics, variables and regions, and eval-
uates H2CM. The choices of what to show here felt somewhat arbitrary to me,
for example Sect. 3.3 and also Fig. 5. Why pick these examples? What is the key
message that these results support? It would help if the authors presented clear
arguments and criteria, and connected the results in an argumentative way.

We thank the reviewer for this question. Our goal in Section 3 was not only to test H2CM
against its direct training data constraints—which we expect it to reproduce—but also to
assess whether it generates plausible emergent patterns of water—carbon cycle dynamics that
are not explicitly observed.

In Section 3.1.4 (corresponding to Figure 5) of the revised manuscript, we added the following
paragraph to clarify the motivation for using global emerging patterns:

“In this section, we qualitatively evaluate emerging global patterns in H2CM, focusing on
key indicators such as precipitation, water, carbon, and light-use efficiency. These metrics
are essential for understanding water—carbon cycle dynamics and coupling, yet they are not
directly observable at the global scale. Therefore, we draw on existing studies that have
estimated these variables and qualitatively compare our results with their findings.”

Regarding Section 3.3, we highlight a dry tropical region because such regions strongly influ-
ence global NEE interannual variability yet are often misrepresented in process-based models.
Recent studies (Metz et al. 2023, 2025) have emphasized this issue. This analysis directly links
to the previous section and the last panel of the figure: we now zoom into that region to infer
mechanisms in H2CM, demonstrating that the model provides interpretability and potentially
new insights. Accordingly, we added a brief paragraph in the revised version of the section to
clarify this point.

“In this section we focus on a dry tropical region (Southern Africa) since these ecosystems
exert strong control over global NEE interannual variability, yet process-based models often
fail to capture their dynamics accurately (Metz et al. 2023, 2025).”

2.2 More detailed points
2.2.1

The authors say that H2CM is a “global” model. What does this mean? As far as
I see, it is a local (grid cell specific) model without any spatial interactions, hence
the domain and grid are arbitrary.

Thank you for raising this point. By “global” we mean that H2CM is trained on and applied
to globally gridded observational datasets, with a single architecture used consistently across
all land grid cells. We agree that the model is local and does not include explicit lateral
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interactions. While, in principle, the domain and grid are arbitrary from a technical standpoint,
the current design of the process equations, neural networks, and data streams is tailored to
comparatively coarse grid cells consistent with the resolution and representativeness of the
inputs, which avoids the need to model lateral interactions. We clarified this in the revised
Introduction to prevent misunderstanding.

“H2CM is a global model in the sense that it is applied consistently across all terrestrial
grid cells using global inputs and observations; it remains local and does not simulate lateral
interactions among cells. Although the domain and grid are, in principle, arbitrary, the present
design is tailored to comparatively coarse grid cells aligned with the input datasets, which
mitigates the need to model lateral interactions.”

2.2.2

Use of vocabulary: Note that the term grid refers to the spatial structuring of all
grid cells. A grid cell refers to one spatial point. The authors often use “grid”
even where they actually mean grid cell.

We appreciate the reviewer’s observation. In the revised manuscript, we have carefully cor-
rected the terminology, replacing “grid” with “grid cell(s)” where relevant to ensure consistent
and accurate usage.

2.2.3

There are some typos; I suggest the authors read carefully before the next sub-
mission. Example: line 65-66: “the the”, “objectives” (omit s), “withhold” (with-
held), line 152 “compress”(es), line 263: “in in”, Fig. B8 caption: “Runoff” should

be lower case.

Thank you for pointing this out. All listed typos and other minor errors have been corrected
in the revised manuscript.

2.2.4

Table 1: shortwave and longwave radiation seem to not be distinguished. But in
practice, this will matter much for GPP and other fluxes. What is the underlying
assumption here? Also, what is “short-term” versus “long-term” in the last two
lines of the table? It could make sense to add a column showing the time period
available for each dataset.

