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Abstract. Monitoring prairie snow has beenis difficult due to its extreme spatial variability from windy 
conditions, gentle topography, and low tree cover. Previous work has shown that a noninvasive (or 10 10 
aboveground) Cosmic Ray Neutron Sensor (CRNS) placed at the Central Agricultural Research Center 
(CARC; 47.07º N, 109.95º W), an agricultural research site within a semi-arid prairie environment 
managed by Montana State University, was sensitive to both the low snow amounts and spatial 
variability of prairie snow. In this study, we build upon previous work to understand how different snow 
distributions would have influenced CRNS measurements at the CARC. Specifically, we compared the 15 
changes in neutron counts and snow water equivalent (SWE) after relocating our CRNS probe at the 
CARC using the Ultra Rapid Neutron-Only Simulation (URANOS) and comparing them to uniform 
snow distributions. For Neutron counts from simulations with a shallow, heterogeneous snowpacks like 
the ones observed at the CARC, the magnitude and distance of the snow drifts from the CRNS has the 
greatest effect on neutron countswere biased higher compared to neutron counts from simulations with a 20 
uniform snowpack. While areas of higher snow accumulation reduced neutron counts, the low amounts 
of SWE made it difficult to discern a consistent relationship between SWE and neutron counts. 
Therefore, the best place to site a CRNS is within areas of low snow accumulation that are nearby areas 
of high snow accumulation to obtain a reasonable spatial estimate. Despite this, our analysis indicates 
that a naive CRNS placement was 2 to 5 times more likely to yield better representative SWE estimates 25 
compared to a similarly placed snow scales or currently available gridded products. Currently available 
gridded snow products willtend to under-estimate or over-estimate snow observations from our prairie 
site, while CRNS SWE values match more closely. prairie snowpacks comparedCRNS SWE values. 
We show CRNS can provides valuable information about shallow, heterogeneous snowpacks in prairie 
and other environments and can benefit future missions from UAV and satellite platforms. 30 

1 Introduction 

Seasonal snow plays an important hydrologic and climatic role in the Earth system. Seasonal snow 
covers an average of 31% of the Earth’s surface annually (Tsang et al., 2022). A major component of 
the Western United States’ water supply originates from seasonal snowpack, feeding the needs of over 
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60 million people (Bales et al., 2006). Prairie snow can make up to 25% of the global snow cover 35 
(Sturm and Liston, 2021). Mid-latitude semi-arid prairie environments, such as those found in the 
interior Great Plains of North America (i.e. northern states such as Montana and extending north into 
Canada) are dependent on snow. Over 80 to 85% of streamflow in the Northern Great Plains originates 
from snow (Gray, 1970), despite accounting for 20% of the annual precipitation (Aase and Siddoway, 
1980). 40 

Snow cover in the prairie is known for its extreme spatial heterogeneity, mainly due to strong 
surface winds, gentle topography, and spatial variability in vegetation (Gray, 1970). Figure 1 depicts the 
variability that snow can exhibit in a prairie environment. Strong winds in an open, flat expanse of land 
scours snow, causing wind erosion, enhancing sublimation, and transporting 75% of the annual snowfall 
(Gray, 1970; Harder et al., 2019). The effects of blowing snow are affected by changes in surface 45 
roughness such as vegetation which allows for preferential deposition and accumulation of snow along 
natural barriers (Harder et al., 2019; Kort et al., 2012). These areas of preferential deposition can build 
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snow drifts as shown in Fig. 1a that can grow over 1 m tall and can transition to bare ground over a 
spatial scale of meters to tens of meters. 

 50 

 
Figure 1: Field images depicting the heterogeneity of snow in a prairie environment from winter 2020-2021. (a) Image taken on top 
of > 1 m snow drift, looking east, with snow disappearing as you move away from the snow drift. (b) Standing crop stubble is used 
to trap snow for early spring melt. Field images were provided by Dr. Eric Sproles. 

Figure 1b shows how vegetation variation due to aAgriculture and crop stubble are the most 55 
common form of land use change in the Northern Great Plains canthat drive preferential snow 
accumulation. The introduction of dryland cropping techniques, especially such as no till (or zero 
tilling) techniques where seeds are directly planted into crop residues and no tillage of soils, allows 
certain winter wheat crops to grow in the Northern Great Plains changing the surface roughness of the 
prairies (Nielsen et al., 2005; Aase and Siddoway, 1980; Harder et al., 2019). The increased surface 60 
roughness from crops will allow for preferential deposition of snow, reducing the blowing snow process 
(Harder et al., 2019). In addition, farmers can leave standing crop stubbles, like in the ones in Fig. 1b, to 
aid in trapping snow and reducing snow erosion in order provide water recharge and manageing 
infiltration and runoff (Aase and Siddoway, 1980; Harder et al., 2019). Due to the semi-arid climate in 
the Northern Great Plains, water use must be efficient for agricultural fields to be productive. Thus,is 65 
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agricultural development in the prairies has increased the need to capture snow for early season melt 
water. This increases the demand for aAccurate SWE measurements in prairie environments are thus 
relevant for maximizing agricultural water use efficiency.As a result, farmers use standing crop stubbles 
to aid in trapping snow and reducing snow erosion in order to provide water recharge and managing 
infiltration and runoff (see Fig. 1b) (Aase and Siddoway, 1980; Harder et al., 2019). 70 

Snow heterogeneity introduces an important question in water resources management: How and 
where can we effectively measure snow water equivalent (SWE) in such anprairies and other similar 
environments? Traditional manual snow measurements from snow pits are labour-intensivelabor-
intensive and are best applied in deep snow. In prairie environments, sSnow pit measurements of snow 
density are usually restricted to the snow drifts and not of the typicallyare difficult to collect in 75 
shallower prairie snowpack. In addition, continuous SWE monitoring through snow pillows or snow 
scales like those found in the snow telemetry (SNOTEL) network from the US Department of 
Agriculture Natural Resources Conservation Service (USDA NRCS) (Serreze et al., 1999), are not as 
effective in the prairie due to wind erosion and transport. Additionally, Fig.ure 1 shows how the 
placement of a snow pillow or snow scale (e.g. in an area that accumulates a snow drift or an area that is 80 
wind-scoured) could result in very different snow measurements, some (or all) of which may not reflect 
the areal average SWE. Another alternative is to measure SWE at larger scales through remote sensing 
on satellite or , airborne platforms. However, satellite and airborne remote sensing of SWE in the 
Northern Great Plains is currently limited by the SWE variability at the subpixel scale (Tuttle et al., 
2018). 85 

To address these issues, we installed a Cosmic Ray Neutron Sensor (CRNS) to measure the 
SWE at an agricultural research site in the plains of central Montana. CRNS instruments detect the 
background neutron flux that is generated when cosmic rays interact with matter on Earth (Desilets et 
al., 2010). Hydrogen atoms are roughly the same size as neutrons, and trap the free neutrons, attenuating 
the signalNeutrons are extremely sensitive to hydrogen, which can either be absorbed if the neutron is 90 
thermalized or slowed down due to energy loss from elastic collisions with hydrogen atoms (Zreda et 
al., 2012). Thus, a CRNS the neutron flux measured by a detector measures these attenuated neutrons, 
which isis inversely related to the amount of hydrogen atoms in its immediate surroundings. The most 
common source of hydrogen in the environment isare water molecules in the atmosphere (Rosolem et 
al., 2013; Zreda et al., 2012), vegetation (Baroni et al., 2018; Franz et al., 2015), and soils (e.g., lattice 95 
water and organic matter) (Bogena et al., 2013; Franz et al., 2013). After accounting for all other 
hydrogen pools, CRNS estimates of soil moisture and SWE are made over an approximate operational 
radius of 150 to 250 m (for aboveground CRNS) by detecting the neutron flux over time (Zreda et al., 
2008; Royer et al., 2021). The non-invasive and large footprint of CRNS has intriguing potential to 
overcome the issues of traditional continuous snow monitoring in heterogeneous shallow to moderate 100 
snowpacks. It also helps to mitigate a common issue in hydrology: bridging the scale gap between point 
measurements and areal measurements, such as remote sensing or modelling studies, by providing 
measurements of areal SWE at an intermediate or similar spatial resolution (Blöschl, 1999; Iwema et 
al., 2015; Schattan et al., 2020).  

