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Abstract The Qilian Shan eenstitutes-represents a Cenozoic fold-thrust belt characterized by
multi-stage tectonic deformation since the Paleozoic. North of it lies the Fhe-Hexi corridor basins
and the Beishan bleekorogenic belt, which constitute;loeatednorth-ofthe QilianShan—are the
southern segment of the Central Asian Orogenic Belt. The crustal-mantle structure of the study area,
serves-as-a transition zone, is crucial fer-comprehendingto understanding the deep processes of
accretion and crustal deformation. This study intreduees-presents a newly acquired 460-km seismie
wide--angle reflection and refraction profile spanning-traversing from the North Qilian Shan to the
Beishan-bleekBeishan Orogenic Collage (BOC). The-P-wave velocity structure ef-the-erust-and
upper-mantle-indieatesreveals a 47.5-60 km thick crust erustal-thickness-between475km-and-60
km;segmenteddivided into five stratalayers. The deepest Moho (60 km) lies beneath the central

Jiuquan basin displavs the most substantial crust. measuring 39.5-00 kmin thickness. ‘The Aaverage
crustal velocities (6.24—6.43 kms ')y varies—between—6:24—and—6:43—km/s;,—while—theand Pn
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valucsvelee&y (r—aﬂges—&emﬂ 7—km#s -to-8.1 kim/skm ') reveal strong lateral—Theconsiderable

s heterogeneity. North-dipping velocity contours from 20 km to
the uppermost mantle beneath the Qilian Shan, coupled with a lower-crust-upper-mantle low-
velocity corridor beneath the Hexi Basin, support early Paleozoic north-dipping subduction of the
Qilian Ocean. A positive upper-mantle anomaly (8.0-8.3 km s, 45-70 km depth) aligns with the
Hongliuhe—Xichangjing ophiolite mélange likely represents a fossil-break-off slab broken off after
north-dipping_subduction of the Beishan Ocean. Crustal velocity contrasts across the southern
margin fault of the Beishan affirm its role as a regional strike-slip structure. Integrating geological
and geophysical evidence, we suggest that the Altyn Tagh Fault does not terminate at the Qilian
Shan front but rather extends east-northeast along the southern margin of the BOC into the Beishan

and Alxa Block.

Keywords: North Qilian; BeishanBloekBeishan Orogenic Collage; Altyn Ttagh fault; Crustal-
upper mantle velocity structure;-erustal-deformation

The NW-SE-trending Qilian Shan, situated in the NE Tibet, is bounded by the Altyn Tagh fault
(ATF) to the west, the northern Qaidam thrust system to the south, the Haiyuan fault to the east, and
the north Qilian Shan fault to the north (Fig. 1b). The present-day Qilian Shan exhibits a Cenozoic

fold-thrust belt withenduring multi-stage tectonic deformation prior to the Cenozoic (Yin and
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Harrlson 2000; Gehrels et al 2003 Song et al 2014, Wu et al. 2016 Zuza et al. 2017; 2019) 3Fhe

Pa%ee%Noﬂh of the Q111an Shan, the Hexl corrldor basms and the Beishaﬁ—bleekBelshan
Orogenic Collage (BOC) form the southern section of the Central Asian Orogenic Belt (CAOB,

Xiao et al., 2010; Li et al., 2023; Xiong et al., 2024). As the middle of the South Tienshan-Beishan-
Solonker suture zone, the BOC underwent multi-stage breakup, subduction, collision, and
amalgamation during the closure of the Paleo-Asian Ocean (PAO)AO, mainly in the Paleozoic (Fig.
1 Zuo etal. 1991: Llu 1995 Yue and Liou 1999 Wang et a] 2010 Xiao et al. 2010: Zuo and Li

of the BOC is further comphcated by reglonal extension, subsequent mtracontmental overthrusting

and strike-slip faulting since Mesozoic (Zheng et al. 1996; Meng et al., 2003; Xiao et al. 2010; Zuo
nd Li 2011, Zhang and Cunnmgham 2012, Li et al. 2023). is—insidethe-middle—of the Seuth

in the Cenozoic, the far-field effect

of the Indlan Eurasmn colhslon led to the outward expansion of the NE Tibetan Plateau, and
reactivated the Qilian Shan, causing stress to propagate across the Hexi corridor basins into the BOC
and extending even further north to the Mongolian Plateau (Cunningham 2013; Zheng et al. 2017;

Wang et al. 2022).
The Qilian Shan isbeeame- an important part of the Tibetan plateau, playing a significant role

in accommodatin ing the intracontinental convergence, thrusting-folding and the northern
extension of The-NE Tibet (Meyer et al. 1998; Yuan et al. 2013; Zuza et al. 2017). As the
southernmost CAOB, the BOC acted as a major zonearea—forexamining-the for the reactivation of
inherited structures the-aneient-erust-duringand- the transmission of compressional stress leading to
the uplifteutward-exhumation of the NE Tibetan and the Mongolian Plateaus in Cenozoic. Therefore.
aAeting-as a-the transition zone between the NE Tibetan Plateau and CAOB, the crustal-mantle
structure of the studied-stu dy area 1s cruc1a1 for eempfeheﬂd-mg—understandmg the reglonal eVOluthl‘l
and interaction of inehaei n-and

%he—ﬂefﬂ%astem—"ﬁbet—aﬂ—pl—a{eaﬂleetan Plateau —éNE—”Ftbet—)—aﬂd—the—seu&hem—GA@B—"Fhis—fegieﬂ
aets-as-the-transitionzone-between-the Tethys tectonic domain and the Palee-Asian-oceanPAOQOie
{PAO)-tectonic domain (PAO}-since the Paleozoic (Fig. la; Li et al. 1982; Yin and Harrison 2000;
Xiao et al. 2009; Zhao et al. 2018).

