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Abstract. Monitoring prairie snow is difficult due to its extreme spatial variability from windy 
conditions, gentle topography, and low tree cover. Previous work has shown that a noninvasive, 10 
aboveground (or aboveground) Cosmic Ray Neutron Sensor (CRNS) placed at the Central Agricultural 
Research Center (CARC; 47.07º N, 109.95º W), an agricultural research site within a semi-arid prairie 
environment managed by Montana State University, was sensitive to both the low snow amounts and 
spatial variability of prairie snow. In this study, we build upon previous work to understand how 
different snow distributions would have influenced CRNS measurements at the CARC. Specifically, we 15 
compared the changes in neutron counts and snow water equivalent (SWE) after relocating our CRNS 
probe at the CARC using the Ultra Rapid Neutron-Only Simulation (URANOS) and comparing them to 
uniform snow distributions. Neutron counts from simulations with a shallow, heterogeneous snowpack 
were higher compared to neutron counts from simulations with a uniform snowpack. While areas of 
higher snow accumulation reduced neutron counts, the low amounts of SWE made it difficult to discern 20 
a consistent relationship between SWE and neutron counts. Despite this, our analysis indicates that a 
naive CRNS placement was 2 to 5 times more likely to yield representative SWE estimates compared to 
a similarly placed snow scale. CRNS showed better agreement with lidar-derived SWE at our prairie 
site compared to several gridded snow productsCurrently available gridded snow products tend to 
under-estimate or over-estimate snow observations from our prairie site, while CRNS SWE values 25 
match more closely. We show CRNS can provide valuable information about shallow, heterogeneous 
snowpacks in prairie and other environments and can benefit future missions from UAV and satellite 
platforms. 

1 Introduction 

Seasonal snow plays an important hydrologic and climatic role in the Earth system. Seasonal snow 30 
covers an average of 31% of the Earth’s surface annually (Tsang et al., 2022). A major component of 
the Western United States’ water supply originates from seasonal snowpack, feeding the needs of over 
60 million people (Bales et al., 2006). Prairie snow can make up to 25% of the global snow cover 
(Sturm and Liston, 2021). Mid-latitude semi-arid prairie environments, such as those found in the 
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interior Great Plains of North America (i.e. northern states such as Montana and extending north into 35 
Canada) are dependent on snow. Over 80 to 85% of streamflow in the Northern Great Plains originates 
from snow (Gray, 1970), despite accounting for 20% of the annual precipitation (Aase and Siddoway, 
1980). 

Snow cover in the prairie is known for its extreme spatial heterogeneity, mainly due to strong 
surface winds, gentle topography, and spatial variability in vegetation (Gray, 1970). Figure 1 depicts the 40 
variability that snow can exhibit in a prairie environment. Strong winds in an open, flat expanse of land 
scours snow, causing wind erosion, enhancing sublimation, and transporting 75% of the annual snowfall 
(Gray, 1970; Harder et al., 2019). The effects of blowing snow are affected by changes in surface 
roughness such as vegetation which allows for preferential deposition and accumulation of snow along 
natural barriers (Harder et al., 2019; Kort et al., 2012). These areas of preferential deposition can build 45 
snow drifts as shown in Fig. 1a that can grow over 1 m tall and can transition to bare ground over a 
spatial scale of meters to tens of meters. 
 

 
Figure 1 Field images depicting the heterogeneity of snow in a prairie environment from winter 2020-2021. (a) Image taken on top 50 
of > 1 m snow drift, looking east, with snow disappearing as you move away from the snow drift. (b) Standing crop stubble is used 
to trap snow for early spring melt. Field images were provided by Dr. Eric Sproles. 

Figure 1b shows how vegetation variation due to agriculture in the Northern Great Plains can 
drive preferential snow accumulation. The introduction of dryland cropping techniques, such as no till 
(or zero tilling) allows certain winter wheat crops to grow in the Northern Great Plains changing the 55 
surface roughness of the prairies (Nielsen et al., 2005; Aase and Siddoway, 1980; Harder et al., 2019). 
The increased surface roughness from crops allow for preferential deposition of snow, reducing the 
blowing snow process (Harder et al., 2019). In addition, farmers can leave standing crop stubbles, like 
in Fig. 1b, to aid in trapping snow and reducing snow erosion in order provide water recharge and 
manage infiltration and runoff (Aase and Siddoway, 1980; Harder et al., 2019). Due to the semi-arid 60 
climate in the Northern Great Plains, water use must be efficient for agricultural fields to be productive. 
Thus, agricultural development in the prairies has increased the need to capture snow for early season 
melt water. Accurate SWE measurements in prairie environments are thus relevant for maximizing 
agricultural water use efficiency. 
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Snow heterogeneity introduces an important question in water resources management: How and 65 
where can we effectively measure snow water equivalent (SWE) in prairies and other similar 
environments? Traditional manual snow measurements from snow pits are labor-intensive and are best 
applied in deep snow. In prairie environments, snow pit measurements of snow density are usually 
restricted to snow drifts and are difficult to collect in shallower prairie snowpack. In addition, 
continuous SWE monitoring through snow pillows or snow scales like those found in the snow 70 
telemetry (SNOTEL) network from the US Department of Agriculture Natural Resources Conservation 
Service (USDA NRCS) (Serreze et al., 1999), are not as effective in the prairie due to wind erosion and 
transport. Additionally, Fig. 1 shows how the placement of a snow pillow or snow scale (e.g. in an area 
that accumulates a snow drift or an area that is wind-scoured) could result in very different snow 
measurements, some (or all) of which may not reflect the areal average SWE. Another alternative is to 75 
measure SWE at larger scales through remote sensing on satellite or airborne platforms. However, 
satellite and airborne remote sensing of SWE in the Northern Great Plains is currently limited by the 
SWE variability at the subpixel scale (Tuttle et al., 2018). 