Thank you for this observation. Using net radiation as a single forcing is a conceptual sim-
plification. We chose this because the NN is not sensitive to absolute levels and incoming
shortwave and net radiation are empirically very tightly correlated at daily scales (median r =
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0.96 across FLUXNET sites; Jung et al. (2024)), with differences likely within the uncertainty
of radiation products. That said, the shortwave-longwave partitioning becomes important for
long-term change (e.g., greenhouse-driven LW trends), and we plan to revise this when inte-
grating the full surface energy cycle in the future. We clarified this assumption in the datasets
section as follows:

“We use net radiation as a single forcing term rather than separately prescribing shortwave and
longwave components. This simplification leverages the strong empirical correlation between
shortwave and net radiation at daily scales (Jung et al. 2024).”

Regarding Table 1, we have revised it to explicitly show the temporal coverage for each dataset
used.

2.2.5

line 105 (Eq. 1): How is ETpot computed?

Thank you for pointing this out. Potential evapotranspiration (ET,,,) is computed based on
available energy (net radiation) converted to a water flux by the latent heat of vaporization.
The minimum of this value and the current soil moisture state is taken to prevent the possibility
of negative soil moisture — a necessary condition that is only very rarely relevant. This detail
was omitted here because the hydrological cycle is described in detail in a separate study
(Baghirov et al. 2025); in this study, we focus on the carbon cycle and refer readers to

Baghirov et al. (2025) for a full description of the water cycle components.

2.2.6

line 114-117, incl. Eq. 2: beta is supposed to capture the CO2 fertilisation effect,
but it is just a constant, independent of CO2. The fertilisation effect is cap-
tured already by the linear dependence of GPP on CO2. What does this linear
dependence imply when using the model for a transient situation with strongly
increasing CO27 When considering all factors of Eq. 2, does the model generate
a similar relationship as e.g. typical DGVMs?

We thank the reviewer for this thoughtful comment. The reviewer is correct that in Eq.(2),
Bco, is constant and does not represent a dynamic CO, fertilization effect. The explicit
multiplication with atmospheric C'O, introduces a linear sensitivity. However, because WUE
is learned by the neural network as a nonlinear function of meteorological drivers (soil moisture,
VPD, radiation, etc.), emergent nonlinearities can arise when C'O, interacts with these factors.
We chose a global constant for 5, to reduce equifinality and improve parameter identifiability,
as allowing both -, and WUE to vary freely in time could compromise interpretability.

In the revised manuscript, we included the following explanation when describing Eq. 2:
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“.. The Sro, term is a globally constant, trainable parameter that regulates the strength of
the C'O, fertilization effect on GPP. Although S, does not explicitly represent a dynamic
CO, fertilization effect, the model’s linear dependence on atmospheric CO, interacts with
oy Which is learned by the neural network as a nonlinear function of relative soil moisture,
vapor pressure deficit, net radiation, and static variables (Table 2).”

Regarding whether H2CM generates C'O, responses similar to typical DGVMs under strongly
increasing C'O,, the patterns appear broadly comparable. For example, this can be seen in
the global averages of monthly GPP anomalies over 2001-2019:
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Figure 3: Globally, area-weighted averages of monthly GPP anomalies from H2CM and
TRENDY. Lines indicate the median, while shaded areas represent the minimum
and maximum across cross-validation folds for H2CM and ensemble members for
TRENDY.

2.2.7

line 140: make clearer what you mean with labels “dynamic (recurrent)” and
“static (fully connected)”. Even though it may not be possible to draw the true
architecture in Fig. 2, it would help to show different (idealised) icons for the
NNs where these NNs have different architecture. If the figure becomes too busy:
I don’t think one actually needs to show global maps for all variables (which are

25



too small to see results anyway). This figure is about the structure not the actual
data values.

We thank the reviewer for this suggestion and have revised the paragraph accordingly:

“H2CM consists of three primary modules: the dynamic (recurrent) module, which produces
spatially and temporally varying variables; the static (fully connected) module, which generates
spatially varying but temporally constant parameters; and the process-based (water—carbon
cycle) module, which ensures mass conservation and governs the interactions between water
and carbon fluxes:”

We have also revised the figure 2 to represent the dynamic module with an icon indicating
recurrence, using a commonly recognized style.

2.2.8
line 184: I did not understand what the authors mean with “blocks” Are blocks
the samples of 5x5 connected grid cells that are selected for training?