Previous geophysical studies across the Qilian Shan—-BOC transition zone, have provided+—

valuable insights into the subduction polarity, continental extension, lithospheric foundering and
magmatic activity (Xiao et al. 2012; Huang et al. 2014; Wei et al. 2017; Xu et al. 2019; Shen et al.
2020; Huang et al. 2021; Yang et al. 2024). Nevertheless, the crustal-upper mantle velocity structure
remains ambiguous because earlier acquisition methods and parameters limited resolution. In this
study, we present a 460-km-long, SW-NE-trending wide-angle reflection and refraction profile that
traverses the North Qilian Shan, Hexi corridor (containing the Jiuquan basin and the Huahai basin

and the entire BOC. The new data yield a high-quality crustal-upper mantle velocity structure of the
study area. Combined with existing geological and geophysical evidence, we discuss the tectonic
significance of the transition zone, provide new constraints of the subduction polarity of the Qilian
Ocean and the southern PAO, elucidate the crustal deformation mechanism across main regional

faults, and Qropose the castern termination and extension of the ATF%%NWSE—(—F%BG}H%—Q{-]—}GH
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Geological Ssetting

The early Paleozoic Qilian Shan, recording the closure of the Qilian Ocean as part of the Proto-
Tethys Ocean (Yu et al. 2021). has beenis-a-typical-erogen traditionally divided into three structural
units: the North Qilian Shan Orogenic belt (NQS). the Central Qilian block, and the South Qilian
thrust belt (Yin and Harrison 2000). The boundary between the former two units is delimited by the
North Qilian fault (F9). The NQS principally comprises early Paleozoic ophiolite suites (Fig. 1¢),
blueschists, eclogites, greenschists, and arc-related magmatic and volcanic rocks (Xu et al. 2005;
Zhang et al. 2007; Song et al. 2009; Xiao et al. 2009; Zhao et al. 2024). These strata are overlain by
Silurian flysch, Devonian molasse and Carboniferous-Triassic sedimentary periods (Wang et al.
2023). In the Mesozoic, the extensional and transtensional basins evolved over the Qilian Shan from
the Xining Basin in the south to the Hexi corridor in the north (Horton et al. 2004; Pan et al. 2004).
In the Cenozoic, the Qilian Shan has been reactivated as a fold-thrust belt to accommodate the
crustal deformation resultant from the Indian-Eurasian collision with development of massive
thrusts and strike-slip faults (Tapponnier et al. 1990; Zuza et al. 2019).

The Hexi corridor, sandwiched between the BOC and the Qilian Shan by the southern margin
fault of the Beishan (F5) and northern margin fault of the North Qilian (F8), is a Cenozoic foreland
basin system (Fig. 1b; Li et al. 2002). The basement of the Hexi corridor consists predominantly
Paleozoic rocks, covered by thick Mesozoic and Cenozoic deposits. In this study region, tFhe Hexi
corridor is divided into the Huahai basin in the north and Jiuquan basin in the south by the
Kuantanshan-Heishan fault (F6). The Huahai basin is part of the Dunhuang block, traditionally

assigned as a Precambrian cratonic block or a microcontinent (BGMRGP 1989; Che and Sun 1996;
Mei et al. 1997: Mei 1998: Yu et al. 1998 Ren et al. 1999; Xu et al. 1999; Lu et al. 2008: Liu et al.

2009; Zhang et al. 2011; He et al. 2013; Zong et al. 2013), and involved in the final closureellision
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of the PAOaleo-AsianOcean (PAO.-Shi et al. 2022). The Jiuquan basin, a subbasin of the Hexi
Corridor foreland basin, has depesited-Cenozoic sediments deposited since as early as ca. 40 Ma
(Dai et al. 2005; Wang et al. 2016), and was subsequently influenced by the uplift of the NQS since
Cenozoic.

The Beishan-bleekBOC is positioned between the Mongolian Plateau eoHage-system-in the
north and the Dunhuang Block in the south (Fig. 1; Zuo et al. 1991; Yue and Liou 1999; Wang et al.
2010; Xiao et al. 2010; Zuo and Li 2011). It is widely considered to encompass multiple different
veleaniislande??? terranearcs, including the Que’ershan, Hanshan, Mazongshan, Shuangyingshan,
and Shibanshan terranearcs. They are separated by four nearly parallel W-E-trending ophiolite
meélange zones, named Hongshishan-Baiheshan (F1), Shibanjing-Xiaohuangshan (F2), Hongliuhe-
Xichangjing (F3) and Liuyuan-Huitongshan-Zhangfangshan (F4) respeetively-(Fig. 1c; Zuo et al.
1991; Liu 1995; Wei et al. 2004; Ao et al. 2010, 2012, 2016; Xiao et al. 2010; Yang et al. 2010; Zuo
and Li 2011; He et al. 2014; Wang et al. 2017; Wei et al. 2017; He et al. 2018; Wang et al. 2018; Li
et al. 2022; Li et al. 2023). The Hongliuhe-Xichangjing suture zone (F3) is generally recognized as
the final asealing- malgamation positionpesition of the South BeishanBloekBOC and North Beishan
bleekBOC in the middle to -late Ordovician -(Li et al. 2022).

Data and Mmaethods
Sseismic Acquisitioneellection-and-processing

In 2018, The Chinese Academy of Geological Sciences collectempleted a SW-NE-trending
seismie-wide-angle reflection and refraction profile stretchlng from the Nerth-QilianNOS to the
Beﬁhﬂﬂ—bleekBOC The profile starts from Yanglon inghai Province in the south

Wautongjing, Heiyingshan, and Har Borogdyn Uul, before ending at the China-Mongolia border in
the north. Nine FNTF—trinitrotoluene (TNT) blastsshots, ranging from 1.5 to 3.0 tons, were

detonatedexploded throughout the seismic profile at intervals of-reughly 30-60 km (ZB0-ZBS,
shown in red stars in Fig. lc). To achieve—thereunghensure dense ray coverage, 250 portable
seismographs (depicted as blue circles in Fig. 1c) were strategicaltly-distributeddeployed along the
whele-entire seismic lineprefile at a spacing of 2—-3 km. This-deployment-sought-to-capture-high-
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qualityseismie-data;-and-the speeifie-detailed parameters of the shots are presented in Table 1.