To address these issuesovercome these limitations in snow observations in the prairies, we 
installed a Cosmic Ray Neutron Sensor (CRNS) to measure the SWE at an agricultural research site in 80 
the plains of central Montana. CRNS instruments detect the background neutron flux that is generated 
when cosmic rays interact with matter on Earth (Desilets et al., 2010). Neutrons are extremely sensitive 
to hydrogen, which can either be absorbed if the neutron is thermalized or slowed down due to energy 
loss from elastic collisions with hydrogen atoms (Zreda et al., 2012). Thus, a CRNS detector measures 
these attenuated neutrons, which is inversely related to the amount of hydrogen atoms in its immediate 85 
surroundings. The most common source of hydrogen in the environment is water molecules in the 
atmosphere (Rosolem et al., 2013; Zreda et al., 2012), vegetation (Baroni et al., 2018; Franz et al., 
2015), and soils (e.g., lattice water and organic matter) (Bogena et al., 2013; Franz et al., 2013). After 
accounting for all other hydrogen pools, CRNS estimates of soil moisture and SWE are made over an 
approximate operational radius of 150 to 250 m (for aboveground CRNS) by detecting the neutron flux 90 
over time (Zreda et al., 2008; Royer et al., 2021). The non-invasive and large footprint of CRNS has 
intriguing potential to overcome the issues of traditional continuous snow monitoring in heterogeneous 
shallow to moderate snowpacks. It also helps to mitigate a common issue in hydrology: bridging the 
scale gap between point measurements and areal measurements, such as remote sensing or modelling 
studies, by providing measurements of areal SWE at an intermediate or similar spatial resolution 95 
(Blöschl, 1999; Iwema et al., 2015; Schattan et al., 2020).  

Previous research has shown that CRNS estimates of SWE at an agricultural prairie site in 
central Montana agree with spatially weighted digital snow models (DSMs) from UAV light detection 
and ranging (lidar) flights and modelled CRNS estimates, despite extreme spatial heterogeneity of the 
snowpack surrounding the detector (Woodley et al., 2024). CRNS has been noted to be sensitive to bare 100 
ground patches, usually increasing the neutron counts (Schattan et al., 2019). We build on our previous 
research from Woodley et al. (2024) to analyze the effects of snow heterogeneity within the operational 
footprint of the CRNS using neutron transport modelling. From these results, we provide insights and 
guidelines on best practices to site future CRNS probes with respect to shallow, heterogenous 
snowpacks. We also use a synthetic analysis to compare the reliability of a naïve CRNS placement in a 105 
shallow, heterogeneous snowpack against a similarly sited snow scale. Finally, we compare CRNS 
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estimates and currently available gridded SWE products to lidar- and ground-based SWE measurements 
and find that CRNS measurements can be a reliable ground truth for remote sensing applications in the 
prairies. 

2 Study Area 110 

The modelling domain for this study is a 1 km2 region of the Central Agricultural Research Center 
(CARC), an agricultural research site managed by Montana State University, located in central Montana 
(47.057510˚ N, 109.952945˚ W; see Fig. 2). The CARC hosts ongoing agricultural research where 
researchers investigate different crop varieties, cropping strategies, and soil biogeochemistry. Crops 
typically grown at the CARC include cereals, grasses, legumes, and broadleaf plants. Some crops 115 
persist into the winter as stubble at the CARC, depending on harvest practices (Palomaki and Sproles, 
2023). The elevation of the study region ranges from 1287 m to 1298 m. Soils at the CARC are 
primarily well-drained, shallow clay loams (Palomaki and Sproles, 2023). We observed average air 
temperatures of -0.4°C (-3.7°C during December-February (DJF)), average air pressure of 870 mb, and 
average relative humidity of 62.8% throughout the winter of 2020-2021 (November through April). A 120 
CRNS (CRS2000/B from HydroInnova LLC, Albuquerque, NM, USA) was deployed at the site in the 
winter of 2020/2021, coincident with the SnowEx 2021 Prairie field campaign, to measure the low-
energy cosmic ray-induced neutrons (Woodley et al., 2024). 
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 125 
Figure 2 Basemap of study site. (a) The 1 km2 research domain outlined by the dashed black box at the Central Research 
Agricultural Center (CARC). The CRNS location is marked by the yellow dot and the estimated 171 m footprint (calculated in 
Woodley et al., 2024) is shown in the dashed yellow circle. The approximate locations where Fig. 1a (green triangle) and Fig 1b 
(cyan triangle) were taken are also shown. Fig. 1a and Fig. 1b were taken facing east. (b) The approximate location of the CARC in 
Moccasin, MT in Central Montana is marked by the red star. The State of Montana is also highlighted in red with a fill color of 130 
tan. (Basemap Image: © Google Tiles). 

3 Data and Methods 

3.1 In Situ Measurements 

The CARC was selected for NASA’s SnowEx field campaign in the winter of 2020/2021 to study 
prairie snow as one of its main objectives. SnowEx efforts at the CARC included airborne L-band 135 
interferometric synthetic aperture radar (InSAR) flights from the Uninhabited Aerial Vehicle Synthetic 
Aperture Radar (UAVSAR) instrument, snow-on and snow-off UAV lidar observations, UAV 
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orthophotos and structure from motion (SfM), and ground-based snow observations including snow pits 
and snow depth transects (Palomaki and Sproles, 2023). For this analysis, we used UAV mounted lidar 
measurements of snow depth along with snow density measurements from snow pits to calculate 140 
spatially distributed SWE at the CARC. 

Table 1 summarizes the snow depth properties and Fig. 3a shows the resulting digital snow 
models (DSM) from the 8 UAV lidar flights made in winter 2020/2021 across 8 different dates in our 1 
km2 study area (dashed black box, Fig. 2). The lidar data at the CARC were acquired by a contractor, 
DJ&A, P.C., using a 1,550 nm and a 905 nm wavelength laser (Woodley et al., 2024). The lidar 145 
measurements show how snow depth varies spatially and temporally within the CARC. The lidar flight 
conducted on 15 January 2021 is considered our “no snow” baseline. Despite the large range in snow 
depth due to the snow drifts, the snow drifts typically covered less than 1% of the 1 km2 area before 
February 2021. This includes a prominent linear north-south snow drift that formed adjacent to a 
windbreak in the western portion of the CARC. For this study, the digital snow model from the UAV 150 
lidar was divided into 2 m by 2 m pixels, for a total model domain of 500 pixels by 500 pixels. We 
masked off any region with 0 cm snow depth as a “no snow” region. We note that root mean squared 
errors (RMSE) provided by the contractor were between 4 and 7 cm, possibly due to the winter stubble 
giving a false surface return (Palomaki and Sproles, 2023). We compared our DSM from 21 January 
2021 to the pixel classifications made from an orthomosaic photo on the same day (Figs. 1d and 1e from 155 
Palomaki and Sproles, 2023), and the two show good agreement. However, our “no snow” masks 
include some pixels that are classified as “Mixed” in Palomaki and Sproles, 2023, likely due to the 
shallow and discontinuous nature of the snow in these areas. 
 
Table 1: Snow depth (SD) and the snow covered area (SCA) statistics from the digital snow models from each of the 8 UAV lidar 160 
flights at the CARC. We report the average and maximum SD for each date. The SCA is reported as the percentage of the CARC 
within the 1 km2 research area is covered by snow and the percentage of the CARC covered by greater than 20 cm of snow.  

