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Abstract. This study investigated the vertical distribution of PM»>s and size-segregated
aerosols at the foot and top of Mount Hua in Northwest China, focusing on C, formation and
its 8'*C characteristics influenced by dust transport. Under non-dust conditions, PM» 5 and
diacids concentrations at the foot were 4.5 and 2.1 times higher than those at the top, with
stronger local anthropogenic signals (Co, 5.67 times higher) and pronounced ditrnal-day-night
differences for diacids variation. Higher Co/C4 (5.84 vs. 4.74), C3/C4 (1.04 vs. 0.56) ratios and

O1C values (-21.5%o0 vs. -27.6%0) at the top indicated photochemical aging during aerosol
transport. Cz concentration was positively correlated with aerosol liquid water content and its
size distribution pattern matched with precursors, confirming aqueous-phase oxidation as the
dominant formation pathway. During dust events, PM2s concentrations at the foot and top
reached 457 ug m> and 165 ug m™>, but Cz concentrations in PM s decreased by 59% (foot)
and 25% (top), while 8!°C values of C; exhibited a signifieant-positive shift (foot: -27.6%o to -
23.9%o; top: -21.5%o to -13.2%o), attributed to alkaline dust catalyzing '*C-enriched oxalate
formation. mGly became the second most abundant acid due to enrichment on dust-particle
surfaces. Size-segregated data revealed decreased fine-particle Cz but increased coarse-particle
C,, elevating the coarse-to-fine particle ratio from 0.3~0.4 to 0.6~1.1. These findings offer
valuable insights into the altitude-dependent transformation of SOA affected by dust transport,

enhancing our understanding of mountain atmospheric chemistry and regional air quality.

Keywords: Dicarboxylic acids, dust particles, size distribution, stable carbon isotopes (5'°C),

aqueous-phase oxidation, heterogeneous reactions
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1 Introduction

Dust cycling is crucial to Earth’s climate system (Maher et al., 2010; Liang et al., 2022).
Mineral particles from dust storms absorb and scatter solar radiation (Kumar et al., 2014),
altering regional heat balance and cloud properties, which in turn affects precipitation
(Mahowald et al., 2014; Kok et al., 2023; Marx et al., 2024; Xu-Yang et al., 2025). They
also act as effective ice-nucleating particles (INPs) in mixed-phase clouds, regulating ice
formation and the radiation budget (Fan et al., 2016; Vergara-Temprado et al., 2018; Kawali,
et al., 2021; Chen et al., 2024). Dust particles often contain high levels of salts, bacteria, and
heavy metals, posing potential risks to human health and plant growth (Yamaguchi et al., 2016;
Luo et al., 2024). Dust not only degradesimpairs air quality locally but also undergoes long-

range near—is—souree—and—ean—be—transported, evertong—distances—by—winds;—ultimately
impaetingaffecting both the-elimate-en-hemispheric and global climate sealessystems (Pan et

al., 2025). During transport, mineral dust may undergo heterogeneous reactions, forming
secondary aerosolssubstanees that aid cloud formation (Wang et al., 2020; Bikkina et al., 2023).
The large surface area of these particles facilitates reactions that alter radiation transfer and
photolysis rates (Sullivan et al., 2007a).

Over the past 500 years, East Asia has been frequently hit by dust storms (Zhang et
al., 2021; Wu et al., 2022). The Taklimakan and Gobi Deserts, the primary sources of East
Asian dust, emit over 800 million tons of dust to downwind areas annually (Sullivan et al.,
2007b; Wang et al., 2015; Ren et al., 2019; Zhu and Liu, 2024). Northwestern and northern
China, frequently experience dusty weather due to these desert emissions (Gui et al., 2022;
Liang et al., 2022). In spring 2023, Mongolia contributed over 42% of the dust
concentration in northern China (Chen et al., 2023). Although dust storms are more
common in China during spring (Sun et al., 2001), a large-scale, high-intensity dust storm

hit northern China on January 10, 2021. This severe dust storm, Goriginating_from #

southern Mongolia and —China's—western Inner Mongolia, triggered —it—was—intense—and
far-reaching;eausingrapid air quality deterioration across downwind regionsin-the-affected

areas-{FHigure-SH. Our synchronized field observations of PM» s and size-segregated aerosols
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at the top of Mount Hua and on the ground in the winter of 2021 successfully captured this

large-scale dust event, as shown in Fig. S1. extensively covering Northern China and the