We have added a short explanatory sentence in the revised text to clarify the meaning of
“blocks”:

“... In this approach, “blocks” refer to spatially contiguous groups of 5°x5° grid cells (25 grid
cells in total) that are treated as single sampling units.”

2.2.9
line 187-189: I is not really clear to me why validation on left-out time periods
should not be possible.

Please see our response to Reviewer 1 in Section 1.2.13, where we have clarified this point.

2.2.10

line 191 and elsewhere. The authors cite Baghirov et al., 2025, but four references
like that are listed in the reference list.

These citations are distinguished using lettered suffixes (2025, 2025a, 2025b, 2025¢, 2025d)
in both the text and reference list, following the journal’s citation style. Each refers to a
distinct resource (e.g., code release, data publication, or publication), and we therefore cite
them separately as required.
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2.2.11

line 196-197: Parameters theta and beta are adjusted — but how (see above)?
How does training work involving the “process-based” model (whatever that is,
also see above)?

Please see our responses to Reviewer 1 in Section 1.2.7 for details on model training.

2.2.12

line 199-201: What does it mean that the loss function is applied for each data
constraint?! Isn’t there one loss function where all different variables contribute?
Or several loss terms? Then how to decide how important each loss is? Addition-
ally, I don’t understand why the Carboscope dataset is treated differently from
all others.

We apologize for the confusion. We have revised the paragraph to clarify how the loss function
is applied and to explain the specific treatment of the CarboScope dataset:

“The loss function combines all data constraints into a single objective, where MSE is computed
across grid cells for each variable. The only exception is the long-term NEE interannual
variance (CarboScope). In situ—based inversions such as CarboScope are generally more robust
when averaged globally but become increasingly noisy at the grid-cell level. Therefore, we
compute the global mean of both CarboScope and H2CM outputs during training within each
batch and apply the loss to these global averages, ensuring the model fits large-scale interannual
variability rather than local noise.”

2.2.13

line 204: perhaps briefly mention what a z-transformation is.

We thank the reviewer for this suggestion. We have added a brief explanation of the Z-
transformation in the revised text:

“Note that we apply a Z-transformation to predictions and observations before computing the
loss. This standardizes each variable by subtracting its mean and dividing by its standard
deviation, removing the effect of different units and balancing the contributions of each data
constraint to the total loss.”
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2.2.14

line 207: What is a “CV fold”?

We added a brief clarification of “CV fold” at the first mention of the cross-validation setup,
defining it as one of the subsets of data used for validation during the 10-fold cross-validation
procedure:

“To evaluate the generalizability of H2CM, we use a 10-fold cross-validation (CV) setup. This
process involves dividing the data into 10 subsets, or CV folds, and training 10 different models,
each leaving out one fold as a validation set and using the remaining folds for training.”

2.2.15

line 208-209: If all input is z-transformed, that means that all means are zero
and standard deviation is 17 How then can the model be calibrated to respond
to the correct mean values? For instance, how would the model respond to input
temperature data that is 2°C higher than observed? This question also relates to
the generalisability question above, and the question how the model responds to
climate trends.

It is correct that z-transformation standardizes each input variable to have a mean of 0 and
a standard deviation of 1, which facilitates training by placing all variables on a comparable
scale. This transformation does not remove the physical meaning of the inputs. For example,
if the temperature input is 2°C higher than the climatological mean, its z-transformed value
reflects this deviation (in units of standard deviations), and the model responds accordingly.
Regarding generalizability and climate trends, z-transformation does not prevent the model
from capturing long-term trends, because deviations from the mean (e.g., warmer years or un-
usual events) are preserved in the standardized inputs. The learned relationships can therefore
respond appropriately to both interannual variability and long-term trends.

We have briefly highlighted this point in the revised text:

“During training, all inputs to the neural networks are standardized using Z-transformation
(so deviations from the mean are preserved in standardized units).”