Date Avg. SD, Excluding Bare Ground 
(Avg. With Bare Ground) [cm] 

Max. SD 
[cm] 

SCA 
[%] 

SCA, SD > 20 cm 
[%] 

15 Jan. 2021 5.3 (0.1) 63.4 1.8 % 0.2 % 
21 Jan. 2021 3.6 (1.6) 96.7 45.1 % 0.6 % 
22 Jan. 2021 3.8 (2.0) 82.7 52.1 % 0.5 % 
29 Jan. 2021 3.2 (0.9) 82.8 28.1 % 0.5 % 
17 Feb. 2021 8.8 (7.9) 131.5 89.6 % 5.0 % 
18 Feb. 2021 8.7 (7.6) 131.0 87.1 % 4.8 % 
24 Feb. 2021 5.5 (2.2) 100.6 39.7 % 2.4 % 
 4 Mar. 2021 2.2 (1.3) 80.4 60.1 % 1.1 % 
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 165 
Figure 3 (a) Lidar digital snow maps (DSM) from the winter 2020-2021 NASA SnowEx Prairie Mission within the research 
domain (dashed black box in Fig. 2a). Gray regions indicate regions of no snow cover (SD = 0 cm). Color scale for snow is not 
linear. Smaller increments were included to show where extremely shallow snow is located at the CARC. (b) Map of locations of 
virtual CRNS points for URANOS simulations. The actual CRNS location is marked by the magenta triangle, with the calculated 
171 m operational footprint (magenta dashed circle) of the CRNS from Woodley et al. (2024). The rest of the virtual CRNS 170 
(vCRNS) locations used in this analysis are marked by red circles, with one example virtual CRNS footprint shown in the red 
dashed circle in the upper right. 
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 To calculate spatially distributed SWE from UAV snow depth, we used density measurements 
from snow pits measurements collected in the north-south snow drift in the western portion of the 175 
CARC research domain (Mason et al., 2024). Snow pits observations were collected on four dates: 20 
January, 17 February, 24 February, and 5 March 2021. The snow pits revealed a bimodal snow density 
distribution, with a lighter snow layer (varying between approximately 100 kg m-3 for newly fallen 
snow to slightly over 400 kg m-3 late in the melt season) atop a denser basal layer (approximately 400-
500 kg m-3) Thus, we utilized a 2-layer density scheme to calculate spatially distributed SWE at the 180 
CARC, using snow density values derived from the snow pit measurements. The thickness of the lighter 
and basal snow layers on a given date was determined by differencing the lidar DSMs on different 
dates. These 2-layer snow density and depth maps were used to specify the “natural” snow cover 
conditions in the neutron transport simulations (section 3.2). The snow pit data are archived and freely 
available on the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center 185 
(DAAC). A more detailed summary of our methodology is provided in the Supporting Information from 
Woodley et al. (2024). 

3.2 Ultra-Rapid Neutron Only Simulations 

We analyzed the effects of the spatial heterogeneity of prairie snow on CRNS measurements through 
neutron transport modelling. Recently, CRNS studies have adopted the use of the Ultra Rapid Neutron-190 
Only Simulation (URANOS), such as Brogi et al. (2022), Schattan et al. (2017), and Schrön et al. 
(2023). URANOS utilizes a Monte Carlo approach to simulate the neutrons and has been specifically 
developed for CRNS applications (Köhli et al., 2023). Millions of neutrons are generated from 
randomly distributed point sources within a user-defined area, and neutrons’ path and interactions are 
tracked from its source to the point of detection through a ray-casting algorithm (Brogi et al., 2022; 195 
Köhli et al., 2023). URANOS can model 3-dimensional voxel-based geometries with defined materials 
by stacking multiple layers of either ASCII matrices or bitmap images to replicate important site 
characteristics (Köhli et al., 2023). For this analysis, we used URANOS v1.23, which is freely available 
for download at: https://gitlab.com/mkoehli/uranos/. 
 To examine how CRNS measurements change with the spatial distribution of snow, wWe ran 200 
624 individual URANOS simulations: corresponding to each of the 26 virtual CRNS locations around 
the CARC (Fig. 3b), for each of the eight dates corresponding to the UAV lidar flights at the CARC, 
with three different snow distribution schemes on each date. The three different snow distribution 
schemes include two different sets of simulations using two different spatially uniform snow layers and 
a singular set of simulations using a “natural” or heterogeneous snowpack usingthe DSMs derived from 205 
the UAV lidar and snow density (Fig. 3a). We also ran control simulations with completely snow-free 
conditions for each virtual CRNS locations. Our “natural” or heterogeneous model setups are similar to 
the simulations described in Woodley et al. (2024), with a stratified 2-layer snow density model as 
described in Sect. 3.1 and split into semi-regular layers (see colorbar on Fig. 3). However, our 
simulations alsobut contain several important differences. First, we moved the virtual CRNS around our 210 
research domain to test how neutron counts would have been affected by the differing snow cover 
conditions around the CARC. A cylindrical virtual CRNS detector was placed at each of the 26 points 
on Fig. 3b, and3b and placed 2 m above the ground in URANOS. Each URANOS run simulated 108 
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neutrons. The virtual CRNS was enlarged to a 9 m radius to improve detection statistics and supplied 
with a detector response function (provided in the URANOS GitLab repository) to simulate the 215 
sensitivity of the CRNS installed at the CARC, specifically a high-density polyethylene moderator of 25 
mm thickness. To minimize the influence of soil heterogeneity and focus on the influence of snow 
variability, we chose to create a uniform 30 cm soil layer with the average of all soil measurements. In 
the field, soil samples for soil moisture and bulk density were collected at 5 cm depth intervals up to a 
total depth of 30 cm and at six cardinal directions at three different radii (approximately 25 m, 75 m, 220 
and 200 m) from the CRNS instrument (Woodley et al., 2024). Because this analysis moves the 
simulated CRNS instrument around the CARC where other soil moisture measurements were not made, 
we chose to average the soil measurements for our uniform soil layer. As in Woodley et al. (2024), soil 
moisture, atmospheric pressure, and other important parameters listed in Table 2 were kept constant to 
allow direct comparisons of model simulations due to changes in snow distribution and to remove the 225 
need to correct counts based on differing hydrogen pools. 
 
Table 2: Atmospheric and soil parameters used in our URANOS simulations. These values were unchanged from each set of 
heterogeneous and uniform snow runs.  