Identification of SSeismic Pphases

Using the ZPLOT plotting package (Zelt, 1994), we performed trace editing, automatic gain
control, band-pass filtering, velocity reduction, and phase picking for each shot. To make the-seismic
reeords—elearerimprove the signal-to-noise ratio, we applied each-trace-was-bandpass filtered up to
8 Hz and displayed the seismic sectionsed inredueed-time-using a reduction velocity of 6 km s,
based-en-a-veloeity-of 6-km/s-inthe-breadthover a time window of -5-10 s (e.g. Fig. 2, Fig. 3).

Uncertainties in phase picking primarily arise from challenging signal-to-noise conditions and
complex subsurface wave propagation effects. The extensive desert sedimentary cover in the study
area significantly attenuates seismic energy, particularly at larger offsets and for deeper arrivals.
Additionally, strong lateral heterogeneities, —ssuch as fault zones and intracrustal velocity variation,
s—cause substantial wave scattering, dispersion, and multipathing. This; resultsitg in phase
superposition and waveform distortion that complicates accurate phase identification. Following
careful analysis and comparative evaluation, sSix seismic phases, including Pg, P1, P2, P3, P4, Pm
and Pn, are identified based-en-thereduced seismierecordings—(c.g. Fig. 2, Fig. 3) Pg is a first-
arriving-arrival phase_refracting through-prepagating—ever the crystalline basement. Pm is the
strongly wide-angle reflected phase from the Moho&ﬁseeﬁ%inﬂi&y Pn is the head wave refracted

the reflected phases from the intracrustal second-order velocity mterfaces .In Fig. 2 and Flg 3, the
dotted lines represent the identified phases, and the squares mark the position of the computed
traveltime.

The first-arrivals of Pg are picked up to offset of 100 km. the-The travetimes recorded at
ofshotpoint ZB1, located in the NQS, areis early as are the ;-whichreveals-the-shallow-veloeity-of
the NQS-is-high-with-5-1-63 km/skms Hand 4.0-6-1 km/skmsaverage veloeity correspondingly.
Fhe-ttraveltimes for the shot ZB8 located -ef-the-nerth-branch-of ZB&-is-earlytoo,-demonstrating
the-shallow—crustalveloeity—in the northern Beishan blockBOC—is—with-3.3-63 kmeskms 1.

Intracrustal reflection phases P2—P4 can be recognized at the offset ranges from 70-90 km, 100—
150 km, and 120-150 km respectively. Pm can be corelated over an offset of 180 km for most shots
(Flg 4a) Pn was found w1th max1mal amphtude 1n the offset range of 24(%280 km (Flg 3) %Ehellﬂ

Fhe-Vwvelocity strueture-mModelling

The 2-D crustal velocity structure is basced on scismic phases identification, and the first initial
2-D crustal model is-was built-constructed with-using the greatest-highest elevation of 4300 m as
the datum. The fETheforward fitting calculation adopts the asymptotic ray tracing to fit the
traveltime of each shot (Fig. 4; {Cervenyy et al. 1988; Vidale 1988; Zelt and Smith 1992; Cerveny
2001) and gradually improves the initial 2-D velocity structure by constantly modifying the interface
depth and interval velocity. Model construction and editing are carried out with the RAYINVR
software (Zelt and Smith, 1992). The travetime fitting of 5—6 phases for nine shots are conducted
step by step. top-down to limit the multi-solution of the model. Fig. 4 illustrates the traveltime fitting
of the seismic recordings of the shot gather and the complete crustal ray coverage. The time error
of the ray tracing forward fitting accuracy is typically less than 0.05 s, and the maximum is not more
than 0.1 s. The root mean square error (RMS) of the traveltime fitting for different earthquake phases
is reported in Table 2. The velocity inaccuracy is controlled within 0.05 kis/skm 5, while the Moho
depth error is less than 1 km. The ultimate crustal-upper mantle velocity structure is found in Fig.
5. The typical continental crust is stratified into three principal layers: the upper crust, comprising
sedimentary cover overlying crystalline basement characterized by an average P-wave velocity of
6.0-6.3 km s'; the mid-dle—crust, composed of interleaved silicic and basic lithologies, with
velocities of 6.3-6.5 km s~ !; and the lower crust, dominated by more mafic assemblages, exhibiting
velocities of 6.6-6.9 km s! (Christensen, 1995; Jia et al., 2019). Based on our velocity structure
result, The-result-shews-the crust can be splitdivided into upper crust (from the surface to P2C2),
middle crust (from P2-C2 to P3C3), and lower crust (from P3-C3 to the Moho-discontinuity). The
upper crust can be separated into two layers by intracrustal interface C1 determined by seismic
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phase P2. The lower crust can also be subdividedseparated into two layersstrata—as—wel-as_by
intracrustal interface C4 indicated by seismic phase P4.

Velocity Sstructure of the Uupper Crust

The upper crust, fromeemprising-delineated-bythe-layerfrem-_the surface to interface C2 at
depth, has—preneunecedexhibits pronounced lateral segmentation_across the study region. Lower
velocities extend to greater depth NetablysA-prominentalower—velocityzoneisprevalentbeneathin
the NOQSerth-Qilian-Jiuquan basin, contrasting sharply laterally with the a significantly sreater
higher velocities characteristic ofy zene-in-the Beishan-bloekBOC. Along interface C1 amid-within
the upper crust, discretemany- high-velocity entities-zones with an-interval velocitiesy of 6.3-6.4
km/skm ! are seenobserved.