2.2.16

line 223 (Eq. 7): This seems to be monthly anomalies. I would then not call that
“Interannual variability”! And: If IAV is actually monthly variability, what is
then the “monthly” values shown in Fig. 37 What is the difference? Is “monthly”
the absolute data including seasonality, and “IAV” are the monthly anomalies?
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We agree with the reviewer that the term monthly anomaly more accurately describes what
is presented in Equation (7). The “monthly values” indeed represent the absolute data, which
include the seasonal cycle, whereas the “monthly anomalies” refer to deviations from this
seasonal mean. Accordingly, in the revised manuscript, we have replaced the term IAV with
monthly anomalies throughout to ensure clarity and consistency.

2.2.17

3: (i) Why does the monthly data have much larger error than the monthly
anomalies (IAV), whereas the other metrics look very good? (ii) Please make
vertical axis ranges identical where possible. (iii) There is a lot of empty space in
the figure, e.g. between bars. (iv) I don’t understand the difference between the
columns. The training data is always the same, and the authors evaluate different
variables? Why then two columns for NEE? Does the training data differ? (v)
What determines the range covered by the boxes? Maximum and minimum error
from what distribution?

We thank the reviewer for these questions and suggestions:

(i) Larger RMSE values for the monthly data compared to the monthly anomalies arise because
the monthly data include both the mean seasonal cycle and the anomalies. Consequently,
mismatches in either the amplitude or the phase of the seasonal cycle between the model
and observations substantially increase the overall RMSE. In contrast, the monthly anomalies
represent data from which the dominant and predictable seasonal component has been removed,
isolating only the year-to-year variations. This results in smaller RMSE values, as errors
associated with seasonal mismatches are no longer present.

However, correlation metrics can show the opposite behavior. While the monthly data may
exhibit high correlations due to the strong and well-aligned seasonal signal, the correlations
for monthly anomalies are typically lower because they reflect the model’s ability to capture
the less regular, higher-frequency fluctuations around the mean seasonal cycle.

We have added the following text to the revised manuscript:

“In terms of RMSE, H2CM tends to exhibit higher errors for monthly data, followed by seasonal
data, and then monthly anomaly. The higher RMSE in the monthly data reflects errors in
reproducing both the amplitude and phase of the seasonal cycle. In contrast, the monthly
anomalies exclude this seasonal component, resulting in smaller RMSE but typically lower
correlations because only irregular year-to-year variations remain.”

(ii) Done.
(iii) Done.
(iv) Each column presents performance metrics for a different carbon-cycle data constraint
(GPP or NEE), evaluated over the testing set (grid cells not used during training). The two
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NEE columns correspond to distinct observational constraints used in H2CM: (1) short-term,
spatially resolved NEE estimates from OCO-2, and (2) long-term, globally aggregated NEE
monthly anomalies from CarboScope. These two datasets represent complementary observa-
tional constraints used for independent evaluation.

(v) The ranges shown by the cross bars represent the variability of model errors across the 10
cross-validation (CV) folds. Specifically, for each metric, we first compute the spatial average
over the testing set in each CV fold, and then take the minimum and maximum of these fold-
level mean errors. Thus, the cross bars span the range of model performance across folds, and
the central lines indicate the mean across all folds. We have updated the figure caption.

2.2.18

4: (i) The grey colour makes it too hard to see the text. (ii) titles per panel
or column would help. (iii) absolute GPP values are hard to compare between
columns, perhaps add difference plots. (iv) What is meant by “members” in each
case? Members from the 10 subsamples of grid cells when training H2CM? And
in case of TRENDY are members the individual models? Does the map then
show the median from all models at each grid cell, i.e. each grid cell comes from
a different vegetation model?

We thank the reviewer for these suggestions:
(i) Done.
(ii) Done.

(iii) We have added a difference map in the Appendix to illustrate spatial biases and have
cross-referenced it in the main text where global patterns are discussed.

(iv) H2CM: The “members” refer to the 10 subsamples of grid cells used in the 10-fold cross-
validation. For each fold, a separate model is trained, producing predictions across the globe.
The median across these 10 predictions is then taken for each grid cell. TRENDY: The “mem-
bers” are the individual process-based models within the TRENDY ensemble. The median for
each grid cell is calculated across these models. OCO-2: The “members” correspond to the
different inversion ensemble members. Again, the median is calculated at each grid cell across
members. We have improved the figure caption accordingly.