Parameter Value 
Number of Neutrons [-] 100000000 
Air Humidity [g m-3] 3.341 
Atmosphere Depth [g cm-3] 888.809 
Soil Moisture (first 30 cm) [%] 21% 
Soil Bulk Density (first 30 cm) [g m-3] 1.087 
Soil Porosity (first 30 cm) [%] 56% 

 230 
 To examine how CRNS measurements change with the spatial distribution of snow, we ran 
simulations in URANOS using three different snow distribution schemes: two different uniform snow 
layers and the DSMs derived from the UAV lidar and snow density (Fig. 3a). For the uniform 
simulations, a chosen volume of snow water was evenly distributed in the research area, creating a 
uniform snow layer. We created two uniform snow layer schemes based off: a) the average amount of 235 
snow water in the 171 m operational footprint around the CRNS detector and b) the average amount of 
snow water across the entire 1 km2 study domain. The 171 m operational footprint of the CRNS is a 
site-specific value calculated at the CARC using “no snow” URANOS simulations from Woodley et al. 
(2024). While we used a constant value for the CRNS footprint in this study, the actual operational 
footprint of a CRNS is dependent on the amount of moisture present in the environment. We derived the 240 
uniform snowpack thickness by dividing theThe total amount of snow water volume was divided using 
one of theby thesnow snow density of hard coded material values of different snow types in URANOS. 
Depending on the amount of snow water per pixel, we chose to model the snowpack using the built-in 
material codes for snow: 240, 241, and 242, which has density values of 0.03 g cm-3, 0.1 g cm-3, 0.3 g 
cm-3, respectively, to create a snow layer with uniform thickness and density (see MaterialCodes.txt in 245 
GitLab repository, link in Sect. 3.2). 
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From the different URANOS simulations, we also calculated SWE from the modelled neutron 
counts. We followed our methods from Woodley et al. (2024) to calculate modelled SWE from 
URANOS. SWE calculations were made using Eq. (1) (Desilets, 2017) using our modelled neutron 
counts from URANOS simulations 250 

𝑆𝑊𝐸  =   − 𝛬 𝑙𝑛
𝑁 − 𝑁!"#
𝑁$ − 𝑁!"#

. (1) 

Nq is the calibration neutron count, from the “snow-off” reference date of 15 January 2021. N is the 
neutron counts corresponding to the dates of the subsequent seven “snow-on” lidar flights at the CARC 
(21 Jan. 2021 to 4 Mar. 2021). The attenuation length (L) was calculated to be 4.8 cm from previous 
literature (Desilets et al., 2010). Nwat is the counting rate over an infinite depth of water and can be 255 
calculated using Eq. (2): 

𝑁!"# = 0.24𝑁%, (2) 
 
where 0.24 is an assigned constant value (Desilets, 2017; Desilets et al., 2010). N0 is the theoretical 
counting rate over dry soils: 260 

𝑁% =
𝑁$

𝑎%
𝜃&𝜌'( + 𝑎)

+ 𝑎*
, (3) 

 
where a0 = 0.0808, a1 = 0.372, and a2 = 0.115 (Desilets et al., 2010; Desilets, 2017). Usually, Nq in Eq. 
(3) is multiplied by a correction factor, F(t), to correct for solar activity, atmospheric pressure, and 
humidity. However, as all our model simulations used the exact same meteorologic conditions, our 265 
correction factor was set to 1. 𝜃g is the sum of gravimetric soil water content, soil mineral lattice water 
and water equivalent of soil organic carbon, and ρbd is the soil bulk density, which were obtained from 
in situ soil samples. 

3.3 Comparisons with Gridded SWE Products 

To evaluate whether CRNS SWE has potential value for future remote sensing missions or gridded 270 
datasets, we compared our CRNS SWE and UAV lidar SWE to several gridded SWE products, which 
are available at several spatial resolutions. We chose the Western United States UCLA Daily Snow 
Reanalysis (hereafter UCLA-re, ~500 m resolution, Fang et al., 2022), the Snow Data Assimilation 
System (SNODAS, 1 km resolution, National Operational Hydrologic Remote Sensing Center, 2004) 
from National Oceanic and Atmospheric Administration’s National Weather Service National 275 
Operational Hydrologic Remote Sensing Center, and the Daily 4 km Gridded SWE (hereafter UA, 4 km 
resolution, Broxton et al., 2019) from the University of Arizona.  

The UCLA-re dataset is generated from assimilation data with Landsat fractional snow cover 
area and other input data such as meteorological forcings from the Modern-Era Retrospective analysis 
for Research and Applications, version 2 (MERRA-2) (Margulis et al., 2019). A Bayesian analysis is 280 
performed on prior estimates of snow states and fluxes using a land surface model and snow depletion 
curves (Margulis et al., 2019). SNODAS provides daily gridded estimates of SWE for the conterminous 
United States using a snow model, which is forced by downscaled numerical weather predictions (Clow 
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et al., 2012). Digitally available airborne, satellite, and ground-based snow data are then assimilated into 
the model to provide a best estimate of near real-time snow estimates (Clow et al., 2012; Driscoll et al., 285 
2017). The UA dataset provides SWE and snow depth estimates by assimilating snow station data such 
as the snow telemetry (SNOTEL) network and precipitation and temperature data using the gridded 
PRISM model (Zeng et al., 2018). For each gridded dataset, we chose the pixel that included the CARC. 
Only the SWE for the UCLA-re data was aggregated and averaged within a 2-pixel by 2-pixel region, to 
obtain an area that is similar to the 1 km2 area of the CARC. All gridded datasets are freely available for 290 
download at the National Snow and Ice Data Center (last accessed: 3 October 2024). 

4 Results and Discussion 

4.1 Neutron Modelling 

Figure 4 shows the differences between the URANOS simulations with a heterogeneous snowpack and 
171 m average uniform snowpack for neutron counts (Fig. 4a) and SWE (Fig. 4b) for all 8 lidar flight 295 
dates and 26 virtual CRNS locations on Fig. 3b. Neutron counts are on average 1.8% higher in the 
heterogeneous runs compared to the uniform runs with a root mean squared difference (RMSD) of 
2.6 %. When we calculated the SWE using these URANOS runs and Eq. (1), SWE would be 
underpredicted in the heterogeneous runs with a mean bias percent error (MBPE) = -19.9 % and a 
RMSD = 35.3 %. We found similar trends comparing URANOS simulations with a heterogeneous 300 
snowpack and the CARC average uniform snowpack (not shown). Neutron counts were 1.9% higher in 
the heterogeneous runs and an RMSD of 3.1 %. SWE were biased towards the uniform runs with an 
MBPE of -23.2 % and a RMSD = 42.7 %. For both comparisons, we colored each data point in Fig. 4 
by the percentage of bare ground (i.e., the ratio of the area of no snow cover (SD = 0 cm) to the total 
area of the 171 m radius footprint of each virtual CRNS detector). Generally, we found neutron counts 305 
were similar between the heterogeneous and uniform runs (both 171 m and CARC average SWE) at 
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higher percentages of bare ground within the operational footprint of the CRNS. The opposite trend was 
true for SWE. 
 

