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Abstract. Monitoring prairie snow has-beenis difficult due to its extreme spatial variability from windy
conditions, gentle topography, and low tree cover. Previous work has shown that a noninvasive (or-1+6
aboveground) Cosmic Ray Neutron Sensor (CRNS) placed at the Central Agricultural Research Center
(CARC; 47.07° N, 109.95° W), an agricultural research site within a semi-arid prairie environment
managed by Montana State University, was sensitive to both the low snow amounts and spatial
variability of prairie snow. In this study, we build upon previous work to understand how different snow
distributions would have influenced CRNS measurements at the CARC. Specifically, we compared the
changes in neutron counts and snow water equivalent (SWE) after relocating our CRNS probe at the
CARC using the Ultra Rapid Neutron-Only Simulation (URANOS) and comparing them to uniform
SNOW d1str1but1ons FEer-Neutron counts from snnulatlons with a shallow heterogeneous snowpacks like

gfeatest—eﬁfeet—en—neutfo&eeﬂntswere bf&sed—hlgher compared to neutron counts from s1mu1at10ns with a
uniform snowpack. While areas of higher snow accumulation reduced neutron counts. the low amounts

of SWE made it difficult to dlscern a con51stent relatlonshlp between SWE and neutron counts.

: 33 § e Fates Desplte th1s our analvs1s 1nd1cates
that a naive CRNS placement was 2 to 5 tlmes more hkely to yield betterrepresentative SWE estimates
compared to a similarly placed snow scales-er-eurrently-available-gridded-proeduets. Currently available

gridded snow products wilitend to under-estimate or over-estimate snow observations from our prairie
site, while CRNS SWE values match more closely. prairie-snowpaecks-compared CRINS-SWE-values:
We show CRNS can provides valuable information about shallow, heterogeneous snowpacks in prairie
and other environments and can benefit future missions from UAV and satellite platforms.

1 Introduction

Seasonal snow plays an important hydrologic and climatic role in the Earth system. Seasonal snow
covers an average of 31% of the Earth’s surface annually (Tsang et al., 2022). A major component of
the Western United States’ water supply originates from seasonal snowpack, feeding the needs of over
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60 million people (Bales et al., 2006). Prairie snow can make up to 25% of the global snow cover
(Sturm and Liston, 2021). Mid-latitude semi-arid prairie environments, such as those found in the
interior Great Plains of North America (i.e. northern states such as Montana and extending north into
Canada) are dependent on snow. Over 80 to 85% of streamflow in the Northern Great Plains originates
from snow (Gray, 1970), despite accounting for 20% of the annual precipitation (Aase and Siddoway,
1980).

Snow cover in the prairie is known for its extreme spatial heterogeneity, mainly due to strong
surface winds, gentle topography, and spatial variability in vegetation (Gray, 1970). Figure 1 depicts the
variability that snow can exhibit in a prairie environment. Strong winds in an open, flat expanse of land
scours snow, causing wind erosion, enhancing sublimation, and transporting 75% of the annual snowfall
(Gray, 1970; Harder et al., 2019). The effects of blowing snow are affected by changes in surface
roughness such as vegetation which allows for preferential deposition and accumulation of snow along
natural barriers (Harder et al., 2019; Kort et al., 2012). These areas of preferential deposition can build



snow drifts as shown in Fig. 1a that can grow over 1 m tall and can transition to bare ground over a
spatial scale of meters to tens of meters.

50

.';: \: :L. 3 . :
7 & kL O SNEISROOES
Figure 1: Field images depicting the heterogeneity of snow in a prairie environment from winter 2020-2021. (a) Image taken on top

of > 1 m snow drift, looking east, with snow disappearing as you move away from the snow drift. (b) Standing crop stubble is used
to trap snow for early spring melt. Field images were provided by Dr. Eric Sproles.

55 Figure 1b shows how vegetation variation due to aAgriculture and-erop-stubble-are-the-mest
common-form-ofland-use-change-in the Northern Great Plains canthat drive preferential snow
accumulatlon The introduction of dryland cropplng technlques espeefal—ldy—such as no till (or Zero
tilling) ' i : -allows
certain winter wheat crops to grow in the Northern Great Plains changing the surface roughness of the

60 prairies (Nielsen et al., 2005; Aase and Siddoway, 1980; Harder et al., 2019). The increased surface
roughness from crops will-allow for preferential deposition of snow, reducing the blowing snow process
(Harder et al., 2019). In addition, farmers can leave standing crop stubbles, like in the-enesn-Fig. 1b, to
aid in trapping snow and reducing snow erosion in order provide water recharge and manageing
infiltration and runoff (Aase and Siddoway, 1980; Harder et al., 2019). Due to the semi-arid climate in

65 the Northern Great Plains, water use must be efficient for agricultural fields to be productive. Thus.is

3



70

75

80

&5

90

95

100

105

agricultural development in the prairies has increased the need to capture snow for early season melt
water. This-inereases-the-demandforaAccurate SWE measurements in prairie environments are thus

relevant for max1rn1zmg agrlcultural water use efﬁc1encv AS—&—P%SHJ—t—f&fH%%PS—&S%S%&-Hdi—Hg—GE@p—S‘&&bb}%S

Snow heterogeneity 1ntr0duces an important question in water resources management How and
where can we effectively measure snow water equivalent (SWE) in such-anprairies and other similar
environments? Traditional manual snow measurements from snow pits are labour-intenstvelabor-
intensive and are best applied in deep snow. In prairie environments, sSnow pit measurements of snow
density are usually restricted to the-snow drifts and net-efthe-typieathyare difficult to collect in
shallower prairie snowpack. In addition, continuous SWE monitoring through snow pillows or snow
scales like those found in the snow telemetry (SNOTEL) network from the US Department of
Agriculture Natural Resources Conservation Service (USDA NRCS) (Serreze et al., 1999), are not as
effective in the prairie due to wind erosion and transport. Additionally, Fig.ure 1 shows how the
placement of a snow pillow or snow scale (e.g. in an area that accumulates a snow drift or an area that is
wind-scoured) could result in very different snow measurements, some (or all) of which may not reflect
the areal average SWE._Another alternative is to measure SWE at larger scales through remote sensing
on satellite or ;-airborne platforms. However, satellite and airborne remote sensing of SWE in the
Northern Great Plains is currently limited by the SWE variability at the subpixel scale (Tuttle et al.,
2018).

