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Abstract. Icing on transmission lines can significantly impact the stable operation of the power system. Deep10
learning-based ice image recognition is effective but remains vulnerable to background interference and noise,11
degrading accuracy. Moreover, when detecting ice thickness, the 2D nature of ice images introduces spatial12
limitations in representing the 3D ice state, which can lead to detection errors caused by a single viewpoint. To13
tackle the aforementioned challenges, this paper proposes DTL-IceNet (Dual-Task Learning Ice Detection Network),14
a transmission line icing detection network based on a dual-task learning framework, designed to accurately identify15
both the type and thickness of ice on overhead transmission lines. DTL-IceNet incorporates a multi-branch16
structured ice coating recognition module, ResSepNet (Residual & Depth-Separable Convolution Network), which17
segments the background and conductor areas to mitigate the influence of background noise. Additionally, a18
semantic segmentation module, MOMSA-SegNet (MobileOne & Multi-Scale Attention Segmentation Network) is19
designed to segment the ice-covered areas in both the main and side views of the image. The multi-scale attention20
mechanism is employed to extract spatial features from the raw icing image. When calculating ice thickness, the21
multi-scale fusion and correction optimization are adopted to enhance the algorithm. Experimental results show that22
compared with other models, the proposed method achieves an improvement of 4.17 % in icing type identification23
accuracy and a MAPE of 11.82 % in icing thickness detection. The application of this approach is crucial for24
reducing the hazards caused by ice coating on transmission lines and improving the stability of the power grid.25

1 Introduction26

Extreme weather can lead to ice accumulation on power lines, significantly increasing the risk of incidents such as27
conductor breakage or tower collapse, thereby threatening the stability of the power supply. Therefore, real-time28
monitoring of ice type, thickness, and other conditions on transmission lines is essential for ensuring the safe and29
stable operation of the power grid.30
Traditional ice detection methods primarily rely on physical sensors and manual inspections (Zhang et al., 2024).31

However, these methods often suffer from high costs, low real-time performance, and limited detection accuracy,32
making them insufficient for effective ice monitoring in complex environments. In recent years, with the rapid33
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advancement of deep learning and computer vision technologies, intelligent detection methods based on the YOLO34
model have increasingly become an effective approach. Chen et al. (2024) proposed a transmission line icing35
detection method based on YOLOv8. They utilized the ghost shuffle convolution to reduce model parameters and36
improve computational efficiency. Additionally, they incorporated the BiFormer attention mechanism and the Wise-37
IoUv3 loss function to enhance the model's accuracy in detecting ice-covered areas. Kong et al. (2024) integrated38
the GE attention module into YOLOv8 to enhance detection accuracy and replaced the concatenate structure in the39
original network with the BiFPN feature fusion module. This modification enables the detection of ice-covered areas40
on power transmission lines in complex backgrounds. Although the YOLO-based detection algorithm effectively41
locates ice-covered areas on transmission lines, it fails to detect and assess key information, such as ice contours and42
thickness. Building on this, Lu (2024) proposed the Canny-UNet model by enhancing YOLOv8 with EfficientViT43
(Liu et al., 2023), and integrating the Canny edge detection algorithm along with semantic segmentation technology,44
which further enabled accurate segmentation of ice contours. Similarly, He et al. (2023) applied the ProtoNet45
segmentation model to the detection results of the improved YOLOv5s, enabling the segmentation of ice-covered46
areas based on target detection. Similarly, He et al. (2023) utilized the GrabCut algorithm in conjunction with target47
detection to identify and segment transmission line insulators.48
Although the aforementioned methods employ edge detection and semantic segmentation techniques to segment49

and detect the contours of ice-covered regions, the calculation of ice thickness primarily depends on edge detection50
algorithms. Wang et al (2023) proposed an image denoising algorithm based on adaptive switching median filter.51
Building upon this, an optimized Canny operator was employed to detect the edges of the ice-covered conductor's52
contour. The computed ice thickness was then compared with the results obtained from optical fiber detection,53
yielding an average error of just 4.10 %. Yang et al. (2023) proposed an ice monitoring method integrating image54
edge detection and normal detection. The approach first preprocesses micro-photographed images of transmission55
lines, applies algorithms such as eight-neighborhood tracking to detect edges and determine the longest side of the56
conductor, and designs an ice thickness detection method based on edge normal detection. Experimental results57
indicate that the relative error of real-time conductor ice thickness measurements using this method does not exceed58
9 %. He et al. (2023) proposed a novel measurement method for thickness of uneven icing on transmission line in59
complex background. Their method involved image grizzling, median filter denoising, and maximum inter-class60
variance method to analyze the images. By integrating the result-domain characteristics of transmission line icing61
information and background noise, they extracted the re-icing transmission line. Finally, the vertical line62
approximation method was applied to determine the re-icing thickness. Such methods leverage edge detection63
techniques to enhance the extraction of ice cover information and initially estimate the corresponding ice thickness.64
However, they exhibit limited robustness to environmental interferences such as lighting variations and haze and fail65
to account for the three-dimensional spatial distribution of the conductors. Consequently, when encountering66
irregular ice formations, these methods may yield larger errors.67
Accurately identifying the type of ice on transmission lines is crucial for improving ice detection capabilities. In68