 310 
Figure 4  

Figure 4 Scatterplot comparing (a) neutron counts and (b) SWE for the heterogenous snow runs (x-axis) against uniform snow 
runs (y-axis) that use the average SWE of the 171 m radius footprint surrounding the virtual detector across the 26 virtual CRNS 
locations for the 8 lidar flight dates. Points are colored by the percentage of bare ground by area within the 171 m footprint of a 
CRNS. (c) Boxplots showing the difference between the heterogenous and uniform snow runs for each virtual CRNS location 315 
(shown in Fig. 3b), where each box contains the eight URANOS simulations corresponding to the eight UAV lidar flights at the 
CARC. 

We grouped the differences in neutron counts between the heterogenous and uniform snow 
model runs (with CRNS footprint average SWE) across all dates by virtual CRNS location, to determine 
which locations had the largest and smallest differences in neutron counts (Fig. 4c). The largest 320 
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differences were found in points P00, P05, P19, and P03. Points P00, P05, and P19 are the 3 closest 
locations to the large snow drift in the western portion of the study area. P03 (top row, center in Fig. 3b) 
is also located near snow drifts that formed due to topographical changes near train tracks that cross the 
CARC. The lowest errors were found in points P17, P15, P24 and P06. The commonality between 
points P17, P15, P24, and P06 were likely relatively uniform snow cover surrounding the virtual CRNS 325 
for most of the dates. P17 and P24 were in the same field directly to the left of P00, which had relatively 
uniform snow trapped from the field around most of the dates during winter 2020/2021. P00, P05, P19, 
and P03 had much more variable snow cover surrounding the virtual CRNS, with the large snow drift 
on one side and bare ground on the other for most dates in winter 2020/2021.  

Comparing the heterogeneous runs to the uniform runs with CARC average SWE allows us to 330 
evaluate which virtual CRNS locations were most reflective of the CARC average. The locations with 
the smallest neutron count differences were points P20, P07, P06, and P19. The locations with the 
largest neutron count differences were points P13, P23, P14, and P10. Interestingly, points P20, P07, 
and P19 are the three points clustered around the actual CRNS instrument at the CARC. P06 was not 
located near the original CRNS but had some snow cover through most of January and February. P13, 335 
P14, and P10 were also similarly clustered close together (NW quadrant) closer to the train track snow 
drifts. We theorize that these points sampled too many snow drifts or too little snow throughout the 
winter. 

One might assume that neutron counts between the uniform and heterogeneous simulations 
should be comparable because both have the same total snow water volume within the operation 340 
footprint of the CRNS. However, it appears that the distribution of the snow water and bare ground 
patches among fallow fields, crop stubble, and shelter belts around the CARC has a considerable effect 
on CRNS, as shown in Schattan et al. (2019). Figure 4c suggests that snow drifts closer to the CRNS 
affect neutron counts the most, leading to the largest differences in neutron counts compared to a 
uniform snow scenario. We found that differences in neutron counts between the uniform and 345 
heterogeneous runs (hereafter DNCf = NCuniform – NCheterogeneous) were positively correlated with the 
percentage of bare ground within the operation footprint of the CRNS in the heterogenous scenario (i.e., 
spatially varying snow distribution derived from the UAV lidar and snow density), with statistical 
significance (r = 0.454, p < 0.05). This correlation partly arises from the fact that we are comparing 
similar model runs when the bare ground percentage is close to 100%, leading to minimal differences in 350 
neutron counts. Differences in DNCf between the uniform and heterogeneous snowpacks increases with 
more snow covering the ground, and enhanced variability of snow depths within the CRNS footprint. 
To verify, we computed additional correlation metrics between the DNCf and snow depth variability 
within a CRNS footprint – namely the standard deviation and the range (difference between max. and 
min. snow depth). We found statistically significant negative correlations between DNCf and snow 355 
depth standard deviation (r = -0.70, p < 0.05) and DNCf and snow depth range (r = -0.60, p < 0.05). The 
negative correlations are due to DNCf being mostly negative since DNCheterogeneous > DNCuniform. These 
results similarly suggest that higher amounts of snow lead to increased heterogeneity (e.g., snow drifts 
and bare ground patches) which creates the high DNCf. 

To test whether snow drifts do in fact play a large role in neutron count differences, we focused 360 
on model comparisons for 15 January 2021, to isolate the effects of large snow drifts on CRNS 
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measurements. Figure 5 shows the differences between heterogeneous runs (i.e., spatially varying snow 
distribution derived from the UAV lidar and snow density) and the uniform runs (i.e., uniform snow 
distribution) from 15 January. On this date, most of the CARC was snow-free except for some isolated 
patches of extremely shallow snow and the large snowdrift in the western portion of the study domain 365 
(top left panel of Fig. 3a, and Fig. 5b). Most virtual CRNS locations resulted in neutron counts from the 
heterogenous and uniform runs that were within 1 % of error from each other. However, points P00, 
P05, P07 and P19 yielded large differences of greater than 100 neutrons (approximately 3 % error). 
These four points are also the closest to the snow drift on 15 January 2021 (see Fig. 5b). 
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Figure 5  

Figure 5 (a) A scatterplot comparing neutron counts from the uniform runs (y-axis) against the heterogeneous runs (x-axis) for 15 
January 2021, the near-no-snow baseline, with the exception being the large north-south snow drift in the western portion of the 375 
study area (same as Fig. 4a). The points are colored by the percent of bare ground within the 171 m footprint of the CRNS but 
using a different scale. While most points fell near the one-to-one line (black dashed line) and within a 1% error, four virtual 
CRNS locations yielded large differences in neutron counts: P00 (triangle marker), P05 (square marker), P07 (diamond marker), 
and P19 (hexagonal marker). (b) Map of the snow depth from the 15 January 2021 UAV lidar flight, shown in the colorbar. The 
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snow drift is the slim blue linear feature on the left (western) portion of the study area. The virtual CRNS locations in URANOS 380 
are shown in circles, while the actual CRNS location from winter 2020-2021 is shown in a triangle (as in Fig. 3b). The four points 
with the largest neutron count differences are marked in magenta.  