To address these issues, we installed a Cosmic Ray Neutron Sensor (CRNS) to measure the
SWE at an agricultural research site in the plains of central Montana. CRNS instruments detect the
background neutron flux that is generated when cosmlc rays interact with matter on Earth (Desilets et
al., 2010). Hydrogen-atoms-a an : and-trap-th attenua
%h%skg&a%Neutrons are extremely sen51tlve to hydrogen, which can either be absorbed if the neutron is
thermalized or slowed down due to energy loss from elastic collisions with hydrogen atoms (Zreda et
al., 2012). Thus, a CRNS the-neutron-flux-measured-by-a-detector measures these attenuated neutrons,
which isis inversely related to the amount of hydrogen atoms in its immediate surroundings. The most
common source of hydrogen in the environment isare water molecules in the atmosphere (Rosolem et
al., 2013; Zreda et al., 2012), vegetation (Baroni et al., 2018; Franz et al., 2015), and soils (e.g., lattice
water and organic matter) (Bogena et al., 2013; Franz et al., 2013). After accounting for all other
hydrogen pools, CRNS estimates of soil moisture and SWE are made over an approximate operational
radius of 150 to 250 m (for aboveground CRNS) by detecting the neutron flux over time (Zreda et al.,
2008; Royer et al., 2021). The non-invasive and large footprint of CRNS has intriguing potential to
overcome the issues of traditional continuous snow monitoring in heterogeneous shallow to moderate
snowpacks. It also helps to mitigate a common issue in hydrology: bridging the scale gap between point
measurements and areal measurements, such as remote sensing or modelling studies, by providing
measurements of areal SWE at an intermediate or similar spatial resolution (Bloschl, 1999; Iwema et
al., 2015; Schattan et al., 2020).

Previous research has shown that CRNS estimates of SWE at an agricultural prairie site in
central Montana agree with spatially weighted digital snow models (DSMs) from UAYV light detection
and ranging (lidar) flights and modelled CRNS estimates, despite extreme spatial heterogeneity of the
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snowpack surrounding the detector (Woodley et al., 2024). CRNS has been noted to be sensitive to bare
ground patches, usually increasing the neutron counts (Schattan et al., 2019). We build on our previous
research from Woodley et al. (2024) to analyseanalyze the effects of snow heterogeneity within the
operational footprint of the CRNS using neutron transport modelling. From these results, we provide
insights and guidelines on best practices to site future CRNS probes with respect to shallow,
heterogenous snowpacks. We also use a synthetic analysis to compared the reliability of a naive CRNS
placement in a shallow, heterogeneous snowpack against a similarly sited snow scales. Finally, we
compared-hew CRNS estimates eempared-toand currently available gridded SWE products
Furthermore,we-hoepe-to lidar- and ground-based SWE measurements and shew-find that CRNS
measurements can be a reliable ground truth for remote sensing applications in the prairies.

2 Study Area

The modelling domain for this study is a 1 km? region of the Central Agricultural Research Center
(CARC), an agricultural research site managed by Montana State University, located in central Montana
(47.057510° N, 109.952945° W; see Fig. 2). The CARC hosts ongoing agricultural research where
researchers investigate different crop varieties, cropping strategies, and soil biogeochemistry. Crops
typically grown at the CARC include cereals, grasses, legumes, and broadleaf plants. Some crops
persist into the winter as stubble at the CARC, depending on harvest practices (Palomaki and Sproles,
2023). The elevation of the study region ranges from 1287 m to 1298 m. Soils at the CARC are
primarily well-drained, shallow clay loams (Palomaki and Sproles, 2023). We observed average air
temperatures of -0.4°C (-3.7°C during DJF), average air pressure of 870 mb, and average relative
humidity of 62.8% throughout the winter of 2020-2021 (November through April). A CRNS
(CRS2000/B from Hydrolnnova LLC, Albuquerque, NM, USA) was deployed at the site in the winter
0f 2020/2021, coincident with the SnowEx 2021 Prairie field campaign, to measure the low-energy
cosmic ray-induced neutrons (Woodley et al., 2024).
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Figure 2: Basemap of study site. (a) The 1 km? research domain outlined by the dashed black box at the Central Research
Agricultural Center (CARC). The CRNS location is marked by the yellow dot triangle-and the estimated 171 m footprint
(calculated in Woodley et al., (2024) is shown in the dashed yellow circle. The approximate locations where Fig. 1a (green triangle)
and Fig 1b (cvan triangle) were taken are also shown. Fig. 1a and Fig. 1b were taken facing east. (b) The approximate location of
the CARC in Moccasin, MT in Central Montana is marked by the red star. The State of Montana is also highlighted in red with a
fill eelourcolor of tan. (Basemap Image: © Google Tiles).

3 Data and Methods
3.1 In Situ Measurements

The CARC was selected for NASA’s SnowEXx field campaign in the winter of 2020/2021 to study
prairie snow as one of its main objectives-in-the-winter-of2026/202+. SnowEx efforts at the CARC
included airborne L-band interferometric synthetic aperture radar (InSAR) flights from the Uninhabited
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument, snow-on and snow-off UAV lidar
observations, UAV orthophotos and structure from motion (SfM), and ground-based snow observations
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including snow pits and snow depth transects (Palomaki and Sproles, 2023). For this analysis, we used
UAYV mounted lidar measurements of snow depths andalong with snow density measurements from
snow pits to calculate thespatially distributed SWE at the CARC .impeorted-spatially-distributed-SWE

OO ) v =

Table 1 summarizes the snow depth propertiess and Fig. 3a shows the resulting digital snow
models (DSM) from the 8 UAV lidar flights made in winter 2020/2021 across 8 different dates in our 1
km? study area_(dashed black box, Fig. 2). The lidar data at the CARC wereas acquired by a contractor,
DJ&A, P.C., using a 1,550 nm and a 905 nm wavelength laser (Woodley et al., 2024). The lidar
measurements show how snow depths ean-variesy spatially and temporally within the CARC. The lidar
flight conducted on 15 January 2021 is considered our “no snow” baseline. Despite the large changes
range in snow depths due to the snow drifts, the snow drifts typically covered less than 1% of the 1 km
area before February 2021. -This includes a prominent linear north-south snow drift that formed
adjacent to a windbreak in the western portion of the CARC. For this study, tThe digital snow model
from the UAV lidar was divided into 2 m by 2 m pixels, for a total model domain of 500 pixels by 500
pixels. We masked off any region with 0 cm snow depths as a “no snow” region. We note that root
mean squared errors (RMSE) provided by the contractor were between 4 and 7 cm, likelypossibly due
to the winter stubble giving a false surface return (Palomaki and Sproles, 2023). We matehedcompared
our DSM from 21 January 2021 to the pixel classifications made from an orthomosaic photo on the
same day (Figs. 1d and 1e from Palomaki and Sproles, 2023), and the two show good agreement.
However, 0Our “no snow” masks include some pixels that are classified as “Mixed” in Palomaki and
Sproles, 2023, likely due to the large RMSE-errorsshallow and discontinuous nature of the snow in

these areas.

