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Abstract. This study investigated the vertical distribution of PM2.5 and size-segregated 16 

aerosols at the foot and top of Mount Hua in Northwest China, focusing on C2 formation and 17 

its δ¹³C characteristics influenced by dust transport. Under non-dust conditions, PM2.5 and 18 

diacids concentrations at the foot were 4.5 and 2.1 times higher than those at the top, with 19 

stronger local anthropogenic signals (C9, 5.67 times higher) and pronounced day-night 20 

differences for diacids variation. Higher C2/C4 (5.84 vs. 4.74), C3/C4 (1.04 vs. 0.56) ratios and 21 

δ¹³C values (-21.5‰ vs. -27.6‰) at the top indicated photochemical aging during aerosol 22 

transport. C2 concentration was positively correlated with aerosol liquid water content and its 23 

size distribution pattern matched with precursors, confirming aqueous-phase oxidation as the 24 

dominant formation pathway. During dust events, PM2.5 concentrations at the foot and top 25 

reached 457 μg m−3 and 165 μg m−3, but C2 concentrations in PM2.5 decreased by 59% (foot) 26 

and 25% (top), while δ13C values of C2 exhibited a positive shift (foot: -27.6‰ to -23.9‰; top: 27 

-21.5‰ to -13.2‰), attributed to alkaline dust catalyzing 13C-enriched oxalate formation. mGly 28 

became the second most abundant acid due to enrichment on dust-particle surfaces. Size-29 

segregated data revealed decreased fine-particle C2 but increased coarse-particle C2, elevating 30 

the coarse-to-fine particle ratio from 0.3~0.4 to 0.6~1.1. These findings offer valuable insights 31 

into the altitude-dependent transformation of SOA affected by dust transport, enhancing our 32 

understanding of mountain atmospheric chemistry and regional air quality. 33 

Keywords: Dicarboxylic acids, dust particles, size distribution, stable carbon isotopes (δ13C), 34 

aqueous-phase oxidation, heterogeneous reactions   35 
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1 Introduction 36 

Dust cycling is crucial to Earth’s climate system (Maher et al., 2010; Liang et al., 2022). 37 

Mineral particles from dust storms absorb and scatter solar radiation (Kumar et al., 2014), 38 

altering regional heat balance and cloud properties, which in turn affects precipitation 39 

(Mahowald et al., 2014; Kok et al., 2023; Marx et al., 2024; Xu-Yang et al., 2025). They 40 

also act as effective ice-nucleating particles (INPs) in mixed-phase clouds, regulating ice 41 

formation and the radiation budget (Fan et al., 2016; Vergara-Temprado et al., 2018; Kawai, 42 

et al., 2021; Chen et al., 2024). Dust particles often contain high levels of salts, bacteria, and 43 

heavy metals, posing potential risks to human health and plant growth (Yamaguchi et al., 2016; 44 

Luo et al., 2024). Dust not only impairs air quality locally but also undergoes long-range 45 

transport, ultimately affecting both hemispheric and global climate systems (Pan et al., 2025). 46 

During transport, mineral dust may undergo heterogeneous reactions, forming secondary 47 

aerosols that aid cloud formation (Wang et al., 2020; Bikkina et al., 2023). The large surface 48 

area of these particles facilitates reactions that alter radiation transfer and photolysis rates 49 

(Sullivan et al., 2007a). 50 

Over the past 500 years, East Asia has been frequently hit by dust storms (Zhang et 51 

al., 2021; Wu et al., 2022). The Taklimakan and Gobi Deserts, the primary sources of East 52 

Asian dust, emit over 800 million tons of dust to downwind areas annually (Sullivan et al., 53 

2007b; Wang et al., 2015; Ren et al., 2019; Zhu and Liu, 2024). Northwestern and northern 54 

China, frequently experience dusty weather due to these desert emissions (Gui et al., 2022; 55 

Liang et al., 2022). In spring 2023, Mongolia contributed over 42% of the dust 56 

concentration in northern China (Chen et al., 2023). Although dust storms are more 57 

common in China during spring (Sun et al., 2001), a large-scale, high-intensity dust storm 58 

hit northern China on January 10, 2021. This severe dust storm, originating from southern 59 

Mongolia and western Inner Mongolia, triggered rapid air quality deterioration across 60 

downwind regions. Our synchronized field observations of PM2.5 and size-segregated aerosols 61 

at the top of Mount Hua and on the ground in the winter of 2021 successfully captured this 62 

large-scale dust event, as shown in Fig. S1, extensively covering Northern China and the 63 
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Guanzhong Plain. Liu et al. (2024) compared and analyzed the concentrations and size 64 

distributions of water-soluble inorganic ions during dust and non-dust periods, finding that the 65 

impact of dust on ground aerosols in the Guanzhong Plain is weaker than that in the free 66 

troposphere. Nevertheless, the specific mechanisms through which dust affects organic 67 

components, particularly secondary organic aerosol (SOA) and their precursors in the ground 68 

and troposphere remain unclear. 69 

To investigate these processes, this study focuses on dicarboxylic acids (diacids), which 70 

serve as key tracers for SOA (Xu et al., 2022). As important components of water-soluble 71 

organic carbon, diacids are widely distributed in the atmosphere from the surface layer to the 72 

free troposphere (Fu et al., 2008; Myriokefalitakis et al., 2011). Conventional theory suggests 73 

that aqueous-phase chemical reactions occur predominantly in submicron particles containing 74 

water or cloud droplets (Lim et al., 2010; Ervens et al., 2011; Lamkaddam et al., 2021). 75 

However, field observations have reported the coexistence of oxalate and nitrate in 76 

supermicron particles during dust events (Falkovich and Schkolnik, 2004; Sullivan et al., 2007a; 77 

Wang et al., 2015; Xu et al., 2020). To explain this, Wang et al. (2015) proposed that the reaction 78 

of nitric acid and/or nitrogen oxides with dust generates (Ca(NO3)2), which absorbs water vapor 79 

to form an aqueous phase on the dust surface. This enables the partitioning of gas-phase water-80 

soluble organic precursors into this aqueous phase, followed by their further oxidation to form 81 

oxalic acid (C2). Research by Li et al. (2025) provides direct evidence for this mechanism, 82 

showing that aqueous nitrate coatings (Ca(NO3)2), due to their very low deliquescence relative 83 

humidity (absorbing water at atmospheric RH > 8%), effectively promote the formation of 84 

aqueous secondary organic aerosols (aqSOA). Thus, aged dust surfaces provide critical reactive 85 

interfaces for aqSOA formation. 86 

Tropospheric aerosols in high mountain areas are significantly influenced by long-range 87 

transport of surface pollutants, making them more representative of regional atmospheric 88 

quality. Our previous study (Shen et al., 2023) demonstrated that summer daytime valley winds 89 

on Mount Hua transport organic acids from the foot to top, thereby altering the chemical 90 

composition of the free troposphere and establishing distinct formation pathways of C2 at 91 
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different altitudes. This study examines aerosol vertical distribution characteristics in winter. 92 