2.2.19

5: (i) too grey (see above). (ii) “emerging global patterns” in what data? The
trained model I guess? (iii) What are “folds”? Is this figure meant to show how
realistic H2CM output is? Then we would need to see observations as comparison.
Or is this result meant to offer new insights into land-atmosphere physics? Then
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this should be a clearer part of the framing in the abstract, introduction and
conclusions.

We thank the reviewer for these suggestions:

(i) We updated the color accordingly.

(ii) We updated it to “Emerging global patterns in H2CM: ...”
(iii) We have clarified this point (Section 2.2.14).

Please see our response to Section 2.1.7, which explains the rationale for presenting these
patterns.

2.2.20

Sect 3.2: What is it that makes H2CM better than Fluxcom? Can the authors
demonstrate this? What are the implications for hybrid land modelling in gen-
eral?

Please see our detailed responses to Section 2.1.4 and Section 2.1.2.

2.2.21

line 407: “the information is available” — which information?

We thank the reviewer for raising this point and have revised the paragraph to clarify our
intended meaning:

“H2CM can only fit the data constraints if two conditions are met: (1) the relevant signals
are present in the meteorological forcing, meaning that the meteorological inputs (e.g., tem-
perature, precipitation, radiation) contain the variability and information needed to inform
the target carbon—water fluxes, and (2) the model’s process formulations permit it. In other
words, H2CM can only reproduce patterns in the data constraints if those patterns are encoded
in the input drivers and can be captured by the model’s process-based formulations. Conse-
quently, H2CM does not perfectly fit the data constraints, even with its highly data-adaptive
neural network component. This can, to some extent, limit the model’s ability to adapt to
uncertainties within the data constraints (Baghirov et al. 2025).”
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2.2.22

line 408: “the model’s process formulations permit it” — which process formula-
tions? Is there evidence that they restrict the results in some way?

Please see our response to Section 2.2.21. Regarding the evidence, as shown in our results—
particularly in the model’s estimation of terrestrial water storage—H2CM cannot perfectly fit
the observations (phase shift), despite its highly data-adaptive and complex neural network
component. If we had used a purely machine-learning model with no process-based formula-
tions, the neural network would fit the observations almost perfectly. This indicates that the
model’s process formulations do impose some restrictions on its predictions, at least to some
extent.

2.2.23

line 411-414: How is the spread of results evidence for equifinality? Doesn’t
equifinality mean the opposite, i.e. that different parameters (different models)
lead to the same result?

We agree that the spread among the 10 cross-validation models does not, by itself, demonstrate
equifinality. Instead, it reflects prediction uncertainty arising from differences in training
data, fold selection, and random weight initialization. We have updated the paragraph in the
manuscript to clarify this and avoid potential misunderstanding:

“Lastly, our model is susceptible to the equifinality problem, where different processes or
pathways can lead to similar outcomes, as is common in process-based models (Baghirov et al.
2025). While our 10-fold cross-validation does not directly measure equifinality, examining the
spread among the 10 models trained on different data folds and with different random weight
initializations provides insight into the uncertainty and robustness of the simulations under
varying training data.”

2.2.24

A1l: (i) What is k1, k2..? Why “k”? Are these the samples used for training
different versions of the model? Every block here is 5x5 grid cells? (ii) The
testing set seems to be 1/11th of the data, i.e. not 10%. (iii) And what about the
evaluation set mentioned in the text which should be another ~10%? (iv) What
is a “fold”?

We thank the reviewer for these questions and suggestions:

(i) k1-k10 represent the 10 folds used in 10-fold cross-validation. Using “k” to denote folds is
a very standard way in machine learning and statistics, where k refers to the number of folds.
Each fold is a unique subset of the dataset. During cross-validation, each model is trained on
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9 folds and validated on the remaining fold, resulting in 10 trained models. Yes, each block
contains 5x5 grid cells (please see our response to Section 2.2.8).