The-base—of-ilnterface Cl corresponds—tomarks the basement surface, characterized by a
velocitiesy ranging frome of 3.4_to —6.5 km/skm s '. The basement profile—surface exhibits
signiﬁaan undulationes—c—xtensivc—l—y within-the depths vaging bctwccnef 6.1 and -12.5 km(Figéb

an mterface depth of 6.3—7.2 km in the middlecentral Q{-l—l-a-ﬂ QS.In the southern NeﬁhQﬂ-taﬂ QsS,
the interval velocity ranges—fromis between 5.2 and —6.1 km/skm 5!, having-and a high-velocity

bedyzone is present in the bettem—lower section, with an—interval velocitiesy of 6.2—6.45
ken/skm s ' here the md—t-he—interface deepens%h—keweﬁ to 10.8-11.4 km. In the northern ﬁeeﬁeﬂ

interface depth deepeﬂ&lncreases t0 9.7-10.1 km.

Withinks the Jiuquan basin, the interval velocity reduees ranges fromte 3.6 to —6.1 kim/skm s, !,
with-anand the interface deepenspth-falling to 11.2—12.5 km. The Huahai basin h&q—ﬂhowsaﬂ interval
veloeity-velocities of 3.8-6.2 kim/skm 5!, and-thewith interface depths between rangesfrom-11.5
and —12.5 km. AddmeﬁaJAy—a high-velocity bedy-zone with -an-interval veloeity-velocities of 6.3—
6.5 km/skm g ' appears-is also observed beneath at-the-bottom-below-the F5 faultracture. In the
southern Beishan—bleekBOC, layerinterval velocities on the south side measure—are 4.6-6.2
km/skm 5!, with interface depths rangingfremof 11.5-12.0 km, whereas on the northern side,

layerinterval velocities reduee-decrease to 3.4-6.1 km/skm 5 ', and interface depths are-range from

9.4 to—11.3 km.

In the Northern Beishan—bleekBOC, layerinterval velocities are—vary from 4.2 to —6.2
kem/skm s !, with thean interface at depths of 10.5-12.5 km. Further nonh within the Beishan
bleekBOC, the interval velocity istemains between 4.2 and —6.2 ksa/skm 5!, and the interface depth

is-ranges from 10.0 to —11.3 km. AHh%be&eﬂ%eﬁﬁ}%Be&sha&bleekB@C—mﬁ%ﬁpl%Sevelal high-
velocity bedieszones -are-observed-with layerinterval velocities of 6.3—6.4 km/skm s ' are identified

at the base of the BOC, including one beneath the-high-veloeitybody—under the Mazhoushan
Mazongshan terranearc.

The deeper upper crustalbettom layer exhibits velocities rangingfromof 6.0-6.3 km/skm s ' and
interface depths ranging—frombetween 13.2_and —27.6 km. Although this layer shows no While
laekingsignifieantmajor lateral segmentation, its interface is highly undulatorythistayer—exhibits
eeﬂﬂéeﬁi-b}e—rﬂée%ﬁlee—uﬁdﬁ%&&eﬂﬁ (Fig—5b. 5). South of fault F9, the interval velocity is 6.05-6.15
lem/skm s_!, with an-the interface depth-of-at 12.8-18.3 km_depth. Between faults F9 and F5, the
layer thlckens substantiallyconsiderably, and the interface depth-elimbsdeepens to 17.6-27.5 km.

North of fault F5, the layer thickness reduees-decreases to values similar to those inmateh the
southernmost part of the profile, but the velocity increases to 6.1-6.4 ka/skm s . This-These
characteristics shows-indicate that the Nerth-Q#ianNQS -and the Jiuquan basin hawe—share a
consistent basement_structure, smatehing-which aligns with the findings from residual gravity

anomaly -findingsanalyses (Yang et al. 2024).

Vxelocity Sstructure of the Mmid-édle-Cerust

The intermediate crust —exhibits distinct zoning features of-the—intermediate—erust—are

notablythat differ netblynotablyent from the top-upper crust with; with-interface-depth-of23.4-38.7
kims-and layer-interval velocityies of 6.2-6.5 km/skm s '. This layer is Fhere’re-eCcomparatively

slowerlylow-veloeity zones-are-observed eeeurring-inbeneath the northern Nerth-QilianNQS and
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the Jiuquan basins (Fig-5b. 5).

The interface C3 depth efthe-eentaetacross the fault F8 between-separating the NQS and the
Jiuquan basin is-varies from 23.4 to —38.7 kilemeterskm. The minimum-lowest interval velocitiesy
is (6.2-6.35 km/skm 5. ') occur in the middle-central NQSQilian, increasing northward to 6.25-6.45
km/skm s !-nerthward. In the Huahai basin, tFhe interface dep%hlies at in-the Huahai-basins 27.5—

38.7 km depth, with interval velocities of ¥-6.25-6.5 km/skm s, ':; and-the highestmaximum interval
velocity in this regionreaches (6.32—6.45 km/skm s ') are found in its central partthe-middleregion

(Fig—5b.5).
Within the BOC., tFhe interface C3 depthshallows uﬂrﬂa%Beisha&bleeleelec—rease&to 24.4—3 1 .2

to 6 25— 6 4 km 5! whereas—t-hese in the s southern Shuangylngshan terranearc and—deerc—asﬁe—é—%—

increases to 6.3-6.42 kim/skm s ! further north.
The The Vvelocity contours display contrasting dip directions: in the NOS Q#lian-and the Jiuquan
basin, they show a gentlyn undulating northward inclination-pattern, while these-in the Huahai basin
they dip steeply te-the-southward (Fig—5b. 5).