Previous research has shown that CRNS estimates of SWE at an agricultural prairie site in 105 
central Montana agree with spatially weighted digital snow models (DSMs) from UAV light detection 
and ranging (lidar) flights and modelled CRNS estimates, despite extreme spatial heterogeneity of the 
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snowpack surrounding the detector (Woodley et al., 2024). CRNS has been noted to be sensitive to bare 
ground patches, usually increasing the neutron counts (Schattan et al., 2019). We build on our previous 
research from Woodley et al. (2024) to analyseanalyze the effects of snow heterogeneity within the 110 
operational footprint of the CRNS using neutron transport modelling. From these results, we provide 
insights and guidelines on best practices to site future CRNS probes with respect to shallow, 
heterogenous snowpacks. We also use a synthetic analysis to compared the reliability of a naïve CRNS 
placement in a shallow, heterogeneous snowpack against a similarly sited snow scales. Finally, we 
compared how CRNS estimates compared toand currently available gridded SWE products 115 
Furthermore, we hope to lidar- and ground-based SWE measurements and show find that CRNS 
measurements can be a reliable ground truth for remote sensing applications in the prairies. 

2 Study Area 

The modelling domain for this study is a 1 km2 region of the Central Agricultural Research Center 
(CARC), an agricultural research site managed by Montana State University, located in central Montana 120 
(47.057510˚ N, 109.952945˚ W; see Fig. 2). The CARC hosts ongoing agricultural research where 
researchers investigate different crop varieties, cropping strategies, and soil biogeochemistry. Crops 
typically grown at the CARC include cereals, grasses, legumes, and broadleaf plants. Some crops 
persist into the winter as stubble at the CARC, depending on harvest practices (Palomaki and Sproles, 
2023). The elevation of the study region ranges from 1287 m to 1298 m. Soils at the CARC are 125 
primarily well-drained, shallow clay loams (Palomaki and Sproles, 2023). We observed average air 
temperatures of -0.4°C (-3.7°C during DJF), average air pressure of 870 mb, and average relative 
humidity of 62.8% throughout the winter of 2020-2021 (November through April). A CRNS 
(CRS2000/B from HydroInnova LLC, Albuquerque, NM, USA) was deployed at the site in the winter 
of 2020/2021, coincident with the SnowEx 2021 Prairie field campaign, to measure the low-energy 130 
cosmic ray-induced neutrons (Woodley et al., 2024). 
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Figure 2: Basemap of study site. (a) The 1 km2 research domain outlined by the dashed black box at the Central Research 
Agricultural Center (CARC). The CRNS location is marked by the yellow dot triangle and the estimated 171 m footprint 135 
(calculated in Woodley et al., (2024) is shown in the dashed yellow circle. The approximate locations where Fig. 1a (green triangle) 
and Fig 1b (cyan triangle) were taken are also shown. Fig. 1a and Fig. 1b were taken facing east. (b) The approximate location of 
the CARC in Moccasin, MT in Central Montana is marked by the red star. The State of Montana is also highlighted in red with a 
fill colourcolor of tan. (Basemap Image: © Google Tiles). 

3 Data and Methods 140 

3.1 In Situ Measurements 

The CARC was selected for NASA’s SnowEx field campaign in the winter of 2020/2021 to study 
prairie snow as one of its main objectives in the winter of 2020/2021. SnowEx efforts at the CARC 
included airborne L-band interferometric synthetic aperture radar (InSAR) flights from the Uninhabited 
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument, snow-on and snow-off UAV lidar 145 
observations, UAV orthophotos and structure from motion (SfM), and ground-based snow observations 
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including snow pits and snow depth transects (Palomaki and Sproles, 2023). For this analysis, we used 
UAV mounted lidar measurements of snow depths andalong with snow density measurements from 
snow pits to calculate thespatially distributed SWE at the CARC.imported spatially distributed SWE 
into our neutron transport simulation, which was estimated using spatial distributed snow depth maps 150 
from the UAV lidar flights and snow density data calculated from snow pits (Woodley et al., 2024). 

Table 1 summarizes the snow depth propertiess and Fig. 3a shows the resulting digital snow 
models (DSM) from the 8 UAV lidar flights made in winter 2020/2021 across 8 different dates in our 1 
km2 study area (dashed black box, Fig. 2). The lidar data at the CARC wereas acquired by a contractor, 
DJ&A, P.C., using a 1,550 nm and a 905 nm wavelength laser (Woodley et al., 2024). The lidar 155 
measurements show how snow depths can variesy spatially and temporally within the CARC. The lidar 
flight conducted on 15 January 2021 is considered our “no snow” baseline. Despite the large changes 
range in snow depths due to the snow drifts, the snow drifts typically covered less than 1% of the 1 km2 
area before February 2021.  This includes a prominent linear north-south snow drift that formed 
adjacent to a windbreak in the western portion of the CARC. For this study, tThe digital snow model 160 
from the UAV lidar was divided into 2 m by 2 m pixels, for a total model domain of 500 pixels by 500 
pixels. We masked off any region with 0 cm snow depths as a “no snow” region. We note that root 
mean squared errors (RMSE) provided by the contractor were between 4 and 7 cm, likelypossibly due 
to the winter stubble giving a false surface return (Palomaki and Sproles, 2023). We matchedcompared 
our DSM from 21 January 2021 to the pixel classifications made from an orthomosaic photo on the 165 
same day (Figs. 1d and 1e from Palomaki and Sproles, 2023), and the two show good agreement. 
However, oOur “no snow” masks include some pixels that are classified as “Mixed” in Palomaki and 
Sproles, 2023, likely due to the large RMSE errorsshallow and discontinuous nature of the snow in 
these areas.  

 170 
 
Table 1: Snow depths (SD) and the snow covered area (SCA) statistics from the digital snow models from each of the 8 UAV lidar 
flights at the CARC. We report the average and maximum SD for each date. The SCA is reported as the percentage of the CARC 
within the 1 km2 research area is covered by snow and the percentage of the CARC covered by greater than 20 cm of snow.  

Date Avg. SD, Excluding Bare Ground 
(Avg. With Bare Ground) [cm] 

Max. SD 
[cm] 

SCA 
[%] 

SCA, SD > 20 cm 
[%] 

15 Jan. 2021 5.3 (0.1) 63.4 1.80 % 0.2 % 
21 Jan. 2021 3.6 (1.6) 96.7 45.1 % 0.6 % 
22 Jan. 2021 3.8 (2.0) 82.7 52.1 % 0.5 % 
29 Jan. 2021 3.2 (0.9) 82.8 28.1 % 0.5 % 
17 Feb. 2021 8.8 (7.9) 131.5 89.6 % 5.0 % 
18 Feb. 2021 8.7 (7.6) 131.0 87.1 % 4.8 % 
24 Feb. 2021 5.5 (2.2) 100.6 39.7 % 2.4 % 
 4 Mar. 2021 2.2 (1.3) 80.4 60.1 % 1.1 % 

 175 
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Figure 3 (a) Lidar digital snow maps (DSM) from the winter 2020-2021 NASA SnowEx Prairie Mission within the research 
domain (dashed black box in Fig. 2a). Gray regions indicate regions of no snow cover (SD = 0 cm). Color scale for snow is not 
linear. Smaller increments were included to show where extremely shallow snow is located at the CARC. (b) Map of locations of 
virtual CRNS points for URANOS simulations. The actual CRNS location is marked by the magenta triangle, with the calculated 180 
171 m operational footprint (magenta dottedashed circle) of the CRNS from Woodley et al. (2024). The rest of the virtual CRNS 
locations used in this analysis are marked by red circles, with one example virtual CRNS footprint shown in the red dashed circle 
in the upper right. 