Low temperatures cause a significant reduction in the boundary layer height over Mount Hua, 93 

which inhibits the diffusion of local pollutants to the top. Consequently, the top remains in a 94 

free tropospheric environment where aerosols originate primarily from long-range transport 95 

from dust source regions (Liu et al., 2024). During the observational period, we documented a 96 

major dust event in which particles from dust source regions were directly transported to the 97 

top. There, they mixed with local anthropogenic pollutants, triggering complex atmospheric 98 

chemical reactions that resulted in notable vertical differences in aerosol chemical properties. 99 

However, the influence of heterogeneous reactions on dust aerosol surfaces on the generation 100 

of organic acids, particularly their role in modifying C2 formation mechanisms at different 101 

altitudes remains unclear. Therefore, using observational data from a typical dust event in 102 

winter 2021, this study focuses on examining the impacts of dust transport on the molecular 103 

distribution, particle size characteristics of diacids, and the formation mechanisms of C2. The 104 

work aims to elucidate the key role of heterogeneous chemical reactions on the surfaces of dust 105 

aerosols in the formation of SOA, providing new insights into regional atmospheric chemical 106 

processes during dust events. 107 

2 Experimental and methods 108 

2.1 Sample collection 109 

Samples were collected simultaneously at the free troposphere and the ground surface 110 

during December 17, 2020 to January 12, 2021. The sampling site at the ground surface is 111 

located on Yinquan Road, Huayin City, Weinan (34°31'N, 110°04'E; ~500 m a.s.l) (referred to 112 

as “Foot”), while alpine sampling site is located at the summit of the west peak of Mount Hua 113 

(34°28'N, 110°05'E; ~2065 m a.s.l) (referred to as “Top”) (Fig. 1). PM2.5 aerosol samples was 114 

collected using medium-flow sampler (HC-1010, China Qingdao Company, China) at a flow 115 

rate of 100 L min−1 with a duration of 11 hours for each sample during the day (from 08:00 to 116 

19:00) and night (from 20:00 to 07:00 the next day). A total of 54 samples were collected at 117 

both the alpine region and ground. The size-segregated samples were collected for ∼71 h in 118 

each set using an Andersen multi-stage impactor (Andersen, Thermo electronic, USA) at a flow 119 
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rate of 28.3 L min−1 with 9 size bins as < 0.4, 0.4–0.7, 0.7–1.1, 1.1–2.1, 2.1–3.3, 3.3–4.7, 4.7–120 

5.8, 5.8–9.0 and > 9.0 µm, respectively. In a total of 9 sets of size-segregated samples were 121 

collected. All the samples were collected onto pre-combusted (450℃ for 6 h) quartz fiber filters 122 

produced by Whatman, UK. After sampling, the filters were stored in -18°C until analysis.  123 

2.2 Laboratory Analysis 124 

2.2.1 Determination of carbonaceous species and water-soluble inorganic ions 125 

The concentrations of organic carbon (OC) and elemental carbon (EC) in PM2.5 were 126 

determined using a DRI Model 2001 carbon analyzer (Atmoslytic Inc., USA), following the 127 

IMPROVE thermal/optical reflectance (TOR) protocol (Cao et al., 2007). A 0.526 cm2 filter 128 

punch was heated stepwise in pure helium (at 120 °C, 250 °C, 450 °C, and 550 °C) followed 129 

by heating in a 2% oxygen/helium atmosphere (at 550 °C, 700 °C, 800 °C). The method 130 

detection limits were 0.41 µg cm−2 for OC and 0.03 µg cm−2 for EC. 131 

Water-soluble components were extracted from a quarter of each filter using 40 mL of 132 

ultrapure water (Milli-Q, 18.2 MΩ, Merck, France) via a combined process of 1-hour 133 

ultrasonication and 1-hour mechanical shaking. After filtration through a 0.45 μm membrane, 134 

the extracts were preserved at 4 °C for subsequent analysis. Water-soluble inorganic ions (NH4
+, 135 

K+, Mg2+, Ca2+, Cl−, NO3
−, and SO4

2−) were analyzed by ion chromatography (Metrohm 940, 136 

Switzerland). Anions and cations were separated using an IonPac AS23 column and an IonPac 137 

CS12A column, with 9.0 mM Na2CO3 and 20 mM methanesulfonic acid as eluents, 138 

respectively (Zhang et al., 2011). Concurrently, water-soluble organic carbon (WSOC) was 139 

determined using a total organic carbon (TOC) analyzer (TOC-L CPH, Shimadzu, Japan) (Li 140 

et al., 2019). The detection limits for inorganic ions ranged from 0.008 to 0.022 μg m⁻3, while 141 

those for total carbon (TC) and inorganic carbon (IC) were 0.07 mg L−1 and 0.08 mg L−1, 142 

respectively. 143 

Aerosol liquid water content (ALWC) was calculated using the ISORROPIA-II model 144 

(Fountoukis and Nenes, 2007), based on the concentrations of water-soluble inorganic ions and 145 

meteorological parameters including relative humidity (RH) and temperature (T). 146 

Meteorological data for the top and the foot were obtained from the Mount Hua Meteorological 147 
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Station and the Huayin Meteorological Bureau, respectively. All statistical analyses were 148 

performed using SPSS. 149 

2.2.2 Determination of dicarboxylic acids and related compounds 150 

The analysis of diacids, keto-carboxylic acids, and α-dicarbonyls in PM2.5 and size-151 

segregated aerosols was conducted based on an established derivatization method (Shen et al., 152 

2022). A quarter of each filter was extracted by ultrasonicating in ultrapure water (Milli-Q, 153 

18.2 MΩ, Merck, France) for three sequential 15-minute intervals. To maximize the recovery 154 

of low-molecular-weight acids (e.g., C2), the extracts were alkalized to pH 8.5–9.0 with 0.1 M 155 

KOH prior to the concentration step. The aqueous extracts were concentrated to near-dryness 156 

under vacuum in a water bath maintained at 55 °C (evaporation was halted immediately after 157 

the disappearance of the last drop of solvent). The dried residues were derivatized with 14% 158 

BF3/n-butanol at 100°C for 1 hour to convert carboxyl groups into dibutyl esters and oxo groups 159 

into dibutoxyacetals. After the reaction, the derivatives were sequentially dissolved in n-hexane, 160 

acetonitrile, and pure water, followed by triple extraction via vortex mixing to remove water-161 

soluble inorganic substances. The aqueous lower layer was removed using a Pasteur pipette. 162 

The n-hexane layer was concentrated by rotary evaporation and N2 blow-down, reconstituted 163 

in 100 μL n-hexane, and finally analyzed by GC-FID (HP 6890, Agilent Technologies, USA) 164 

(Wang et al., 2012). The recovery of the target compounds was 83% for C2 and ranged from 165 

87% to 110% for other diacids. 166 

Stable carbon isotopic compositions (δ13C) of C2 were determined using gas 167 

chromatography–isotope ratio mass spectrometry (GC-IRMS; Delta V Advantage, Thermo 168 

Fisher Scientific, Franklin, MA, USA) following established protocols (Kawamura and 169 

Watanabe, 2004). To ensure analytical precision (standard deviation < 0.2‰), derivatized 170 

samples were analyzed in triplicate. Final δ13C values of free oxalic acid were calculated via 171 

mass-balance correction to account for isotopic contributions from the BF3/n-butanol 172 

derivatizing agent. 173 

3 Results and discussion 174 

3.1 Vertical differences in PM2.5 chemical composition at the foot and top of Mount Hua 175 
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during non-dust periods 176 