the field of ice classification, some researchers analyze monitoring data to distinguish different ice types. Fan et al.69
(2018) analyzed the collision rate of water droplets on conductors with varying diameters and employed the standard70
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ice thickness normalization method to quantify the extent of conductor icing. Hao et al. (2023) analyzed multi-71
source data and applied the KNN algorithm to classify four distinct types of ice cover. Chen et al. (2024) proposed a72
method to monitor the status of ice-covered transmission lines based on conductor end displacement, which can73
aptly capture the stress characteristics of transmission lines in frozen rain environments. Due to limitations in74
monitoring data and conditions, these methods face significant constraints. In recent years, visual image-based75
recognition technology has advanced rapidly. Most research on ice recognition has focused on sea ice, river ice, and76
road ice (Liu et al., 2025; Ansair et al., 2024; Gui et al.,2023), achieving excellent detection performance. However,77
studies on ice type recognition for transmission lines remain scarce. This is partly due to the challenges associated78
with capturing ice images of transmission lines and partly due to the interference caused by complex background79
noise in such images, which must be accounted for in recognition processes.80
Beyond ice physical parameters and imagery, the accuracy of transmission line ice detection can be further81

enhanced by incorporating environmental data. Numerous studies have demonstrated that meteorological factors,82
such as wind and humidity, are closely correlated with conductor icing (Dong et al., 2022; Meng et al., 2025; Han et83
al., 2024), offering valuable insights for ice thickness detection. Therefore, to address the challenges of low accuracy84
in ice type recognition and thickness detection for transmission lines, this paper proposes DTL-IceNet (Dual-Task85
Learning Ice Detection Network), a dual-task learning framework designed to enhance the performance of both ice86
coating recognition and thickness detection. DTL-IceNet employs a multi-branch ice coating recognition module to87
separately extract spatial feature information of both the background and ice-covered regions, thereby determining88
the ice type. Simultaneously, a multi-scale attention-based semantic segmentation module is utilized to segment the89
ice-covered areas. Finally, the model integrates ice type recognition, ice segmentation results, and key90
meteorological factors to optimize ice thickness estimation, yielding more accurate identification of ice types and91
thickness on transmission lines. The main contributions of this paper are as follows:92
(1) To address the issue of low ice thickness detection accuracy caused by the irregular shape of ice on93

transmission lines and complex environmental conditions, this paper proposes a dual-task learning framework, DTL-94
IceNet. The framework enhances ice thickness detection performance by leveraging ice type classification and key95
meteorological elements to assist ice segmentation. The proposed framework incorporates an ice coating recognition96
module, ResSepNet (Residual & Depth-Separable Convolution Network), an icing region segmentation module,97
MOMSA-SegNet (MobileOne & Multi-Scale Attention Network), and an ice thickness optimized calculation98
module. By integrating ice segmentation results with ice types and key meteorological factors through multi-scale99
fusion, the framework refines ice thickness estimation. Through the fusion of multi-source heterogeneous data and100
the multi-scale fusion of image classification and segmentation techniques, the reliance on a single ice contour for101
thickness estimation is eliminated, significantly enhancing detection accuracy.102
(2) To address the challenge of incomplete information extraction and utilization in transmission line ice images103

due to background noise interference, such as fog and light noise, a ResSepNet ice coating recognition module is104
developed. This module integrates a nested residual structure and depthwise separable convolution to segment the105
ice image into an upper background area and a lower conductor area. Additionally, three branches are designed to106
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extract features from the entire image, background, and conductors separately, effectively mitigating the impact of107
background noise.108
(3) Considering the limitations of two-dimensional ice images in representing the spatial distribution of three-109

dimensional ice, which may lead to detection errors, this study designs the MOMSA-SegNet icing region110
segmentation module. The module incorporates an improved MobileOne encoder and a multi-scale attention111
mechanism to segment the ice region from both the main and side perspectives of the image, thereby enhancing the112
information capture capability of a single perspective. Additionally, a skip connection structure and multi-scale113
attention mechanism are employed to comprehensively extract spatial features from the raw icing image, further114
improving segmentation accuracy.115

2 Method116

The detection of ice in transmission line images primarily involves two tasks: ice type recognition and ice thickness117
detection. This paper presents DTL-IceNet, a dual-task learning framework for ice detection, designed to achieve ice118
type recognition and ice thickness detectio for transmission lines. Through the meticulous design of various modules,119
the proposed framework effectively addresses the limitations in the accuracy of ice type recognition and thickness120
detection. The overall framework structure of DTL-IceNet is illustrated in Fig. 1.121

122
Figure 1. DTL-IceNet overall framework structure.123

Note. For details on the ice coating recognition module, please refer to Section 2.2; for details on the icing region segmentation124
module, please refer to Section 2.3; for details on the equivalent thickness optimized calculation module, please refer to Section125
2.4.126

127
DTL-IceNet primarily consists of three components: the ice coating recognition module (ResSepNet), the icing128
region segmentation module (MOMSA-SegNet), and the ice thickness optimized calculation module. In the129
ResSepNet module, the raw icing image undergoes preprocessing to generate the background subgraph and the iced130
line subgraph. Along with the full ice-covered graph, three branches are employed to extract features from different131
spatial regions, which are then fused to determine the ice type. In the MOMSA-SegNet module, the raw icing image132
is processed through a multi-scale attention-based semantic segmentation network to segment the ice-covered region133
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from both the main view and the side view. In the ice thickness optimized calculation module, the ice coating134
recognition results and icing region segmentation results are integrated, and key meteorological data is introduced135
for correction and optimization to obtain equivalent ice cover thickness values, thereby realizing the ice type136
recognition and thickness detection tasks. The subsequent sections will provide a detailed description of the137
ResSepNet module, MOMSA-SegNet module, and the ice thickness optimized calculation module.138

