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10 Abstract. Icing on transmission lines can significantly impact the stable operation of the power system. Deep
11 learning-based ice image recognition is effective but remains vulnerable to background interference and noise,
12 degrading accuracy. Moreover, when detecting ice thickness, the 2D nature of ice images introduces spatial
13 limitations in representing the 3D ice state, which can lead to detection errors caused by a single viewpoint. To
14 tackle the aforementioned challenges, this paper proposes DTL-IceNet (Dual-Task Learning Ice Detection Network),
15 a transmission line icing detection network based on a dual-task learning framework, designed to accurately identify
16 both the type and thickness of ice on overhead transmission lines. DTL-IceNet incorporates a multi-branch
17 structured ice coating recognition module, ResSepNet (Residual & Depth-Separable Convolution Network), which
18 segments the background and conductor areas to mitigate the influence of background noise. Additionally, a
19 semantic segmentation module, MOMSA-SegNet (MobileOne & Multi-Scale Attention Segmentation Network) is
20 designed to segment the ice-covered areas in both the main and side views of the image. The multi-scale attention
21 mechanism is employed to extract spatial features from the raw icing image. When calculating ice thickness, the
22 multi-scale fusion and correction optimization are adopted to enhance the algorithm. Experimental results show that
23 compared with other models, the proposed method achieves an improvement of 4.17 % in icing type identification
24 accuracy and a MAPE of 11.82 % in icing thickness detection. The application of this approach is crucial for

25 reducing the hazards caused by ice coating on transmission lines and improving the stability of the power grid.

26 1 Introduction

27 Extreme weather can lead to ice accumulation on power lines, significantly increasing the risk of incidents such as
28  conductor breakage or tower collapse, thereby threatening the stability of the power supply. Therefore, real-time
29 monitoring of ice type, thickness, and other conditions on transmission lines is essential for ensuring the safe and
30 stable operation of the power grid.

31 Traditional ice detection methods primarily rely on physical sensors and manual inspections (Zhang et al., 2024).
32 However, these methods often suffer from high costs, low real-time performance, and limited detection accuracy,

33 making them insufficient for effective ice monitoring in complex environments. In recent years, with the rapid
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34 advancement of deep learning and computer vision technologies, intelligent detection methods based on the YOLO
35 model have increasingly become an effective approach. Chen et al. (2024) proposed a transmission line icing
36 detection method based on YOLOvVS. They utilized the ghost shuffle convolution to reduce model parameters and
37 improve computational efficiency. Additionally, they incorporated the BiFormer attention mechanism and the Wise-
38 IoUv3 loss function to enhance the model's accuracy in detecting ice-covered areas. Kong et al. (2024) integrated
39 the GE attention module into YOLOvVS to enhance detection accuracy and replaced the concatenate structure in the
40 original network with the BiFPN feature fusion module. This modification enables the detection of ice-covered areas
41 on power transmission lines in complex backgrounds. Although the YOLO-based detection algorithm effectively
42 locates ice-covered areas on transmission lines, it fails to detect and assess key information, such as ice contours and
43 thickness. Building on this, Lu (2024) proposed the Canny-UNet model by enhancing YOLOv8 with EfficientViT
44 (Liu et al., 2023), and integrating the Canny edge detection algorithm along with semantic segmentation technology,
45 which further enabled accurate segmentation of ice contours. Similarly, He et al. (2023) applied the ProtoNet
46 segmentation model to the detection results of the improved YOLOVSs, enabling the segmentation of ice-covered
47 areas based on target detection. Similarly, He et al. (2023) utilized the GrabCut algorithm in conjunction with target
48 detection to identify and segment transmission line insulators.

49 Although the aforementioned methods employ edge detection and semantic segmentation techniques to segment
50 and detect the contours of ice-covered regions, the calculation of ice thickness primarily depends on edge detection
51 algorithms. Wang et al (2023) proposed an image denoising algorithm based on adaptive switching median filter.
52 Building upon this, an optimized Canny operator was employed to detect the edges of the ice-covered conductor's
53 contour. The computed ice thickness was then compared with the results obtained from optical fiber detection,
54 yielding an average error of just 4.10 %. Yang et al. (2023) proposed an ice monitoring method integrating image
55 edge detection and normal detection. The approach first preprocesses micro-photographed images of transmission
56 lines, applies algorithms such as eight-neighborhood tracking to detect edges and determine the longest side of the
57 conductor, and designs an ice thickness detection method based on edge normal detection. Experimental results
58 indicate that the relative error of real-time conductor ice thickness measurements using this method does not exceed
59 9 %. He et al. (2023) proposed a novel measurement method for thickness of uneven icing on transmission line in
60 complex background. Their method involved image grizzling, median filter denoising, and maximum inter-class
61 variance method to analyze the images. By integrating the result-domain characteristics of transmission line icing
62 information and background noise, they extracted the re-icing transmission line. Finally, the vertical line
63 approximation method was applied to determine the re-icing thickness. Such methods leverage edge detection
64 techniques to enhance the extraction of ice cover information and initially estimate the corresponding ice thickness.
65 However, they exhibit limited robustness to environmental interferences such as lighting variations and haze and fail
66 to account for the three-dimensional spatial distribution of the conductors. Consequently, when encountering
67 irregular ice formations, these methods may yield larger errors.

68 Accurately identifying the type of ice on transmission lines is crucial for improving ice detection capabilities. In
69 the field of ice classification, some researchers analyze monitoring data to distinguish different ice types. Fan et al.