(ii) We agree. So we revised the text in the cross validation strategy section slightly:

“... These blocks are randomly selected from the global data, ensuring that the majority of the
data (approximately 80% of the grid cells) is allocated to the training set. The remaining ~20%
of the data is reserved for validation and testing. In practice, each of the 10 cross-validation
folds contains roughly 1/11 of the total data for validation, while ~1/11 of the data is held out
as a fixed testing set for final evaluation.”

(iii) Please see our response above (ii).

(iv) Please see our response to Section 2.2.14.

2.2.25

B1-B8. (i) MSC is the time mean over the entire period? (ii) Do time series show
a spatial average? Over what region? (iii) Why not the same period in all figures?
Due to limited training data? (iv) Which of these time series are actually from
the identical model and should be physically consistent? Maybe these can be put
into one figure with several panels. (v) What is TWS in Fig. B5? Total water
storage? Why does it differ so much from GRACE? Because of the low resolution
of GRACE? (vi) In Fig. B6, SWE is snow water equivalent?

We thank the reviewer for these helpful questions and suggestions.

(i) Yes, the MSC represents the time mean over the entire period of the respective data
constraint. We have clarified this in the relevant figure captions.

(ii) As indicated in the figure captions, the time series represent spatial averages over the
testing set. For example, the caption in the preprint specifies: “Predicted versus target NEE
(OCO-2) over the testing set (spatial domain) across 10 CV folds ...”.

(iii) Please see our responses to Section 1.6.5 and Section 2.2.4.

(iv) All results are based on H2CM predictions and their corresponding observational
datasets.

(v) TWS refers to terrestrial water storage. We have clarified this in the figure caption. For
discussion on differences between H2CM predictions and GRACE observations, please see our
response to Section 2.2.22.

(vi) Yes, SWE stands for snow water equivalent, and this has been clarified in the revised
figure caption.
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2.2.26

B9: again, remove white space to condense figure. “Water cycle constraints” —
sounds like different constraints are used here compared to the other applications?
Which data was used here? This should become clearer.

We thank the reviewer for pointing this out. We have condensed the figure by reducing white
space and clarified the data constraint aspects in the revised manuscript.

2.2.27

Appendix C: Why is there a “prior” and a “posterior” parameter which sounds
like Bayesian statistics language? The method described in the appendix rather
seems to nudge a parameter toward a specific target value, instead of calibrating
it after starting from an initial value.

We thank the reviewer for this observation. Indeed, our approach does not involve a full
Bayesian inference framework. The term “prior” was used loosely to indicate external knowl-
edge or plausible ranges for global constants, which are incorporated as constraints in the loss
function. The penalty term acts as a regularization that nudges the estimated constants toward
these target values, rather than performing a formal posterior update. We have revised the
text in Appendix C to clarify this and avoid potential confusion with Bayesian terminology.

2.2.28

Some more info on the parameter calibration method would help.

Please see our response to Section 1.2.7.

2.2.29

line 466-468: The fact that the posterior equals the prior could also imply that the
nudging (loss term) is just too strong? Why is it evidence for an underdetermined
problem? Would it make sense to put a factor 0<f<1 in the definition of the loss
term? Then the final parameters could be different?

We agree that the nudging term may currently be too strong, which could contribute to
the posterior equaling the prior. However, we also interpret this behavior as indicative of
underdetermination: if the observational constraints provided sufficient information to move
the parameters away from the prior, the optimization would balance this trade-off despite the
penalty.
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Introducing a scaling factor (0 < f < 1) for the nudging term, as you suggest, is a promising
idea to test whether the current weighting is overly restrictive. We will consider this modifica-
tion in future work, and we have clarified shortly these points in the revised manuscript:

“... We note that the observed equality between the estimations and reference values may partly
reflect a strong nudging term in the loss function. At the same time, this behavior also reflects
underdetermination: the observational data do not provide sufficient information to move the
parameters substantially away from the prior. Without additional data or process constraints,
H2CM’s global constants remain underdetermined by the current observations and knowledge
alone; therefore, including prior terms in the loss function is currently important.”

2.2.30

D1: What are transcom regions?

Transcom regions refer to the geographic areas defined in the Transport and Climate Moni-
toring (TransCom) project, which is widely used in atmospheric science and climate studies
(Baker et al. 2006). We clarified this in the figure caption.
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