Figure 6 compares how the neutron counts change with relation to the snowpack variability at 
P00, P05, P07 and P19. We calculated the percent change between the heterogeneous and uniform runs 
(171 m average) where the neutron model domain was divided into twelve sectors of equal angle from 385 
the virtual CRNS detector. We noticed skews in neutron origins due to the relation of the model 
geometry, namely the position of the virtual detector and the source geometry. Virtual detectors placed 
closer to the edges of our domain had neutron origins that were skewed towards the center of the 
domain. Therefore, we limited the neutron counts to within a 200 m radius of the virtual detector only 
for the results shown in Fig. 6(a)-6(d). The radial plots in Fig. 6 shows the percent change in neutron 390 
counts from the uniform runs to the heterogeneous runs in each sector on 15 January. P07 (Fig. 6a) saw 
the biggest percent change between the no-snow (right of N-S line) and snow side (left of N-S line) with 
an average percent change of 5 % in neutron counts compared to 1.6% change, respectively. We 
observed a similar but smaller trend in P05 (Fig. 6c) with an average 3.2% change on the no-snow side 
and 2.3% change on the snow side. In both P19 (Fig. 6d) and P00 (Fig. 6b), we observed larger changes 395 
on the snow side compared to the no-snow side. P00 had a 5.3 % change on the snow side compared to 
a 2.4 % change on the no-snow side. P19 had a 3.9 % change on the snow side and a 2.1 % change on 
the no-snow side. The different trendces in P00 neutron counts are likely explained by the longer 
distance away from the snow drift (Fig. 6f) leading to extreme difference in the snowpack around the 
CRNS. Many studies have shown that CRNS is extremely sensitive to its immediate surroundings 400 
(Köhli et al., 2015; Schrön et al., 2017). The In the case of P00, it seems that the latter has a lesser 
influence on neutron counts compared to points P05, P07, and P19, which were much closer to the snow 
drift. These results highlight that CRNS neutron counts are the result of the interaction between the 
spatial sensitivity of the CRNS and the spatial snow distributionremoval of snow cover around the 
CRNS from the uniform run is likely to have a larger effect on neutron counts than the snow drift. P05, 405 
P07, and P19 which were modelled closer to the snow drift. The differences between P05, P07, and P19 
are likely caused by the breaks in the snow drift as it first formed. P07 (Fig. 6e) was placed next to a 
longer, contiguous section of the snow drift compared to P05 (Fig. 6g), which enhances reduced the 
neutron counts on the snow side for P07.  in the heterogeneous runs. We observed similar breaks in P19. 
Overall, all ofall of our model results are likely influenced by the extremely shallow nature of the 410 
snowpack at the CARC, leading to differences in neutron counts that are less than 10% of the detected 
neutrons, making this correlation analysis difficult to discern. 
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Figure 6  415 

Figure 6 Percent changes in neutron counts of the heterogenous runs from the uniform runs for 12 sectors around the virtual 
CRNS location for the 4 points identified in Fig. 3: (a) P07, (b) P00, (c) P05, and (d) P19. The orange line on panels (a)-(d) marks 
no change in neutrons counts in the heterogeneous runs from the uniform runs. The snow distribution on 15 January 2021 is 
shown for each point on panels (e)-(h) to contextualize the differences. 

4.2 CRNS Spatial Representativeness 420 

To supplement these findings, we conducted a secondary analysis to evaluate the spatial 
representativeness of CRNS SWE at our prairie site compared to the observations that might have been 
collected from a more traditional snow scale SWE instrument. In most cases, CRNS or other SWE 
instruments would be deployed in hopes of capturing the average snow conditions representative of a 
large area. In order to do this, we averaged the lidar-derived SWE DSMs for each of the eight UAV 425 
flights to 1 m2 spatial resolution. We calculated the kernel density of all of these 1 m2 SWE pixels to 
understand the full distribution of SWE across the study site, where each pixel represents a possible 
SWE measurement that could have been collected by a naively located snow scale or snow pillow (of 
measurement area equal to 1 m2). Then, we applied the CRNS spatial weighting function from Woodley 
et al. (2024) to each of these pixel locations (actually, every 4th pixel to increase computational 430 
efficiency), using a wraparound boundary to remove edge effects from pixels close to the boundary of 
the study site. This allowed us to retrieve a distribution of synthetic CRNS SWE estimates across the 
entire CARC.  
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We acknowledge that this analysis is naive in that it assumes that the CRNS spatial weighting 
function would be constant across the entire study site. In reality, the spatial sensitivity of CRNS can 435 
change with snow spatial distribution and magnitude, and soil moisture distribution and magnitude, 
among other factors. The wraparound boundary also means that none of the CRNS SWE estimates from 
this analysis, especially those near the boundaries of the study area, are truly reflective of the "true” 
SWE that would be observed by CRNS at the same location within the site. 

However, it does mean that each CRNS SWE estimate is derived from the same lidar-derived 440 
SWE data, which reflects a spatial snow distribution representative of a prairie site. Lastly, this analysis 
assumes that a snow scale or snow pillow would exactly measure the SWE in each given location. 
However, this is unlikely to be true given that snow will likely accumulate differently on a smooth 
artificial surface versus the natural ground surface, especially in the windy, shallow snow conditions 
typical of the prairie. In summary, this analysis is not as rigorous in reproducing CRNS behavior as the 445 
URANOS simulations presented above. Still, it does provide a first-order estimate of the spatial 
representativeness of CRNS SWE estimates at a prairie site versus more conventional, smaller-footprint 
SWE instruments. 

Figure 7a shows the kernel density distribution of synthetic SWE estimates from the CRNS 
locations across the entire CARC (blue), compared to the distribution of “Snow Scale” 1 m2 lidar-450 
derived SWE pixels from the entire CARC (red) for an example date of 29 January 2021. This date was 
more than one week after the most recent snow event, allowing for wind redistribution, sublimation, and 
potentially melting of the snow during the intervening period. The spatial mean lidar-derived SWE for 
the entire CARC is shown in the vertical, black dashed line. A similar plot is shown in Fig. 7b for 17 
February 2021, soon after a large snow event (and the most pronounced snowpack of the season). In 455 
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both cases, the CRNS SWE distribution is shifted closer to the CARC average, compared to the 1 m2 

“Snow Scale” SWE distribution.  
 