 
 To calculate spatially distributed SWE from UAV snow depth, we used density measurements 185 
from sSnow pits frommeasurements collected in the north-south snow drift in the western portion of the 
CARC research domain provided the density measurements to calculate SWE (Mason et al., 2024). 
Four separate snowSnow pits observations pits were  dugcollected on four dates: on 20 January, 17 
February, 24 February, and 5 March 2021. The snow pits revealed a bimodal snow density distribution, 
with We utilized a 2-layer density scheme where a lighter snow layer (approximatelyvarying between  190 
approximately 100 kg m-3 for newly fallen snow to slightly over 400 kg m-3 late in the melt season100 
kg m-3) sat atop a denser basal layer (approximately 400-500 kg m-3) Thus, we utilized a 2-layer density 
scheme to calculate spatially distributed SWE at the CARC,  which we inferred from theusing snow 
density profilevalues derived from the snow pit measurementss. Due to the timing of snowfall events, 
snow pits, and lidar flights, the thickness of each layer may vary. We accounted for this variation in 195 
depth/thicknessThe thickness of the lighter and basal snow layers on a given date was determined by 
differencing the lidar DSMs on different dates. These 2-layer snow density and depth maps were used to 
specify the “natural” snow cover conditions in the neutron transport simulations (section 3.2). The snow 
pit data areis archived and freely available on the National Snow and Ice Data Center (NSIDC) 
Distributed Active Archive Center (DAAC). A more detailed summary of ourthis methodology is also 200 
provided in the Supporting Information from Woodley et al. (2024). 
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3.2 Ultra-Rapid Neutron Only Simulations 

To verify CRNS SWE estimates at the CARC, where traditional snow monitoring data does not exist, 
this study will utilize neutron transport modellingWe analyzed the effects of the spatial heterogeneity of 
prairie snowpacks on CRNS measurements through neutron transport modelling. Recently, CRNS 205 
studies have adopted the use of the Ultra Rapid Neutron-Only Simulation (URANOS), such as Brogi et 
al. (2022), Schattan et al. (2017), and Schrön et al. (2023). URANOS utilizes a Monte Carlo approach to 
simulate the neutrons and has been specifically developed for CRNS applications (Köhli et al., 2023). 
Millions of neutrons are generated from randomly distributed point sources within a user-defined area, 
and neutrons’ path and interactions are tracked from its source to the point of detection through a ray-210 
casting algorithm (Brogi et al., 2022; Köhli et al., 2023). URANOS can model 3-dimensional voxel-
based geometries with defined materials by stacking multiple layers of either ASCII matrices or bitmap 
images to replicate important site characteristics (Köhli et al., 2023). For this analysis, we used 
URANOS v1.23, which is freely available for download at: https://gitlab.com/mkoehli/uranos/. 
 We ran 624 individual URANOS simulations: corresponding tofor each of the 26 pointsvirtual 215 
CRNS locations around the CARC (Fig. 3b), for each of the eight dates corresponding to the UAV lidar 
flights at the CARC, andwith three different snow distribution schemes on each date. We also ran 
control simulations with completely snow-free conditions for each virtual CRNS locations. Our model 
setups are similar to the simulations described in Woodley et al. (2024) but contain several important 
differences. Our methods have two main differences from the URANOS simulations used in the 220 
Woodley et al. (2024) analysis. First, we moved the virtual CRNS around our research domain to test 
how neutron counts would have been affected by the differing snow cover conditions around the 
CARC. A cylindrical virtual CRNS detector was placed at each of the 26 points on Fig. 3b, roughly and 
placed 2 m above the ground in URANOS. Each URANOS run simulated 108 neutrons. The virtual 
CRNS was enlarged to a 9 m radius to improve detection statistics and supplied with a detector response 225 
function (provided in the URANOS GitLab repository) to simulate the sensitivity of the CRNS installed 
at the CARC, specifically a high-density polyethylene moderator of 25 mm thickness. To minimize the 
influence of soil heterogeneity and focus on the influence of snow variability, we chose to create a 
uniform 30 cm soil layer with the average of all soil measurements. In the field, sSoil samples for soil 
moisture and bulk density were collected at 5 cm depth intervals up to a total depth of 30 cm and at six 230 
cardinal directions at three different radii (approximately 25 m, 75 m, and 200 m) from the CRNS 
instrument (Woodley et al., 2024). Because this analysis moves the simulated CRNS instrument around 
the CARC where other soil moisture measurements were not made, we chose to average the soil 
measurements for our uniform soil layer. As in Woodley et al. (2024), soil moisture, atmospheric 
pressure, and other important parameters listed in Table 2 were kept constant to allow direct 235 
comparisons of model simulations due to changes in snow distribution, and to remove the need to 
correct counts based on differing hydrogen pools. 
 
Table 2: Atmospheric and soil parameters used in our URANOS simulations. These values were unchanged from each set of 
heterogeneous and uniform snow runs.  240 

Parameter Value 
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Number of Neutrons [-] 100000000 
Air Humidity [g m-3] 3.341 
Atmosphere Depth [g cm-3] 888.809 
Soil Moisture (first 30 cm) [%] 21% 
Soil Bulk Density (first 30 cm) [g m-3] 1.087 
Soil Porosity (first 30 cm) [%] 56% 

 
 

 
 
Figure 3: a) Lidar digital snow maps (DSM) from the winter 2020-2021 NASA SnowEx Prairie Mission. Colormaps for snow are 245 
not linear. Smaller increments were included to show where extremely shallow snow is located at the CARC. b) Map of locations of 
virtual CRNS points for URANOS simulations. The actual CRNS location is marked by the magenta triangle, with the calculated 
171 m operational footprint (magenta dotted circle) of the CRNS from Woodley et al. (2024). The rest of the virtual CRNS 
locations used in this analysis are marked by red circles. 

 To examine how CRNS measurements change with the spatial distribution of snow, we ran 250 
simulations in URANOS using three different snow distribution schemes: 1) atwo different uniform 
snow layers and compared them against simulations using 2) the heterogeneous snow mapsDSMs 
derived from the UAV lidar and snow density (Fig. 3a). For the uniform simulations, a chosen volume 
of snow water was evenly distributed in the research area, creating a uniform snow layer. We created 
two uniform snow layer schemes based off: a) the average amount of snow water in the 171 m 255 
operational footprint around the CRNS detector and b) the average amount of snow water across the 
entire 1 km2 study domain. The 171 m operational footprint of the CRNS is a site-specific value 
calculated at the CARC using “no snow” URANOS simulations from Woodley et al. (2024). While we 
used a constant value for the CRNS footprint in this study, the actual operational footprint of a CRNS is 
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dependent on the amount of moisture present in the environment. The total amount of snow water 260 
volume was divided using one of the snow density material values in URANOS. Depending on the 
amount of snow water per pixel, we chose to model the snowpack using the built-in material codes for 
snow: 240, 241, and 242, which has density values of 0.03 g cm-3, 0.1 g cm-3, 0.3 g cm-3, respectively, 
to create a snow layer with uniform thickness and density (see MaterialCodes.txt in GitLab repository, 
link in Sect. 3.2). 265 

From the different URANOS simulations, we also calculated SWE from the modelled neutron 
counts. We followed our methods from Woodley et al. (2024) to calculate modelled SWE from 
URANOS. SWE calculations were made using Eq. (1) (Desilets, 2017) using our modelled neutron 
counts from URANOS simulations. 