During non-dust periods, significant vertical differences were observed in the chemical 177 

composition of PM2.5 between the foot and top of Mount Hua. The average PM2.5 concentration 178 

at the foot (127 ± 48 μg m−3) was 4.5 times higher than that at the top (28 ± 14 μg m−3), with a 179 

mean difference of 99 μg m⁻3 (95% CI: 86 to 113; t (61.05) = 14.60, p < 0.001) (Supplementary 180 

Table S1 and Table S3a). Carbonaceous aerosols and water-soluble ions were significantly 181 

enriched at the foot (all p < 0.001; Table S3a). As key components of WSOC (Kawamura et 182 

al., 2016; Yang et al., 2020), the total concentration of diacids at the foot (1808 ± 1280 ng m⁻3) 183 

was approximately 2.1 times higher than those at the top (860 ± 534 ng m⁻3), with a mean 184 

difference of 718 ng m⁻3 (95% CI: 453 to 983; t (69.15) = 5.40, p < 0.001; Table S3b). The 185 

spatial difference was most pronounced for azelaic acid (C9), a biomarker of biomass burning 186 

(Kalogridis et al., 2018; Shen et al., 2022), with the concentration at the foot (153 ± 110 ng 187 

m−3) being 5.7 times higher than that at the top (27 ± 18 ng m−3), corresponding to a mean 188 

difference of 126 ng m⁻3 (95% CI: 95 to 156; t (54.77) = 8.24, p < 0.001; Table S3b). 189 

Consequently, the contribution of C9 to total diacids was substantially greater at the foot (8.5%) 190 

than at the top (3.2%) (Fig. 2b). 191 

Correlation analysis of PM2.5 and its chemical components revealed no significant 192 

relationship between the two sites during winter, contrasting with the positive correlations 193 

observed in summer (Shen et al., 2023). Combined with ion composition and back-trajectory 194 

analysis from Liu et al. (2024), these findings indicate that pollutants at the top primarily 195 

originate from regional transport from the northwestern direction with minimal vertical mixing, 196 

while components at the foot of the mountain were mainly controlled by local emission sources. 197 

Day-night differences provide further evidence supporting this conclusion. At the foot of 198 

the mountain, PM2.5, ionic components, and carbonaceous components (except for NO3
− and 199 

NH4
+) all showed significant day-night differences (p < 0.05; Table S4a). Among the diacids, 200 

methylglyoxal (mGly) exhibited the most pronounced day-night differences (daytime: 128 ± 201 

49 ng m−3, 47% higher than nighttime: 87 ± 42 ng m−3, p < 0.001; Fig. S2, Table S4b). As the 202 

terminal product of diacids photo-oxidation (Kawamura and Sakaguchi, 1999), C2 also 203 
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displayed marked day-night differences (daytime: 766 ± 552 ng m−3 vs. nighttime: 585 ± 497 204 

ng m−3, p = 0.023), reflecting strong anthropogenic influence on ground-level photochemistry. 205 

In contrast, C2 at the top of the Mount Hua (daytime: 312 ± 224 ng m−3 vs. nighttime: 299 ± 206 

186 ng m−3; p = 0.941) and its precursors showed no clear day-night differences (p = 0.341–207 

0.917; Table S4c), consistent with the patterns of PM2.5 (p = 0.979), OC (p = 0.766), and other 208 

major components (Table S4a). Such stability is a typical characteristic of high-altitude sites 209 

located above the planetary boundary layer, primarily governed by regional transport processes 210 

(Fu et al., 2008; Li et al., 2012; Meng et al., 2014), indicating that aerosol processes in the free 211 

troposphere differ from those at ground level. In this high-altitude environment, in-cloud 212 

processes represent a key pathway for aqSOA formation. Studies have shown that C2 mainly 213 

originates from the in-cloud oxidation of precursors such as glyoxal (Gly) and isoprene 214 

(Warneck, 2003; Lim et al., 2005; Carlton et al., 2006), a mechanism supported by global 215 

model simulations (Myriokefalitakis et al., 2011). Additionally, the photochemical 216 

decomposition of C2 following its association with Fe-containing particles in clouds (Zhang et 217 

al., 2019) also contributes to the stable distribution of organic acid concentrations at high 218 

altitudes. 219 

Aerosol aging indicators further confirmed distinct oxidation processes between different 220 

altitudes. According to existing research, succinic acid (C4) can be via hydroxylation to 221 

generate C2 and malonic acid (C3), while C3 can be further converted to C2 through 222 

intermediates such as hydroxymalonic acid or ketomalonic acid (Kawamura et al. 1993; 223 

Kunwar and Kawamura, 2014; Hoque et al., 2017). Therefore, the C2/C4 and C3/C4 ratios are 224 

widely used as effective indicators for assessing the extent of photochemical aging in organic 225 

aerosols (Kawamura et al., 2016; Meng et al., 2018; Shen et al., 2022). In this study, the C2/C4 226 

ratio at the top of Mount Hua was 5.84 ± 0.32, and the C3/C4 ratio was 1.04 ± 0.08, both higher 227 

than the corresponding values at the foot (4.74 ± 0.28 and 0.56 ± 0.05, respectively; Fig. 2c). 228 

These results are consistent with reports from high-altitude areas such as Mount Tai (Wang et 229 

al., 2009; Meng et al., 2018) and Mount Hua (Meng et al., 2014), collectively confirming that 230 
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the atmosphere undergoes more significant photochemical aging during long-range transport 231 

at high altitudes.  232 

This study compared the correlations between C2 and its key precursors at the foot and top 233 

of Mount Hua (Fig. 3a–d, 3i–l), revealing differences in atmospheric oxidation pathways across 234 

altitudes. Building on this, the synergistic effects of inorganic ions and ALWC on C2 formation 235 

were investigated (Fig. 3e–h, 3m–p), thereby elucidating the aqueous-phase reaction 236 

mechanisms and the role of environmental factors such as humidity in C2 generation. Results 237 

showed that C2 exhibited the strongest correlation with glycolic acid (ωC2) (R
2 = 0.88 at the 238 

foot, R2 = 0.95 at the top, p < 0.01; Fig. 3 d, l). Other key precursors included Gly (R2 = 0.57-239 

0.67, p < 0.01; Fig. 3b, 3j), mGly (R2 = 0.58-0.85, p < 0.01; Fig. 3a, 3i), and pyruvic acid (Pyr: 240 

R2 = 0.80-0.81, p < 0.01; Fig. 3c, 3k). These correlation characteristics confirm that aqueous-241 

phase oxidation serves as the primary formation pathway for C₂ under non-dust conditions 242 