 
Figure 7 S 460 

Figure 4 Simulation of the spatial representativeness of aboveground CRNS at the CARC versus a snow scale or pillow of area 
1m2. (a) and (b) Probability density functions of the SWE observed by synthetic CRNS (blue) versus a synthetic snow scale or 
pillow of pixel size 1m by 1m (red) for 29 January and 17 February 2021, respectively. The vertical dashed line shows the mean 
SWE of the entire study 1 km2 area. It is evident on both dates that the probability density of CRNS SWE estimates is shifted 
closer to the areal mean. (c) and (e) show the areas where the CRNS and 1m “Snow Scale” are within +/- 25 % of the mean SWE 465 
of the entire study area (red pixels), respectively, for 29 January 2021. The underlying blue color map shows the SWE estimate 
from the given synthetic SWE measurement method, as calculated from the lidar-derived SWE DSM. This results in different 
color scale limits for the CRNS (c) than for the synthetic snow scale (e) because the CRNS measures SWE over a larger spatial 
footprint, which effectively smooths out the SWE distribution. (d) and (f) show the same information for 17 February 2021. 
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Generally, the CRNS is representative of a larger proportion of the study area and the representative areas are more contiguous, 470 
compared to the 1m resolution synthetic snow scale or pillow.  

 
For 29 January, the CARC average SWE was 0.4 cm. 23 % of the CRNS locations were within +/- 25 % 
of the CARC average, while only 5% of the 1 m2 pixels were within that same range. For February 17, 
the CARC average SWE was 1.1 cm, and 50 % of the CRNS locations and 20 % of the 1m2 pixels were 475 
within +/- 25 % of the CARC average, respectively. Across all dates (excluding January 15, 2021, 
which had very spatially limited snow cover), this analysis indicated that the percentage of the CARC 
study area for which a CRNS would return a SWE estimate within +/- 25 % of the CARC average 
ranged from 21-50 %, while the 1 m2 pixels ranged from 5-20 % of the CARC. In summary, our first-
order analysis indicated that a naively sited CRNS was 2.3 to 5 times more likely to return a SWE 480 
estimate within +/- 25 % of the large-scale spatial average than a similarly sited SWE sensor with a 
footprint of 1 m2.  

These results are shown spatially in Figs. 7 c&e, where Fig. 7c shows the map of synthetic 
CRNS SWE estimates, and Fig. 7e shows the lidar-derived SWE at 1 m2 resolution for the example date 
of 29 January 2021. In both maps, locations that returned a SWE value within +/- 25 % of the CARC 485 
average are shown in red. The representative areas for CRNS are more extensive and spatially 
contiguous, while the representative 1 m2 “Snow Scale” pixels are fewer and less spatially contiguous. 
The same maps are shown for 17 February 2021 in Figs. 7 d&f. In this case, a larger proportion of the 
CARC is representative of the large-scale CARC average in both maps, and the CRNS similarly shows 
more extensive and more contiguous representative areas. These results indicate that CRNS provides 490 
value for large-scale SWE estimates in the prairies, beyond those available from moreand well suited to 
measure SWE in prairie environments compared to the conventional, smaller-footprint sensors. It 
appears that the optimal locations to site CRNS in prairie snow distributions like the CARC are in 
locations of low snow accumulation near areas of high snow accumulations (e.g. snow drifts). This 
makes sense, as most of the CARC area exhibits low snow accumulation, while only a small portion 495 
experiences higher snow accumulation, and CRNS are most sensitive to the area immediately 
surrounding the instrument. Through a combination of design and happenstance, our actual CRNS at the 
CARC (point P00 on Fig. 3) is located within a representative region for all lidar dates (with the 
exception of 15 January 2021, which had very spatially limited snow cover). 

4.3 Comparison against Gridded SWE Estimates 500 

To show the value of accurate CRNS measurements to future remote sensing missions, we compared 
our CRNS SWE estimates and currently available gridded snow products to the areal mean lidar-
derived SWE and snow depth for the entire 1 km2 study area. Figure 8 shows comparisons of SWE (Fig. 
8a) and snow depth (Fig. 8b) products at similar magnitudes of scale (see Sect. 3.3 for details). We also 
plotted our CRNS SWE time series at the CARC from Woodley et al., (2024) (see Fig. 5a in Woodley 505 
et al., 2024). In January and March 2021, all gridded SWE products had no SWE. This contrasts with 
the average CARC SWE from the UAV lidar DSMs (red squares on Fig. 8a) and URANOS simulations 
(grey boxplots on Fig. 8a), and our CRNS SWE times series (green line, Fig. 8a), which all indicate that 
snow is present. In February, the UCLA-re and SNODAS predicted more peak SWE on the 17 and 18 
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February 2021 compared to our average CARC SWE, with SNODAS almost double our CARC SWE 510 
estimates. The UA SWE produced quite similar estimates to our CARC SWE in February, before 
underpredicting SWE starting in March. 

 

 
Figure 8 C 515 

Figure 85 Comparisons of (a) SWE estimates and (b) snow depth estimates from gridded products and in situ measurements 
between 9 January to 10 March 2021. In (a), time series of the UCLA Snow Reanalysis (blue line), UA SWE (orange line), daily 
mean CRNS SWE (green line) from Woodley et al., (2024; blue line from Fig. 5a) are shown. Daily SNODAS SWE estimates for 
each of the dates corresponding to a lidar flight are shown as blue triangles, and an averaged CARC SWE for each digital snow 
model (DSM) for the 1 km2 study region are plotted as red squares. URANOS modelled SWE estimates from this study for each 520 
date are plotted as grey boxplots to illustrate the variability of SWE within our study region. Snow depth from the same sources 
are shown in (b), except for CRNS and URANOS, which do not estimate snow depth. 

The differences in SWE products are likely due to aggregation with different resolution and 
meteorological forcings. Sub-grid variability is shown to be very important in estimating the SWE in a 
prairie environment, where the average SWE can be either grossly under or overpredicted. Past studies 525 
have indicated that SNODAS is unsuccessful at capturing the snow spatial variability in regions with 
persistent winds like the prairies (Lv et al., 2019). Our results indicate that similar issues can occur with 
snow depth. Figure 8b plots a similar graph, except showing the changes in snow depths for January to 
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March 2021. Snow depth shows a similar pattern, where all gridded products lack snow in January 2021 
and March 2021, and snow depths are detected for February 2021. SNODAS overestimates the snow 530 
depths compared to our average CARC snow depths on 17 and 18 February 2021, while 
underestimating snow depths for all other dates, despite having similar spatial resolution (1 km for 
SNODAS and a 1 km aggregate for lidar CARC SWE). 