Vxelocity Sstructure of the Llower Cerust

The lower crust can be subdivided typicallyseparated-into three pertions-segments from south
to north, boundrdered by faults F9 and F4 (Fig-5b. 5). The consistent undulation of the interface C4

and Moho discontinuity-is-consistent;-which-signifies the thickness variations of the upper and lower
farers-portions of the lower crust is—with-the-samefollow a similar trend along the entirceomplete
profile.

Upper layer: in-Tthis layer;-with between C3 and C4 is-characterized-by-a-bottom-depth-othas
36.7-49.5 km-and-an-an interval velocity of 6.45-6.7 km/skm s ' (Fig—5b. 5). -distinguishing

features—emerge—South of fault F9, interface C4 lies is—located-at-a depths of 36.742.4 km,
indieating-with an-interval velocity of 6.45-6.7 km/skm s_'. Between faults F9 and F4, interface C4

deepens to 38.6-49.2 km, and the interval velocity increases to 6.5-6.7 ka/skm s~
Ag&ub%aﬁﬂa-l-mﬁcdnt upward undulation of a high-velocity bedy-zone is observed with
segmentzene. North of the fault F4, interface C4 is-positioned-at-a-depth-efshallow to 37.4-40.3 km,
and-theaccompanied by a decrease in interval velocity deereases-to 6.47—6.65 km/skm s '
Lower layer: The Moho discontinuity-is identified at a-depths of 47.5-60.0 km _and -
thise-tewer layer between C4 and the Moho exhibitsexhibitings an interval velocity of 6.65-6.85
ken/skm s ! (Fig—5b. 5). Beneathln the Qilian Shan and Jiuquan basin,the the Moho reaches -is-ata
depth of 57.8-60.0 km, with an an-interval velocity of 6.7—-6.85 kim/skm g . The central part-of the

Jiuquan basin displays-exhibits the deepest Moho at-(60 km), where

where accompanicd by a deercase in
the interval velocity decreases slightly to 6.7-6.78 km/skm s, '. In the Huahai basin and Beishan

bleekthe BOC, the the-Moho depths spans-range from 47.5 to —57 km, and the velocitvelocitiesy of
the-layerreduces to 6.7-6.75 km/skm s_'. The shallowest Moho; (at 47.5 km); is observedrecorded
beneathin the Que’ershan terranearc, where the lowermost crust has with-an interval velocity of
6.65-6.78 km/skm s .

MantlePn velocity structure revealed from Pn

The mantle Pr-velocity structure exhibits nuanees-distinct lateral variations across the study

area%h-reugheu—t—t—he—aﬂa-l—y%ed—leeaﬁeﬁs The Qilian Shan is characterized by a relativelv hi;,h
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sub horizontal vclocnyappreﬂma%el—y—ﬂ-&t contours. A velocity reductlon to 7.7-8.3 kms“ is

observed from Frem-the Jiuquan basin to the Shibanshan terranearc, followed by a slight increase
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the—veloeity—reduces—to—7-7—8-3—km/s;,—then—rises—to 7.9-8.6-3 km/skmg ' in—beneath the

Shuangymgshan terranearc. Further north tFhe Mazongshan Hanshan and Que ershan terranearcs

indicating a pregressweérepﬂ?remsouth—fto—fnorth decreasing trend. The lowest Pn values elec—rty
(7.7-7.8 kmiskm s ') isreported are localized beneath faults F5, F1, and F6.
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Crustal-Uspper Mmantle Vvelocity Aanomaly Sstructure

To improve the visibilitysensitivity of the velocity heterogeneity of the crustal-upper mantle
structure the mean layer velocities are subtracted to produce a Velomty anomaly structure of the
crustal-upper mantle is-determined-(Fig—6b. 0;-the >

and their mean aly

<)
aet thett e vadtes):
Figu). Figure 6b demonstrates that in the upper layer of the crust from depths of 0 to 12.5 km, the
composition is significantly heterogeneous, and lateral segmentation is visible. The Qilian Shan is
with a high positive velocity anomaly (0.3—-1.0 ksm/skm s ). The Jiuquan basin and Huahai basin
showare—with negative velocity anomaly (-1.1— -0.15 km/skm s '), and extend northward to the
southern Shuangyingshan terranearc, which arepreventedterminate atby the strong positive velocity
anomaly in the central Shuangyingshan terranearc. Three positive velocity anomaly bodies (0.12—
0.45 kan/skm 5 ') with closed contours exist beneath the faults F5, F4, and the core Shuangyingshan
terranearc. In the northern Shuangyingshan terranearc, a negative velocity anomaly (-1.3—0.12
kim/skm s ') develops, and thins out to the north extending to the southern Mazongshan terranearc.
The positive velocity anomaly (0.15-0.45 kea/skm 5 ') starting from the Mazongshan terranearc
dives-extends northward to the northern end of the Que’ershan terranearc, and the central part is
covered by the low-velocity negative anomalies (-0.4—0.08 ki/skm s ") in the upper Hanshan
terranearc.