(Deshmukh et al., 2017; Du et al., 2022). The consistently higher correlation coefficients at the 243 

top further substantiate the enhancing effect of prolonged atmospheric processes on secondary 244 

organic aerosol formation. 245 

Contrary to previous studies (Wang et al., 2012; Meng et al., 2018), we found that C2 246 

correlated more strongly with NO3⁻ (R
2 = 0.79, p < 0.01; Fig. 3f) than with SO4

2⁻ (R2 = 0.71, 247 

p < 0.01; Fig. 3e) at the foot. The difference mainly stems from strong influences of local 248 

anthropogenic emissions (e.g., traffic and industrial activities) at the foot, which provide 249 

abundant NOx and lead to an increased proportion of NO3⁻ in PM2.5. Since NO3⁻ is more 250 

hygroscopic than SO4
2⁻, its elevated concentration further enhances ALWC, thereby promoting 251 

aqSOA formation and intensifying heterogeneous reaction processes (Huang et al., 2025). In 252 

contrast, at the top of Mount Hua, C2 exhibited a higher correlation with SO4
2⁻ (R2 = 0.63, p < 253 

0.01; Fig. 3m) than with NO3⁻ (R
2 = 0.37, p < 0.01; Fig. 3n). This phenomenon is closely related 254 

to the active in-cloud processes in the free troposphere mentioned above. SO4
2⁻ at the top 255 

primarily originates from the oxidation of SO2 within cloud droplets (Yermakov et al., 2023), 256 

a process dominated by heterogeneous reactions (Wang et al., 2025). Meanwhile, cloud 257 

droplets also provide key reaction media for the aqueous-phase photooxidation of C2 precursors 258 
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such as Gly and ωC2 (Warneck, 2003). 259 

ALWC exhibited a humidity-dependent effect on C2 formation. Under RH<75%, ALWC 260 

was positively correlated with C2 concentration (R2 = 0.36-0.44, p < 0.01; Fig. 3g, 3o), 261 

reflecting the promotion of precursor dissolution and oxidation by the expansion of the aqueous 262 

phase. However, when RH exceeded 75%, supersaturation shifted the gas-particle partitioning 263 

equilibrium, causing C2 concentrations to decrease with increasing ALWC. After excluding 264 

high-humidity data, the correlation between ALWC and C2 significantly strengthened (R2 = 265 

0.59, p < 0.01; Fig. 3h, 3p), confirming that aqueous-phase oxidation is the primary pathway 266 

for C2 formation during non-dust periods. This finding complements the research by Yang et 267 

al. (2022) on the synergistic effects of humidity and pH, jointly revealing the complex 268 

regulatory mechanisms of C2 formation under different humidity conditions. 269 

3.2 Impact of dust transport on PM2.5 chemical composition 270 

On January 10, 2021, an extensive and intense dust storm, driven by successive cold fronts 271 

and sustained high-velocity winds, swept across northern China, triggering a dramatic surge in 272 

PM2.5 concentrations (Fig. S3). At the foot of Mount Hua, PM2.5 concentrations rapidly rose 273 

from 95 μg m−3 to 457 μg m−3 within 24 hours, reaching 3.4 times the non-dust average (127 ± 274 

48 μg m−3). Concurrently at the top, PM2.5 climbed from 46 to 165 μg m−3, representing a 5.9-275 

fold rise compared to typical conditions (28 ± 14 μg m−3). The cleaner atmospheric 276 

environment at the top amplified the relative impact of dust transport, while at the foot, existing 277 

local pollution partially masked the dust contribution. This contrast highlights the altitude-278 

dependent response to dust events, with the top showing greater sensitivity due to its lower 279 

background pollution levels. 280 

HYSPLIT trajectory analysis revealed the dust originated from the Inner Mongolia-Gansu 281 

arid region and was transported along a northwest path to the study area (Fig. S4). Dust 282 

transport was closely linked to atmospheric circulation, especially in the troposphere, where 283 

changes in wind speed play a key role in dust dispersion (Yang et al., 2017). During the dust 284 

period, wind speeds at the foot increased from 2.0 to 5.3 m s−1, and high-altitude wind speeds 285 

reached 12.2 m s−1, higher than the average wind speed during non-dust periods (5.4 ± 3.0 m 286 
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s−1).  287 

Although PM2.5 absolute concentrations rose during the dust period, component 288 

concentration changes at the two sites differed markedly. At the foot of the Mount Hua, EC 289 

concentrations remained relatively stable (4.5 ± 2.1 during non-dust vs. 4.8 ± 1.8 μg m−3 during 290 

dust; Table S2). OC increased from 17 ± 8.0 to 19 ± 4.6 μg m⁻3, but its mass fraction in PM2.5 291 

decreased substantially from 13.4% to 4.4%, reflecting the overwhelming contribution of 292 

mineral dust. The top exhibited different characteristics, with both EC and OC concentrations 293 

doubling from 0.9 to 1.8 μg m⁻3 and 4.7 to 9.4 μg m⁻3 respectively. OC maintained a higher 294 

mass fraction of 6.5% compared to 4.4% at the foot. These patterns indicate efficient mixing 295 

of dust with anthropogenic carbonaceous aerosols during long-range transport, coupled with 296 

more vigorous secondary formation processes in the free troposphere (Wang et al., 2023; Zheng 297 

et al., 2024).  298 

Concentrations of mineral components like calcium and magnesium ions (Ca2⁺ and Mg2⁺) 299 

rose (foot: 1.8 to 7.7 μg m−3; top: 0.7 to 3.2 μg m−3), confirming their established role as reliable 300 

tracers of dust emissions (Li et al., 2016; Liu et al., 2024). SO4
2− concentrations also increased 301 

at both sites (foot: 5.8 to 10.0 μg m−3; top: 3.8 to 8.7 μg m−3). This increase can be attributed 302 

to both the release of inherent sulfate species in dust (e.g., CaSO4) (Wu et al., 2012) and 303 

heterogeneous reactions on dust particle surfaces, where transition metals such as Fe (III) and 304 

Mn (II) catalyze the conversion of SO2 to SO4
2− (Harris et al., 2013; Myriokefalitakis et al., 305 

2022).  306 

Dust transport altered the concentrations and molecular distribution of diacids and their 307 

precursors. Although C2 remained the most concentrated acidic molecule during dust 308 

periods, its absolute concentration decreased noticeably. At the foot of Mount Hua, C2 309 

concentrations dropped from 674 ± 528 ng m−3 (non-dust periods) to 276 ± 20 μg m−3 (dust 310 

periods), decrease by 59%. At the top of Mount Hua, C2 concentrations decrease from 306 311 

± 204 ng m−3 to 229 ± 45 ng m−3, a reduction of 25%. Severe ozone (O3) pollution was present 312 

in this dust storm event, and the particulate eruption promoted the generation and dispersion of 313 

O3 pollutants. O3 concentrations at the foot increased sharply from 15 μg m−3 to 62 μg m−3 (Fig. 314 
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S3), much higher than the non-dust average of 26 ± 19 μg m−3. The dust’s extinction effect 315 

likely reduced aerosol optical thickness, enhancing surface UV radiation. Combined with a 316 

local temperature rise (ΔT = +5.8°C), this probably triggered free-radical chain reactions, 317 

promoting the heterogeneous oxidation of C2 on mineral surfaces (Usher, et al., 2003; Lu et al., 318 

2023). Notably, the proportion of C2 in total diacids exhibited contrasting trends at the two 319 

sites, decreasing from 37.3% to 32.2% at the foot and increasing from 35.5% to 42.8% at the 320 

top (Fig. 4c). This divergence could be closely related to the humidity levels at the two sites. 321 