𝑆𝑊𝐸  =   − 𝛬 𝑙𝑛
𝑁 − 𝑁!"#
𝑁$ − 𝑁!"#

. (1) 270 

Nq is the calibration neutron count, from the “snow-off” reference date of 15 January 2021. N is the 
neutron counts corresponding to the dates of the subsequent seven “snow-on” lidar flights at the CARC 
(21 Jan. 2021 to 4 Mar. 2021). The attenuation length (L) was calculated to be 4.8 cm from previous 
literature (Desilets et al., 2010). Nwat is the counting rate over an infinite depth of water and can be 
calculated using Eq. (2): 275 

𝑁!"# = 0.24𝑁%, (2) 
 
where 0.24 is an assigned constant value (Desilets, 2017; Desilets et al., 2010). N0 is the theoretical 
counting rate over dry soils: 

𝑁% =
𝑁$

𝑎%
𝜃&𝜌'( + 𝑎)

+ 𝑎*
, (3) 280 

 
where a0 = 0.0808, a1 = 0.372, and a2 = 0.115 (Desilets et al., 2010; Desilets, 2017). Usually, Nq in Eq. 
(3) is multiplied by a correction factor, F(t), to correct for solar activity, atmospheric pressure, and 
humidity. However, as all our model simulations used the exact same meteorologic conditions, our 
correction factor was set to 1. 𝜃𝑞g is the sum of gravimetric soil water content, soil mineral lattice water 285 
and water equivalent of soil organic carbon,  and ρrbd is the soil bulk density, which were obtained from 
in situ soil samples. 

3.3 Comparisons with Gridded SWE Products 

To evaluate whether CRNS SWE has potential value for future remote sensing missions or gridded 
datasets, we compared our CRNS SWE and UAV lidar SWE to several available gridded SWE 290 
products, which are available at several spatial resolutions. We chose the Western United States UCLA 
Daily Snow Reanalysis (hereafter UCLA-re, ~500 m resolution, Fang et al., 2022), the Snow Data 
Assimilation System (SNODAS, 1 km resolution, National Operational Hydrologic Remote Sensing 
Center, 2004) from National Oceanic and Atmospheric Administration’s National Weather Service 
National Operational Hydrologic Remote Sensing Center, and the Daily 4 km Gridded SWE (hereafter 295 
UA, 4 km resolution, Broxton et al., 2019) from the University of Arizona.  
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The UCLA-re dataset is generated from assimilation data with Landsat fractional snow cover 
area and other input data such as meteorological forcings from the Modern-Era Retrospective analysis 
for Research and Applications, version 2 (MERRA-2) (Margulis et al., 2019). A Bayesian analysis is 
performed on prior estimates of snow states and fluxes using a land surface model and snow depletion 300 
curves (Margulis et al., 2019). SNODAS provides daily gridded estimates of SWE for the conterminous 
United States by utilizingusing a snow model, which is forced by downscaled numerical weather 
predictions (Clow et al., 2012). Digitally available airborne, satellite, and ground-based snow data are 
then assimilated into the model to provide a best estimate of near real-time snow estimates (Clow et al., 
2012; Driscoll et al., 2017). The UA dataset provides SWE and snow depth estimates by assimilating 305 
snow station data such as the snow telemetry (SNOTEL) network and precipitation and temperature 
data using the gridded PRISM model (Zeng et al., 2018). For each gridded dataset, we chose the pixel 
that included the CARC. Only the SWE for the UCLA-re data was aggregated and averaged within a 2-
pixel by 2-pixel region, to obtain an area that is like similar to the 1 km2 area of the CARC. All gridded 
datasets are freely available for download at the National Snow and Ice Data Center (last accessed: 3 310 
October 2024). 

4 Results and Discussion 

4.1 Neutron Modelling 

Figure 4 shows the differences between the URANOS simulations with a heterogeneous snowpack and 
171 m average uniform snowpack for neutron counts (Fig. 4a) and SWE (Fig. 4b) for all 8 lidar flight 315 
dates and 26 pointsvirtual CRNS locations on Fig. 3b. Neutron counts are on average 1.8% biased 
higher in the heterogeneous runs compared to the uniform runs with a root mean squared difference 
(RMSD) of 2.6 %. When we calculated the SWE using these URANOS runs and Eq. (1), SWE would 
be underpredicted in the heterogeneous runs with a mean bias percent error (MBPE) = -19.9 % and a 
RMSD = 35.3 %. We found similar trends comparing URANOS simulations with a heterogeneous 320 
snowpack and the CARC average uniform snowpack (not shown). Neutron counts were 1.9% higher in 
the heterogeneous runs and an RMSD of 3.1 %. SWE were biased towards the uniform runs with an 
MBPE of -23.2 % and a RMSD = 42.7 %. For both comparisons, we colored each data point in Fig.ure 
4 by the percentage of bare ground (i.e., , the ratio of the area of no snow cover (SD = 0 cm) to the total 
area of the 171 m radius footprint of each virtual CRNS detector). Generally, we found neutron counts 325 
were similar between the heterogeneous and uniform runs (both 171 m and CARC average SWEs) at 
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higher percentages of bare ground within the operational footprint of the CRNS. The opposite trend was 
true for SWE. 
 

 330 
Figure 4 Scatterplot comparing (a) neutron counts and (b) SWE for the heterogenous snow runs (x-axis) against uniform snow 
runs (y-axis) that use the average SWE of the 171 m radius footprint surrounding the virtual detector across the 26 virtual CRNS 
locations for the 8 lidar flight dates. Points are colored by the percentage of bare ground by area within the 171 m footprint of a 
CRNS. (c) Boxplots showing the difference between the heterogenous and uniform snow runs for each virtual CRNS location 
(shown in Fig. 3b), where each box contains the eight URANOS simulations corresponding to the eight UAV lidar flights at the 335 
CARC. 

We grouped the errorsdifferences in neutron counts between the heterogenous and uniform snow 
model runs (with CRNS footprint average SWE) across all dates by virtual CRNS their pointslocation, 
to determine which pointslocations had the largest and smallest errorsdifferences in neutron counts (Fig. 
4c). The largest differences were found in pPoints P00, P05, P19, and P03. Points P00, P05, and P19 are 340 
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the 3 closest pointslocations to the large snow drift in the western portion of the study area. P03 (top 
row, center in Fig. 3b) is also located near snow drifts that formed due to topographical changes near 
train tracks that cross the CARC. The lowest errors were found in pPoints P17, P15, P24 and P06. The 
commonality between points P17, P15, P24, and P06 were likely relatively uniform snow cover 
surrounding the virtual CRNS for most of the dates. P17 and P24 were in the same field directly to the 345 
left of P00, which had relatively uniform snow trapped from the field around most of the dates during 
winter 2020/2021. P00, P05, P19, and P03 had much more variable snow cover surrounding the virtual 
CRNS, with the large snow drift on one side and bare ground on the other for most dates in winter 
2020/2021.  

Comparing the heterogeneous runs to the uniform CARC average SWE runs with CARC 350 
average SWE allows us to evaluate which virtual CRNS locations were most reflective of the CARC 
average.  The locations with the smallest neutron count differences , which were points P20, P07, P06, 
and P19. The locations with the largest neutron count differences were points P13, P23, P14, and P10. 
Interestingly, points P20, P07, and P19 are the three points clustered around the actual CRNS 
instrument at the CARC. P06 was not located near the original CRNS but had some snow cover through 355 
most of January and February. P13, P14, and P10 were also similarly clustered close together (NW 
quadrant) closer to the train track snow drifts. We theorize that these points sampled too many snow 
drifts or too little snow throughout the winter. 