At a depth of 9.2-38.5 km between interface C1 and C3, the middle Qilian and the southern
North-QilianNQS consisted of the northward-tilted, small-variation positive velocity anomalies (0.0
to 0.08 km/skmsg ') and negative anomalies (-0.03—0.01 kim/skms—1). The northern Nerth
QilianNQS, the Jiuquan basin and the southern portion of the Huahai basin are northward-tilted,
downward-curved layers of the low-velocity negative anomalies (-0.05—0.2 km/skm s, ). The
northern half of the Huahai basin and the Shibanshan terranearc are positive anomaly (0.0-0.08
kem/skm s ') layers with small velocity changes. The southern Shuangyingshan terranearc is a mixed
layer of the positive velocity anomaly (0.01-0.08 km/skm s—1) and negative velocity anomaly (-
0.01—0.04 kiw/skm s "). The velocity anomaly from the northern Shuangyingshan terranearc to the
Que’ershan terranearc is positive (0.03-0.12 ki/skm s "), and only locally negative (-0.01—0.03
km/skm 1),

In the upper layer of the lower crust, the Qilian Shan is characterized by a positive velocity
anomaly (0.01-0.12 km/skm ') in the upper section, and a negative velocity anomaly (-0.01-0.08
kim/skm g ") in the lower part. The Jiuquan basin and Huahai basin are characterized by minor
negative velocity anomalies (-0.02—0.08 ksa/skm 5 ). The Beishan-blockBOC is characterized by
a strong positive velocity anomaly (0.02-0.12 ks/skm s ') and exhibits a northward-increasing trend
(Fig—6b. 6).

In the lowest layer of the lower curst, From the Nerth-QilianNQS to the southern Huahai basin, the
velocity anomaly reveals positive (0.01-0.07 kaa/skm g ') with a relatively minor variance. From
the northern Huahai basin to the southern Shuangyingshan terranearc, the velocity anomaly is with
a positive to negative (0.01—0.07 km/skmg ') from top to bottom. From the northern
Shuangyingshan to the Que’ershan terranearc, lesser positive anomalies (0.01 to 0.03 ks/skm 5 ')
are observed (Fig-—6b. 0).

At the top of the upper mantle, the Nerth-Qilian-ShanNOS and the southern Jiuquan basin show
positive velocity anomaly with modest changes (0.05-0.15 ksa/skm s ), whereas negative anomaly
with substantial velocity variations (-0.1 to -0.25 km/skm s ") from the northern Jiuquan basin to
the Shibanshan terranearc. The southern Shuangyingshan terranearc is characterized with a gradient
of the velocity anomaly ranging from negative to positive (-0.1-0.12 km/skm 5 "). The northern
Shuangyingshan and Mazongshan display positive anomaly (0.03-0.12 ks/skms ') moving
downwardly. The southern Hanshan terranearc has a positive anomaly (0.01-0.1_kms")
characterized by a gradual reduction from south to north. The northern Hanshan terranearc and the
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Que’ershan terranearc show negative anomaly (-0.01—0.12- km s ") that diminish steadily from

(RETHR:

south to north (Fig—6b. 0).

Discussion,

Lhz

(RETHER:

ik

The observed-crustal-upper mantle structure (Fig. 5; Fig. 6) recordsis a what is know to be a
complicated euteome-history shaped-by-beth—of vertical and lateral material-mass transferpesrt
proeesses, reflecting Precambrican inheritancre.- These-aetivities-arerelated-to-Paleozoic subduction;
collision;—and—/accretion—events, Mesozoic intracontinental defermationsreworking, and—the
Cenozoic northward spread-expansion of the NE Fibetan-Tibetan plateau (Cunningham et al., 2009;
Zhang and Cunningham, 2012; Li et al., 2021 REEERENCES))since-the Precambrian.

The Nnature of the Beishan Orogenic Collage BOC-crust <

It has been previously interpreted that Fthe middle-lower crust beneath the BOC behaves as a
mechanically stable 'fossil archive' on Cenozoic time scales, preserving pre-Cenozoic architecture,
whereas the— uppermost mantle and upper crust show active deformation (Cui et al. 1995).
Instrumentally recorded seismicity isa confined to the Qilian Shan, the Hexi Corridor basins, the
Huahai Basin, and local areas west of Xingxingxia, mostly at depths efabove? 15-16 km (Fig. 7).)
which acted as the decollement as shown in the seismic profile (Fig. 5. Fig.6; Fig. 8).. Tthe Beishan
interior has spatially and temporally sparse low magnitudeis-almestaseismic (M< 4.7) seismicity
and exhibits low topographic relief (Xiong et al. 2003 Yang et al. 2019: Zhao et al. 2019), indicating
limited present-day strain. Slight mid-lower-crustal flexure and reduced resistivity in southern
Beishan (Xiao et al. 2015) nevertheless imply a rheologically (not seismically) slightly weaker zone
relative to its surroundings. Active left-lateral and thrust faults in the southern BOC also indicate a

weaker crust (Yang et al. 2019; Zhang et al. 2020; Yun et al. 2021; Zhang et al. 2023).

Paleozoic Subduetion-Ssubduction Ppolarity ef the Qilian-Ocean-and-the-seuthern

PAOand Aaccretionary Aarchitecture

Strata of <

Tthe—North Qilian Ocean, a part—branch of the Proto-Tethys Ocean, deformsevelved

,,,,,,,,,,,, (RN b4 2

predominantiy-along the Kunlun—Mts--Qilian Shan-and —Altyn mountain beltMts- in the northern

D ARG

HEhBE

:Fl-bef-aﬂ—lll-a-fe&uleetan Plateau. The dyn amlCS of the closure of the Qilian Ocean resulting fromthe

D TR

H 3 i E

jmargin of
the North China Craton remains a-matter-of considerable-debated (Yin and Harrison 2000; Guterch

D TR

M E

et al. 2003; Xiao et al. 2009; Song et al. 2014; Wu et al. 2017; Zuza et al. 2017; 2019). The
subduction polarity of this-the eeearQilian Ocean has been proposed as: 1) north-dipping (Zuo and
Liu 1987; Song et al. 2013; Li et al. 2022); 2) south-dipping (Wang and Liu 1981; Li et al. 2016);
3) bidirectional (Zhao et al. 2024); er-or divergent models (Wu et al. 2011; Chen et al. 2019).
Although previous geophysical investigations have covered the Qilian Shan (Xiao et al. 2016; Guo
et al. 2019; Shen et al. 2020; Li et al. 2021), focusconcentration has largely been on neotectonics
rather than Paleozoic evolution. In this study, we observed north-dipping velocity contour from
interface C2 to the uppermost mantle beneath the Qilian Shan, coupled with a lower-crust—upper-
mantle low velocity anomaly beneath the Hexi Corridor (Fig. 6). These features most plausibly
record early Paleozoic north-dipping subduction of the Qilian Ocean, which aligns with the surface
geology: later collisional or bidirectional shortening may have locally overprinted the original
polarity (Davis and Darby, 2010).