2.1 ResSepNet139

The ice coating recognition module, ResSepNet, consists of a background branch, an icing branch, and a global140
branch. It is capable of recognizing four types of icing: ice-free, glaz, rime, and mixed rime. To mitigate background141
noise interference, the original image is divided into a background subgraph and an iced line subgraph. The142
background and ice-covered branches extract features from their respective regions, while the global branch utilizes143
a transfer learning model to capture the overall ice-covered features of the entire image. By employing a multi-144
branch structure, ice-covered features at different spatial scales are normalized, fused, and recognized to produce the145
final recognition result. The model structure of ResSepNet is shown in Fig.2, which mainly includes an ice146
segmentation preprocessing module and a feature extraction and recognition module.147

148
Figure 2.Model structure of ResSepNet.149

2.1.1 RDS Convolutional Block150

To enhance the feature extraction performance of the model in complex icing scenarios, this paper incorporates151
multiple RDS convolution blocks into ResSepNet, utilizing a nested residual structure and depthwise separable152
convolution. These blocks serve as the core feature extraction modules in both the background and icing branches.153
The structure of the RDS convolution block is illustrated in Fig. 3. The convolution block in the background branch154
is referred to as B-RDS, while the one in the icing branch is denoted as I-RDS. Both branches adopt similar network155
architectures (as show in Fig. 2). Figure 3 presents the structure of a single RDS convolution block.156
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157
Figure 3. A single RDS convolution block.158

159
The nested residual structure in the RDS convolutional block incorporates skip connections, enabling gradients to160
propagate directly from shallow layers to deeper layers. This effectively mitigates the gradient vanishing problem161
while preventing network overfitting and degradation. By employing multiple nested residual blocks, the model162
captures complex features at deeper levels while preserving shallow features, thereby enhancing its capability to163
extract intricate features in real-world ice-covered scenarios. On the other hand, the RDS convolution block164
incorporates depthwise separable convolution, a decomposition method that effectively reduces the number of165
parameters in convolution operations. This significantly enhances the computational efficiency of the network,166
resulting in a more compact and responsive model. Its flexibility allows deployment in resource-constrained167
environments, facilitating distributed processing and real-time computation, making it particularly suitable for168
transmission line ice detection tasks.169

2.1.2 Multi-Branch Feature Extraction and Fusion Recognition Module170

To mitigate the interference of background noise in ice-covered images, ResSepNet employs a three-branch171
structure comprising a background branch, a global branch, and an icing branch. By extracting local and global172
features at multiple scales, it effectively reduces the impact of background noise on recognition performance. The173
raw icing image undergoes preprocessing to generate a background subgraph in the upper region and an iced line174
subgraph in the lower region. The background subgraph is fed into the background branch to focus on extracting175
feature information from the background environment. The iced line subgraph is directed to the icing branch to176
emphasize the extraction of ice feature information in the transmission line area. Meanwhile, the complete image is177
directly input into the global branch to capture overall ice feature information. The global branch feature extraction178
network utilizes EfficientNet-B3 (Tan & Le, 2019) with a migration structure. EfficientNet-B3 achieves a balance179
between model size and feature extraction capability, ensuring effective feature extraction without excessive180
computational resource consumption. To adapt to the transmission line icing scenario, the ResSepNet global branch181
enhances EfficientNet-B3 by incorporating an adaptive output layer. This layer primarily consists of a global182
average pooling (GAP) layer, a squeeze-and-excitation (SE) module (Hu et al., 2018), a 1×1 convolutional layer, a183
LeakyReLU activation function, and a fully connected (FC) output layer.184
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After extracting features from the background branch, icing branch, and global branch, ResSepNet normalizes and185
sums the ice-covered features output by the three branches to mitigate amplitude differences among features from186
different branches. This process is mathematically represented by (1):187

|||||||||||| main

main

ice

ice

bg

bg
mixed f

f
f
f

f
f

f  (1)188

where |||| f denotes the L2 norm of the feature vector, and bgf , icef , and mainf represent the output features of189

the background branch, icing branch, and global branch, respectively. mixedf represents the final multi-branch190

fusion output feature, which serves as the icing type recognition result of the transmission line, including ice-free,191
glaze, rime, and mixed rime.192

2.2 MOMSA-SegNet193

The icing region segmentation module, MOMSA-SegNet, employs the improved MobileOne (Vasu et al., 2023)194
model as its encoder and incorporates a multi-scale skip connection structure in the decoder. This design forms a195
semantic segmentation network with a large encoder-small decoder architecture, enabling precise segmentation of196
the ice-covered regions on transmission lines. The module structure is illustrated in Fig. 4.197

198
Figure 4.MOMSA-SegNet module structure.199

200
To address the issue of information loss resulting from a single perspective, which can reduce ice thickness201
detection accuracy, MOMSA-SegNet segments the transmission lines from both the main and side perspectives in202
the raw icing image. This segmentation leverages the multi-split transmission line structure to capture ice203
information more comprehensively. The definitions of the main perspective line and side perspective line in the raw204
icing image are illustrated in Fig. 5.205
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206
Figure 5. Schematic diagram of transmission line from different perspectives.207