2

Table 1: Snow depths (SD) and the snow covered area (SCA) statistics from the digital snow models from each of the 8 UAV lidar
flights at the CARC. We report the average and maximum SD for each date. The SCA is reported as the percentage of the CARC
within the 1 km? research area is covered by snow and the percentage of the CARC covered by greater than 20 ¢cm of snow.

Date Avg. SD, Excluding Bare Ground Max. SD SCA SCA, SD > 20 cm
(Avg. With Bare Ground) [cm] [cm] [%] [%]
15 Jan. 2021 5.3(0.1) 634 | 186% 0.2 %
21 Jan. 2021 3.6 (1.6) 96.7 | 45.1% 0.6 %
22 Jan. 2021 3.8(2.0) 82.7 1 521 % 0.5%
29 Jan. 2021 3.2(0.9) 82.8 | 28.1 % 0.5%
17 Feb. 2021 8.8(7.9) 1315 | 89.6 % 5.0 %
18 Feb. 2021 8.7(7.6) 131.0 | 87.1% 4.8 %
24 Feb. 2021 55(22) 100.6 | 39.7 % 2.4 %
4 Mar. 2021 2.2(1.3) 80.4 | 60.1 % 1.1 %
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Figure 3 (a) Lidar digital snow maps (DSM) from the winter 2020-2021 NASA SnowEx Prairie Mission within the research
domain (dashed black box in Fig. 2a). Gray regions indicate regions of no snow cover (SD = 0 cm). Color scale for snow is not
linear. Smaller increments were included to show where extremely shallow snow is located at the CARC. (b) Map of locations of
virtual CRNS points for URANOS simulations. The actual CRNS location is marked by the magenta triangle, with the calculated
171 m operational footprint (magenta dettedashed circle) of the CRNS from Woodley et al. (2024). The rest of the virtual CRNS
locations used in this analysis are marked by red circles, with one example virtual CRNS footprint shown in the red dashed circle

in the upper right.

To calculate spatially distributed SWE from UAV snow depth, we used density measurements
from sSnow pits fremmeasurements collected in the north-south snow drift in the western portion of the
CARC research domain previded-the-density-measurements-to-calenlate SWE-(Mason et al., 2024).
Eourseparate-snowSnow pits observations-pits were -dugcollected on four dates:-en 20 January, 17
February, 24 February, and 5 March 2021. The snow pits revealed a bimodal snow density distribution,
with We-utilized-a-2-layer-density scheme-where-a lighter snow layer (appreximatelyvarying between
approximately 100 kg m for newly fallen snow to slightly over 400 kg m™3 late in the melt season}09
ke-m~) satatop a denser basal layer (approximately 400-500 kg m~) Thus, we utilized a 2-layer density
scheme to calculate spatially distributed SWE at the CARC, -which-we-inferredfrom-theusing snow
den51tv ’efeﬁw}evalues derlved from the SNOW Dlt measurementss. Dﬂ%teth%tﬂﬁmg—ef—wewfaﬂ—event&

deetkbﬁthiekﬁessThe thickness of the li,qhter and basal SNOW lavers ona given date was determined by
differencing the lidar DSMs on different dates. These 2-layer snow density and depth maps were used to
specify the “natural” snow cover conditions in the neutron transport simulations (section 3.2). The snow
pit data areis archived and freely available on the National Snow and Ice Data Center (NSIDC)
Distributed Active Archive Center (DAAC). A more detailed summary of ourthis methodology is alse
provided in the Supporting Information from Woodley et al. (2024).
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3.2 Ultra-Rapid Neutron Only Simulations

this-study-wilutilize neutron-transpert-medellingWe analyzed the effects of the spatial heterogeneity of
prairie snowpaeks on CRNS measurements through neutron transport modelling. Recently, CRNS
studies have adopted the use of the Ultra Rapid Neutron-Only Simulation (URANOS), such as Brogi et
al. (2022), Schattan et al. (2017), and Schron et al. (2023). URANOS utilizes a Monte Carlo approach to
simulate the neutrons and has been specifically developed for CRNS applications (K&hli et al., 2023).
Millions of neutrons are generated from randomly distributed point sources within a user-defined area,
and neutrons’ path and interactions are tracked from its source to the point of detection through a ray-
casting algorithm (Brogi et al., 2022; Kohli et al., 2023). URANOS can model 3-dimensional voxel-
based geometries with defined materials by stacking multiple layers of either ASCII matrices or bitmap
images to replicate important site characteristics (Kohli et al., 2023). For this analysis, we used
URANOS v1.23, which is freely available for download at: https://gitlab.com/mkoehli/uranos/.
We ran 624 individual URANOS simulations: corresponding tofer each of the 26 peintsvirtual

CRNS locations around the CARC (Fig. 3b), for each of the eight dates corresponding to the UAV lidar
flights at the CARC, andwith three different snow distribution schemes on each date. We also ran
control simulations with completely snow-free conditions for each virtual CRNS locations. Our model

setups are similar to the 51rnulat10ns descrlbed in Woodley et al. (2024) but contam several 1rnportant
differences.-Ou g SHe b
Weed%ey—et—al—@@%@—&nai—yﬁs— Flrst we moved the Vlrtual CRNS around our research domaln to test
how neutron counts would have been affected by the differing snow cover conditions around the
CARC. A cylindrical virtual CRNS detector was placed at each of the 26 points on Fig. 3b, reughly-and
placed 2 m above the ground in URANOS. Each URANOS run simulated 10® neutrons. The virtual
CRNS was enlarged to a 9 m radius to improve detection statistics and supplied with a detector response
function (provided in the URANOS GitLab repository) to simulate the sensitivity of the CRNS installed
at the CARC, specifically a high-density polyethylene moderator of 25 mm thickness. To minimize the
influence of soil heterogeneity and focus on the influence of snow variability, we chose to create a
uniform 30 cm soil layer with the average of all soil measurements. In the field, sSoil samples for soil
moisture and bulk density were collected at 5 cm depth intervals up to a total depth of 30 cm and at six
cardinal directions at three different radii (approximately 25 m, 75 m, and 200 m) from the CRNS
instrument (Woodley et al., 2024). Because this analysis moves the simulated CRNS instrument around
the CARC where other soil moisture measurements were not made, we chose to average the soil
measurements for our uniform soil layer. As in Woodley et al. (2024), soil moisture, atmospheric
pressure, and other important parameters listed in Table 2 were kept constant to allow direct
comparisons of model simulations due to changes in snow distribution; and to remove the need to
correct counts based on differing hydrogen pools.

Table 2: Atmospheric and soil parameters used in our URANOS simulations. These values were unchanged from each set of
heterogeneous and uniform snow runs.