Guanzhong Plain. Liu et al. (2024) compared and analyzed the concentrations and size

distributions of water-soluble inorganic ions during dust and non-dust periods, findingResults

shew that the impact of dust sterms-have-alesspronouncedimpaet-on ground aerosols_in the

Guanzhong Plain is weaker than en-that in the free troposphere-efthe-Guanzhong Plain{iu
et—al5—2024);. Nevertheless, the specific mechanisms through which dust affects organic

components, particularly secondary organic aerosol (SOA) and their precursors butthespeetfie

effeets-of dust-on-organie-matter-in the ground and troposphere remain unclear-and-require
Farther study,

To investigate these processes, this study focuses on dicarboxvlic acids (diacids), which

serve as key tracers for SOA (Xu et al., 2022). As important components of water-soluble

organic carbon, diacids are widely distributed in the atmosphere from the surface layer to the

free troposphere (Fu et al., 2008: Myriokefalitakis et al., 2011). Conventional theory suggests

that aqueous-phase chemical reactions occur predominantly in submicron particles containing

water or cloud droplets (Lim et al., 2010: Ervens et al., 2011; Lamkaddam et al., 2021).

However, field observations have reported the coexistence of oxalate and nitrate in

supermicron particles during dust events (Falkovich and Schkolnik, 2004: Sullivan et al., 2007a:

Wang et al., 2015: Xu et al., 2020). To explain this, Wang et al. (2015) proposed that the reaction

of nitric acid and/or nitrogen oxides with dust generates (Ca(INO3)»), which absorbs water vapor

to form an aqueous phase on the dust surface. This enables the partitioning of gas-phase water-

soluble organic precursors into this aqueous phase. followed by their further oxidation to form

oxalic acid (C,). Research by Li et al. (2025) provides direct evidence for this mechanism,

showing that aqueous nitrate coatings (Ca(NO3)2), due to their very low deliquescence relative

humidity (absorbing water at atmospheric RH > 8%), effectively promote the formation of

aqueous secondary organic aerosols (agSOA). Thus, aged dust surfaces provide critical reactive

interfaces for agSOA formation.
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Tropospheric aerosols in high mountain areas are significantly influenced by long-range

transport of surface pollutants, making them more representative of regional atmospheric
quality. Our previous study (Shen et al., 2023); we—investigated—the—vertieal-distribution—of

duringthe summer—Theresults-demonstrated that summer daytime valley winds on Mount Hua
ean-transport organic acids emitted-from the foot to the-top, signiticantly-thereby altering the

chemical composition of the free troposphere and establishing distinct formation pathways of
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C, at different altitudes. ;while-distinet-Co-formationpathways-were-observed-between-the-top

and-footsites-This study examines aerosol vertical distribution characteristics in winter. Low

temperatures cause a significant reduction in the boundary layer height over Mount Hua, which

inhibits the diffusion of local pollutants to the top. Consequently, the top remains in a free

tropospheric environment where aerosols originate primarily from long-range transport from

dust source regions (Liu et al., 2024). During the observational period, we documented a major

dust event in which particles from dust source regions were directly transported to the top.

There, they mixed with local anthropogenic pollutants, triggering complex atmospheric

chemical reactions that resulted in notable vertical differences in aerosol chemical properties.

However, the influence of heterogeneous reactions on dust aerosol surfaces on the generation

of organic acids, particularly their role in modifying C, formation mechanisms at different

altitudes remains unclear. Therefore, using Here;—we—further-analyzed-the-observational data
from_a typical dust event thein winter —e£20201,-during-which-atypical-dust-event oceurred:

Fthis study focuses on examining aims-te-explore-the impacts of winter-dust transport events

on the molecular distribution, particle size characteristics of diacids, and the formation

mechanisms of C,. Ourfindingswill previde-new-instghts-The work aims to elucidate the key

inte-the-tmpertantrole of heterogeneous chemical reactions on the surfaces of dust aerosols in

the formation of seeendary—eorganic—aereselsSOA, providing new insights into regional

atmospheric chemical processes during dust events.