2.2.1 Improved MobileOne Encoder208

MobileOne employs a re-parameterized convolutional structure, enabling the transformation of complex branched209
architectures into a single, efficient convolutional operation during the inference phase. This significantly reduces210
computational overhead and inference latency. Furthermore, MobileOne is designed with hardware adaptability in211
mind, ensuring efficient execution on low-power devices. This feature is particularly crucial for edge devices, such212
as pole tower ice monitoring systems, where model deployment is required. Moreover, the convolutional structure of213
the MobileOne model exhibits strong capability in capturing local details, making it well-suited for the fine214
segmentation of ice-covered regions. Given the complexity of ice-covered images of power transmission lines—215
caused by factors such as lighting variations, haze, and background clutter—this study enhances the original216
MobileOne by enlarging the dilation rate in its feature encoding module to expand the receptive field (see the left217
side of Fig. 4). Additionally, multi-scale features are extracted from multiple intermediate layers. By integrating a218
multi-head attention mechanism, a multi-scale skip connection structure is designed to provide the decoder with219
contextual spatial features at different scales, thereby enhancing segmentation accuracy in complex ice-covered220
scenarios.221

2.2.2 Multi-scale Attention Decoder222

The multi-scale attention decoder primarily consists of multiple multi-head self-attention (MHSA) sub-modules,223
convolutional layers, and upsampling layers. It extracts feature maps from various intermediate layers of the224
improved MobileOne encoder, as illustrated in Fig. 4. Each feature map is first processed by an MHSA sub-module,225
after which the self-attention output features are concatenated with the corresponding decoder layer at the same226
feature scale, thereby forming the multi-scale attention decoder structure. The architecture of the MHSA sub-module227
is depicted in Fig. 6.228
The detailed feature processing procedure of the MHSA sub-module can be expressed by equation (2):229

)))max((( 1
ok

ii
k

T
ii WV

d
KQsoftConcatConvXoutput  (2)230

where output represents the output feature, while X denotes the input feature, which undergoes a linear231

transformation to obtain the query (Q), key (K), and value (V) matrices. Q, K, and V are divided into h heads, with232
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each head having its own transformation parameters iQ , iK , iV . The attention weight matrix is computed using233

function maxsoft , where
kd

1
serves as a scaling factor to prevent gradient vanishing. The attention weight234

matrix is then multiplied by iV to obtain the output for each head, denoted as i
k

T
ii V

d
KQsoft )max( . Subsequently,235

the attention outputs of all heads are concatenated using function Concat , followed by a linear transformation236
oW that remaps the transformed features back to the original feature space. To further enhance local feature237

extraction, MHSA applies an additional convolutional layer (Conv) after the linear transformation, reinforcing the238
model’s capability to extract fine-grained local features.239

240
Figure 6.MHSA submodule.241

242
The multi-scale attention decoder integrates the features from each MHSA output with the original input X243
through multiple residual structures. This approach preserves the original input information, enhances the model’s244
capability to extract contextual features, and improves its overall stability.245

2.3 Ice Thickness Optimized Calculation Module246

The dual-task learning framework proposed in this paper simultaneously outputs both ice type and ice thickness. The247
output of the ice coating recognition module serves not only as a final result but also as a key input for ice thickness248
estimation. The ice thickness optimized calculation module first performs an initial ice thickness estimation based249
on the identified ice type and segmentation results. Subsequently, key meteorological data are incorporated to refine250
the calculation, yielding an optimized ice thickness. Given that actual ice accumulation on transmission lines is251
typically uneven and irregularly shaped, the equivalent ice cover thickness is adopted as the final representation in252
the calculation.253
In the preliminary estimation of ice thickness, it is essential to determine the major and minor axes of the ice-254
covered cross-section. First, the pixel area of the ice-covered region in both the main view and side view of the255
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original ice image is obtained based on the segmentation results from MOMSA-SegNet. Given the known wire256
diameter, the major and minor axes of the ice-covered cross-section can be estimated by comparing the pixel area of257
the bare wire in the same transmission line under an ice-free condition. The parameters of the ice-covered cross-258

section are illustrated in Fig. 7, where d represents the bare wire diameter, and a and b denote the major and259

minor axes of the ice-covered cross-section, respectively.260

261
Figure 7. Schematic diagram of ice cross-section parameters.262

263
Based on the icing type results from the ice coating recognition module, the corresponding icing density can be264
determined. Subsequently, the icing density is combined with the major and minor axes of the icing cross-section to265
perform an initial estimation of the equivalent ice cover thickness.266

2.3.1 Calculation of Equivalent Ice Cover Thickness267

According to the layout specifications of overhead transmission lines, the main view line and the side view line are268
positioned on the same horizontal plane. Therefore, the major and minor diameters can be determined by analyzing269
the icing conditions of both lines.270
The calculation of the major diameter a is given by (3):271

d
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(3)272

where ),( yxS denotes the pixel value at coordinate ),( yx in the segmentation result generated by MOMSA-273
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),( represents the total number of pixels in the segmented ice-covered area, while274
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1

),( denotes the total number of pixels in the bare wire area without ice. The minor axes b can275

be computed using the same approach.276

10

https://doi.org/10.5194/egusphere-2025-3097
Preprint. Discussion started: 13 November 2025
c© Author(s) 2025. CC BY 4.0 License.