Parameter Value

10



Number of Neutrons [-] 100000000
Air Humidity [g m™] 3.341
Atmosphere Depth [g cm™] 888.809
Soil Moisture (first 30 cm) [%] 21%

Soil Bulk Density (first 30 cm) [g m™] 1.087

Soil Porosity (first 30 cm) [%] 56%
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To examine how CRNS measurements change with the spatial distribution of snow, we ran
simulations in URANOS using three different snow distribution schemes: H-atwo different uniform

snow layers and eempared-them-against simulationsusing 2)-the heterogeneoussnow-mapsDSMs
derived from the UAV lidar and snow density (Fig. 3a). For the uniform simulations, a chosen volume

of snow water was evenly distributed in the research area, creating a uniform snow layer. We created
two uniform snow layer schemes based off: a) the average amount of snow water in the 171 m
operational footprint around the CRNS detector and b) the average amount of snow water across the
entire 1 km? study domain. The 171 m operational footprint of the CRNS is a site-specific value
calculated at the CARC using “no snow” URANOS simulations from Woodley et al. (2024). While we
used a constant value for the CRNS footprint in this study, the actual operational footprint of a CRNS is

255
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dependent on the amount of moisture present in the environment. The total amount of snow water
volume was divided using one of the snow density material values in URANOS. Depending on the
amount of snow water per pixel, we chose to model the snowpack using the built-in material codes for
snow: 240, 241, and 242, which has density values of 0.03 g cm™, 0.1 g cm™, 0.3 g cm™, respectively,
to create a snow layer with uniform thickness and density (see MaterialCodes.txt in GitLab repository,
link in Sect. 3.2).

From the different URANOS simulations, we also calculated SWE from the modelled neutron
counts. We followed our methods from Woodley et al. (2024) to calculate modelled SWE from
URANOS. SWE calculations were made using Eq. (1) (Desilets, 2017) using our modelled neutron
counts from URANOS simulations-

SWE = —AlnM. (1)
NB - Nwat
Ny is the calibration neutron count, from the “snow-off” reference date of 15 January 2021. N is the
neutron counts corresponding to the dates of the subsequent seven “snow-on” lidar flights at the CARC
(21 Jan. 2021 to 4 Mar. 2021). The attenuation length (A) was calculated to be 4.8 cm from previous
literature (Desilets et al., 2010). Ny is the counting rate over an infinite depth of water and can be
calculated using Eq. (2):
Nya: = 0.24N,, (2)

where 0.24 is an assigned constant value (Desilets, 2017; Desilets et al., 2010). Ny is the theoretical
counting rate over dry soils:

Ny = , (3)
0y0pa + a; T

where ap = 0.0808, a; = 0.372, and a, = 0.115 (Desilets et al., 2010; Desilets, 2017). Usually, Noin Eq.
(3) is multiplied by a correction factor, F(2), to correct for solar activity, atmospheric pressure, and
humidity. However, as all our model simulations used the exact same meteorologic conditions, our
correction factor was set to 1. 64, is the sum of gravimetric soil water content, soil mineral lattice water
and water equivalent of soil organic carbon, -and p#pqis the soil bulk density, which were obtained from
in situ soil samples.

3.3 Comparisons with Gridded SWE Products

To evaluate whether CRNS SWE has potential value for future remote sensing missions or gridded
datasets, we compared our CRNS SWE and UAV lidar SWE to several-avatlable gridded SWE
products, which are available at several spatial resolutions. We chose the Western United States UCLA
Daily Snow Reanalysis (hereafter UCLA-re, ~500 m resolution, Fang et al., 2022), the Snow Data
Assimilation System (SNODAS, 1 km resolution, National Operational Hydrologic Remote Sensing
Center, 2004) from National Oceanic and Atmospheric Administration’s National Weather Service
National Operational Hydrologic Remote Sensing Center, and the Daily 4 km Gridded SWE (hereafter
UA, 4 km resolution, Broxton et al., 2019) from the University of Arizona.
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The UCLA-re dataset is generated from assimilation data with Landsat fractional snow cover
area and other input data such as meteorological forcings from the Modern-Era Retrospective analysis
for Research and Applications, version 2 (MERRA-2) (Margulis et al., 2019). A Bayesian analysis is
performed on prior estimates of snow states and fluxes using a land surface model and snow depletion
curves (Margulis et al., 2019). SNODAS provides daily gridded estimates of SWE for the conterminous
United States by-utilizingusing a snow model, which is forced by downscaled numerical weather
predictions (Clow et al., 2012). Digitally available airborne, satellite, and ground-based snow data are
then assimilated into the model to provide a best estimate of near real-time snow estimates (Clow et al.,
2012; Driscoll et al., 2017). The UA dataset provides SWE and snow depth estimates by assimilating
snow station data such as the snow telemetry (SNOTEL) network and precipitation and temperature
data using the gridded PRISM model (Zeng et al., 2018). For each gridded dataset, we chose the pixel
that included the CARC. Only the SWE for the UCLA-re data was aggregated and averaged within a 2-
pixel by 2-pixel region, to obtain an area that is like-similar to the 1 km? area of the CARC. All gridded
datasets are freely available for download at the National Snow and Ice Data Center (last accessed: 3
October 2024).

4 Results and Discussion
4.1 Neutron Modelling

Figure 4 shows the differences between the URANOS simulations with a heterogeneous snowpack and
171 m average uniform snowpack for neutron counts (Fig. 4a) and SWE (Fig. 4b) for all 8 lidar flight
dates and 26 petntsvirtual CRNS locations on Fig. 3b. Neutron counts are on average 1.8% biased
higher in the heterogeneous runs compared to the uniform runs with a root mean squared difference
(RMSD) of 2.6 %. When we calculated the SWE using these URANOS runs and Eq. (1), SWE would
be underpredicted in the heterogeneous runs with a mean bias percent error (MBPE) =-19.9 % and a
RMSD = 35.3 %. We found similar trends comparing URANOS simulations with a heterogeneous
snowpack and the CARC average uniform snowpack (not shown). Neutron counts were 1.9% higher in
the heterogeneous runs and an RMSD of 3.1 %. SWE were biased towards the uniform runs with an
MBPE of -23.2 % and a RMSD = 42.7 %. For both comparisons, we colored each data point in Fig.ure
4 by the percentage of bare ground (i.e., —the ratio of the area of no snow cover (SD = 0 cm) to the total
area of the 171 m radius footprint of each virtual CRNS detector). Generally, we found neutron counts
were similar between the heterogeneous and uniform runs (both 171 m and CARC average SWEs) at
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higher percentages of bare ground within the operational footprint of the CRNS. The opposite trend was

true for SWE.
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Figure 4 Scatterplot comparing (a) neutron counts and (b) SWE for the heterogenous snow runs (x-axis) against uniform snow
runs (y-axis) that use the average SWE of the 171 m radius footprint surrounding the virtual detector across the 26 virtual CRNS
locations for the 8 lidar flight dates. Points are colored by the percentage of bare ground by area within the 171 m footprint of a
i35 CRNS. (¢) Boxplots showing the difference between the heterogenous and uniform snow runs for each virtual CRNS location

(shown in Fig. 3b), where each box contains the eight URANOS simulations corresponding to the eigcht UAYV lidar flights at the

CARC.