2 Experimental and methods
2.1 Sample collection

Samples were collected simultaneously at the free troposphere and the ground surface
during December 17, 2020 to January 12, 2021. The sampling site at the ground surface is
located on Yinquan Road, Huayin City, Weinan (34°31'N, 110°04'E; ~500 m a.s.l) (referred to
as “Foot”), while alpine sampling site is located at the summit of the west peak of Mount Hua
(34°28'N, 110°05'E; ~2065 m a.s.l) (referred to as “Top™) (Fig. 1). PM» s aerosol samples was
collected using medium-flow sampler (HC-1010, China Qingdao Company, China) at a flow

rate of 100 L min—" with a duration of 11 hours for each sample during the day (from 08:00 to
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19:00) and night (from 20:00 to 07:00 the next day). A total of 54 samples were collected at
both the alpine region and ground. The size-segregated samples were collected for ~71 h in
each set using an Andersen multi-stage impactor (Andersen, Thermo electronic, USA) at a flow
rate of 28.3 L min—"! with 9 size bins as < 0.4, 0.4-0.7, 0.7-1.1, 1.1-2.1, 2.1-3.3, 3.3-4.7, 4.7—
5.8, 5.8-9.0 and > 9.0 um, respectively. In a total of 9 sets of size-segregated samples were
collected. All the samples were collected onto pre-combusted (450°C for 6 h) quartz fiber filters
produced by Whatman, UK. After sampling, the filters were stored in -18°C until analysis.
2.2 Laboratory Analysis

2.2.1 Determination of carbonaceous species and water-soluble inorganic ions

The concentrations of organic carbon (OC) and elemental carbon (EC) in PM; 5 samples

were determinedguantified using a DRI Model 2001 carbon analyzer (Atmoslytic Inc., USA),
following the IMPROVE thermal/optical reflectance (TOR) protocol (Cao et al., 2007)._ A

0.526 cm? filter punch was heated stepwise in pure helium (at 120 °C, 250 °C, 450 °C, and

550 °C) followed by heating in a 2% oxygen/helium atmosphere (at 550 °C, 700 °C, 800 °C).

The method detection limits were 0.41 ug ecm 2 for OC and 0.03 ug em 2 for EC.

Water-soluble components were extracted from a quarter of each filter using 40 mL of

ultrapure water (Milli-Q, 18.2 MQ. Merck, France) via a combined process of 1-hour

ultrasonication and 1-hour mechanical shaking. After filtration through a 0.45 um membrane,

the extracts were preserved at 4 °C for subsequent analysis. Water-soluble inorganic ions (NH4 ",

K', Mg*", Ca®", CI", NOs ", and SO4*") were analyzed by ion chromatography (Metrohm 940

Switzerland). Anions and cations were separated using an lonPac AS23 column and an IonPac

CS12A column, with 9.0 mM Na;COs and 20 mM methanesulfonic acid as eluents,

respectively (Zhang et al., 2011)._Concurrently, water-soluble organic carbon (WSOC) was

determined using a total organic carbon (TOC) analyzer (TOC-L CPH, Shimadzu, Japan) (Li

et al., 2019). The detection limits for inorganic ions ranged from 0.008 to 0.022 pg m—, while

those for total carbon (TC) and inorganic carbon (IC) were 0.07 mg L™! and 0.08 mg L',

respectively.
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Aerosol liquid water content (ALWC) was calculated using the ISORROPIA-IT model

(Fountoukis and Nenes, 2007), based on the concentrations of water-soluble inorganic ions

(SO NH, -CI s NO; -Ca?* K -and Me>)-and meteorological parameters including fields

(erelative humidity (RH) and temperature (T). }in-the ISORROPIA-H-model- developed-by
Fountotkis-and Nenes{2007-Meteorological data for the top and the foot were obtained from

the Mount Hua Meteorological Station and the Huayin Meteorological Bureau, respectively.