70 (2018) analyzed the collision rate of water droplets on conductors with varying diameters and employed the standard
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71 ice thickness normalization method to quantify the extent of conductor icing. Hao et al. (2023) analyzed multi-
72 source data and applied the KNN algorithm to classify four distinct types of ice cover. Chen et al. (2024) proposed a
73 method to monitor the status of ice-covered transmission lines based on conductor end displacement, which can
74 aptly capture the stress characteristics of transmission lines in frozen rain environments. Due to limitations in
75 monitoring data and conditions, these methods face significant constraints. In recent years, visual image-based
76 recognition technology has advanced rapidly. Most research on ice recognition has focused on sea ice, river ice, and
77 road ice (Liu et al., 2025; Ansair et al., 2024; Gui et al.,2023), achieving excellent detection performance. However,
78 studies on ice type recognition for transmission lines remain scarce. This is partly due to the challenges associated
79  with capturing ice images of transmission lines and partly due to the interference caused by complex background
80 noise in such images, which must be accounted for in recognition processes.
81 Beyond ice physical parameters and imagery, the accuracy of transmission line ice detection can be further
82 enhanced by incorporating environmental data. Numerous studies have demonstrated that meteorological factors,
83 such as wind and humidity, are closely correlated with conductor icing (Dong et al., 2022; Meng et al., 2025; Han et
84 al., 2024), offering valuable insights for ice thickness detection. Therefore, to address the challenges of low accuracy
85 in ice type recognition and thickness detection for transmission lines, this paper proposes DTL-IceNet (Dual-Task
86 Learning Ice Detection Network), a dual-task learning framework designed to enhance the performance of both ice
87 coating recognition and thickness detection. DTL-IceNet employs a multi-branch ice coating recognition module to
88 separately extract spatial feature information of both the background and ice-covered regions, thereby determining
89 the ice type. Simultaneously, a multi-scale attention-based semantic segmentation module is utilized to segment the
90 ice-covered areas. Finally, the model integrates ice type recognition, ice segmentation results, and key
91 meteorological factors to optimize ice thickness estimation, yielding more accurate identification of ice types and
92 thickness on transmission lines. The main contributions of this paper are as follows:
93 (1) To address the issue of low ice thickness detection accuracy caused by the irregular shape of ice on
94  transmission lines and complex environmental conditions, this paper proposes a dual-task learning framework, DTL-
95 IceNet. The framework enhances ice thickness detection performance by leveraging ice type classification and key
96 meteorological elements to assist ice segmentation. The proposed framework incorporates an ice coating recognition
97 module, ResSepNet (Residual & Depth-Separable Convolution Network), an icing region segmentation module,
98 MOMSA-SegNet (MobileOne & Multi-Scale Attention Network), and an ice thickness optimized calculation
99 module. By integrating ice segmentation results with ice types and key meteorological factors through multi-scale
100 fusion, the framework refines ice thickness estimation. Through the fusion of multi-source heterogeneous data and
101 the multi-scale fusion of image classification and segmentation techniques, the reliance on a single ice contour for
102 thickness estimation is eliminated, significantly enhancing detection accuracy.
103 (2) To address the challenge of incomplete information extraction and utilization in transmission line ice images
104 due to background noise interference, such as fog and light noise, a ResSepNet ice coating recognition module is
105 developed. This module integrates a nested residual structure and depthwise separable convolution to segment the

106 ice image into an upper background area and a lower conductor area. Additionally, three branches are designed to



https://doi.org/10.5194/egusphere-2025-3097
Preprint. Discussion started: 13 November 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

107 extract features from the entire image, background, and conductors separately, effectively mitigating the impact of
108  background noise.

109 (3) Considering the limitations of two-dimensional ice images in representing the spatial distribution of three-
110 dimensional ice, which may lead to detection errors, this study designs the MOMSA-SegNet icing region
111 segmentation module. The module incorporates an improved MobileOne encoder and a multi-scale attention
112 mechanism to segment the ice region from both the main and side perspectives of the image, thereby enhancing the
113 information capture capability of a single perspective. Additionally, a skip connection structure and multi-scale
114 attention mechanism are employed to comprehensively extract spatial features from the raw icing image, further

115  improving segmentation accuracy.

116 2 Method

117  The detection of ice in transmission line images primarily involves two tasks: ice type recognition and ice thickness
118  detection. This paper presents DTL-IceNet, a dual-task learning framework for ice detection, designed to achieve ice
119 type recognition and ice thickness detectio for transmission lines. Through the meticulous design of various modules,
120  the proposed framework effectively addresses the limitations in the accuracy of ice type recognition and thickness
121 detection. The overall framework structure of DTL-IceNet is illustrated in Fig. 1.
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123 Figure 1. DTL-IceNet overall framework structure.

124 Note. For details on the ice coating recognition module, please refer to Section 2.2; for details on the icing region segmentation
125 module, please refer to Section 2.3; for details on the equivalent thickness optimized calculation module, please refer to Section
126 2.4.