During the dust event, the lower relative humidity at the foot (RH = 24 ± 8.5%) suppressed 322 

aqueous-phase oxidation, whereas the higher humidity at the top (RH = 44 ± 11%) favored C2 323 

formation through such reactions. Additionally, variations in aerosol sources, transport 324 

pathways, aging processes, and potential contributions from other chemical reactions may 325 

also have influenced C2 generation. 326 

As a major atmospheric keto acid and key precursor of C2 (Kawamura et al., 2012; 2013), 327 

ωC2 ranked second among the acids detected at both sites during non-dust periods, with 328 

concentrations of 214 ± 199 ng m−3 at the foot and 77 ± 52 ng m−3 at the top of Mount Hua. 329 

However, during dust periods, mGly became the second most abundant acid at both sites due 330 

to its enrichment on dust-particle surfaces. At the foot, mGly concentration reached 116 ± 34 331 

ng m−3 (13.6% of total diacids), up from 5.9% in non-dust periods. At the top, mGly 332 

concentration was 38 ± 9 ng m−3 (7.1% of total diacids) (Fig. 4b), slightly higher than the non-333 

dust 5.6%. Phthalic acid (Ph), a photo-oxidation product of naphthalene and other aromatic 334 

hydrocarbons, primarily originates from industrial processes and incomplete combustion 335 

of coal in heavy and diesel vehicles (Ho et al., 2006). At both foot and top of Mount Hua, 336 

the proportion of Ph remains relatively stable, accounting for approximately 4% during 337 

both dust and non-dust periods, indicating that its sources are stable and closely related to 338 

regional industrial activities and traffic emissions. During dust periods, the C2/C4 ratios at 339 

the foot and top of Mount Hua rose to 5.24 and 7.75 (Fig. 4c), showing stronger aerosol aging. 340 

However, the C3/C4 ratio at top of Mount Hua dropped to 0.70, this might result from the 341 

combined effects of selective adsorption of C2 onto dust particles and enhanced photolysis of 342 
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C3 on mineral dust surfaces. 343 

3.3 Size distribution characteristics of diacids and related compounds during non-dust 344 

and dust periods 345 

During non-dust periods, the size distribution of C2 at both the foot and top of Mount Hua 346 

exhibited a distinct bimodal distribution (Fig. 5a and 5(a)), characterized by a primary peak in 347 

the fine particle mode (0.4-1.1 μm) and a secondary peak in the coarse particle mode (4.7-5.8 348 

μm). Fine particles, with their greater specific surface area and hygroscopic nature, provide a 349 

conducive liquid-phase environment that enhances the oxidation of precursors such as mGly 350 

and Pyr, leading to C2 formation (Ervens et al., 2011; Wang et al., 2015). The high correlation 351 

between C2 and secondary inorganic ions (SO4
2⁻, NO3⁻, NH4⁺) (with R2 values of 0.92-0.95 at 352 

the foot and 0.48-0.92 at the top, p <0.01; as shown in Fig. 6) supports this mechanism, 353 

confirming that C2 formation during non-dust periods primarily relies on liquid-phase 354 

oxidation reactions on fine particle surfaces. The lower R² values at the top may be due to the 355 

greater influence of long-range transport at high-altitude sites, resulting in more complex 356 

sources of precursors. C2 in the coarse particle mode likely originates from direct adsorption 357 

of biogenic emissions (such as plant waxes) or heterogeneous oxidation of gas-phase 358 

precursors on mineral dust surfaces (Wang et al., 2012). 359 

The distribution patterns of short-chain diacids, such as C3 and C4 are similar to that of C2 360 

(Fig. 5b-c and 5(b)-(c)), with primary peaks at 0.4-1.1 μm and secondary peaks at 4.7-5.8 μm, 361 

indicating that these acids mainly come from fine particles. In contrast, glutaric (C5) acid shows 362 

distinct distribution characteristics at the two sites. At the foot, it exhibits a unimodal 363 

distribution in the coarse particles (4.7-5.8 μm) (Fig. 5d), while at the top, it displays a bimodal 364 

distribution (0.4-1.1 μm and 4.7-5.8 μm) (Fig. 5(d)). This significant difference in modal 365 

structure suggests that different atmospheric processes govern the behavior of C5 at different 366 

altitudes. Adipic (C6) acid shows a bimodal distribution at both sites, probably resulting from 367 

the oxidation of cyclohexene (in the fine mode) or adsorption of gas-phase precursors on coarse 368 

particle surfaces (Deshmukh et al., 2016). Azelaic (C9) acid is enriched only in fine particles at 369 

the foot, which may be closely related to the oxidation of unsaturated fatty acids emitted from 370 
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biomass burning in northern regions during winter (Deshmukh et al., 2016). The coarse particle 371 

fraction of Ph likely forms through gas-phase adsorption, consistent with the strong adsorption 372 

characteristics of coarse particles reported by Kanellopoulos et al. (2021). 373 

The particle size distributions of mGly (Fig. 5g and 5(g)) and ωC₂ (Fig. 5j and 5(j)) 374 

showed remarkable consistency with that of C2 (Fig. 5a and 5(a)), providing direct evidence 375 

that aqueous-phase oxidation serves as the predominant formation pathway for C2. Pyr 376 

exhibited distinct altitudinal variation in its distribution characteristics. At the top of Mount 377 

Hua, Pyr displayed a similar size distribution pattern to C2, indicating their shared 378 

photochemical origin. In contrast, at the foot, Pyr demonstrated enrichment in coarse particles 379 

(4.7-5.8 μm), likely attributable to heterogeneous reactions of gaseous precursors from local 380 

coal combustion on mineral dust surfaces. Gly also exhibits a peak in coarse particles, likely 381 

due to its strong adsorption and chemical stability on particle surfaces. The diacids 382 

concentrations are consistently lower at the top compared to the foot, which is closely tied to 383 

substantial local emissions at the lower elevation. As shown in Fig. 6, the coal combustion and 384 

biomass burning tracer Cl⁻ demonstrates an exceptionally strong correlation with C2 (R
2 = 0.88, 385 

p< 0.01) at the foot. 386 

The dust transport process impacted the size distributions of diacids in aerosols (Fig. 5). 387 

At the foot of the mountain, the C2 concentration in fine particles (≤2.1 μm) decreased from 388 

8662 ng m⁻3 to 4880 ng m⁻3 (a reduction of 43.7%) during dust events, while the concentration 389 

in coarse particle (>2.1 μm) increased from 2718 ng m⁻3 to 2843 ng m⁻3 (an increase of 4.6%) 390 

(Table 3). A more pronounced change was observed at the high-altitude top of Mount Hua, 391 

where the C2 concentration in coarse particles (2301 ng m⁻3) exceeded that in fine particles 392 

(2161 ng m⁻3) during dust events, indicating a shift in the dominant particle size distribution 393 

from fine to coarse modes. This shift in particle size distribution can be attributed to the 394 

formation of Ca(NO3)2 coatings resulting from the reaction between calcium carbonate and 395 