All statistical analyses were performed using SPSS.

2.2.2 Determination of dicarboxvlic acids and related compounds

The analysis of diacids, keto-carboxylic acids, and a-dicarbonyls in analysis; PM>s and

size-segregated aerosols samples;—werewas conducted based on an established derivatization

method (Shen et al., 2022). A quarter of each filter was extracted by ultrasonicating ene-guarter

of-eachfilter-in ultrapure water (Milli-Q, 18.2 MQ, Merck, France) for three sequential 15-

minute intervals. To maximizeeptimize the recovery of low-molecular-weight acids (e.g., C2),

the extracts were alkalized were-adjusted-to pH 8.5-9.0 using-with 0.1 M KOH prior to the

concentration stepbefore-drying. The aqueous extracts were concentrated to near-dryness under

vacuum in a water bath maintained at 55 °C (evaporation was halted immediately after the

disappearance of the last drop of solvent). The Pried-dried residues were derivatized underwent

derivatization—with 14% BF3/n-butanol at 100°C for 1 hour to convert transferm—carboxyl

groups into dibutyl esters and oxo groups into dibutoxyacetals. After the reaction, the

derivatives were sequentially dissolved in n-hexane, acetonitrile, and pure water, followed by

triple extraction via vortex mixing to remove water-soluble inorganic substances. The aqueous

lower layer was removed using a Pasteur pipette. Organie-derivatives-were-purified-via-triple
water-washing-of the The n-hexane layer was concentrated by rotary evaporation and N blow-

down, and-reconstituted in 100 uL. n-hexane, and finally analyzed ferby GC-FID analysis-(HP

6890, Agilent Technologies, USA) (Wang et al., 2012). The recovery of the target compounds

was 83% for C, and ranged from 87% to 110% for other diacids.

Stable carbon isotopic compositions (8'°C) of exalie-aecidC> were determined using gas

chromatography—isotope ratio mass spectrometry (GC-IRMS; Delta V Advantage, Thermo
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Fisher Scientific, Franklin, MA, USA) following established protocols (Kawamura and
Watanabe, 2004). To ensure analytical precision (standard deviation < 0.2%o), derivatized
samples were analyzed in triplicate. Final 8'>C values of free oxalic acid were calculated via
mass-balance correction to account for isotopic contributions from the BF3/n-butanol
derivatizing agent.
3 Results and discussion
3.1 Vertical differences in PMz.s chemical composition at the foot and top of Mount Hua
during non-dust periods

During winter—non-dust periods, significant vertical differences were observed in the

chemical composition of PM; 5 ehemieal-compesition-between the foot and top of Mount Hua.

The average PMz s concentration at the foot was(127 + 48 ug m>) was 4.5 times higher than

that at the top (28 + 14 ug m3), with a mean difference of 99 ug m= (95% CI: 86 to 113: t

(61.05) =14.60, p <0.001) (Supplementary Table S1 and Table S3a). appreximately4-5-times
hicher thand . Frg 4 14 = (Suppl Table S1).

Thi cal ’ i PMo < s | lsoin thei
chemiecal-compeosttionas-carbenaceous-Carbonaceous aerosols eempenents-and water-soluble
ions were significantly enriched acevmulated-in-significantly-higherameounts-at the foot (all p
<0.001; Table S3a). Piactdsand-their-derivativesswhich-are-As key components eenstituents
of water-soluble-erganieearbon(WSOC) (Kawamura et al., 2016; Yang et al., 2020), showed
partienlarly-streng spatial-variation—the total concentrations of diacids at the foot (1808 £ 1280

ng m>) were-was approximately 2.1 times higher than those at the top (860 + 534 ng m™?), with

a mean difference of 718 ng m~> (95% CI: 453 to 983:t (69.15) = 5.40, p < 0.001: Table S3b).