We grouped the errorsdifferences in neutron counts between the heterogenous and uniform snow

model runs (with CRNS footprint average SWE) across all dates by virtual CRNS theirpointslocation,

to determine which peintslocations had the largest and smallest errorsdifferences in neutron counts (Fig.

B840 4c). The largest differences were found in pPoints P00, P05, P19. and P03. Points P00, P05, and P19 are
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the 3 closest peintslocations to the large snow drift in the western portion of the study area. P03 (top
row, center in Fig. 3b) is also located near snow drifts that formed due to topographical changes near
train tracks that cross the CARC. The lowest errors were found in pPoints P17, P15. P24 and P06. The
commonality between points P17, P15, P24, and P06 were likely relatively uniform snow cover
surrounding the virtual CRNS for most of the dates. P17 and P24 were in the same field directly to the
left of P00, which had relatively uniform snow trapped from the field around most of the dates during
winter 2020/2021. P00, P05, P19, and P03 had much more variable snow cover surrounding the virtual
CRNS, with the large snow drift on one side and bare ground on the other for most dates in winter
2020/2021.

Comparing the heterogeneous runs to the uniform CARCaverage SWE-runs with CARC
average SWE allows us to evaluate which virtual CRNS locations were most reflective of the CARC
average. -The locations with the smallest neutron count differences ~whieh-were points P20, P07, P06,
and P19. The locations with the largest neutron count differences were points P13, P23, P14, and P10.
Interestingly, points P20, P07, and P19 are the three points clustered around the actual CRNS
instrument at the CARC. P06 was not located near the original CRNS but had some snow cover through
most of January and February. P13, P14, and P10 were also similarly clustered close together (NW
quadrant) closer to the train track snow drifts. We theorize that these points sampled too many snow
drifts or too little snow throughout the winter.

One might assume that neutron counts between the uniform and heterogeneous simulations
should be comparable because both have the same total snow water volume within the operation
footprint of the CRNS. However, it appears that the distribution of the snow water and bare ground
patches among fallow fields, crop stubble, and shelter belts around the CARC has a considerable effect
on the-CRNS, as shown in Schattan et al. (2019). Figure 4c suggests that snow drifts closer to the CRNS
biasaffect neutron counts the most, leading to the largest differences in neutron counts compared to a
uniform snow scenario. We found that differences in neutron counts between the uniform and
heterogeneous runs (hereafter ANCr = NCuniformbeteroseneous — NCheterogencousuniform) Were positively
correlated with-statistical significanee(r—0-454)-with the percentage of bare ground within the
operation footprint of the CRNS in the heterogenous scenario (i.e., spatially varying snow distribution
derived from the UAV lidar and snow -density), with statistical significance (r = 0.454, p < 0.05)22%.
This correlation partly arises from the fact that we are comparing similar model runs when the bare
eround percentage is close to 100%, leading to minimal differences in neutron counts. Differences in
ANCy between the uniform and heterogeneous snowpacks increases with more snow covering the
ground, and enhanced variability of snow depths within the CRNS footprint. To verify, we computed
additional correlation metrics between the ANCr and snow depth variability within a CRNS footprint —
namely the standard deviation and the range (difference betweenin max. and min. snow depths). We
found statistically significant negative correlations between ANCr and snow depth standard deviations (r
=-0.708, p <0.05) and ANCr and snow depth range (r = -0.609, p < 0.05). The negative correlations are
due to ANCt being mostly negative since ANCheterogeneous > ANCuniform. These results similarly suggest
that higher amounts of snow lead to increased heterogeneity (e.g., snow drifts and bare ground patches)
which creates the high ANCr.
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To test whether snow drifts do in fact play a large role in neutron count differences, we focused
on model comparisons for 15 January 2021, to 1solate the effects of large snow drifts on CRNS
measurements. Figure 54 shows the differences between heterogeneous runs (i.e., spatially varying

snow distribution derived from the UAV lidar and snow density) and the unlform runs (i.e., uniform

SNOW d1str1but10n) from 15 January%@%—te—rse%at%&%effeets—ef—h%g%sne&wd&fts—e&@%

elem&m—éshewn—m—llfg%b)—On thls date most of the CARC was HﬁeG’v‘%Fed—Sl’lOW free except for some
isolated patches of extremely shallow snow and thea large snowdrift in the seuthwest-cornerwestern
portion of the study domain (top left panel of Fig. 3a, and Fig. 54b). Most virtual CRNS locations
resulted in neutron counts from the heterogenous and uniform runs that were within 1 % of error from
each other. However, points P00, P05, PO7 and P19 yielded large differences of greater than 100
neutrons (approximately 3 % error). These four points are also the closest to the snow drift on 15
January 2021 (see Fig. 54b).
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Figure 45: (a) A scatterplot comparing neutron counts from the uniform runs (y-axis) against the heterogeneous runs (x-axis) for
15 January 2021, the near-no-snow baseline, with the exception being the large north-south snow drift in the western portion of
the study area. While most points fell near the one-to-one line (black dashed line) and within a 1% error, four virtual CRNS
locations yielded large differences in neutron counts: P00, P0S, P07, and P19. (b) Map of the snow depth from the 15 January 2021
UAV lidar flight, shown in the colorbar. The snow drift is the slim blue linear feature on the left (western) portion of the study
area. The virtual CRNS locations in URANOS are shown in circles, while the actual CRNS location from winter 2020-2021 is
shown in a triangle (as in Fig. 3b). The four points with the largest neutron count differences are marked in magenta.