NO3⁻ during dust aging (Li and Shao, 2009; Zhi et al., 2025). These hygroscopic coatings create 396 

favorable conditions for the adsorption and oxidation of gaseous organic compounds, thereby 397 

promoting the formation of SOA on the surfaces of coarse particles. Research by Li et al. (2025) 398 
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further confirms that aqSOA formed on dust surfaces can effectively enhance SOA production 399 

and drive a transition in the size distribution from the submicron to the supermicron range, 400 

which is highly consistent with the observational results of this study. Size-segregated ion data 401 

(Fig. S5) provide direct evidence for the above mechanism. Ca2+ was primarily present in the 402 

coarse mode (3.3–5.8 μm), while during dust events, NO3⁻ at the top migrated from the fine 403 

mode (0.4–1.1 μm) to the coarse mode (3.3–5.8 μm) and coexisted with Ca2+ in the same size 404 

range, strongly supporting the formation of Ca(NO3)2 coatings on dust particle surfaces. In 405 

contrast, at the foot of the mountain, although the concentration of NO3⁻ decreased, it remained 406 

predominantly in the fine mode. This spatial difference may stem from more thorough aging 407 

and reactions of aerosols at the top due to longer transport times. Meanwhile, the foot is 408 

influenced by local pollution, resulting in higher background NO3⁻ concentrations and 409 

competitive reactions with components such as SO4²⁻, which may collectively delay the distinct 410 

shift of NO3⁻ to the coarse mode.  411 

Analysis of the dust/non-dust concentration ratio (RD/N) revealed RD/N values of 0.3 and 412 

0.6 for fine and coarse particles at the foot, respectively, while these values reached 0.4 and 1.1 413 

at the top, indicating that dust processes have a more impact on the particle size distribution of 414 

diacids at high-altitude regions. Further investigations confirmed enrichment of C2 precursors 415 

(mGly, Pyr, and ωC2) in the coarse particle fraction (>2.1 μm). Observational data from the top 416 

of Mount Hua revealed that the concentration ratio (RD/N) of these precursors in coarse particles 417 

during dust periods reaches 0.8-1.4 during dust periods, higher than the 0.5-0.7 ratio in fine 418 

particles (≤2.1 μm), demonstrating the crucial contribution of heterogeneous oxidation on dust 419 

particle surfaces to C2 formation. Throughout dust episodes, the particle size distribution 420 

patterns of diacids (C2-C6) consistently displayed a pronounced shift from fine to coarse 421 

particles (4.7-5.8 μm) (Fig. 5). Notably, concentrations of the biomass burning tracer C9 422 

decreased during dust episodes, while Ph and isophthalic acid (iPh) showed distinct peaks in 423 

the coarse particle mode. This phenomenon indicates that dust particles effectively scavenge 424 

gaseous pollutants through strong adsorption, thereby suppressing the formation of local fine-425 

mode SOA. However, these gaseous precursors adsorbed onto coarse particle surfaces can still 426 
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undergo heterogeneous oxidation reactions to form SOA. 427 

During dust events, the correlation between C2 and mineral ions (Ca2⁺, Mg2⁺) showed 428 

significant enhancement (with R2 values of 0.33, 0.30; p<0.05 at the foot and 0.65, 0.39; p<0.01 429 

at the top). This finding showed excellent agreement with the recent research results of Li et al. 430 

(2025), who similarly observed stronger correlations between Ca2+ and C2 (R
2 = 0.46-0.95) in 431 

the coarse particle phase. This arises as organic acids like C2 in aged carbonate-containing dust 432 

particles react with carbonates to form stable salts (Ervens et al., 2008; Lim et al., 2010). This 433 

process inhibits the volatility of organic acids and stabilizes them in the coarse particle phase. 434 

Furthermore, due to differences in rock types and weathering processes, Asian dust particles 435 

inherently contain higher concentrations of alkaline metal elements (Ca and Mg) compared to 436 

dust from other regions (Yu et al., 2025). The size-resolved correlations between C2, Ca2+, and 437 

Mg2+ (Fig. 6), further support this conclusion. During dust events, the concentrations of C2, 438 

Ca2+, and Mg2+ exhibited synchronous increases with increasing particle size. In contrast, 439 

during non-dust periods, the peak concentration of C2 occurred in the fine particle size range, 440 

while mineral ion concentrations did not show corresponding increases. As described in 441 

Section 3.2, dust events led to reductions in C2 concentrations in PM2.5 (foot: 674 ± 528 ng m⁻3 442 

during non-dust periods vs. 276 ± 20 ng m⁻3 during dust periods; top: 306 ± 204 ng m⁻3 during 443 

non-dust periods vs. 229 ± 45 ng m⁻3 during dust periods).  444 

Overall, the transformation mechanisms of C2 and its precursors underwent alterations 445 

during dust events, shifting from aqueous-phase oxidation dominated in fine particles during 446 

non-dust periods to heterogeneous oxidation on coarse particle surfaces as the primary pathway 447 

during dust episodes. Regional comparative analysis further revealed that atmospheric 448 

chemical processes at the mountain foot were mainly influenced by local emission sources such 449 

as coal combustion and biomass burning, whereas the summit site more clearly reflected the 450 

complex interactions between long-range dust transport and regional atmospheric processes. 451 

3.4 Stable carbon isotopes (δ¹³C) of oxalic acid 452 

Synchronized observations at the foot and top of Mount Hua (2060 m asl) revealed an 453 

inverse correlation between C2 concentration and δ13C values in PM2.5 (Fig. 7a and 7b). When 454 
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C2 concentration at the foot increased to 2424 ng m⁻3, its δ13C value decreased to -34.5‰, while 455 

at the top, a concentration of 917 ng m⁻3 corresponded to a δ13C of -24.7‰. Conversely, during 456 

low concentration periods, δ13C at the foot rose to -21.9‰ (258 ng m⁻3) and at the top to -17.2‰ 457 

(63 ng m⁻3). This systematic variation provides clear evidence for kinetic carbon isotope 458 

fractionation during atmospheric aqueous-phase oxidation processes. Specifically, volatile 459 

organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) with lower δ13C 460 

values preferentially react to form aqSOA, resulting in 13C-depleted products (Xu et al., 2022). 461 

Spatially, the δ¹³C values of C2 in PM2.5 at the top of Mount Hua (-28.4‰ to -12.8‰, 462 

mean -21.5‰) were higher than those at the foot (-36.2‰ to -14.9‰, mean -27.6‰). This 463 

vertical gradient primarily results from long-range transport of aerosols at high altitudes 464 

coupled with deep oxidation processes. The higher C2/C4 ratio observed at Mount Hua (5.84 465 

vs. 4.74 at the foot) indicates more pronounced atmospheric aging characteristics. This 466 

distribution pattern originates from prolonged photochemical oxidation during long-range 467 

transport, where preferential cleavage of 12C-12C bonds (due to their lower bond energy) leads 468 

to relative 13C enrichment in residual C2. In contrast, surface aerosols dominated by local fresh 469 

emissions undergo shorter oxidation periods and exhibit weaker isotope fractionation effects. 470 

Moreover, δ13C can provide insights into the sources of aerosols, Pavuluri and Kawamura 471 

(2016) found that biogenic aerosols had higher mean δ13C values (-15.8‰) than anthropogenic 472 

sources (-19.5‰). Our study shows that foot aerosols were mainly influenced by anthropogenic 473 

sources (biomass burning and coal combustion), while the top was more affected by natural 474 

sources due to richer vegetation, with long-range transport potentially weakening local isotope 475 

fractionation effects. 476 

During dust events, C2 concentrations in PM2.5 showed decreasing trends, declining from 477 