127
128 DTL-IceNet primarily consists of three components: the ice coating recognition module (ResSepNet), the icing

129 region segmentation module (MOMSA-SegNet), and the ice thickness optimized calculation module. In the
130 ResSepNet module, the raw icing image undergoes preprocessing to generate the background subgraph and the iced
131 line subgraph. Along with the full ice-covered graph, three branches are employed to extract features from different
132 spatial regions, which are then fused to determine the ice type. In the MOMSA-SegNet module, the raw icing image

133 is processed through a multi-scale attention-based semantic segmentation network to segment the ice-covered region
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134 from both the main view and the side view. In the ice thickness optimized calculation module, the ice coating
135 recognition results and icing region segmentation results are integrated, and key meteorological data is introduced
136 for correction and optimization to obtain equivalent ice cover thickness values, thereby realizing the ice type
137 recognition and thickness detection tasks. The subsequent sections will provide a detailed description of the

138 ResSepNet module, MOMSA-SegNet module, and the ice thickness optimized calculation module.

139 2.1 ResSepNet

140 The ice coating recognition module, ResSepNet, consists of a background branch, an icing branch, and a global
141 branch. It is capable of recognizing four types of icing: ice-free, glaz, rime, and mixed rime. To mitigate background
142 noise interference, the original image is divided into a background subgraph and an iced line subgraph. The
143 background and ice-covered branches extract features from their respective regions, while the global branch utilizes
144 a transfer learning model to capture the overall ice-covered features of the entire image. By employing a multi-
145 branch structure, ice-covered features at different spatial scales are normalized, fused, and recognized to produce the
146 final recognition result. The model structure of ResSepNet is shown in Fig.2, which mainly includes an ice

147 segmentation preprocessing module and a feature extraction and recognition module.
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149 Figure 2. Model structure of ResSepNet.
150  2.1.1 RDS Convolutional Block

151 To enhance the feature extraction performance of the model in complex icing scenarios, this paper incorporates
152 multiple RDS convolution blocks into ResSepNet, utilizing a nested residual structure and depthwise separable
153 convolution. These blocks serve as the core feature extraction modules in both the background and icing branches.
154 The structure of the RDS convolution block is illustrated in Fig. 3. The convolution block in the background branch
155 is referred to as B-RDS, while the one in the icing branch is denoted as I-RDS. Both branches adopt similar network

156 architectures (as show in Fig. 2). Figure 3 presents the structure of a single RDS convolution block.
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158 Figure 3. A single RDS convolution block.
159

160 The nested residual structure in the RDS convolutional block incorporates skip connections, enabling gradients to
161 propagate directly from shallow layers to deeper layers. This effectively mitigates the gradient vanishing problem
162 while preventing network overfitting and degradation. By employing multiple nested residual blocks, the model
163 captures complex features at deeper levels while preserving shallow features, thereby enhancing its capability to
164 extract intricate features in real-world ice-covered scenarios. On the other hand, the RDS convolution block
165 incorporates depthwise separable convolution, a decomposition method that effectively reduces the number of
166  parameters in convolution operations. This significantly enhances the computational efficiency of the network,
167 resulting in a more compact and responsive model. Its flexibility allows deployment in resource-constrained
168 environments, facilitating distributed processing and real-time computation, making it particularly suitable for

169 transmission line ice detection tasks.

170 2.1.2 Multi-Branch Feature Extraction and Fusion Recognition Module

171 To mitigate the interference of background noise in ice-covered images, ResSepNet employs a three-branch
172 structure comprising a background branch, a global branch, and an icing branch. By extracting local and global
173 features at multiple scales, it effectively reduces the impact of background noise on recognition performance. The
174  raw icing image undergoes preprocessing to generate a background subgraph in the upper region and an iced line
175 subgraph in the lower region. The background subgraph is fed into the background branch to focus on extracting
176 feature information from the background environment. The iced line subgraph is directed to the icing branch to
177 emphasize the extraction of ice feature information in the transmission line area. Meanwhile, the complete image is
178 directly input into the global branch to capture overall ice feature information. The global branch feature extraction
179 network utilizes EfficientNet-B3 (Tan & Le, 2019) with a migration structure. EfficientNet-B3 achieves a balance
180 between model size and feature extraction capability, ensuring effective feature extraction without excessive
181 computational resource consumption. To adapt to the transmission line icing scenario, the ResSepNet global branch
182 enhances EfficientNet-B3 by incorporating an adaptive output layer. This layer primarily consists of a global
183 average pooling (GAP) layer, a squeeze-and-excitation (SE) module (Hu et al., 2018), a 1x1 convolutional layer, a

184 LeakyReLU activation function, and a fully connected (FC) output layer.
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185 After extracting features from the background branch, icing branch, and global branch, ResSepNet normalizes and
186 sums the ice-covered features output by the three branches to mitigate amplitude differences among features from

187 different branches. This process is mathematically represented by (1):

*fb.g + .fice + fmain
[ og 1 11 e 111 o |

189 where || f || denotes the L2 norm of the feature vector, and fbg s fie»and f, . represent the output features of

188 fmixed = (1)

190 the background branch, icing branch, and global branch, respectively. fmixed represents the final multi-branch

191 fusion output feature, which serves as the icing type recognition result of the transmission line, including ice-free,

192 glaze, rime, and mixed rime.

193 2.2 MOMSA-SegNet

194 The icing region segmentation module, MOMSA-SegNet, employs the improved MobileOne (Vasu et al., 2023)
195 model as its encoder and incorporates a multi-scale skip connection structure in the decoder. This design forms a
196 semantic segmentation network with a large encoder-small decoder architecture, enabling precise segmentation of

197  the ice-covered regions on transmission lines. The module structure is illustrated in Fig. 4.
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198
199 Figure 4. MOMSA-SegNet module structure.