Despite intensive geochemical and chronological research on Paleozoic rocks in the Dunhuang
block and the BOC, the accretionary architecture of the PAO stilremainsremained enigmatic (Xiao
et al. 2010; Shi et al. 2020, 2021 Li et al. 2023). Our deep seismic velocity model now provides the
direct geophysical evidence for the subduction polarity within the northern BOC. Beneath the
Que’ershan arc, the northernmost portion of the BOC, north-dipping velocity contours from
interface C2 to the Moho imply south-dipping subduction of the Hongshishan Ocean, consistent
with surface geology (Xiao et al. 2018; Duan et al. 2020; Niu et al. 2020; Xin et al. 2020). Velocity
undulations between faults F9 and F1 probably reflect late-Paleozoic collision or Cenozoic
bidirectional compression, obscuring primary dip direction.
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Between faults F2 and F4, a positive upper-mantle velocity anomaly (8.0-8.3 km s!) between
~45 km and ~70 km depth likely represents a broken off fossil breakeff-subduction slab following
north-dipping subduction of the Beishan Ocean, although residual oceanic crust or mafic
underplating cannot be entirely excluded. This anomaly aligns with the Hongliuhe—Xichangjing

o 0 A A 0 U A A 0 U A A

ophiolite mélange in surface (Yu et al, 2012: Hu et al, 2015; Song et al, 2015; Wang et al, 2015; Li [ WE TR BEHEMiE%
etal. 2023). L (BETES: ks
[ BETHR: i A, RS Mgk
Cenozoic CeCrustal Ddeformation and Sstrain Ppartitioning across Mmajor { BB TR RS fE
Ffaultsmeehanism (BETHR: a5 Mg
1 . =S IR
Northward-propagating crustal shortening since the Miocene is accommodated through a series [ T&ET%?&' RS Az
of parallel NW-SE-trending thrust faults in the Qilian Shan and successively reaches the Hexi (&ET*&‘:&: P ARBUR, KA PR R
corridor and the BOC (Cunningham 2010, 2013; Wang et al., 2020; Yu et al., 2021; Zhang et al. {’&ET’F&:‘&: APt S gL
2023 ) 3 s R B FE Y
Symmetric downward undulation of the velocity contours (6.2—6.8 km s™!) across the southern { &iTzi ﬁﬁ?}\a‘—i%ﬂ::ﬁ
margin fault of the Beishan (F5) demonstrates that fault F5 acts as a lithospheric-scale partition zone \ { "ET L R A R
rather than other faults (Fig. 5, Fig. 6). South of the fault F5, north-tilting high velocity anomaly {’&E-T*ﬁii T AREUR, AR A S FE L
bodies with 6.2-6.45 km s—1 at the base of the upper crust (18-25 km depth) form the Qilian Shan {’&E_T*&ﬁ: K Pt B RNET:
to the Shibanshan arc, correlate to the north-vergent thrusting that decouples from a co-thickened s K p—
middle-lower crust (25-50 km, 6.5-6.8 km s!). North of the fault F5, complementary velocity { #ET%?&' Mjﬁﬁf*ﬂ?a fi
gradients (6.1-6.6 km s', 15-45 km) indicate conjugate north-direction upper-crustal thrusting {&ET*&:‘&: ErAYHS AL
accompanied by whole-crust gentle folding in the BOC. The downward-undulation of the velocity !{ BE TR ik R, B P g
contours imply co-thickening of the middle-lower curst of the NQS—Shuangyingshan area, with the { BETHRR: KE s RIS
uppermost crust experiencing thrusting and overthrusting. Our velocity structure indicated that low ~ —
Pn velocity with 7.7-7.9 km s_! and dome-shaped uplift of the crust directly beneath the fault F5 [&ET%:‘&: RS Mk
(Fig. 5). The electrical resistivity imaging (Yéng et al. 2019) also highlighted the boundary fault, [ BETHEX: Lix
termed Baihewan fault (in Fig. 7) in the southernmost Shibanshan arc:; this faultwhieh penetrates
the lower crust with low resistivity, to both sides of which the direction of the interpreted thrusting
is opposing-Yangsetal 20493}
The sSeismic reflection profile revealed a south-dipping Cenozoic thrusting system that
dislocated the Paleozoic—Mesozoic strata over the undeformed Meso-Cenozoic sediments in the
Jiuquan basin (Zuza et al. 2016; Huang et al. 2021). consistent with our velocity model. The shallow
velocity structure across the Huahai basin and the southern BOC likewise depicted the differences
to both sides of F5 (Wu et al. 2022). Guo et al. (2019) likewise documented the northward expansion
of the Qilian Shan across the Hexi corridor via uppermost-crustal overthrusting and lower-crustal
thickening east of our seismic profile. High-resolution seismic reflection profile south of the fault
F5 further reveals the middle-lower crustal thickening by duplexing (Huang et al. 2021).
Within the southern BOC north of the fault F5, north-direction thrusting dominates the
uppermost crust, while the rest of crust undergoes gentle folding identical to the NQS—Hexi corridor
style (Gaudemer et al. 1995; Meyer et al. 1998: Tapponnier et al. 2001; Yuan et al. 2013; Zuza et al.
2017 2019). Crustal deformation across the fault F5 is therefore distinctly asymmetric: south of the
fault, the uppermost crust is decoupled from the underlying crust (Fig. 5), whereas north of the fault [ BETHER: FRliir
the entire crust participates in coherent gentle folding (Fig. 8). [“&E_T*&:‘rﬁ: et on
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transmission-further-to-both-sides:Eastern Eextension of the Altyn Tagh FaultATE