24
)(

6.3

2
2 dddabT 

 (4)277

Based on the ice type identification result, the corresponding ice density  (Li et al.,2016) is determined.278

According to (4), the irregular ice cross-section can be approximated as a regular circular cross-section with an279

equivalent area, enabling the calculation of the equivalent ice thickness T .280

2.3.2 Optimization Calculation of Ice Thickness281

Due to factors such as the placement of the ice monitoring device, the shooting angle, and variations in ambient light282
intensity, ice thickness estimates derived solely from ice images often exhibit certain errors. To address this issue,283
this study incorporates meteorological data in addition to ice images, leveraging key surrounding meteorological284
factors to refine and optimize the initial ice thickness calculations. This approach ensures greater alignment with the285
actual freezing conditions and enhances the overall robustness of the algorithm.286
This study maps the latitude, longitude, and image capture time recorded by the ice monitoring device to the287

corresponding environmental meteorological data from ERA5. This mapping enables the extraction of key288

environmental factors, including temperature T (℃ ), relative humidity H (%), wind speed V (m s-1), and289

precipitation P (mm h-1) (Xu et al.,2023), for each ice image. To refine the ice thickness estimation, a key290
meteorological correction factor is constructed using the Gradient Boosting Decision Trees (GBDT) algorithm and291
parameterized as shown in (5):292

)]1()1()1()exp[(),,,( PVHTPVHTf   (5)293
where  ,  ,  and  are correction parameters. )( T indicates that an increase in temperature leads to a294

decrease in ice cover, )1( H indicates that ice coverage increases with increasing humidity, )1( V signifies295

that high wind speed may result in a decrease in ice cover, and )1( P ​ indicates that higher precipitation leads296

to greater ice thickness.297
The correction parameters in (5) are determined using the GBDT algorithm. The environmental meteorological298

factors are used as input features, with the optimized ice thickness value serving as the output target variable. The299

input feature set  PVHTW ,,, and the target variable set trueY are constructed. After normalizing the input300

feature set W , the GBDT regression model is built, and trueY is fitted. Assuming that the model's prediction value301

)(0 wF is the mean value of the target variable, the pseudo residual value during the m -th iterative optimization302

process of the regression model can be expressed by (6):303

Ni
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wFYLr
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m ,...,2,1,
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1
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)( 







 (6)304

where N denotes the total number of samples and L represents the MSE loss function.305
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The pseudo residual value )(i
mr is used as the target variable to fit the decision tree and obtain the regression tree306

)(wh . The model update is expressed as:307

)()()( 1 whwFwF mmm    (7)308

where  represents the learning rate, and )(wh denotes the output of the m -th regression tree. After training,309

the optimized prediction model is obtained, and each correction parameter can be determined using (8):310

P
wF

V
wF

H
wF

T
wF MMMM



















)(,)(,)(,)(  (8)311

where
w
wFM


 )(

represents the sensitivity of the model prediction to the key meteorological factors. The model312

hyperparameters are adjusted based on accuracy requirements, and the correction process is iteratively optimized to313
obtain the final key meteorological factor correction parameters. The optimized result for the equivalent ice314

thickness fT is given by (9):315

),,,( PVHTfTT f  (9)316

3 Experiments317

This paper constructs a dataset using raw icing images provided by the power grid and conducts performance318
validation experiments on ice coating recognition and ice thickness detection algorithms. The related work primarily319
involves constructing datasets for ice coating recognition and icing region segmentation, training and testing models320
based on these datasets, evaluating model performance, and conducting comparative analyses with existing methods.321
The experiments were conducted on a Windows 11 operating system equipped with an NVIDIA GeForce RTX 3090322
GPU and 24 GB of memory. The proposed model was developed and tested using the PyTorch framework, followed323
by related experiments.324

3.1 Experimental Plan and Evaluation Indicators325

To evaluate the effectiveness of the proposed method, experiments were conducted on ice coating recognition, ice326
region segmentation, and ice thickness detection. The experimental plan includes: 1) Ablation studies to assess the327
contribution of each branch in the ice coating recognition model, ResSepNet. 2) Performance comparison of328
ResSepNet with other mainstream classification models for ice type recognition. 3) Segmentation performance329
comparison between MOMSA-SegNet and other advanced segmentation models. 4) Transmission line icing state330
detection in real-world scenarios using the proposed DTL-IceNet model.331
To facilitate model training and testing for ice coating recognition and ice thickness detection, this paper utilizes332

ice monitoring images captured by ice-viewing devices deployed in the power grid. Corresponding datasets are333
constructed based on ice coating recognition and ice thickness detection tasks to meet the training, validation, and334
testing requirements of the proposed algorithm.335
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For the ice type recognition experiment, this paper primarily evaluates and compares model performance using336
classification accuracy, precision, recall, F1-score, and the confusion matrix. The calculation formulas for each337
metric are as follows:338

FNFPTNTP
TNTPAccuracy




 (10)339

FPTP
TPprecision


 (11)340

FNTP
TPrecall


 (12)341

recallprecision
recallprecisionScoreF





21 (13)342

where TP denotes the number of samples correctly classified as positive, TN denotes the number of samples343

correctly classified as negative, FP denotes the number of samples incorrectly classified as positive, and FN344

denotes the number of samples incorrectly classified as negative.345
For the icing region segmentation experiment, this paper primarily employs intersection over union (IoU), mean346