One might assume that neutron counts between the uniform and heterogeneous simulations 
should be comparable because both have the same total snow water volume within the operation 360 
footprint of the CRNS. However, it appears that the distribution of the snow water and bare ground 
patches among fallow fields, crop stubble, and shelter belts around the CARC has a considerable effect 
on the CRNS, as shown in Schattan et al. (2019). Figure 4c suggests that snow drifts closer to the CRNS 
biasaffect neutron counts the most, leading to the largest differences in neutron counts compared to a 
uniform snow scenario. We found that differences in neutron counts between the uniform and 365 
heterogeneous runs (hereafter DNCf = NCuniformheterogeneous -– NCheterogeneousuniform) were positively 
correlated with statistical significance (r = 0.454) with the percentage of bare ground within the 
operation footprint of the CRNS in the heterogenous scenario (i.e., spatially varying snow distribution 
derived from the UAV lidar and snow  density), with statistical significance (r = 0.454, p < 0.05)???). 
This correlation partly arises from the fact that we are comparing similar model runs when the bare 370 
ground percentage is close to 100%, leading to minimal differences in neutron counts. Differences in 
DNCf between the uniform and heterogeneous snowpacks increases with more snow covering the 
ground, and enhanced variability of snow depths within the CRNS footprint. To verify, we computed 
additional correlation metrics between the DNCf and snow depth variability within a CRNS footprint – 
namely the standard deviation and the range (difference betweenin max. and min. snow depths). We 375 
found statistically significant negative correlations between DNCf and snow depth standard deviations (r 
= -0.700, p < 0.05) and DNCf and snow depth range (r = -0.600, p < 0.05). The negative correlations are 
due to DNCf being mostly negative since DNCheterogeneous > DNCuniform. These results similarly suggest 
that higher amounts of snow lead to increased heterogeneity (e.g., snow drifts and bare ground patches) 
which creates the high DNCf. 380 
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To test whether snow drifts do in fact play a large role in neutron count differences, we focused 
on model comparisons for 15 January 2021, to isolate the effects of large snow drifts on CRNS 
measurements. Figure 54 shows the differences between heterogeneous runs (i.e., spatially varying 
snow distribution derived from the UAV lidar and snow density) and the uniform runs (i.e., uniform 
snow distribution) from 15 January 2021, to isolate the effects of large snow drifts on CRNS 385 
measurements. Each point in Fig. 3a represents a different virtual CRNS location within our study 
domain (shown in Fig. 3b). On this date, most of the CARC was uncovered snow-free except for some 
isolated patches of extremely shallow snow and thea large snowdrift in the southwest cornerwestern 
portion of the study domain (top left panel of Fig. 3a, and Fig. 54b). Most virtual CRNS locations 
resulted in neutron counts from the heterogenous and uniform runs that were within 1 % of error from 390 
each other. However, points P00, P05, P07 and P19 yielded large differences of greater than 100 
neutrons (approximately 3 % error). These four points are also the closest to the snow drift on 15 
January 2021 (see Fig. 54b). 
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 395 
Figure 45: (a) A scatterplot comparing neutron counts from the uniform runs (y-axis) against the heterogeneous runs (x-axis) for 
15 January 2021, the near-no-snow baseline, with the exception being the large north-south snow drift in the western portion of 
the study area. While most points fell near the one-to-one line (black dashed line) and within a 1% error, four virtual CRNS 
locations yielded large differences in neutron counts: P00, P05, P07, and P19. (b) Map of the snow depth from the 15 January 2021 
UAV lidar flight, shown in the colorbar. The snow drift is the slim blue linear feature on the left (western) portion of the study 400 
area. The virtual CRNS locations in URANOS are shown in circles, while the actual CRNS location from winter 2020-2021 is 
shown in a triangle (as in Fig. 3b). The four points with the largest neutron count differences are marked in magenta.  

Figure 65 compares how the neutron counts change with relation to the snowpack variability at 
P00, P05, P07 and P19. We calculated the percent change between the heterogeneous and uniform runs 
(171 m average) , where the neutron model domain was divided into twelve sectors of equal angle from 405 
the virtual CRNS detector. We noticed skews in neutron origins due to the relation of the model 
geometry, namely the position of the virtual detector and the source geometry. Virtual detectors placed 
closer to the edges of our domain had neutron origins that were skewed towards the centrecenter of the 
domain. Therefore, we limited the neutron counts in the sectors to within a 200 m radius of the virtual 
detector. The radial plots in Fig. 65 shows the percent change in neutron counts from the uniform runs 410 
to the heterogeneous runs in each sector on 15 January. P07 (Fig. 65a) saw the biggest percent change 
between the no-snow (right of N-S line) and snow side (left of N-S line) with an average percent change 
of 5 % in neutron counts compared to 1.6% change, respectively. We observed a similar but smaller 
trend in P05 (Fig. 65c) with an average 3.216% change on the no-snow side and 2.3% change on the 
snow side. In both P19 (Fig. 6dnot shown) and P00 (Fig. 65b), we observed larger changes on the snow 415 
side compared to the no-snow side. P00 had a 5.3 % change on the snow side compared to a 2.4 % 
change on the no-snow side. P19 had a 3.9 % change on the snow side and a 2.1 % change on the no-
snow side. The differences in P00 neutron counts are likely explained by the longer distance away from 
the snow drift (Fig., 6f5e). Many studies have shown that CRNS is extremely sensitive to its immediate 



   
 

19 
 

surroundings (Köhli et al., 2015; Schrön et al., 2017). The removal of snow cover around the CRNS 420 
from the uniform run is likely to have a larger effect on neutron counts than the snow drift. P05, P07, 
and P19 which were modelled closer to the snow drift. The differences are likely caused by the breaks 
in the snow drift as it first formed. P07 (Fig. 6e5d) was placed next to a longer, contiguous section of 
the snow drift compared to P05 (Fig. 6g5f), which enhances the neutron counts on the snow side in the 
heterogeneous runs. We observed similar breaks in P19. Overall, all of our model results are likely 425 
influenced by the extremely shallow nature of the snowpack at the CARC, leading to differences in 
neutron counts that are less than 10% of the detected neutrons, making this correlation analysis difficult 
to discern. 
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 430 
Figure 56: Percent changes in neutron counts of the heterogenous runs from the uniform runs for 12 sectors around the virtual 
CRNS location for the 3 out of the 4 points identified in Fig. 3: (a) P07, (b) P00, and (c) P05, and (d) P19. The orange line on panels 
(a)-(d)c marks no change in neutrons counts in the heterogeneous runs from the uniform runs. The snow distribution on 15 
January 2021 is shown for each point on panels (e)d-(h)f to contextualize the differences. 

Figure 6 shows the difference in neutron counts (Fig. 6a) and SWE (Fig. 6b) estimates between the 435 
heterogeneous and uniform URANOS results for the rest of the other dates. In this case, the uniform 
runs use the average SWE within the nominal 171m radius footprint around each virtual CRNS. 
Neutron counts are biased higher in the heterogeneous runs with a mean bias percent error (MBPE) of 
1.8% and a root mean squared percent error (RMSPE) of 2.6%. When we calculate the SWE using these 
URANOS runs and Equation 1, SWE would be overpredicted in the uniform runs with an MBPE = 440 
19.6% and a RMSPE = 34.9% cm. We grouped the errors across all dates by their points, to determine 
which points had the largest and smallest errors in neutron counts (Fig. 6c). The largest differences were 
found in Points P00, P05, P19, and P03. Points P00, P05, and P19 are again the 3 closest points to the 
large snow drift in the western portion of the study area. P03 (top row, center in Fig. 3b) is also located 
near snow drifts that formed due to topographical changes near train tracks that cross the CARC. The 445 
lowest errors were found in Points P17, P15, P24 and P06. The commonality between points P17, P15, 
P24, and P06 were likely relatively uniform snow cover surrounding the virtual CRNS for most of the 
dates. P17 and P24 were in the same field directly to the left of P00, which had relatively uniform snow 
trapped from the field around most of the dates during winter 2020-2021. P00, P05, P19, and P03 had 
much more variable snow cover surrounding the virtual CRNS, with the large snow drift on one side 450 
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and bare ground on the other for most dates in winter 2020-2021.