Figure 65 compares how the neutron counts change with relation to the snowpack variability at
P00, P05, P07 and P19. We calculated the percent change between the heterogeneous and uniform runs
(171 m average) -where the neutron model domain was divided into twelve sectors of equal angle from
the virtual CRNS detector. We noticed skews in neutron origins due to the relation of the model
geometry, namely the position of the virtual detector and the source geometry. Virtual detectors placed
closer to the edges of our domain had neutron origins that were skewed towards the eentrecenter of the
domain. Therefore, we limited the neutron counts in-theseetors-to within a 200 m radius of the virtual
detector. The radial plots in Fig. 65 shows the percent change in neutron counts from the uniform runs
to the heterogeneous runs in each sector on 15 January. P07 (Fig. 65a) saw the biggest percent change
between the no-snow (right of N-S line) and snow side (left of N-S line) with an average percent change
of 5 % in neutron counts compared to 1.6% change, respectively. We observed a similar but smaller
trend in P05 (Fig. 65¢) with an average 3.24+6% change on the no-snow side and 2.3% change on the
snow side. In both P19 (Fig. 6dnetshewn) and P00 (Fig. 65b), we observed larger changes on the snow
side compared to the no-snow side. POO had a 5.3 % change on the snow side compared to a 2.4 %
change on the no-snow side. P19 had a 3.9 % change on the snow side and a 2.1 % change on the no-
snow side. The differences in POO neutron counts are likely explained by the longer distance away from
the snow drift (Fig.; 6f5e). Many studies have shown that CRNS is extremely sensitive to its immediate
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surroundings (Kohli et al., 2015; Schron et al., 2017). The removal of snow cover around the CRNS
from the uniform run is likely to have a larger effect on neutron counts than the snow drift. P05, P07,
and P19 which were modelled closer to the snow drift. The differences are likely caused by the breaks
in the snow drift as it first formed. P07 (Fig. 6e5€) was placed next to a longer, contiguous section of
the snow drift compared to P05 (Fig. 6g5%), which enhances the neutron counts on the snow side in the
heterogeneous runs. We observed similar breaks in P19. Overall, all of our model results are likely
influenced by the extremely shallow nature of the snowpack at the CARC, leading to differences in
neutron counts that are less than 10% of the detected neutrons, making this correlation analysis difficult

to discern.
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Figure 56: Percent changes in neutron counts of the heterogenous runs from the uniform runs for 12 sectors around the virtual
CRNS location for the 3-eut-of-the-4 points identified in Fig. 3: (a) P07, (b) P00, and-(c) P05, and (d) P19. The orange line on panels
(a)-(d)e marks no change in neutrons counts in the heterogeneous runs from the uniform runs. The snow distribution on 15
January 2021 is shown for each point on panels (e)d-(h)f to contextualize the differences.
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these findings, we conducted a secondary analysis to evaluate the spatial representativeness of CRNS
SWE at our prairie site compared to the observations that might have been collected from a more
traditional snow scale SWE instrument. In most cases, CRNS or other SWE instruments would be
deployed in hopes of capturing the average snow conditions representative of a large area. In order to do
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this, we averaged the lidar-derived SWE DSMs for each of the eight UAV flights to 1 m? spatial
resolution. We calculated the kernel density of all of these 1 m? SWE pixels to understand the full
distribution of SWE across the study site, where each pixel represents a possible SWE measurement
that could have been collected by a naively located snow scale or snow pillow (of measurement area
equal to 1 m?). Then, we applied the CRNS spatial weighting function from Woodley et al. (2024) to
each of these pixel locations (actually, every 4" pixel to increase computational efficiency), using a
wraparound boundary to remove edge effects from pixels close to the boundary of the study site. This
allowed us to retrieve a distribution of synthetic CRNS SWE estimates across the entire CARC.

We acknowledge that this analysis is naive in that it assumes that the CRNS spatial weighting
function would be constant across the entire study site. In reality, the spatial sensitivity of CRNS can
change with snow spatial distribution and magnitude, and soil moisture distribution and magnitude,
among other factors. The wraparound boundary also means that none of the CRNS SWE estimates from
this analysis, especially those near the boundaries of the study area, are truly reflective of the "true”
SWE that would be observed by CRNS at the same location within the site.

However, it does mean that each CRNS SWE estimate is derived from the same lidar-derived
SWE data, which reflects a spatial snow distribution representative of a prairie site. Lastly, this analysis
assumes that a snow scale or snow pillow would exactly measure the SWE in each given location.
However, this is unlikely to be true given that snow will likely accumulate differently on a smooth
artificial surface versus the natural ground surface, especially in the windy, shallow snow conditions
typical of the prairie. In summary, this analysis is not as rigorous in reproducing CRNS behavior as the
URANOS simulations presented above. Still, it does provide a first-order estimate of the spatial
representativeness of CRNS SWE estimates at a prairie site versus more conventional, smaller-footprint
SWE instruments.

Figure 78a shows the kernel density distribution of synthetic SWE estimates from the CRNS
locations across the entire CARC (blue), compared to the distribution of “Snow Scale” 1 m? lidar-
derived SWE pixels from the entire CARC (red) for an example date of 29 January 2021. This date was
more than one week after the most recent snow event, allowing for wind redistribution, sublimation, and
potentially melting of the snow during the intervening period. The spatial average-mean lidar-derived
SWE for the entire CARC is shown in the vertical, black dashed line. A similar plot is shown in Fig.
78b for 17 February 2021, soon after a large snow event (and the most pronounced snowpack of the
season). In both cases, the CRNS SWE distribution is shifted closer to the CARC average, compared to
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the 1 m2 “Snow Scale” SWE distribution.
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Figure 4 Simulation of the spatial representativeness of—a syntheticaboveground CRNS at the CARC versus a synthetie snow scale
or pillow of area 1m?. (a) and (b) Probability density functions of the SWE observed by synthetic CRNS (blue) versus a synthetic
snow scale or pillow of pixel size 1m by 1m (red) for 29 January and 17 February 2021, respectively. The vertical dashed line
shows the mean SWE of the entire study 1 km? area. It is evident on both dates that the probability density of CRNS SWE
estimates is shifted closer to the areal mean. (¢) and (e) show the areas where the CRNS and 1m pixels“Snow Scale” are within +/-
25 % of the mean SWE of the entire study area (red pixels), respectively, for 29 January 2021. The red pixels-are locations-thatare
within+/-25 % ef the-areal mean SWE-while tThe underlying blue color map shows the SWE magnitudeestimate from the given
synthetic SWE measurement method, as calculated from the lidar-derived SWE DSM. -This results in different color scale limits
for the CRNS (c¢) than for the synthetic snow scale (¢) because the CRNS measures SWE over a larger spatial footprint, which
effectively smooths out the SWE distribution. —(d) and (f) show the same information for 17 February 2021. Generally, the CRNS
is representative of a larger proportion of the study area and the representative areas are more contiguous, compared to the 1m
resolution synthetic snow scale or pillow. The-eele ales e e mane s e e rent fo s e esfor-(e)-and

dueto-thedarsertootprintsizeoithe CRNS:
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For 29 January, the CARC average SWE was 0.4 cm. 23 % of the CRNS locations were within
+/- 25 % of the CARC average, while only 5% of the 1 m? pixels were within that same range. For
February 17, the CARC average SWE was 1.1 cm, and 50 % of the CRNS locations and 20 % of the
1m? pixels were within +/- 25 % of the CARC average, respectively. Across all dates (excluding
January 15, 2021, which had very spatially limited snow cover), this analysis indicated that the
percentage of the CARC study area for which a CRNS would return a SWE estimate within +/- 25 % of
the CARC average ranged from 21%-50 %, while the 1 m? pixels ranged from 5%-20 % of the CARC.
In summary, our first-order analysis indicated that a naively sited CRNS was 2.3 to 5 times more likely
to return a SWE estimate within +/- 25 % of the large-scale spatial average than a similarly sited SWE
sensor with a footprint of 1 m?.