IoU (MIoU), and mean pixel accuracy (mPA) to assess and compare the segmentation performance of the model.347
The formulas for each metric are as follows:348
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||
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P
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1
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where A represents the predicted target area, B represents the actual target area, BA denotes the352

overlapping area between the two, BA denotes their total coverage area, iP represents the number of correctly353

classified pixels for category i , and iT represents the total number of actual pixels in category i .354

3.2 Dataset355

For the tasks of ice coating recognition and icing region segmentation, this paper constructs two datasets. The ice356
coating recognition task focuses on classifying different types of icing on transmission lines. Therefore, a diverse set357
of icing samples, including ice-free, glaz, rime , and mixed rime, is selected from a large collection of original358
transmission line icing images. During the data preprocessing stage, manual labeling is employed to classify each359
sample, ensuring label accuracy and consistency. Subsequently, data cleaning is performed to remove blurry,360
abnormally captured, or incomplete images, retaining only clear and representative ice-covered samples. Finally, an361
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ice coating recognition dataset, IceType, consisting of 20,684 images, was constructed and divided into a training set,362
test set, and validation set in a 6:2:2 ratio.363
The ice thickness detection task is primarily accomplished through semantic segmentation, focusing on pixel-364

level recognition of ice-covered and background areas in transmission line images. Based on the raw icing images,365
this study manually selects high-quality images with clearly distinguishable ice-covered regions. Subsequently, the366
ImageLabeler tool in Matlab is used to label the ice-covered areas pixel by pixel, ensuring that each pixel's category367
label accurately corresponds to either the ice-covered region or the background. Meanwhile, considering the fixed368
shooting angle characteristics of the ice-viewing device, the ice-covered images underwent appropriate369
preprocessing and cropping. To enhance data volume and enrich sample distribution, random flipping was applied.370
Ultimately, an ice-covered region segmentation dataset, IceSeg, containing 6,360 pixel-level annotations, was371
constructed and split into training, test, and validation sets in a 7:2:1 ratio.372

3.3 Ice Type Identification Experiment373

3.3.1 ResSepNet Branch Ablation Experiment374

To evaluate the performance of each branch in ResSepNet, this study conducts a controlled experiment comparing375
ResSepNet with its individual branches on the IceType dataset. The accuracy and loss variation curves of376
ResSepNet and its branches on the IceType validation set are illustrated in Fig. 8.377

378
Figure 8. (a) validation accuracy and (b) validation loss. Performance of each branch of ResSepNet.379

380
As shown in Fig. 8, the background branch alone yields suboptimal ice type recognition performance, achieving an381
accuracy of only 86.55 %. The ice branch improves recognition accuracy to 89.82 %; however, it remains382
insufficient due to the omission of environmental factors. ResSepNet, which integrates the background branch, icing383
branch, and global branch, comprehensively accounts for both environmental influences and transmission line icing384
characteristics, ultimately achieving a recognition accuracy of 95.23 %.385
To more clearly illustrate the performance contribution of each branch across different ice types, the confusion386

matrix for ice type recognition on the IceType test set is presented in Fig. 9. Based on the confusion matrix, it can be387
observed that the recognition accuracy of each branch and ResSepNet for mixed rime is lower compared to other ice388
types. This is attributed to the complex morphology of mixed rime. Nevertheless, ResSepNet still achieves a high389
recognition accuracy of 89.74 % for this type. This is because ResSepNet simultaneously extracts multi-scale390
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features from the background area, ice-covered area, and the entire image, enabling a more comprehensive capture391
of image information. The background branch demonstrates superior rime recognition compared to other branches392
due to the distinct color differentiation of this type. The icing branch excels in recognizing bare wire (ice-free) since393
the morphology of the wire in this category exhibits more significant differences. The global branch maintains a394
more balanced recognition across various types, as it does not specifically extract local area features. This also395
compensates for the limitations of the background branch and icing branch in recognizing mixed rime and other396
complex types. Overall, ResSepNet achieves outstanding performance in ice type recognition, attaining high397
accuracy, which confirms that the multi-branch design is well-structured and significantly enhances the recognition398
capability for ice-covered types.399

400
Figure 9. Confusion matrix of ice type recognition effect of each branch of ResSepNet.401

3.3.2 Comparative Experiments with ResSepNet402

To evaluate the ice coating recognition performance of ResSepNet, comparative experiments were conducted on the403
IceType dataset using mainstream models such as EfficientNet-V2 (Tan & Le, 2021), MobileNet-V3 (Howard et al.,404
2019), ResNeXt (Xie et al., 2017), and MobileOne (Vasu et al., 2023). The accuracy and loss curves for each model405
on the IceType validation set are presented in Fig. 10.406
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407
Figure 10. (a) validation accuracy and (b) validation loss. Performance comparison of various models.408

409
As shown in Fig. 10, the ResSepNet model proposed in this paper not only achieves the highest accuracy but also410
demonstrates superior convergence speed and stability. This performance can be attributed to the model's411
lightweight and multi-branch structure, which allows it to maintain a compact size while ensuring rapid convergence.412
Additionally, the multi-branch design enables more comprehensive capture of the ice coverage information, reduces413
the impact of background noise, and enhances the overall recognition accuracy. The following section presents a414
comparison of various evaluation metrics for each model on the IceType test set, as shown in Fig. 11.415

