Microbial carbon use for incorporating biomass phosphorus drives CO₂ emission in phosphorus-supplied subtropical forest soils

Jianghao Tan ^{1,3#}, Muhammed Mustapha Ibrahim ^{1#}, Huiying Lin ^{1,2}, Zhaofeng Chang ^{1,2}, Conghui Guo ^{1,2}, Zhimin Li ¹, Xianzhen Luo ¹, Yongbiao Lin ¹, Enqing Hou ^{1*}

¹ Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

² University of Chinese Academy of Sciences, 100039, Beijing, China

³ Shanxi Agricultural University, Jinzhong 030801, China

[#] These authors contributed equally to this work

* Corresponding author: houeq@scbg.ac.cn (E. Hou).

Fig. S1. Study site showing phosphorus and potassium addition in an evergreen broad-leaved forest at the station (Note: only four phosphorus addition treatments were used in the current study: +0, +25, +50, and +100 kg P ha⁻¹ yr⁻¹, and three replicates of each treatment were denoted by CK, P1, P2, and P3, respectively)

Fig. S2. Repeated measures of soil P dynamics over one year after phosphorus (P) additions in the 10-20 cm depth. (a) available P concentration extracted by Bray-1 method, (b) iron-bound P (NaOH Pi) concentration, (c) acid phosphatase activity, and (d) microbial biomass P concentration. Each line/bar represents the mean value of each treatment (n=3 (lines), n=24 (bars), p < 0.05). The error bars represent the standard error of the mean. Con: control, P1: 25 kg P ha⁻¹, P2: 50 kg P ha⁻¹, P3: 100 kg P ha⁻¹.

Fig. S3. Dynamics of non-crystalline iron (Fe) concentration across sampling times in different soil depths following P addition. a. non-crystalline Fe concentration across sampling time in the 0-10 cm depth, b. cumulative non-crystalline Fe concentration in the 0-10 cm depth, b. non-crystalline Fe concentration across sampling time in the 10-20 cm depth, and d. cumulative non-crystalline Fe concentration in the 10-20 cm depth. Each line/bar represents the mean value of each treatment (n=3 (lines), n=24 (bars), p < 0.05). The error bars represent the standard deviation of the mean, using Tukey's test (n=24, p < 0.05). CK: control, P1: 25 kg P ha⁻¹, P2: 50 kg P ha⁻¹, P3: 100 kg P ha⁻¹.

Fig. S4. Dynamics of soil physical properties a. soil temperature, and b. soil moisture content. Each line/bar represents the mean value of each treatment (n=6 p < 0.05). The error bars represent the standard error (SE) of the mean, using Tukey's test

Fig. S5. Linear regression modeling showing the relationships between dissolved organic carbon (C) and soil phosphorus (P) and C fractions in the 0-20 cm depth following P supplies. ACP: acid phosphatase, BG: beta-glucosidase, MBC: microbial biomass C, MBP: microbial biomass P, Fe: iron

Fig. S6. Alpha diversity indices of total microbial gene knockout identities following phosphorus addition. a. Observed Species (Sobs), Chao1, and Abundance-based Coverage Estimator (ACE) and b. Shannon and Simpson indices. Con: control, P1: 25 kg P ha⁻¹, P2: 50 kg P ha⁻¹, P3: 100 kg P ha⁻¹.

Fig. S7. Shifts in the relative abundance of phosphorus cycling functional gene knockouts following P addition. TPM: transcripts per million, CK: control, P1: 25 kg P ha⁻¹, P2: 50 kg P ha⁻¹, P3: 100 kg P ha⁻¹.