The spatial difference was most pronounced for azelaic acid (Co), a biomarker of biomass

burning (Kalogridis et al., 2018; Shen et al., 2022)—shewedthe—difference, with the

concentration at the foot-being (153 £ 110 ng m>) being 5.7 times higher than that and-at the

top (27 + 18 ng m>), corresponding to a mean difference of 126 ng m— (95% CI: 95 to 156 t

(54.77) = 8.24, p < 0.001; Table S3b). ;indicatinga-5-7-fold-higher concentrationat-the foot:
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Consequently, Fthe contribution raties-of Co to total diacids awas substantially greater at the

foot (at-the-two-sites-were-8.5%) than at the topand (3.2%) (Fig. 2b);respeetively.

Correlation analysis of PMa2s and its_chemical components revealed no significant

relationship between the two sites during winter, contrasting with the positive correlations
observed in summer (Shen et al., 2023). Combined with ion compositiondata and back-
trajectory analysis from Liu et al. (2024), these findings indicate that pollutants at the top
primarily originatee from regional transport #-from the northwestern direction with minimal
vertical mixing, while the-components at the foot of the mountain were mainly controlled by

local emission sources.

Day-night differences provide further evidence supporting this conclusion. At the foot of

the mountain, PM> s, ionic components, and carbonaceous components (except for NOs~ and

NH4") all showed significant day-night differences (p < 0.05; Table S4a). Among the diacids,

methylglyoxal (mGly) exhibited the most pronounced signifieant-day-night differences;—with

a (daytime: 128 £49ngm™, 47%

higher than nighttime: 87 £ 42 ng m >, p < 0.001: Fig. S2, Table S4b). As the terminal product

of diacids photo-oxidation (Kawamura and Sakaguchi, 1999)Oxalie-actd(Co);-as-the-terminal

product-of-diactds(Kawamura—and Sakagaehi; 1999, C, also displayed marked day-night
differences diurnalvariation-(daytime: 766 + 552 ng m > vs. nighttime: 585+ 497 ngm >, p =

0.023), reflecting strong anthropogenic influence on ground-level photochemistry. In contrast,

C> at the top of the Mount Hua (daytime: 312 + 224 ng m > vs. nighttime: 299 + 186 ng m >; p

= 0.941) and its precursors —eeneentrations-showed no signifieantclear day-night differences
diurnal-fluetuation—(p = 0.341-0.917; Table S4c), consistent with the patterns of PMas (p =

0.979), OC (p = 0.766), and other major components (Table S4a). —indicatingthatthe hish-

phetochemieal-eontributions—Such stability is a typical characteristic of high-altitude sites

located above the planetary boundary layer, primarily governed by regional transport processes

(Fuetal.,2008: Liet al., 2012;: Meng et al., 2014). indicating that aerosol processes in the free

troposphere differ from those at ground level. In this high-altitude environment, in-cloud

10
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processes represent a key pathway for agSOA formation. Studies have shown that C, mainly

originates from the in-cloud oxidation of precursors such as glyoxal (Gly) and isoprene

(Warneck, 2003: Lim et al., 2005; Carlton et al., 2006), a mechanism supported by global

model simulations (Myriokefalitakis et al., 2011). Additionally, the photochemical

decomposition of C, following its association with Fe-containing particles in clouds (Zhang et

al.. 2019) also contributes to the stable distribution of organic acid concentrations at high

altitudes.
Aerosol aging indicators further confirmed distinct oxidation processes between different

altitudes. According to existing research, succinic acid (C4) can be via hydroxylation to

generate C, and malonic acid (Cs3), while C; can be further converted to C, through

intermediates such as hydroxymalonic acid or ketomalonic acid (Kawamura et al. 1993;

Kunwar and Kawamura, 2014; Hoque et al., 2017). Therefore, the C,/C4 and C3/C4 ratios are

widely used as effective indicators for assessing the extent of photochemical aging in organic

aerosols (Kawamura et al., 2016; Meng et al., 2018:; Shen et al., 2022). In this study, the-tep-of