416
Figure 11. Comparison of evaluation indicators of various models.417

418
From the radar chart comparison results in Fig. 11, it is evident that the proposed ResSepNet outperforms other419
models in terms of accuracy, precision, recall, and F1-score. Compared with other methods, the proposed method420
achieves an average improvement of 4.17 % in accuracy, 4.79 % in weighted precision (W-Prec), 4.17 % in421
weighted recall (W-Recall), and 4.28 % in weighted F1-score (W-F1). Additionally, macro precision (M-Prec),422
macro recall (M-Recall), and macro F1-score (M-F1) exhibit average improvements of 4.55 %, 4 %, and 4.26 %,423
respectively. Combined with the results in Fig. 10, these findings demonstrate that ResSepNet consistently maintains424
superior performance in ice type recognition, both in terms of individual evaluation metrics and overall effectiveness.425
The specific values corresponding to Figs. 10 and 11 are presented in Table 1, where the bolded values indicate the426
best results.427
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Table 1.Performance comparison results of each model428
Modules Accuracy(%) W-Prec(%) W-Recall(%) W-F1 M-Prec(%) M-Recall(%) M-F1
EfficientNet-V2 86.87 87.65 86.87 86.57 84.71 84.41 82.57
MobileNet-V3 90.93 90.86 90.93 89.67 87.13 85.55 84.42
ResNeXt 93.02 93.83 93.02 92.80 90.10 90.69 90.05
MobileOne 93.41 94.26 93.41 93.21 91.21 90.71 89.27
ResSepNet(Ours) 95.23 96.44 95.23 94.84 92.84 91.84 90.84

3.4 Icing Region Segmentation Experiment429

3.4.1 Segmentation Effects in Different Scenarios430

Since the accuracy of ice thickness calculation is directly influenced by the segmentation results of the icing region,431
this study evaluates the performance of the proposed icing region area segmentation module under various432
environmental conditions. To this end, segmentation tests were conducted in representative scenarios, including433
sunny days, heavy fog, and nighttime. The results are presented in Fig. 12, where the red regions indicate the434
segmentation results for the main view line, while the yellow regions represent those for the side view line.435

436
Figure 12. Icing region segmentation results of MOMSA-SegNet in different scenarios.437

438
As illustrated in Fig. 12, the proposed icing region segmentation module, MOMSA-SegNet, effectively segments439
both the main view line and the side view line across different environmental conditions, including sunny days,440
foggy conditions, and nighttime. These results demonstrate that the proposed segmentation method can reliably meet441
the requirements for ice thickness calculation.442
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3.4.2 Comparison of Segmentation Performance of Different Models443

To further evaluate the segmentation performance of the proposed MOMSA-SegNet, classic models such as444
UNet++ (Zhou et al., 2018), SegNet (Badrinarayanan et al., 2017), and DySample (Lin et al., 2017) were trained on445
the IceSeg dataset and compared with MOMSA-SegNet on the test set. The evaluation primarily focused on key446
metrics, including the Intersection over Union (IoU) for the main view, side view, and background, as well as the447
mean IoU (MIoU) and mean Pixel Accuracy (mPA). The comparative results are presented in Table 2.448

Table 2. Comparison of segmentation performance of different models449
Modules main view IoU

(%)
Side view IoU
(%)

background IoU
(%)

MIoU mPA

UNet++ 86.12 70.97 98.73 85.27 64.85
SegNet 84.43 75.22 98.79 86.15 65.80
DySample 85.25 76.63 98.89 87.83 66.63
MOMSA-SegNet(Ours) 86.17 79.05 98.96 88.06 67.17

450
From Table 2, it can be observed that although the performance differences among the models are relatively small,451
MOMSA-SegNet achieves the highest scores across all evaluation metrics. Specifically, compared to other models,452
the proposed method improves the IoU of the main view and side view by 0.9 % and 4.78 %, respectively.453
Additionally, it enhances background IoU by 0.16 %, while MIoU and mPA increase by 1.64 % and 1.41 %,454
respectively. These results highlight the superior segmentation performance of MOMSA-SegNet across different455
scenarios. The comparative segmentation results of each model on the IceSeg test set are illustrated in Fig. 13.456

457
Figure 13. (a) first picture during the day, (b) second picture during the day, (c) first picture during the night and (d) second458
picture during the night. Comparison of segmentation effects of different models.459
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Figure 13 intuitively demonstrates that the segmentation performance of each model on the main view line exhibits460
minimal differences. However, under the influence of factors such as fog and ambient light, the segmentation results461
for the side view line vary significantly among models. Notably, the proposed MOMSA-SegNet achieves superior462
segmentation performance on the side view line and demonstrates the best overall performance. This can be463
attributed to its jump connection structure and multi-scale attention mechanism, which effectively capture the464
characteristics of different view lines and provide precise support for subsequent ice thickness calculations.465