These results are shown spatially in Figs. 78 c&e, where Fig. 78c shows the map of synthetic
CRNS SWE estimates, and Fig. 78e shows the lidar-derived SWE at 1 m? resolution for the example
date of 29 January 2021. In both maps, locations that returned a SWE value within +/- 25 % of the
CARC average are shown in red. The representative areas for CRNS are more extensive and spatially
contiguous, while the representative 1 m? “Snow Scale” pixels are fewer and less spatially contiguous.
The same maps are shown for 17 February 2021 in Figs. 78 d&f. In this case, a larger proportion of the
CARC is representative of the large-scale CARC average in both maps, and the CRNS similarly shows
more extensive and more contiguous representative areas. These results indicate that CRNS provides
value for large-scale SWE estimates in the prairies, beyond those available from more conventional,
smaller-footprint sensors. It appears that the optimal locations to site CRNS in prairie snow distributions
like the CARC are in locations of low snow accumulation near areas of high snow accumulations (e.g.
snow drifts). This makes sense, as most of the CARC area exhibits low snow accumulation, while only
a small portion experiences higher snow accumulation, and CRNS are most sensitive to the area
immediately surrounding the instrument. Through a combination of design and happenstance, our actual
CRNS at the CARC (point P00 on Fig. 3) is located within a representative region for all lidar dates
(with the exception of 15 January 2021, which had very spatially limited snow cover).

4.333 Comparison against Gridded SWE Estimates

To show the value of accurate CRNS measurements to future remote sensing missions, we compared
our hoew-CRNS measurementsSWE estimates eempare-to-and currently available gridded snow products
to the areal mean lidar-derived SWE and snow depth for the entire 1 km? study area. Figure 89 shows
comparisons of SWE (Fig. 89a) and snow depth (Fig. 89b) products at similar magnitudes of scale (see
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600 Sect. 3.3 for details). We also plotted our CRNS SWE time series at the CARC from Woodley et al.,

605

(2024) (see Fig. 5a in Woodley et al., £2024}). In January and March 2021, all gridded SWE products
had no SWE. This contrasts with the average CARC SWE from the UAV lidar DSMs (red squares on
Fig. 89a) and ERNS-URANOS simulations (grey boxplots on Fig. 89a), and our CRNS SWE times
series (green line, Fig. 89a), where-which all indicate that snow eever-is still-present-en-the-ground. In
February, the UCLA-reA-Snow Reanalysis and SNODAS predicted more peak SWE on the 17% and
18" ofFebruary 2021 compared to our average CARC SWE, with SNODAS almost double our CARC
SWE estimates. The UA SWE produced quite similar estimates to our CARC SWE in mid-February,
before predieting-more-SWE-inlate-February-and-underpredicting SWE starting in March.

29



SWE [mm]

SD [cm]

a) SWE Comparisons

25 1

—— CRNS (Woodley et al., 2024)
I Modeled SWE (This Study)

m  CARC Avg.

—— WUS_UCLA SR

—— UA 4km
A SNODAS

AA

b) Snow Depth Comparisons

12
B CARC AVQ.
104 — WUS_UCLA_SR
—— UA 4km
g4 A SNODAS
6 -
4 -4
2 AA
. . .
|
Y B —AA A : . :
100 110 120 130 140 150 160
DOwY

30



610

615

620

625

(a) SWE Comparisons

25 4 EEE Modeled SWE (This Study) AA
—— CRNS (Woodley et al., 2024)
m CARC Avg.
209 ycLA-re
—_ —— UA 4km
E 154 A SNODAS
i
=
0 10 A t
i
5 -
0 ‘/\ . .- ‘a — : : — .
Jan 17 Jan 27 Feb 06 Feb 16 Feb 26 Mar 08
(b) Snow Depth Comparisons
1751 m  carc Avg.
1504 — UCLA-re A,
—— UA 4km

1251 A SNODAS

E 10.0
S
8 754

5.0 -

2.5 1

m® = -
0.0 B————ph —4 : ; A r
Jan 17 Jan 27 Feb 06 Feb 16 Feb 26 Mar 08

Figure 895: Comparisons of (a) SWE estimates_and (b) snow depth estimates fromef-a) gridded products SWE-and in situ SWE
estxmates—&nd—p*oduetsmeasurements betweenfer 9 January to 10 March 2021-and-(b)-snew-depth-preducts-expressed-as-the-day
In (a).A time series of the UCLA Snow Reanalysis (blue line), UA SWE (orange

hne), dallv mean CRNS SWE (green hne) from Woodley et al., (2024 blue lme from Flg Sa) are shown We—ﬂotted—t—h&dﬂﬂ-v

shewn-forsnow-depths: Dally SNODAS SWE and—snow—depth—estlmates for each of the dates correspondlng to a hdar ﬂlght are
shown as blue triangles, and an averaged CARC SWE and-snow-depth-for each digital snow model (DSM) for the 1 km? study
region are plotted as red squares. URANOS mModelled SWE estimates from this study for each date are plotted as grey boxplots
to illustrate the variability of SWE within our study reglon Snow depth from the _Same sources are shown in (b), except tor CRNS
and URANOS. which do not estimate snow depthOs g and data 8

The differences in SWE products are likely due to aggregation with different resolution and
meteorological forcings. The-sSub-grid variability is shown to be very important in estimating the SWE
in a prairie environment, where the average SWE is-eithercan be either grossly under or overpredicted.
Past studies have indicated that SNODAS is unsuccessful at capturing the snow spatial variability in
regions with persistent winds like the prairies (Lv et al., 2019). We-alse-verified-thatOur results indicate
that similar issues can occur with snow depths. Figure & 89b plots a similar graph, except showing the
changes in snow depths for the-parts-of January to March 2021. Snow depths shows a similar pattern,

where all gridded products there-are-no-snew-depths-are-Olack snow in-thegridded-datasets-in January
2021 and March 2021, and snow depths are detected for February 2021. SNODAS underestimates
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overestimates the snow depths compared to our average CARC snow depths on 17 and 18 February
2021, while underestimating snow depths for all other datesSWE, despite having similar spatial
resolution (1 km for SNODAS and a 1 km aggregate for lidar CARC SWE).
While Fig. 89a shows that SWE estimates from the UA 4km data are more reliable in February

2021, Fig. 89b- shows snew-depth-estimatesfrom-that the accuracy of both the UA and UCLA-re snow
depth estimates ﬁf@d-&%%S—d—lff%H—&H—P%Sﬂ-l—‘ESVarV dependlng on the w1nter monthssugges%s—th%@@h&—fe

W h m A epths. The-UA 4km
snew—éee%h&underestlmates Snow depths for mld Februarv 2021 while the UCLA-re overestimates
snow depths. However, by the end of February 2021, this relationship is flipped with the UCLA-re
predicting similar snow depths to our lidar DSM average and the UA 4km overpredicting snow depths.