200
201 To address the issue of information loss resulting from a single perspective, which can reduce ice thickness

202 detection accuracy, MOMSA-SegNet segments the transmission lines from both the main and side perspectives in
203 the raw icing image. This segmentation leverages the multi-split transmission line structure to capture ice
204 information more comprehensively. The definitions of the main perspective line and side perspective line in the raw

205 icing image are illustrated in Fig. 5.
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207 Figure 5. Schematic diagram of transmission line from different perspectives.
208  2.2.1 Improved MobileOne Encoder

209  MobileOne employs a re-parameterized convolutional structure, enabling the transformation of complex branched
210 architectures into a single, efficient convolutional operation during the inference phase. This significantly reduces
211 computational overhead and inference latency. Furthermore, MobileOne is designed with hardware adaptability in
212 mind, ensuring efficient execution on low-power devices. This feature is particularly crucial for edge devices, such
213 as pole tower ice monitoring systems, where model deployment is required. Moreover, the convolutional structure of
214  the MobileOne model exhibits strong capability in capturing local details, making it well-suited for the fine
215 segmentation of ice-covered regions. Given the complexity of ice-covered images of power transmission lines—
216 caused by factors such as lighting variations, haze, and background clutter—this study enhances the original
217  MobileOne by enlarging the dilation rate in its feature encoding module to expand the receptive field (see the left
218 side of Fig. 4). Additionally, multi-scale features are extracted from multiple intermediate layers. By integrating a
219 multi-head attention mechanism, a multi-scale skip connection structure is designed to provide the decoder with
220 contextual spatial features at different scales, thereby enhancing segmentation accuracy in complex ice-covered

221 scenarios.

222 2.2.2 Multi-scale Attention Decoder

223 The multi-scale attention decoder primarily consists of multiple multi-head self-attention (MHSA) sub-modules,
224 convolutional layers, and upsampling layers. It extracts feature maps from various intermediate layers of the
225 improved MobileOne encoder, as illustrated in Fig. 4. Each feature map is first processed by an MHSA sub-module,
226 after which the self-attention output features are concatenated with the corresponding decoder layer at the same
227 feature scale, thereby forming the multi-scale attention decoder structure. The architecture of the MHSA sub-module
228  is depicted in Fig. 6.

229 The detailed feature processing procedure of the MHSA sub-module can be expressed by equation (2):
QK T k o
230  output = X + Conv(Concat(soft max(ﬁ)lfi)i:lW ) 2)
k

231 where output represents the output feature, while X denotes the input feature, which undergoes a linear

232 transformation to obtain the query (Q), key (K), and value (V) matrices. Q, K, and V are divided into /2 heads, with



https://doi.org/10.5194/egusphere-2025-3097
Preprint. Discussion started: 13 November 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

233 each head having its own transformation parameters O, , K, , V,. The attention weight matrix is computed using

1
234 function soff max , where T serves as a scaling factor to prevent gradient vanishing. The attention weight
k

0K/

235 matrix is then multiplied by ¥ to obtain the output for each head, denoted as soff max(=—==)V,. Subsequently,

NA

236 the attention outputs of all heads are concatenated using function Concat , followed by a linear transformation

237 W° that remaps the transformed features back to the original feature space. To further enhance local feature
238 extraction, MHSA applies an additional convolutional layer (Conv) after the linear transformation, reinforcing the

239 model’s capability to extract fine-grained local features.
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241 Figure 6. MHSA submodule.

242
243 The multi-scale attention decoder integrates the features from each MHSA output with the original input X
244 through multiple residual structures. This approach preserves the original input information, enhances the model’s

245 capability to extract contextual features, and improves its overall stability.

246 2.3 Ice Thickness Optimized Calculation Module

247 The dual-task learning framework proposed in this paper simultaneously outputs both ice type and ice thickness. The
248 output of the ice coating recognition module serves not only as a final result but also as a key input for ice thickness
249  estimation. The ice thickness optimized calculation module first performs an initial ice thickness estimation based
250  on the identified ice type and segmentation results. Subsequently, key meteorological data are incorporated to refine
251 the calculation, yielding an optimized ice thickness. Given that actual ice accumulation on transmission lines is
252 typically uneven and irregularly shaped, the equivalent ice cover thickness is adopted as the final representation in
253 the calculation.

254 In the preliminary estimation of ice thickness, it is essential to determine the major and minor axes of the ice-

255 covered cross-section. First, the pixel area of the ice-covered region in both the main view and side view of the
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256 original ice image is obtained based on the segmentation results from MOMSA-SegNet. Given the known wire
257 diameter, the major and minor axes of the ice-covered cross-section can be estimated by comparing the pixel area of
258 the bare wire in the same transmission line under an ice-free condition. The parameters of the ice-covered cross-
259 section are illustrated in Fig. 7, where d represents the bare wire diameter, and @ and b denote the major and

260  minor axes of the ice-covered cross-section, respectively.
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262 Figure 7. Schematic diagram of ice cross-section parameters.
263

264  Based on the icing type results from the ice coating recognition module, the corresponding icing density can be
265 determined. Subsequently, the icing density is combined with the major and minor axes of the icing cross-section to

266  perform an initial estimation of the equivalent ice cover thickness.

267 2.3.1 Calculation of Equivalent Ice Cover Thickness

268 According to the layout specifications of overhead transmission lines, the main view line and the side view line are
269  positioned on the same horizontal plane. Therefore, the major and minor diameters can be determined by analyzing
270  the icing conditions of both lines.

271 The calculation of the major diameter a is given by (3):

W H
z ZS(xice’yice)

272 = et xd 3)

w H
z z S(xwire ’ny"’)

Fuire =1 Visire =1

273 where S(x,)) denotes the pixel value at coordinate (X,)) in the segmentation result generated by MOMSA-

W H
274 SegNet. ZZS (x[’je, yiﬁe) represents the total number of pixels in the segmented ice-covered area, while

A _y A
Xice=1Vice

W H
275 z z S (x::,m , y:jmz) denotes the total number of pixels in the bare wire area without ice. The minor axes b can

A 4
Xuire =1 Ve

276  be computed using the same approach.