3.5 Ice Thickness Detection Experiment466

To verify the accuracy of the final ice thickness measurement, a simple pole tower and conductor device were467
constructed at the experimental site of Nanjing University of Information Science and Technology. This setup468
simulated the actual ice conditions of the transmission line in a natural environment. Using an ice viewing device, a469
small transmission line ice thickness dataset was created, covering ice thickness levels ranging from 0 to 30 mm,470
with a bare wire diameter of 33.8 mm. To approximate the shooting angle of real ice monitoring equipment, pixel471
expansion processing was applied to the original images, followed by annotation of the ice-covered areas. The472
results are shown in Fig. 14. Due to site conditions, no side view line was included. The performance of the473
proposed model was validated using the thickness dataset.474

475
Figure 14. The segmentation effect of the ice-covered image of the simulated transmission line at the experimental site.476

477
Based on the ice data collected from the observation field, we tracked the complete ice accumulation and variation478
process of the transmission line over a 24-hour period. The ice thickness measurement results for this process are479
illustrated in Fig. 15, with detailed values presented in Table 3. In the figure, dark blue represents the actual ice480
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thickness, light blue denotes the optimized ice thickness estimated by the proposed model, and green indicates the481
initial ice thickness of the main (side) view line measured by the model. Given that the simulated ice cross-section is482
circular, the side view thickness is assumed to be equal to the main view thickness.483
As shown in Fig. 15, both the initial and optimized thickness values align with the overall trend of the actual484

thickness, demonstrating that the proposed model can accurately capture the growth pattern of ice thickness.485
Moreover, the optimized thickness measurement is closer to the actual thickness, indicating that key meteorological486
data effectively refine the ice thickness estimation, yielding more accurate measurement results. To further evaluate487
the accuracy of the proposed method in detecting ice thickness, we compared the optimized and initial ice thickness488
measurements with the actual values. Additionally, we calculated key evaluation metrics, including the mean489
absolute percentage error (MAPE), Pearson correlation coefficient (PCC), and mean square error (MSE). The results490
are presented in Table 4.491

492
Figure 15. Comparison curve between measured value and actual value.493

Table 3. Comparison between measured values and actual values.494
Time 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00
Actual thickness
(mm) 5 5 5 5 10 10 15 15 20 20 15 15

Initial thickness
(mm) 7.6 8.1 8.1 8.1 16.6 16.6 24.6 24.6 26.6 26.6 24.6 24.6

Optimized
thickness
(mm)

4 4 4 4 11 11 17 17 19 19 17 17

Time 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00
Actual thickness
(mm) 10 10 5 5 5 10 15 20 25 30 30 30

Initial thickness
(mm) 17.1 17.1 7.6 8.1 8.1 17.1 24.6 26.6 32.6 44.6 44.6 44.1

Optimized
thickness
(mm)

11 11 4 4 4 11 17 19 22 30 30 30

Note. The two lines of time represent the 12 hours before and after a day.495
496

Table 4. Evaluation index of ice thickness measurement value.497

Evaluation index MAPE(%) PCC MSE
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Initial ice thickness 56.36 0.97 65.60

Optimized ice thickness 11.82 0.99 1.83
498

As observed in Fig. 15 and Table 4, the optimized ice thickness calculated by the proposed model closely follows499
the actual values. The Pearson correlation coefficient reaches 0.99, indicating a strong correlation, while the500
measurement error remains minimal. The mean absolute percentage error is only 11.82 %, and the mean square error501
is as low as 1.83, demonstrating the model's high accuracy. These results confirm that the proposed method502
performs well in real-world scenarios and meets the practical application requirements.503

4 Summarize504

To address the challenge of insufficient accuracy in ice coating recognition and thickness detection for high-altitude505
transmission lines, this paper proposes DTL-IceNet, dual-task learning architecture with multi-scale fusion506
mechanisms for enhanced ice detection on transmission lines, which enables precise ice coating recognition and ice507
thickness estimation.The proposed method employs ResSepNet, a multi-branch network designed to fuse and extract508
ice features across different spatial scales, effectively mitigating background noise interference and enhancing ice509
type classification accuracy. Additionally, a semantic segmentation network, MOMSA-SegNet, incorporating a skip510
structure and multi-scale attention mechanism, is utilized to segment icing regions on transmission lines, thereby511
facilitating ice thickness estimation. Furthermore, key meteorological data are integrated to optimize the correction512
of ice thickness measurements. Based on the original ice images provided by the power grid, we constructed a series513
of ice image datasets, including IceType and IceSeg. The experimental results demonstrate that the proposed DTL-514
IceNet achieves 4.17 % higher ice recognition accuracy compared to EfficientNet-V2, MobileNet-V3, ResNeXt, and515
MobileOne, while its ice area segmentation MIoU surpasses that of mainstream segmentation models such as516
UNet++ by 1.64 %. These findings indicate that the dual-task learning framework effectively detects and identifies517
both ice type and thickness on transmission lines. Furthermore, in the simulation test at the test site, the MAPE of518
ice thickness estimation reached 11.82 %, and the PCC attained 0.99, demonstrating the proposed method’s robust519
ice detection performance in real-world conditions. However, due to hardware limitations, this study does not520
account for the impact of terrain elements on transmission line icing. The detection performance of the proposed521
method under significant environmental changes requires further improvement. Future work will focus on522
incorporating terrain elements into the model and examining their correlation with transmission line icing.523

Data Availability Statement524

The datasets and code utilized for the analyses in this study are publicly available at525
https://doi.org/10.5281/zenodo.15718305 (Fu et al., 2025).526
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