 
Figure 6: Scatterplot comparing a) neutron counts and b) SWE for the heterogenous snow runs (x-axis) against uniform snow runs 
(y-axis) that use the average SWE of the 171 m radius footprint surrounding the virtual. c) Boxplots showing the difference 
between the heterogenous and uniform snow runs for each virtual CRNS location (show in Figure 3b), where each box contains the 455 
eight URANOS simulations corresponding to the UAV lidar flights at the CARC. 

Figure 6 also demonstrates the need to accurately measure and map where the snow is distributed, 
especially for a shallow heterogeneous snowpack. One might assume that neutron counts between these 
two runs should be comparable because both have the same total snow water volume within the 
operation footprint of the CRNS. However, the distribution of that snow water is different between the 460 
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two runs. Differences will account for the various patches of bare ground or snow drifts that formed 
around the CARC due to snow redistribution among fallow fields, crop stubble, and shelter belts. Figure 
6c suggests that snow drifts closer to the CRNS bias neutron counts the most, leading to the largest 
differences in neutron counts compared to a uniform snow scenario.  

Correlation analysis (not shown) also suggests that snow drifts are the biggest contributors to 465 
neutron count variability at our study site. For all points and dates, differences in neutron counts 
between the heterogeneous and uniform snow runs (hereafter DNCf) were positively correlated with 
statistical significance (r = 0.451) with the percentage of bare ground within the operation footprint of 
the CRNS. The percentage of bare ground in the operation footprint was calculated by cropping the 
UAV lidar snow depth to a circular area within 171 m from the virtual CRNS location and finding the 470 
percentage of bare ground within the masked area. DNCf closer to 0 were found when the percent of 
bare ground in the CRNS footprint was closer to 100%, suggesting that bare ground did not lead to 
reduced neutron counts. In heterogeneous snow environments like the CARC, it suggests that the tall 
snow drifts, especially within proximity of the CRNS, are creating the biggest changes in neutron 
counts. Statistically significant negative correlations were found when comparing variability of snow 475 
depths – namely the standard deviation and the range (difference in max. and min. snow depths) - 
within the CRNS footprint and DNCf (-0.66 with standard deviations and -0.566 with range). Taking the 
same correlations after grouping our measurements by points, we still observe statistically significant 
negative correlations for the median standard deviations and median range of footprint snow depths 
with respect to the median DNCf (-0.643 and -0.582 respectively). The median bare ground percent 480 
within the CRNS footprint were neither correlated (0.107) nor statistically significant with DNCf. 
Interestingly, this suggests our actual CRNS location for winter 2020-2021 was somewhat biased, 
especially towards 17 and 18 February 2021. 

Figure 7 shows similar trends comparing the heterogeneous runs with the uniform runs using the 
average SWE of the entire 1 km2 CARC study domain (as opposed to the average SWE in the 171 m 485 
radius surrounding the virtual CRNS). The variability of the difference between the heterogenous and 
uniform snow runs increased for both neutron counts (Fig. 7a) and SWE (Fig. 7b) using the CARC 
average instead of the CRNS footprint average. Neutron counts were biased towards the heterogeneous 
runs with an MBPE of 1.9% and an RMSPE of 3.1% and SWE were biased towards the uniform runs 
with an MBPE of -22.9% and a RMSPE = 42.3%. This greater variability is expected due to the fact 490 
that more neutrons detected by the CRNS originate near the instrument as opposed to far away, so the 
SWE in the surrounding area has a greater influence on the neutron counts than in more distant areas. 
Most applications of CRNS will likely be to characterize the areal average SWE. Comparing the 
heterogeneous runs to the CARC average SWE runs allows us to evaluate which virtual CRNS locations 
were most reflective of the CARC average. The points that were most reflective of the CARC average 495 
were points p20, p07, p06, and p19. Interestingly, points p20, p07, and p19 are the three points clustered 
around the actual CRNS instrument at the CARC. P06 was not located near the original CRNS but had 
some snow cover through most of January and February. Points 13, 14, and 10 were also similarly 
clustered close together (NW quadrant) closer to the train track snow drifts. We theorize that at times 
these points sampled too many snow drifts or too little snow during the winter.  500 
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Figure 7: Same is Fig. 6 but for uniform snow created from the 1 km2 CARC average. 

4.2 CRNS Spatial Representativeness 

In this work, we executed 624 separate URANOS neutron transport simulations for the CARC study 
area in order to understand the influence of spatial variability on CRNS observations. To supplement 505 
these findings, we conducted a secondary analysis to evaluate the spatial representativeness of CRNS 
SWE at our prairie site compared to the observations that might have been collected from a more 
traditional snow scale SWE instrument. In most cases, CRNS or other SWE instruments would be 
deployed in hopes of capturing the average snow conditions representative of a large area. In order to do 
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this, we averaged the lidar-derived SWE DSMs for each of the eight UAV flights to 1 m2 spatial 510 
resolution. We calculated the kernel density of all of these 1 m2 SWE pixels to understand the full 
distribution of SWE across the study site, where each pixel represents a possible SWE measurement 
that could have been collected by a naively located snow scale or snow pillow (of measurement area 
equal to 1 m2). Then, we applied the CRNS spatial weighting function from Woodley et al. (2024) to 
each of these pixel locations (actually, every 4th pixel to increase computational efficiency), using a 515 
wraparound boundary to remove edge effects from pixels close to the boundary of the study site. This 
allowed us to retrieve a distribution of synthetic CRNS SWE estimates across the entire CARC.  

We acknowledge that this analysis is naive in that it assumes that the CRNS spatial weighting 
function would be constant across the entire study site. In reality, the spatial sensitivity of CRNS can 
change with snow spatial distribution and magnitude, and soil moisture distribution and magnitude, 520 
among other factors. The wraparound boundary also means that none of the CRNS SWE estimates from 
this analysis, especially those near the boundaries of the study area, are truly reflective of the "true” 
SWE that would be observed by CRNS at the same location within the site. 

However, it does mean that each CRNS SWE estimate is derived from the same lidar-derived 
SWE data, which reflects a spatial snow distribution representative of a prairie site. Lastly, this analysis 525 
assumes that a snow scale or snow pillow would exactly measure the SWE in each given location. 
However, this is unlikely to be true given that snow will likely accumulate differently on a smooth 
artificial surface versus the natural ground surface, especially in the windy, shallow snow conditions 
typical of the prairie. In summary, this analysis is not as rigorous in reproducing CRNS behavior as the 
URANOS simulations presented above. Still, it does provide a first-order estimate of the spatial 530 
representativeness of CRNS SWE estimates at a prairie site versus more conventional, smaller-footprint 
SWE instruments. 