10
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278 Based on the ice type identification result, the corresponding ice density o (Li et al,2016) is determined.
279 According to (4), the irregular ice cross-section can be approximated as a regular circular cross-section with an

280 equivalent area, enabling the calculation of the equivalent ice thickness T .

281 2.3.2 Optimization Calculation of Ice Thickness

282 Due to factors such as the placement of the ice monitoring device, the shooting angle, and variations in ambient light
283 intensity, ice thickness estimates derived solely from ice images often exhibit certain errors. To address this issue,
284 this study incorporates meteorological data in addition to ice images, leveraging key surrounding meteorological
285 factors to refine and optimize the initial ice thickness calculations. This approach ensures greater alignment with the
286 actual freezing conditions and enhances the overall robustness of the algorithm.

287 This study maps the latitude, longitude, and image capture time recorded by the ice monitoring device to the
288 corresponding environmental meteorological data from ERAS. This mapping enables the extraction of key
289  environmental factors, including temperature 7' (°C), relative humidity H (%), wind speed V' (m s'), and
290 precipitation P (mm h') (Xu et al.,2023), for each ice image. To refine the ice thickness estimation, a key
291 meteorological correction factor is constructed using the Gradient Boosting Decision Trees (GBDT) algorithm and

292 parameterized as shown in (5):

293 f(T,H,V,P)=expl(—aT)-(1+ H)-(1-9V)-(1+P)] (5)

294 where &, B, ¥ and O are correction parameters. (—1") indicates that an increase in temperature leads to a
295  decrease in ice cover, (1+ SH ) indicates that ice coverage increases with increasing humidity, (1— V") signifies
296 that high wind speed may result in a decrease in ice cover, and (1+0P)  indicates that higher precipitation leads

297 to greater ice thickness.
298 The correction parameters in (5) are determined using the GBDT algorithm. The environmental meteorological

299 factors are used as input features, with the optimized ice thickness value serving as the output target variable. The

300  input feature set W = [T JH,V, P ] and the target variable set Y, are constructed. After normalizing the input

true

301 feature set W , the GBDT regression model is built, and Y, = is fitted. Assuming that the model's prediction value

true
302 F, (w) is the mean value of the target variable, the pseudo residual value during the m -th iterative optimization

303  process of the regression model can be expressed by (6):

)
,,r;i) :_M,i:m,...w ©)
al:‘mfl(l/v)

305 where IV denotes the total number of samples and L represents the MSE loss function.

304
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306 The pseudo residual value rn(j is used as the target variable to fit the decision tree and obtain the regression tree

307 & (w). The model update is expressed as:
308 F,(w)=F, (W)+¢-h,(w) (7
309 where & represents the learning rate, and / (W) denotes the output of the 71 -th regression tree. After training,

310 the optimized prediction model is obtained, and each correction parameter can be determined using (8):

oF,, (w oF,, (w oF,, (w OF,, (w
oT OH ov opP
OF,,(w L . .
312 where represents the sensitivity of the model prediction to the key meteorological factors. The model
w

313 hyperparameters are adjusted based on accuracy requirements, and the correction process is iteratively optimized to

314 obtain the final key meteorological factor correction parameters. The optimized result for the equivalent ice

315 thickness T, is given by (9):

316 T,=T-f(T,H,V,P) 9)

317 3 Experiments

318 This paper constructs a dataset using raw icing images provided by the power grid and conducts performance
319 validation experiments on ice coating recognition and ice thickness detection algorithms. The related work primarily
320 involves constructing datasets for ice coating recognition and icing region segmentation, training and testing models
321 based on these datasets, evaluating model performance, and conducting comparative analyses with existing methods.
322 The experiments were conducted on a Windows 11 operating system equipped with an NVIDIA GeForce RTX 3090
323 GPU and 24 GB of memory. The proposed model was developed and tested using the PyTorch framework, followed
324 by related experiments.

325 3.1 Experimental Plan and Evaluation Indicators

326 To evaluate the effectiveness of the proposed method, experiments were conducted on ice coating recognition, ice
327 region segmentation, and ice thickness detection. The experimental plan includes: 1) Ablation studies to assess the
328 contribution of each branch in the ice coating recognition model, ResSepNet. 2) Performance comparison of
329 ResSepNet with other mainstream classification models for ice type recognition. 3) Segmentation performance
330 comparison between MOMSA-SegNet and other advanced segmentation models. 4) Transmission line icing state
331 detection in real-world scenarios using the proposed DTL-IceNet model.

332 To facilitate model training and testing for ice coating recognition and ice thickness detection, this paper utilizes
333 ice monitoring images captured by ice-viewing devices deployed in the power grid. Corresponding datasets are
334 constructed based on ice coating recognition and ice thickness detection tasks to meet the training, validation, and