674 ± 528 ng m⁻3 to 276 ± 20 ng m⁻3 at the foot and from 306 ± 204 ng m⁻3 to 229 ± 45 ng m⁻3 478 

at the top of Mount Hua. Concurrently, the δ13C values of C2 exhibited distinct positive shifts, 479 

increasing from -27.6‰ to -23.9‰ at the foot and from -21.5‰ to -13.2‰ at the top. This 480 

phenomenon reveals key chemical transformation mechanisms during dust transport: alkaline 481 

mineral surfaces promote heterogeneous catalytic oxidation of C2 precursors, with coarse-482 
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mode mineral components (Ca2+/Mg2+ etc.) preferentially combining with 13C-labeled C2 to 483 

form stable compounds like calcium oxalate. This mechanism is strongly supported by 484 

observational data during dust events, both oxalic acid and Ca2⁺/Mg2+ concentrations showed 485 

increases with growing particle size, while exhibiting high correlations (R2 = 0.30-0.65) during 486 

dust periods. Simultaneously, 12C-enriched C2 produced on fine particle surfaces moves to 487 

coarse particles through gas-particle conversion or coagulation, resulting in 13C-enriched 488 

residues remaining in fine particles. As demonstrated by the aforementioned research findings, 489 

the concentration of oxalic acid in coarse particles showed a marked increase during dust events, 490 

with this variation being particularly pronounced at the top. These two synergistic processes 491 

collectively altered both aerosol size distribution and isotopic composition characteristics.  492 

4. Conclusions 493 

This study provides compelling evidence for the dual role of dust transport in modulating 494 

oxalic acid formation and isotopic composition in atmospheric aerosols. Through 495 

comprehensive analysis of PM2.5 and size-segregated samples, we demonstrate that dust events 496 

trigger a fundamental shift in oxalic acid production pathways from predominant aqueous-497 

phase oxidation in fine particles during non-dust periods (showing strong humidity dependence 498 

below 75% RH) to mineral heterogeneous chemistry in coarse particles during dust episodes 499 

(Fig. 8). The dust induced transformations are particularly pronounced at high-altitude sites 500 

like Mount Hua, where we observed: (1) enhanced aerosol aging indicators (C2/C4 ratio 501 

increasing to 7.75); (2) δ¹³C enrichment (+8.3‰ compared to non-dust periods); and (3) 502 

preferential partitioning of C2 to coarse-mode particles (coarse/fine particle ratio reaching 1.1). 503 

These changes result from synergistic effects of surface-catalyzed oxidation favoring 13C 504 

retention and metal-oxalate complexation. Conversely, surface sites exhibited stronger local 505 

anthropogenic influences, with higher C2 concentrations (674 ± 528 ng m⁻³) but lower δ¹³C 506 

values (-27.6‰), reflecting less processed aerosols. The identified inverse C2-δ¹³C relationship 507 

and altitude-dependent response to dust transport provide new quantitative tools for evaluating 508 

aerosol aging processes and improving regional air quality models, particularly in dust-prone 509 

regions under changing climate conditions. 510 
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 837 

Figure 1 Distribution of aerosol sampling sites at the foot and top of Mount Hua (December 2020 to 838 

January 2021) 839 
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 841 

Figure 2 Molecular distribution of dicarboxylic acids and related Compounds (a), relative 842 

percentages of major dicarboxylic acids (b), and ratios of C2/C4 and C3/C4 (c) at the foot and top of 843 

Mount Hua during non-dust periods 844 
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 846 

Figure 3 Correlation between C2 and its key precursors, sulfate (SO₄²⁻), nitrate (NO₃⁻), and aerosol 847 

liquid water content (ALWC) at the foot and top of Mount Hua with varying relative humidity (RH) 848 
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 850 
Figure 4 Molecular distribution of dicarboxylic acids and related compounds (a), relative 851 

percentages of major dicarboxylic acids (b), and ratios of C2/C4 and C3/C4 (c) at the foot and top of 852 

Mount Hua during dust events 853 
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 855 

Figure 5 Size distribution of dicarboxylic acids at the foot and top of Mount Hua during non-dust 856 

and dust periods 857 

 858 
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 860 

Figure 6 Correlation of C2 with water-soluble ions at the foot and top of Mount Hua during non-dust 861 

and dust periods (Circles in the figure represent non-dust periods, and triangles represent dust periods) 862 
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 864 

Figure 7 Stable carbon isotopes (δ¹³C) of C2 in PM2.5 at the foot and top of Mount Hua 865 
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 867 

Figure 8 Mechanism diagram of dust-driven particle-size migration and formation pathways of C2 868 
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Table 1 Average concentrations of dicarboxylic acids and related compounds in PM2.5 at the foot and 870 

top of Mount Hua during non-dust periods 871 

Compound 

Foot Top  

RF/T Daytime 

 (N = 26) 

Nighttime 

 (N = 27) 

Whole 

(N = 53) 

Daytime  

(N = 26) 

Nighttime 

 (N = 27) 

Whole  

(N = 53) 

Dicarboxylic acids 

Oxalic, C2 766 ± 552  585 ± 497 674 ± 528  312 ± 224  299 ± 186  306 ± 204  2.2  

Malonic, C3 86 ± 58  71 ± 55  78 ± 56  54 ± 39  53 ± 32  53 ± 35  1.5  

Succinic, C4 152 ± 83  112 ± 77  132 ± 82  60 ± 47  57 ± 46  58 ± 46  2.3  

Glutaric, C5 38 ± 19  27 ± 14  32 ± 17  22 ± 27  18 ± 16 20 ± 22  1.6  

Adipic, C6 17 ± 15  14 ± 13  15 ± 14  12 ± 13  10 ± 6.3  11 ± 9.8  1.4  

Pimelic, C7 15 ± 5.0  12 ± 5.0  13 ± 5.1 9.2 ± 3.3  8.9 ± 2.3  9.0 ± 2.8  1.4  

Suberic, C8 16 ± 4.1  14 ± 3.4  15 ± 3.8  13 ± 3.7  12 ± 3.5  12 ± 3.6  1.3  

Azelaic, C9 175 ± 110  131 ± 106  153 ± 110 28 ± 19  27 ± 17  27 ± 18  5.7  

Sebacic, C10 19 ± 15  14 ± 11  16 ± 14  5.3 ± 3.5  5.3 ± 3.7  5.3 ± 3.5 3.0  

Undecanedioic, C11 14 ± 3.8 12 ± 2.5  13 ± 3.3  9.9 ± 1.8  9.2 ± 1.7  9.6 ± 1.8  1.4  

Methylmalonic, iC4 36 ± 17  24 ± 13  29 ± 16  13 ± 9.4  12 ± 7.6 13 ± 8.5  2.2  

Mehtylsuccinic, iC5 16 ± 5.4  16 ± 7.9  16 ± 6.7  10 ± 3.2 10 ± 2.4  10 ± 2.8  1.6  

Methylglutaric, iC6 18 ± 6.7  14 ± 5.4  16± 6.3 19 ± 7.7  19 ± 6.2  19 ± 6.9  0.8  