Figure 78a shows the kernel density distribution of synthetic SWE estimates from the CRNS 
locations across the entire CARC (blue), compared to the distribution of “Snow Scale” 1 m2 lidar-
derived SWE pixels from the entire CARC (red) for an example date of 29 January 2021. This date was 535 
more than one week after the most recent snow event, allowing for wind redistribution, sublimation, and 
potentially melting of the snow during the intervening period. The spatial average mean lidar-derived 
SWE for the entire CARC is shown in the vertical, black dashed line. A similar plot is shown in Fig. 
78b for 17 February 2021, soon after a large snow event (and the most pronounced snowpack of the 
season). In both cases, the CRNS SWE distribution is shifted closer to the CARC average, compared to 540 
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the 1 m2 “Snow Scale” SWE distribution. 
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Figure 4 Simulation of the spatial representativeness of a synthetic aboveground CRNS at the CARC versus a synthetic snow scale 545 
or pillow of area 1m2. (a) and (b) Probability density functions of the SWE observed by synthetic CRNS (blue) versus a synthetic 
snow scale or pillow of pixel size 1m by 1m (red) for 29 January and 17 February 2021, respectively. The vertical dashed line 
shows the mean SWE of the entire study 1 km2 area. It is evident on both dates that the probability density of CRNS SWE 
estimates is shifted closer to the areal mean. (c) and (e) show the areas where the CRNS and 1m pixels“Snow Scale” are within +/- 
25 % of the mean SWE of the entire study area (red pixels), respectively, for 29 January 2021. The red pixels are locations that are 550 
within +/- 25 % of the areal mean SWE, while tThe underlying blue color map shows the SWE magnitudeestimate from the given 
synthetic SWE measurement method, as calculated from the lidar-derived SWE DSM.  This results in different color scale limits 
for the CRNS (c) than for the synthetic snow scale (e) because the CRNS measures SWE over a larger spatial footprint, which 
effectively smooths out the SWE distribution. . (d) and (f) show the same information for 17 February 2021. Generally, the CRNS 
is representative of a larger proportion of the study area and the representative areas are more contiguous, compared to the 1m 555 
resolution synthetic snow scale or pillow. The color scales for SWE for panels (c) and (d) are different for the scales for (e) and (f) 
due to the larger footprint size of the CRNS. 
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Figure 8: Simulation of the spatial representativeness of a synthetic aboveground CRNS at the CARC versus a synthetic snow 
scale or pillow of area 1m2. a) and b) Probability density functions of the SWE observed by CRNS (blue) versus a synthetic snow 
scale or pillow of pixel size 1m by 1m (red) for 29 January and 17 February, 2021, respectively. The vertical dashed line shows the 560 
mean SWE of the entire study 1 km2 area.  It is evident on both dates that the probability density of CRNS SWE estimates is 
shifted closer to the areal mean. c) and e) show the areas where the CRNS and 1m pixels are within +/- 25% of the mean SWE of 
the entire study area, respectively, for 29 January, 2021.  The red pixels are locations that are within +/- 25% of the areal mean 
SWE, while the underlying blue color map shows the SWE magnitude. d) and f) show the same information for 17 February, 2021.  
Generally, the CRNS is representative of a larger proportion of the study area and the representative areas are more contiguous, 565 
compared to the 1m resolution synthetic snow scale or pillow.  

 
For 29 January, the CARC average SWE was 0.4 cm. 23 % of the CRNS locations were within 

+/- 25 % of the CARC average, while only 5% of the 1 m2 pixels were within that same range. For 
February 17, the CARC average SWE was 1.1 cm, and 50 % of the CRNS locations and 20 % of the 570 
1m2 pixels were within +/- 25 % of the CARC average, respectively. Across all dates (excluding 
January 15, 2021, which had very spatially limited snow cover), this analysis indicated that the 
percentage of the CARC study area for which a CRNS would return a SWE estimate within +/- 25 % of 
the CARC average ranged from 21%-50 %, while the 1 m2 pixels ranged from 5%-20 % of the CARC. 
In summary, our first-order analysis indicated that a naively sited CRNS was 2.3 to 5 times more likely 575 
to return a SWE estimate within +/- 25 % of the large-scale spatial average than a similarly sited SWE 
sensor with a footprint of 1 m2.  
 

These results are shown spatially in Figs. 78 c&e, where Fig. 78c shows the map of synthetic 
CRNS SWE estimates, and Fig. 78e shows the lidar-derived SWE at 1 m2 resolution for the example 580 
date of 29 January 2021. In both maps, locations that returned a SWE value within +/- 25 % of the 
CARC average are shown in red. The representative areas for CRNS are more extensive and spatially 
contiguous, while the representative 1 m2 “Snow Scale” pixels are fewer and less spatially contiguous. 
The same maps are shown for 17 February 2021 in Figs. 78 d&f. In this case, a larger proportion of the 
CARC is representative of the large-scale CARC average in both maps, and the CRNS similarly shows 585 
more extensive and more contiguous representative areas. These results indicate that CRNS provides 
value for large-scale SWE estimates in the prairies, beyond those available from more conventional, 
smaller-footprint sensors. It appears that the optimal locations to site CRNS in prairie snow distributions 
like the CARC are in locations of low snow accumulation near areas of high snow accumulations (e.g. 
snow drifts). This makes sense, as most of the CARC area exhibits low snow accumulation, while only 590 
a small portion experiences higher snow accumulation, and CRNS are most sensitive to the area 
immediately surrounding the instrument. Through a combination of design and happenstance, our actual 
CRNS at the CARC (point P00 on Fig. 3) is located within a representative region for all lidar dates 
(with the exception of 15 January 2021, which had very spatially limited snow cover). 

4.333 Comparison against Gridded SWE Estimates 595 

To show the value of accurate CRNS measurements to future remote sensing missions, we compared 
our how CRNS measurementsSWE estimates compare to and currently available gridded snow products 
to the areal mean lidar-derived SWE and snow depth for the entire 1 km2 study area. Figure 89 shows 
comparisons of SWE (Fig. 89a) and snow depth (Fig. 89b) products at similar magnitudes of scale (see 
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Sect. 3.3 for details). We also plotted our CRNS SWE time series at the CARC from Woodley et al., 600 
(2024) (see Fig. 5a in Woodley et al., (2024)). In January and March 2021, all gridded SWE products 
had no SWE. This contrasts with the average CARC SWE from the UAV lidar DSMs (red squares on 
Fig. 89a) and CRNS URANOS simulations (grey boxplots on Fig. 89a), and our CRNS SWE times 
series (green line, Fig. 89a), where which all indicate that snow cover is still present on the ground. In 
February, the UCLA-reA Snow Reanalysis and SNODAS predicted more peak SWE on the 17th and 605 
18th ofFebruary 2021 compared to our average CARC SWE, with SNODAS almost double our CARC 
SWE estimates. The UA SWE produced quite similar estimates to our CARC SWE in mid-February, 
before predicting more SWE in late-February and underpredicting SWE starting in March. 
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 610 
Figure 895: Comparisons of (a) SWE estimates and (b) snow depth estimates fromof a) gridded products SWE and in situ SWE 
estimates and productsmeasurements betweenfor 9 January to 10 March 2021 and (b) snow depth products expressed as the day 
of water year (DOWY; days after 1 October 2020). In (a),A time series of the UCLA Snow Reanalysis (blue line), UA SWE (orange 
line), daily mean CRNS SWE (green line) from Woodley et al., (2024; blue line from Fig. 5a) are shown. We plotted the daily 
average CRNS SWE (blue line from Fig. 5a in Woodley et al., (2024)). Only the UCLA Snow Reanalysis and UA datasets are 615 
shown for snow depths. Daily SNODAS SWE and snow depth estimates for each of the dates corresponding to a lidar flight are 
shown as blue triangles, and an averaged CARC SWE and snow depth for each digital snow model (DSM) for the 1 km2 study 
region are plotted as red squares. URANOS mModelled SWE estimates from this study for each date are plotted as grey boxplots 
to illustrate the variability of SWE within our study region. Snow depth from the same sources are shown in (b), except for CRNS 
and URANOS, which do not estimate snow depthOnly the UCLA Snow Reanalysis and UA datasets are shown for snow depths.. 620 

The differences in SWE products are likely due to aggregation with different resolution and 
meteorological forcings. The sSub-grid variability is shown to be very important in estimating the SWE 
in a prairie environment, where the average SWE is eithercan be either grossly under or overpredicted. 
Past studies have indicated that SNODAS is unsuccessful at capturing the snow spatial variability in 
regions with persistent winds like the prairies (Lv et al., 2019). We also verified thatOur results indicate 625 
that similar issues can occur with snow depths. Figure 89b plots a similar graph, except showing the 
changes in snow depths for the parts of January to March 2021. Snow depths shows a similar pattern, 
where all gridded products there are no snow depths are 0lack snow in the gridded datasets in January 
2021 and March 2021, and snow depths are detected for February 2021. SNODAS underestimates 
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overestimates the snow depths compared to our average CARC snow depths on 17 and 18 February 630 
2021, while underestimating snow depths for all other datesSWE, despite having similar spatial 
resolution (1 km for SNODAS and a 1 km aggregate for lidar CARC SWE). 