335 testing requirements of the proposed algorithm.
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336 For the ice type recognition experiment, this paper primarily evaluates and compares model performance using
337 classification accuracy, precision, recall, Fl-score, and the confusion matrix. The calculation formulas for each
338 metric are as follows:
TP+TN
339 Accuracy = (10)
TP+TN + FP+ FN
.. P
340  precision = ——— (11
TP+ FP
TP
341 recall = —— (12)
TP+ FN
2 precision - recall
342 Fl-Score=="2 — (13)
precision + recall
343 where TP denotes the number of samples correctly classified as positive, 7N denotes the number of samples
344 correctly classified as negative, 'P denotes the number of samples incorrectly classified as positive, and FIN
345 denotes the number of samples incorrectly classified as negative.
346 For the icing region segmentation experiment, this paper primarily employs intersection over union (IoU), mean
347 IoU (MIoU), and mean pixel accuracy (mPA) to assess and compare the segmentation performance of the model.
348 The formulas for each metric are as follows:
ANB
349 loU = g (14)
| AUB|
1 N
350  MloU=—YIoU, (15)
NS
1 4P
351 mPA=—) -t (16)
NS,
352 where A represents the predicted target area, B represents the actual target area, A[)B denotes the
353 overlapping area between the two, 4J B denotes their total coverage area, P represents the number of correctly
354 classified pixels for category i, and 7, represents the total number of actual pixels in category 1.
355 3.2 Dataset
356 For the tasks of ice coating recognition and icing region segmentation, this paper constructs two datasets. The ice
357 coating recognition task focuses on classifying different types of icing on transmission lines. Therefore, a diverse set
358 of icing samples, including ice-free, glaz, rime , and mixed rime, is selected from a large collection of original
359 transmission line icing images. During the data preprocessing stage, manual labeling is employed to classify each
360 sample, ensuring label accuracy and consistency. Subsequently, data cleaning is performed to remove blurry,
361 abnormally captured, or incomplete images, retaining only clear and representative ice-covered samples. Finally, an
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362 ice coating recognition dataset, IceType, consisting of 20,684 images, was constructed and divided into a training set,
363 test set, and validation set in a 6:2:2 ratio.

364 The ice thickness detection task is primarily accomplished through semantic segmentation, focusing on pixel-
365 level recognition of ice-covered and background areas in transmission line images. Based on the raw icing images,
366  this study manually selects high-quality images with clearly distinguishable ice-covered regions. Subsequently, the
367 ImageLabeler tool in Matlab is used to label the ice-covered areas pixel by pixel, ensuring that each pixel's category
368 label accurately corresponds to either the ice-covered region or the background. Meanwhile, considering the fixed
369 shooting angle characteristics of the ice-viewing device, the ice-covered images underwent appropriate
370  preprocessing and cropping. To enhance data volume and enrich sample distribution, random flipping was applied.
371 Ultimately, an ice-covered region segmentation dataset, IceSeg, containing 6,360 pixel-level annotations, was

372 constructed and split into training, test, and validation sets in a 7:2:1 ratio.

373 3.3 Ice Type Identification Experiment
374  3.3.1 ResSepNet Branch Ablation Experiment

375 To evaluate the performance of each branch in ResSepNet, this study conducts a controlled experiment comparing
376 ResSepNet with its individual branches on the IceType dataset. The accuracy and loss variation curves of

377 ResSepNet and its branches on the IceType validation set are illustrated in Fig. 8.
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379 Figure 8. (a) validation accuracy and (b) validation loss. Performance of each branch of ResSepNet.

380
381 As shown in Fig. 8, the background branch alone yields suboptimal ice type recognition performance, achieving an

382 accuracy of only 86.55 %. The ice branch improves recognition accuracy to 89.82 %; however, it remains
383 insufficient due to the omission of environmental factors. ResSepNet, which integrates the background branch, icing
384 branch, and global branch, comprehensively accounts for both environmental influences and transmission line icing
385 characteristics, ultimately achieving a recognition accuracy of 95.23 %.

386 To more clearly illustrate the performance contribution of each branch across different ice types, the confusion
387 matrix for ice type recognition on the IceType test set is presented in Fig. 9. Based on the confusion matrix, it can be
388 observed that the recognition accuracy of each branch and ResSepNet for mixed rime is lower compared to other ice
389  types. This is attributed to the complex morphology of mixed rime. Nevertheless, ResSepNet still achieves a high

390  recognition accuracy of 89.74 % for this type. This is because ResSepNet simultaneously extracts multi-scale
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features from the background area, ice-covered area, and the entire image, enabling a more comprehensive capture

of image information. The background branch demonstrates superior rime recognition compared to other branches

due to the distinct color differentiation of this type. The icing branch excels in recognizing bare wire (ice-free) since

the morphology of the wire in this category exhibits more significant differences. The global branch maintains a

more balanced recognition across various types, as it does not specifically extract local area features. This also

compensates for the limitations of the background branch and icing branch in recognizing mixed rime and other

complex types. Overall, ResSepNet achieves outstanding performance in ice type recognition, attaining high

accuracy, which confirms that the multi-branch design is well-structured and significantly enhances the recognition

capability for ice-covered types.
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Figure 9. Confusion matrix of ice type recognition effect of each branch of ResSepNet.

3.3.2 Comparative Experiments with ResSepNet

To evaluate the ice coating recognition performance of ResSepNet, comparative experiments were conducted on the

IceType dataset using mainstream models such as EfficientNet-V2 (Tan & Le, 2021), MobileNet-V3 (Howard et al.,
2019), ResNeXt (Xie et al., 2017), and MobileOne (Vasu et al., 2023). The accuracy and loss curves for each model

on the IceType validation set are presented in Fig. 10.
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Figure 10. (a) validation accuracy and (b) validation loss. Performance comparison of various models.

As shown in Fig. 10, the ResSepNet model proposed in this paper not only achieves the highest accuracy but also
demonstrates superior convergence speed and stability. This performance can be attributed to the model's
lightweight and multi-branch structure, which allows it to maintain a compact size while ensuring rapid convergence.
Additionally, the multi-branch design enables more comprehensive capture of the ice coverage information, reduces
the impact of background noise, and enhances the overall recognition accuracy. The following section presents a

comparison of various evaluation metrics for each model on the IceType test set, as shown in Fig. 11.