Maleic, M 22 ± 12  17 ± 11  19 ± 12  13 ± 10  13 ± 5.7  13 ± 7.9  1.5  

Fumaric, F 13 ± 3.4  11 ± 2.4  12 ± 3.0  10 ± 1.2  10 ± 1.0  9.7 ± 1.1  1.2  

Methylmaleic, mM 29 ± 18  27 ± 29  28 ± 24  17 ± 9.1  16 ± 6.2  16 ± 7.7  1.8  

Phthalic, Ph 89 ± 43  71 ± 45  80 ± 44  44 ± 23  39 ± 20  41 ± 22  2.0  

Isophthalic, iPh 15 ± 5.4  13 ± 7.0  14 ± 6.3  6.5 ± 1.2  6.5 ± 0.8  6.5 ± 1.0  2.2  

Ketopimelic, kC7 10.2 ± 2.3 9.4 ± 2.1  9.8 ± 2.2  8.3 ± 1.9  8.0 ± 1.7  8.1 ± 1.8  1.2  

Ketocarboxylic acids 

Pyruvic, Pyr 85 ± 45  73 ± 59  79 ± 53  52 ± 38  54 ± 30  53 ± 34  1.5  

Glyoxylic, ωC2 230 ± 201  198 ± 200  214 ± 199  79 ± 58  75 ± 47  77 ± 52  2.8  

α-Dicarbonyls 

Glyoxal, Gly 29 ± 15  29 ± 23  29 ± 19  23 ± 13  24 ± 10  24 ± 12  1.2  

Methylglyoxal, 

mGly 
128 ± 49  87 ± 42  107 ± 49  49 ± 28  48 ± 23 48 ± 25  2.2  

Others 

Benzoic, Ha 15 ± 7.1  12 ± 6.7  13 ± 6.9  9.6 ± 5.4 9.3 ± 5.1  9.4 ± 5.2  1.4  

Total detected 

(ng m−3) 

2029 ± 

1294 

1594 ± 

1238 

1807 ± 

1280 
879 ± 591 842 ± 481  860 ± 534 2.1  

 872 
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Table 2 Average concentrations of dicarboxylic acids and related compounds in PM2.5 at the foot and 873 

top of Mount Hua during dust events 874 

Compound 

Foot Top 

Daytime  

(N = 1) 

Nighttime 

 (N = 1) 

Whole  

(N = 2) 

Daytime  

(N = 1) 

Nighttime 

 (N = 1) 

Whole  

(N = 2) 

Oxalic, C2 289 262 276 ± 20  261 197 229 ± 45  

Malonic, C3 28 38 33 ± 7.3  21 21 21 ± 0.1  

Succinic, C4 47 59 53 ± 8.9  28 33 30 ± 3.5  

Glutaric, C5 15 16 15 ± 0.5  8.4 11 10 ± 1.9  

Adipic, C6 9.8 10.2 10 ± 0.3  6.2 6.4 6.3 ± 0.2  

Pimelic, C7 7.6 9.2 8.4 ± 1.1  6.3 6.3 6.3 ± 0.0  

Suberic, C8 9.2 11 10 ± 1.3  6.9 11 8.7 ± 2.6 

Azelaic, C9 41 54 47 ± 9.4  13 19 16 ± 4.1  

Sebacic, C10 4.7 5.6 5.1 ± 0.7 3.2 3.2 3.2 ± 0.0  

Undecanedioic, C11 9.3 10 9.8 ± 0.7  8.0 7.9 8.0 ± 0.0  

Methylmalonic, iC4 15 16 16 ± 0.3  8.2 9.1 8.7 ± 0.6  

Mehtylsuccinic, iC5 12 11 12 ± 0.9  9.4 10.2 9.8 ± 0.6  

Methylglutaric, iC6 15 16 16 ± 0.3  9.5 10.0 9.8 ± 0.3  

Maleic, M 7.8 10 9.1 ± 1.8  7.3 5.6 6.4 ± 1.3  

Fumaric, F 13 15 14 ± 1.4  10.5 11.3 10.9 ± 0.6  

Methylmaleic, mM 12 13 13 ± 0.2  10.3 10.2 10.3 ± 0.0  

Phthalic, Ph 39 41 40 ± 1.3  22 27 24 ± 3.5  

Isophthalic, iPh 9.5 12 11 ± 1.6  5.9 5.9 5.9 ± 0.0  

Ketopimelic, kC7 7.5 7.9 7.7 ± 0.3  7.2 7.1 7.2 ± 0.1  

Pyruvic, Pyr 29 52 40 ± 17  0.6 19 9.8 ± 13  

Glyoxylic, ωC2 51 87 69 ± 26  33 38 36 ± 4.0  

Glyoxal, Gly 14 8.7 12 ± 4.1  9.8 10.9 10.4± 0.7  

Methylglyoxal, 

mGly 
92 140 116 ± 34  32 44 38 ± 8.6  

Benzoic, Ha 12 17 15 ± 3.8  8.7 10.7 9.7 ± 1.4  

Total detected 

(ng m−3) 
761 949 

855 ± 

142 
535 533 534 ± 92 

  875 



 

42 

 

Table 3 Comparison of concentrations of dicarboxylic acids and related compounds in 876 

particulate matter of different particle size ranges (≤2.1 μm and >2.1 μm) at the foot and top of 877 

Mount Hua during non-dust and dust periods 878 

 

Compound 

Foot Top 

Non-dust Dust RD/N Non-dust Dust RD/N 

≤2.1 

μm 

>2.1 

μm 

≤2.1 

μm 

>2.1 

μm 

≤2.1 

μm 

>2.1 

μm 

≤2.1 

μm 

>2.1 

 μm 

≤2.1 

 μm 

>2.1 

 μm 

≤2.1 

 μm 

>2.1 

 μm 

Oxalic, C2 8662 2718 4880 2843 0.3 0.6 5512 2217 2161 2301 0.4 1.1 

Malonic, C3 750 388 361 371 0.5 1.0 757 359 305 253 0.5 0.8 

Succinic, C4 1505 594 829 505 0.4 0.6 986 488 371 294 0.5 0.8 

Glutaric, C5 238 350 199 297 1.5 1.5 557 390 334 324 0.7 1.0 

Adipic, C6 427 277 347 292 0.6 0.8 457 275 290 240 0.6 0.8 

Azelaic, C9 2313 371 1097 304 0.2 0.3 646 302 379 396 0.5 1.0 

Methylglyoxal,  

mGly 
237 119 217 90 0.5 0.4 146 67 49 55 0.5 1.1 

Glyoxal, Gly 312 268 237 145 0.9 0.6 192 129 140 114 0.7 0.8 

Pyruvic, Pyr 729 800 687 513 1.1 0.7 1022 521 451 633 0.5 1.4 

Glyoxylic, ωC2 2181 1171 979 663 0.5 0.7 1138 678 658 545 0.6 0.8 

Phthalic, Ph 1018 652 499 386 0.6 0.8 564 481 302 356 0.9 1.2 

Isophthalic, iPh 

(ng m−3) 
206 184 157 163 0.9 1.0 162 173 146 169 1.1 1.2 

 879 