GKN—S—meaSerme&ts The t1m1ng of pfeerp&aﬂe&snow accumulatlon from all three models also does

not seem to line up with some of our in-situ measurements. UCLA-re shows a brief
preeipitatioaccumulationn event between the 15 January 2021 UAV flight and the 21 January 2021
UAV flight, and coincident with a known snowfall event between 18-19 January 2021 (see Supporting
Information for Woodley et al., {2024)). However, snow disappears quickly after the snowfall event.
Lower estimates of mean SWE and SD are expected for larger spatial resolutions due to increased
aggregation (Bloschl, 1999).

Our analysis shows that CRNS has utility for improving SWE estimates in prairie environments,
and other environments with shallow, heterogeneous snowpacks. CRNS measurements have already
shown this utility in mountain regions. Integration of CRNS SWE into models, alongside remote
sensing data, has reduced error spread in the Austrian Alps (Schattan et al., 2020). CRNS has the
potential to increase the coverage of SWE monitoring sites, where currently used technologies within
snow monitoring networks like SNOTEL may not be optimal, such as-in the northern Great Plains.
Previous research has shown that large errors in SWE were due to subpixel SWE variability of the
Northern Great Plains (Tuttle et al., 2018). However, we hope that future planned satellite missions such
as NISAR, armed with similar instrumentation used in the CARC during SnowEx 2021 (Palomaki and
Sproles, 2023) can improve efforts to monitor snow in this relatively under-instrumented region.

4.44 Assumptions and Limitations of this Study

For this analysis, we made several key assumptions and simplifications from actual field conditions
during winter 2020/2021. One key simplification haste-de-withconcerned soil moisture. As mentioned
in Sect. 3.2, we kept soil moisture spatially uniform and constant across all our model simulations due
to a variety of logistical complications. In situ soil moisture measurements were made-collected at the
CARC after the winter season in May 2021, after-the-winterseasoen-due to delivery of the CRNS
instrument after first snowfall (Woodley et al., 2024). These soil measurements were also-enly taken at
a maximum of 200 m away from our CRNS instrument, while our URANOS simulations cover thean
entire 1 km? area. While soil moisture-data was continuously monitored at nine locations throughout the
winter of 2020/2021 using soil moisture probes, theseis data were not informative because the soil
temperature dropped below 4 degrees-°C (at which point water's dielectric properties change) for the top
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0.5 m of soil for nearly the entire winter beeause-the-ground-frozeto-below-0.-5-m-depth-(Woodley et al.,
2024). The heterogeneity of the underlying soil moisture will have a great effect on CRNS
measurements and neutron counts, possibly even overcoming the contribution of the snowpack due to
the shallow nature of the snowpacks in the prairie. SnowmMelt events throughout the winter smaycould
also impact CRNS measurements throughout the winter, which may also impact soil moisture
depending on the coupled frozen ground dynamics. Our aim was to show how CRNS measurements
were biased-fromaffected by snowpack spatial distributions alone and what considerations needs to be
taken before plaeingsiting a CRNS to obtain SWE.

Another important assumption was our initial conditions, namely our Ny, the calibration neutron
count (see Eqg. 1 and 3), which we took from 15 January 2021. Typically, a CRNS is calibrated by
choosing a Ny value before the start of the winter season, when SWE = 0 (Desilets, 2017). Again, due to
logistical constraints mentioned previously, we were not able to obtain a baseline neutron count during
snow-free conditions. Between the time period when the CRNS was installed at the CARC on 22
November 2021 and when we conducted our “snow-off” lidar flight on 15 January 2021, the CARC was
never completely snow-free (Woodley et al., 2024). Our Ny value from 15 January may be lower than a
calibration value chosen before the start of the winter season due to the proximity of the prominent
north-south snow drift. A lower Ny would affect the SWE values that we have calculated in this study
and our CRNS time series (green line in Fig. 8). However, with less than 2 % of the CARC covered in
snow on 15 January 2021 and only 0.2 % of it covered in deep snow (see Table 1), we do not expect eur
measurements-to-be-extremelythe choice of Ngto be a large source of bias in our CRNS SWE
estimatesed. Modeled SWE calculated using a completely snow-free baseline (grey boxes Fig 8a) and
the January 15" baseline (Fig. 4b) differed on average by 0.05 cm.

5 Conclusions

A neutron transport modelling study at an agricultural site in the Northern Great Plains of Montana has
shown that the spatial variability of shallow and heterogeneous snowpack affects CRNS measurements.
Our URANOS simulations with heterogeneous snowpack tended to have increased neutron counts
compared to simulations with a uniform snowpack with similar snow water volume. We partly attribute
these increases in neutron counts to bare ground patches around the CRNS with the heterogeneous

However we acknowledge that the spatlal sensitivity of the sensor may play a large role in these
dlfferences as well since our virtual CRNS locations were placed in areas of lower SNOw accumulatlon

d—tst-l‘-l-b’dﬂeﬁ should be cons1dered when s1t1ng aboveground CRNS instruments in areas of hlgh SNOW
spatial heterogeneity, even for very shallow snowpack like that at the CARC, if the goal is for the

instrument to be representative of the large-scale spatial average. Ouranalysis-suggeststhat CRNS
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mstramentsln prairie sites characterized by wind scoured fields and spatially limited snow drifts, CRNS
instruments should be placed in areas of low snow accumulation that are nearby higher snow
accumulation areas. However, a naively sited CRNS instrument (i.e., with no knowledge of the snow
distribution) is still 2 to 5 times more likely to be representative of the large-scale average SWE than a
more conventional, smaller footprint SWE sensor such as a snow scale or snow pillow. Comparisons
with gridded SWE products show that CRNS has the potential to improve SWE estimates in prairie
snow, when compared to lidar-derived SWE from the site. Our study focuses solely on the effect of
snow distribution on CRNS, but spatial variability of soil moisture is also important to consider,
especially in shallow snowpack areas such as the prairie, where the effect of soil moisture distribution
on CRNS measurements may be of comparable magnitude to that of snow distribution. This highlights
the need for further research in semi-arid prairie environments like the Nnorthern Great Plains, where
water use efficiency and snow capture are of great agricultural interest, and more rigorous studies of
CRNS applications in shallow, heterogeneous snowpacks.-

Code and Data Availability

Code and data used in this analysis will be made available through GitHub at
https://github.com/heyjoekim/carc_crns_spatial -and archived on Zenodo at
https://doi.org/10.5281/zenodo.14592408. Snow pit data from the CARC areis available to download
from the NSIDC DAAC (https://doi.org/10.5067/QIANJYJGRWOV).
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