Accuracy

W-Prec 1o M-F1

W-Recall M-Recall
EfficientNet-V2
MobileNet-V3
ResNeXt
MobileOne
ResSepNet(Ours)

W-F1

M-Prec

Figure 11. Comparison of evaluation indicators of various models.

From the radar chart comparison results in Fig. 11, it is evident that the proposed ResSepNet outperforms other
models in terms of accuracy, precision, recall, and Fl-score. Compared with other methods, the proposed method
achieves an average improvement of 4.17 % in accuracy, 4.79 % in weighted precision (W-Prec), 4.17 % in
weighted recall (W-Recall), and 4.28 % in weighted Fl-score (W-F1). Additionally, macro precision (M-Prec),
macro recall (M-Recall), and macro Fl-score (M-F1) exhibit average improvements of 4.55 %, 4 %, and 4.26 %,
respectively. Combined with the results in Fig. 10, these findings demonstrate that ResSepNet consistently maintains
superior performance in ice type recognition, both in terms of individual evaluation metrics and overall effectiveness.
The specific values corresponding to Figs. 10 and 11 are presented in Table 1, where the bolded values indicate the

best results.
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428 Table 1.Performance comparison results of each model

Modules Accuracy(%) W-Prec(%) W-Recall(%) W-F1 M-Prec(%) M-Recall(%) M-F1
EfficientNet-V2 86.87 87.65 86.87 86.57 84.71 84.41 82.57
MobileNet-V3 90.93 90.86 90.93 89.67 87.13 85.55 84.42
ResNeXt 93.02 93.83 93.02 92.80 90.10 90.69 90.05
MobileOne 93.41 94.26 93.41 93.21 91.21 90.71 89.27
ResSepNet(Ours) 95.23 96.44 95.23 94.84 92.84 91.84 90.84

429 3.4 Icing Region Segmentation Experiment
430  3.4.1 Segmentation Effects in Different Scenarios

431 Since the accuracy of ice thickness calculation is directly influenced by the segmentation results of the icing region,
432 this study evaluates the performance of the proposed icing region area segmentation module under various
433 environmental conditions. To this end, segmentation tests were conducted in representative scenarios, including
434 sunny days, heavy fog, and nighttime. The results are presented in Fig. 12, where the red regions indicate the

435 segmentation results for the main view line, while the yellow regions represent those for the side view line.
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437 Figure 12. Icing region segmentation results of MOMSA-SegNet in different scenarios.

438
439 As illustrated in Fig. 12, the proposed icing region segmentation module, MOMSA-SegNet, effectively segments

440  both the main view line and the side view line across different environmental conditions, including sunny days,
441 foggy conditions, and nighttime. These results demonstrate that the proposed segmentation method can reliably meet

442 the requirements for ice thickness calculation.
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443 3.4.2 Comparison of Segmentation Performance of Different Models

444 To further evaluate the segmentation performance of the proposed MOMSA-SegNet, classic models such as
445 UNet++ (Zhou et al., 2018), SegNet (Badrinarayanan et al., 2017), and DySample (Lin et al., 2017) were trained on
446 the IceSeg dataset and compared with MOMSA-SegNet on the test set. The evaluation primarily focused on key
447  metrics, including the Intersection over Union (IoU) for the main view, side view, and background, as well as the

448 mean loU (MIoU) and mean Pixel Accuracy (mPA). The comparative results are presented in Table 2.

449 Table 2. Comparison of segmentation performance of different models

Modules main view [oU  Side view loU background IoU MIloU mPA
(%) (%) (%)

UNet++ 86.12 70.97 98.73 85.27 64.85

SegNet 84.43 75.22 98.79 86.15 65.80

DySample 85.25 76.63 98.89 87.83 66.63

MOMSA-SegNet(Ours)  86.17 79.05 98.96 88.06 67.17

450

451 From Table 2, it can be observed that although the performance differences among the models are relatively small,
452 MOMSA-SegNet achieves the highest scores across all evaluation metrics. Specifically, compared to other models,
453  the proposed method improves the ToU of the main view and side view by 0.9 % and 4.78 %, respectively.
454  Additionally, it enhances background IToU by 0.16 %, while MIoU and mPA increase by 1.64 % and 1.41 %,
455 respectively. These results highlight the superior segmentation performance of MOMSA-SegNet across different

456 scenarios. The comparative segmentation results of each model on the IceSeg test set are illustrated in Fig. 13.

DySample SegNet UNet++ Labels Original

MOMSA-SegNet
(Ours)

457

458 Figure 13. (a) first picture during the day, (b) second picture during the day, (c) first picture during the night and (d) second
459 picture during the night. Comparison of segmentation effects of different models.
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460  Figure 13 intuitively demonstrates that the segmentation performance of each model on the main view line exhibits
461 minimal differences. However, under the influence of factors such as fog and ambient light, the segmentation results
462 for the side view line vary significantly among models. Notably, the proposed MOMSA-SegNet achieves superior
463 segmentation performance on the side view line and demonstrates the best overall performance. This can be
464 attributed to its jump connection structure and multi-scale attention mechanism, which effectively capture the

465 characteristics of different view lines and provide precise support for subsequent ice thickness calculations.