While Fig. 89a shows that SWE estimates from the UA 4km data are more reliable in February 
2021, Fig. 89b  shows snow depth estimates from that the accuracy of both the UA and UCLA-re snow 
depth estimates produces differing resultsvary depending on the winter monthssuggests the UCLA-re 635 
snow depths are more reliable estimates compared to the average CARC snow depths. The UA 4km 
snow depths underestimates snow depths for mid-February 2021, while the UCLA-re overestimates 
snow depths. However, by the end of February 2021, this relationship is flipped with the UCLA-re 
predicting similar snow depths to our lidar DSM average and the UA 4km overpredicting snow depths. 
This suggests snow density estimates in the UCLA-re are overpredicted. No gridded product produced 640 
non-zero snow depths or SWE in January 2021, despite snow being present as shown by our lidar and 
CRNS measurements. The timing of precipitation snow accumulation from all three models also does 
not seem to line up with some of our in-situ measurements. UCLA-re shows a brief 
precipitatioaccumulationn event between the 15 January 2021 UAV flight and the 21 January 2021 
UAV flight, and coincident with a known snowfall event between 18-19 January 2021 (see Supporting 645 
Information for Woodley et al., (2024)). However, snow disappears quickly after the snowfall event. 
Lower estimates of mean SWE and SD are expected for larger spatial resolutions due to increased 
aggregation (Blöschl, 1999). 

Our analysis shows that CRNS has utility for improving SWE estimates in prairie environments, 
and other environments with shallow, heterogeneous snowpacks. CRNS measurements have already 650 
shown this utility in mountain regions. Integration of CRNS SWE into models, alongside remote 
sensing data, has reduced error spread in the Austrian Alps (Schattan et al., 2020). CRNS has the 
potential to increase the coverage of SWE monitoring sites, where currently used technologies within 
snow monitoring networks like SNOTEL may not be optimal, such as in the northern Great Plains. 
Previous research has shown that large errors in SWE were due to subpixel SWE variability of the 655 
Northern Great Plains (Tuttle et al., 2018). However, we hope that future planned satellite missions such 
as NISAR, armed with similar instrumentation used in the CARC during SnowEx 2021 (Palomaki and 
Sproles, 2023) can improve efforts to monitor snow in this relatively under-instrumented region. 

4.44 Assumptions and Limitations of this Study 

For this analysis, we made several key assumptions and simplifications from actual field conditions 660 
during winter 2020/2021. One key simplification has to do withconcerned soil moisture. As mentioned 
in Sect. 3.2, we kept soil moisture spatially uniform and constant across all our model simulations due 
to a variety of logistical complications. In situ soil moisture measurements were made collected at the 
CARC after the winter season in May 2021, after the winter season due to delivery of the CRNS 
instrument after first snowfall (Woodley et al., 2024). These soil measurements were also only taken at 665 
a maximum of 200 m away from our CRNS instrument, while our URANOS simulations cover thean 
entire 1 km2 area. While soil moisture data was continuously monitored at nine locations throughout the 
winter of 2020/2021 using soil moisture probes, theseis data were not informative because the soil 
temperature dropped below 4 degrees ºC (at which point water's dielectric properties change) for the top 
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0.5 m of soil for nearly the entire winter because the ground froze to below 0.5 m depth (Woodley et al., 670 
2024). The heterogeneity of the underlying soil moisture will have a great effect on CRNS 
measurements and neutron counts, possibly even overcoming the contribution of the snowpack due to 
the shallow nature of the snowpacks in the prairie. SnowmMelt events throughout the winter maycould 
also impact CRNS measurements throughout the winter, which may also impact soil moisture 
depending on the coupled frozen ground dynamics. Our aim was to show how CRNS measurements 675 
were biased fromaffected by snowpack spatial distributions alone and what considerations needs to be 
taken before placingsiting a CRNS to obtain SWE. 
 Another important assumption was our initial conditions, namely our Nq, the calibration neutron 
count (see Eq. 1 and 3), which we took from 15 January 2021. Typically, a CRNS is calibrated by 
choosing a Nq value before the start of the winter season, when SWE = 0 (Desilets, 2017). Again, due to 680 
logistical constraints mentioned previously, we were not able to obtain a baseline neutron count during 
snow-free conditions. Between the time period when the CRNS was installed at the CARC on 22 
November 2021 and when we conducted our “snow-off” lidar flight on 15 January 2021, the CARC was 
never completely snow-free (Woodley et al., 2024). Our Nq value from 15 January may be lower than a 
calibration value chosen before the start of the winter season due to the proximity of the prominent 685 
north-south snow drift. A lower Nq would affect the SWE values that we have calculated in this study 
and our CRNS time series (green line in Fig. 8). However, with less than 2 % of the CARC covered in 
snow on 15 January 2021 and only 0.2 % of it covered in deep snow (see Table 1), we do not expect our 
measurements to be extremelythe choice of Nq to be a large source of bias in our CRNS SWE 
estimatesed. Modeled SWE calculated using a completely snow-free baseline (grey boxes Fig 8a) and 690 
the January 15th baseline (Fig. 4b) differed on average by 0.05 cm. 

5 Conclusions 

A neutron transport modelling study at an agricultural site in the Northern Great Plains of Montana has 
shown that the spatial variability of shallow and heterogeneous snowpack affects CRNS measurements. 
Our URANOS simulations with heterogeneous snowpack tended to have increased neutron counts 695 
compared to simulations with a uniform snowpack with similar snow water volume. We partly attribute 
these increases in neutron counts to bare ground patches around the CRNS with the heterogeneous 
snowpack, similar to previous studiesWhile bare ground effects have been shown in other studies, the 
amount of snow heterogeneity in semi-arid prairie environments suggests that the location and 
magnitude of snow drifts have a larger effect on neutron counts such as Schattan et al., (2019). 700 
However, we acknowledge that the spatial sensitivity of the sensor may play a large role in these 
differences as well, since our virtual CRNS locations were placed in areas of lower snow accumulation.  
Comparisons with gridded SWE products show thats CRNS has the potential to improve SWE estimates 
in prairie snow, when compared to lidar-derived SWE from the siteHow snow is distributed. The snow 
distribution should be considered when siting aboveground CRNS instruments in areas of high snow 705 
spatial heterogeneity, even for very shallow snowpack like that at the CARC, if the goal is for the 
instrument to be representative of the large-scale spatial average. Our analysis suggests that CRNS 
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instrumentsIn prairie sites characterized by wind scoured fields and spatially limited snow drifts, CRNS 
instruments should be placed in areas of low snow accumulation that are nearby higher snow 
accumulation areas. However, a naively sited CRNS instrument (i.e., with no knowledge of the snow 710 
distribution) is still 2 to 5 times more likely to be representative of the large-scale average SWE than a 
more conventional, smaller footprint SWE sensor such as a snow scale or snow pillow. Comparisons 
with gridded SWE products show that CRNS has the potential to improve SWE estimates in prairie 
snow, when compared to lidar-derived SWE from the site. Our study focuses solely on the effect of 
snow distribution on CRNS, but spatial variability of soil moisture is also important to consider, 715 
especially in shallow snowpack areas such as the prairie, where the effect of soil moisture distribution 
on CRNS measurements may be of comparable magnitude to that of snow distribution. This highlights 
the need for further research in semi-arid prairie environments like the Nnorthern Great Plains, where 
water use efficiency and snow capture are of great agricultural interest, and more rigorous studies of 
CRNS applications in shallow, heterogeneous snowpacks.. 720 

Code and Data Availability 

Code and data used in this analysis will be made available through GitHub at 
https://github.com/heyjoekim/carc_crns_spatial  and archived on Zenodo at 
https://doi.org/10.5281/zenodo.14592408. Snow pit data from the CARC areis available to download 
from the NSIDC DAAC (https://doi.org/10.5067/QIANJYJGRWOV).  725 
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