The ~1600 km-long ATF is a major left-lateral strike-slip fault that defines the northern
boundary of the Tibetan Plateau (Yin et al., 2002: Ritts et al., 2004; Dai et al., 2023 Xie et al., 2024).
While its western and central segments are well-defined (Xie et al., 2023; Wu et al., 2024 Yao et
al., 2025), its eastern termination and continuation remain highly controversial due to extensive
sedimentary cover of the desert and discontinuous bedrock outcrops (Yue et al., 2001; Cunningham
and Zhang, 2020; Yang et al., 2023). Definition of its eastern extentThe-reselution-of this-debate is
critical for understanding deformation propagation into northeast Tibetan plateau and for regional
seismic hazard assessment. Yue et al. (2001) proposed that the ATF likely extends east-northeast to
northeast along the Alxa—East Mongolia fault (Donskaya et al., 2008), with Cenozoic motion
displacing the Hexi Corridor and cutting through the BOC. An alternative view suggests that the
ATF transfers its slip northward into the thrust systems along the northern margin of the Hexi
Corridor, transitioning from predominantly strike-slip in the west to dip-slip in the east, where it
eventually terminates against reverse faults within the Alxa Block (Xiao et al., 2015: Yang et al.
2023).

This study suggests that interprets F5-as-the-principal-eastern-splay-of the ATE-the ATF does
not terminate at the Qilian Shan frontland, but rather extendseentinues eastward to east-northeast
into the BOC and the Alxa Block. The notable velocity contrast observed across the fault F5 may

(kB0 by 2
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indicate the ATF extends at least across the southern margin of the BOC. -The projected left slip rate
with-of 1.52-2.69 mm/a, is significantlysubstantially greater-higher than the thrust rate with-of 0.35
mm/a in the southernmost Beishan area (Yang et al. 2019; Yun et al. 2021). Geodetic The-GPS
motienand-velocities (Yang et al. yrateresultfields revealed thats the moving direction changed
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fI‘OII.I northeast tn the Qilian Shan to nearly-east in the Beis%tafrb%eekBOC with a significant lateral [BETHR: 74k (BiL) Times New Roman, (1 30) %14,
motion rates (Fig. 7; Yang et al., 2021). Darby et al. (2005) identified five major left -lateral strike- | BEEEEE)
slip faults within the BOC and the Alxa block, which strike is consistent with the ATF, and f“‘ '&E.T*&iﬁ R 10) Times New R
accommodated >70 km post-Cretaceous offset based on Landsat/ASTER imagery and field ‘ ) F4h: (BRI Times New Roman, (1) R4,
mappingwetk. Thus, we propose that the ATF continues stratght-eastward-along a consistent NEE ‘j; T - .
strike at the southern margin of the BOC.; Local faults identified within the southern margin of the il ‘&E‘(T;g:;t 1 (BRI) Times New Roman, (1130) K1,
BOC, such as the Beihewan fault, the Heishan fault, the Jiujing-Bantan fault, and the Ebomiao fault i BE TR - - -
may be the secondary splays of the ATF and eventually terminate against it (Fig. 7; Yun et al., 2019; | sgmcemh F: (BRIN) Times New Roman, (F30) f#,
Zhang et al., 2020; Yang et al., 2019; 2024). These subsidiary structures collectively accommodate H( ) —
distributed crustal deformation regionally. 1%%75‘ “Ff: (BRiL) Times New Roman, (1 30) A,
This kinematic model also provides a coherent explanation for the distinct slip- ratc dcchnc from the | R ESE))
western-central to eastern segment of the ATF (Yan et al., 2024). Furthermore, the distribution of &E;-T*ﬁﬁ A4 (BRIA) Times New Roman, ("1 30) A4,
seismicity supports this structural boundary: all recorded earthquakes of M > 4.57 occur south of ih S CEH)
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Conclusion BRETEX )
1). Crustal thickness decreases northward from 60 km beneath the central Jiuquan basin to+ RE TR [—ﬂ
47.5 km beneath the Que'ershan arc: average crustal veloeities-(6.24 - 6.43 km s™' ) and uppermost || |. BETHRN f—ﬂ
mantlePa velocities (7.7 — 8.1 km s™' ) reveal strong lateral heterogeneity. BETHER [—ﬂ
2). North-dipping velocity contours and a lower-crust — upper-mantle low-velocity corridor WETHER (—i
beneath the Hexi Basin support early Paleozoic north-dipping subduction of the Qilian Ocean; a | BETHER [—ﬂ
positive upper-mantle anomaly (8.0 - 8.3 km s™', 45 - 70 km) between faults F2 and F4 represents BETER [—ﬂ
a fossil break-off slab after north-dipping subduction of the Beishan Ocean.
3). Fault F5 acts as a lithospheric-scale partition: north-vergent, decoupled thrusting south | BETHR f—i
of F5 versus whole-crust gentle folding to the north; a dome-shaped Moho and slow mantle Pn |, BETHER [_ﬂ
phase (7.7 - 7.9 km s7' ) beneath F5 localise present-day strain. [HZBETER [—i
4). The Altyn Tagh Fault continues east-northeast along F5 into the Beishan and Alxa Block / // RETER
at 1.52 - 2.69 mm a~'_ left slip, far exceeding the 0.35 mm a~' thrust rate; secondary splays along // -
the southern Beishan margin collectively accommodate deformation and explain the eastward slip- BETHX f—i
(RETHAR =)
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