466 3.5 Ice Thickness Detection Experiment

467 To verify the accuracy of the final ice thickness measurement, a simple pole tower and conductor device were
468 constructed at the experimental site of Nanjing University of Information Science and Technology. This setup
469 simulated the actual ice conditions of the transmission line in a natural environment. Using an ice viewing device, a
470 small transmission line ice thickness dataset was created, covering ice thickness levels ranging from 0 to 30 mm,
471 with a bare wire diameter of 33.8 mm. To approximate the shooting angle of real ice monitoring equipment, pixel
472  expansion processing was applied to the original images, followed by annotation of the ice-covered areas. The
473 results are shown in Fig. 14. Due to site conditions, no side view line was included. The performance of the

474  proposed model was validated using the thickness dataset.
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476 Figure 14. The segmentation effect of the ice-covered image of the simulated transmission line at the experimental site.
477

478 Based on the ice data collected from the observation field, we tracked the complete ice accumulation and variation
479 process of the transmission line over a 24-hour period. The ice thickness measurement results for this process are

480 illustrated in Fig. 15, with detailed values presented in Table 3. In the figure, dark blue represents the actual ice
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481 thickness, light blue denotes the optimized ice thickness estimated by the proposed model, and green indicates the
482 initial ice thickness of the main (side) view line measured by the model. Given that the simulated ice cross-section is
483 circular, the side view thickness is assumed to be equal to the main view thickness.
484 As shown in Fig. 15, both the initial and optimized thickness values align with the overall trend of the actual
485 thickness, demonstrating that the proposed model can accurately capture the growth pattern of ice thickness.
486 Moreover, the optimized thickness measurement is closer to the actual thickness, indicating that key meteorological
487 data effectively refine the ice thickness estimation, yielding more accurate measurement results. To further evaluate
488 the accuracy of the proposed method in detecting ice thickness, we compared the optimized and initial ice thickness
489  measurements with the actual values. Additionally, we calculated key evaluation metrics, including the mean
490 absolute percentage error (MAPE), Pearson correlation coefficient (PCC), and mean square error (MSE). The results
491 are presented in Table 4.
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493 Figure 15. Comparison curve between measured value and actual value.
494 Table 3. Comparison between measured values and actual values.
Time 1:00  2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00
Actualthickness 555 5 190 10 15 15 20 20 15 15
(mm)
Initial thickness
(mm) 7.6 8.1 8.1 8.1 16.6 16.6 246 246 266 266 246 246
Optimized
thickness 4 4 4 4 11 11 17 17 19 19 17 17
(mm)
Time 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00
Actualthickness 1o 1955 s 10 15 20 25 30 30 30
(mm)
Initial thickness
(mm) 17.1  17.1 7.6 8.1 8.1 17.1 246 266 32.6 446 446 441
Optimized
thickness 11 11 4 4 4 11 17 19 22 30 30 30
(mm)
495 Note. The two lines of time represent the 12 hours before and after a day.
496
497 Table 4. Evaluation index of ice thickness measurement value.
Evaluation index MAPE(%) PCC MSE
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Initial ice thickness 56.36 0.97 65.60
Optimized ice thickness 11.82 0.99 1.83

498

499  As observed in Fig. 15 and Table 4, the optimized ice thickness calculated by the proposed model closely follows
500  the actual values. The Pearson correlation coefficient reaches 0.99, indicating a strong correlation, while the
501 measurement error remains minimal. The mean absolute percentage error is only 11.82 %, and the mean square error
502 is as low as 1.83, demonstrating the model's high accuracy. These results confirm that the proposed method

503 performs well in real-world scenarios and meets the practical application requirements.

504 4 Summarize

505 To address the challenge of insufficient accuracy in ice coating recognition and thickness detection for high-altitude
506 transmission lines, this paper proposes DTL-IceNet, dual-task learning architecture with multi-scale fusion
507 mechanisms for enhanced ice detection on transmission lines, which enables precise ice coating recognition and ice
508 thickness estimation.The proposed method employs ResSepNet, a multi-branch network designed to fuse and extract
509 ice features across different spatial scales, effectively mitigating background noise interference and enhancing ice
510 type classification accuracy. Additionally, a semantic segmentation network, MOMSA-SegNet, incorporating a skip
511 structure and multi-scale attention mechanism, is utilized to segment icing regions on transmission lines, thereby
512 facilitating ice thickness estimation. Furthermore, key meteorological data are integrated to optimize the correction
513 of ice thickness measurements. Based on the original ice images provided by the power grid, we constructed a series
514 of ice image datasets, including IceType and IceSeg. The experimental results demonstrate that the proposed DTL-
515 IceNet achieves 4.17 % higher ice recognition accuracy compared to EfficientNet-V2, MobileNet-V3, ResNeXt, and
516  MobileOne, while its ice area segmentation MIoU surpasses that of mainstream segmentation models such as
517 UNet++ by 1.64 %. These findings indicate that the dual-task learning framework effectively detects and identifies
518 both ice type and thickness on transmission lines. Furthermore, in the simulation test at the test site, the MAPE of
519 ice thickness estimation reached 11.82 %, and the PCC attained 0.99, demonstrating the proposed method’s robust
520 ice detection performance in real-world conditions. However, due to hardware limitations, this study does not
521 account for the impact of terrain elements on transmission line icing. The detection performance of the proposed
522 method under significant environmental changes requires further improvement. Future work will focus on

523 incorporating terrain elements into the model and examining their correlation with transmission line icing.

524  Data Availability Statement

525 The datasets and code utilized for the analyses in this study are publicly available at
526  https://doi.org/10.5281/zenodo.15718305 (Fu et al., 2025).
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