While Fig. 8a shows that SWE estimates from the UA 4km data are more reliable in February 
2021, Fig. 8b shows that the accuracy of both the UA and UCLA-re snow depth estimates vary 535 
depending on the winter months. UA 4km underestimates snow depth for mid-February 2021, while the 
UCLA-re overestimates snow depth. However, by the end of February 2021, this relationship is flipped 
with the UCLA-re predicting similar snow depth to our lidar DSM average and the UA 4km 
overpredicting snow depth. .. The timing of snow accumulation from all three models also does not 
seem to line up with some of our in-situ measurements. UCLA-re shows a brief accumulation event 540 
between the 15 January 2021 UAV flight and the 21 January 2021 UAV flight, and coincident with a 
known snowfall event between 18-19 January 2021 (see Supporting Information for Woodley et al., 
2024). However, snow disappears quickly after the snowfall event. Lower estimates of mean SWE and 
SD are expected for larger spatial resolutions due to increased aggregation (Blöschl, 1999). 

Our analysis shows that CRNS has utility for improving SWE estimates in prairie environments, 545 
and other environments with shallow, heterogeneous snowpacks. CRNS measurements have already 
shown this utility in mountain regions. Integration of CRNS SWE into models, alongside remote 
sensing data, has reduced error spread in the Austrian Alps (Schattan et al., 2020). CRNS has the 
potential to increase the coverage of SWE monitoring sites, where currently used technologies within 
snow monitoring networks like SNOTEL may not be optimal, such as the northern Great Plains. 550 
Previous research has shown that large errors in SWE were due to subpixel SWE variability of the 
Northern Great Plains (Tuttle et al., 2018). However, we hope that future planned satellite missions such 
as NISAR, armed with similar instrumentation used in the CARC during SnowEx 2021 (Palomaki and 
Sproles, 2023) can improve efforts to monitor snow in this relatively under-instrumented region. 

4.4 Assumptions and Limitations of this Study 555 

For this analysis, we made several key assumptions and simplifications from actual field conditions 
during winter 2020/2021. One key simplification concerned soil moisture. As mentioned in Sect. 3.2, 
we kept soil moisture spatially uniform and constant across all our model simulations due to a variety of 
logistical complications. In situ soil moisture measurements were collected at the CARC after the winter 
season in May 2021, due to delivery of the CRNS instrument after first snowfall (Woodley et al., 2024). 560 
These soil measurements were also taken at a maximum of 200 m away from our CRNS instrument, 
while our URANOS simulations cover the entire 1 km2 area. While soil moisture was continuously 
monitored at nine locations throughout the winter of 2020/2021 using soil moisture probes, these data 
were not informative because the soil temperature dropped below 4 ºC (at which point water's dielectric 
properties change) for the top 0.5 m of soil for nearly the entire winter (Woodley et al., 2024). The 565 
heterogeneity of the underlying soil moisture will have a great effect on CRNS measurements and 
neutron counts, possibly even overcoming the contribution of the snowpack due to the shallow nature of 
the snowpacks in the prairie. Snowmelt events throughout the winter could also impact CRNS 
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measurements throughout the winter, which may also impact soil moisture depending on the coupled 
frozen ground dynamics. Our aim was to show how CRNS measurements were affected by snowpack 570 
spatial distribution alone and what considerations need to be taken before siting a CRNS to obtain SWE. 
 Another important assumption was our initial conditions, namely our Nq, the calibration neutron 
count (see Eq. 1 and 3), which we took from 15 January 2021. Typically, a CRNS is calibrated by 
choosing a Nq value before the start of the winter season, when SWE = 0 (Desilets, 2017). Again, due to 
logistical constraints mentioned previously, we were not able to obtain a baseline neutron count during 575 
snow-free conditions. Between the time period when the CRNS was installed at the CARC on 22 
November 2021 and when we conducted our “snow-off” lidar flight on 15 January 2021, the CARC was 
never completely snow-free (Woodley et al., 2024). Our Nq value from 15 January may be lower than a 
calibration value chosen before the start of the winter season due to the proximity of the prominent 
north-south snow drift. A lower Nq would affect the SWE values that we have calculated in this study 580 
and our CRNS time series (green line in Fig. 8). However, with less than 2 % of the CARC covered in 
snow on 15 January 2021 and only 0.2 % of it covered in deep snow (see Table 1), we do not expect the 
choice of Nq to be a large source of bias in our CRNS SWE estimates. Modeled SWE calculated using a 
completely snow-free baseline (grey boxes Fig 8a) and the January 15th baseline (Fig. 4b) differed on 
average by 0.05 cm. 585 

5 Conclusions 

A neutron transport modelling study at an agricultural site in the Northern Great Plains of Montana has 
shown that the spatial variability of shallow and heterogeneous snowpack affects CRNS measurements. 
Our URANOS simulations with heterogeneous snowpack tended to have increased neutron counts 
compared to simulations with a uniform snowpack with similar snow water volume. We partly attribute 590 
these increases in neutron counts to bare ground patches around the CRNS with the heterogeneous 
snowpack, similar to previous studies such as Schattan et al., (2019). However, we acknowledge that 
the spatial sensitivity of the sensor may play a large role in these differences as well, since our virtual 
CRNS locations were placed in areas of lower snow accumulation. How snow is distributed should be 
considered when siting aboveground CRNS instruments in areas of high snow spatial heterogeneity, 595 
even for very shallow snowpack like that at the CARC, if the goal is for the instrument to be 
representative of the large-scale spatial average. In prairie sites characterized by wind scoured fields and 
spatially limited snow drifts, CRNS instruments should be placed in areas of low snow accumulation 
that are nearby higher snow accumulation areas. However, a naively sited CRNS instrument (i.e., with 
no knowledge of the snow distribution) is still 2 to 5 times more likely to be representative of the large-600 
scale average SWE than a more conventional, smaller footprint SWE sensor such as a snow scale or 
snow pillow. Comparisons with gridded SWE products show that CRNS has the potential to improve 
SWE estimates in prairie snow, when compared to lidar-derived SWE from the site. Our study focuses 
solely on the effect of snow distribution on CRNS, but spatial variability of soil moisture is also 
important to consider, especially in shallow snowpack areas such as the prairie, where the effect of soil 605 
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moisture distribution on CRNS measurements may be of comparable magnitude to that of snow 
distribution. This highlights the need for further research in semi-arid prairie environments like the 
Northern Great Plains, where water use efficiency and snow capture are of great agricultural interest, 
and more rigorous studies of CRNS applications in shallow, heterogeneous snowpacks. 

Code and Data Availability 610 

Code and data used in this analysis will be made available through GitHub at 
https://github.com/heyjoekim/carc_crns_spatial and archived on Zenodo at 
https://doi.org/10.5281/zenodo.15530868. https://doi.org/10.5281/zenodo.15367009. Snow pit data 
from the CARC are available to download from the NSIDC DAAC 
(https://doi.org/10.5067/QIANJYJGRWOV).  615 
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