MeuntHua;-the Co/C4 ratio at the top of Mount Hua reached-was 5.84 + 0.32, while-and the

C3/C4 ratio was 1.04 £ 0.08, both signifieanthy-higher than the corresponding values at the foot

(4.74 £ 0.28 and 0.56 £ 0.05, respectively; Fig. 2¢). These_results are consistent with reports

from high-altitude areas such as Mount Tai (Wang et al., 2009: Meng et al., 2018) and Mount

Hua (Meng et al., 2014). collectively confirming that the atmosphere undergoes more

significant photochemical aging during long-range transport at high altitudes. —elevated

This study compared the correlations between C; and its key precursors at the foot and top

of Mount Hua (Fig. 3a—d, 3i-1), revealing differences in atmospheric oxidation pathways across

altitudes. Building on this, the synergistic effects of inorganic ions and ALWC on C, formation

were investigated (Fig. 3e-h, 3m-p), thereby elucidating the aqueous-phase reaction

mechanisms and the role of environmental factors such as humidity in C, generation. Results

showed that were-observed-betweenC,; exhibited the strongest correlation with €o-and-itsmajor

11
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precursors-at-both-sites—with-glycolic acid (0C,) exhibiting-thestrongestrelationship-(R? =
0.88 at the foot, R? = 0.95 at the top, p < 0.01: Fig. 3 d. 1). Other key precursors included Gly

(R?=0.57-0.67.p < 0.01: Fig. 3b, 3j), mGly (R>=10.58-0.85, p < 0.01: Fig. 3a, 3i), and pyruvic
acid (Pyr: R?=0.80-0.81, p < 0.01; Fig. 3c, 3k). These correlation characteristics confirm that
aqueous-phase oxidation serves as the primary formation pathway for C. under non-dust
conditions (Deshmukh et al., 2017; Du et al., 2022). The consistently higher correlation
coefficients at the top further substantiate the enhancing effect of prolonged atmospheric
processes on secondary organic aerosol formation.

Contrary to previous studies (Mengetal;2048:-Wang et al., 2012; Meng et al., 2018), we

found that C; correlated more strongly with NOs~ (R?=0.79, p <0.01; Fig. 3f) than with SO4*

(R2=0.71,p <0.01; Fig. 3e) at the foot;reflecting-the prometingeffect-of local-anthropogenie
emissions—onnitrate formation. The difference mainly stems from strong influences of local

anthropogenic emissions (e.g.. traffic and industrial activities) at the foot, which provide

abundant NOy and lead to an increased proportion of NO3s~ in PM>s. Since NO3~ is more

hygroscopic than SO4%, its elevated concentration further enhances ALWC, thereby promoting

agSOA formation and intensifying heterogeneous reaction processes (Huang et al., 2025). In

contrast, at the top of Mount Hua, C exhibited a higher shewed-stronger-correlation with SO4*

(R2=0.63,p <0.01: Fig. 3m) than with NOs~ (R>=0.37,p < 0.01: Fig. 3n). This phenomenon

is closely related to the active in-cloud processes in the free troposphere mentioned above.

SO4* at the top primarily originates from the oxidation of SO, within cloud droplets

(Yermakov et al., 2023), a process dominated by heterogeneous reactions (Wang et al.. 2025).

Meanwhile, cloud droplets also provide key reaction media for the aqueous-phase

photooxidation of C; precursors such as Gly and wC, (Warneck, 2003).

Aerosol-Ligquid-water-content (ALWC) exhibited a humidity-dependent thresheld-effect
on C, formationthe-exidationpreeess. Under RH<75%DPuringthe-samplingperied, ALWC

was positively correlated with C, concentration (R?> = 0.36-0.44, p < 0.01; Fig. 3g, 30),

reflecting the promotion of precursor dissolution and oxidation by the expansion of the aqueous

phase. However, when relative-humidity (RH) exceeded 75%, supersaturation shifted the gas-

12
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particle partitioning equilibrium, causing C concentrations to decrease with increasing ALWC.
After excluding high-humidity data, the correlation between ALWC and C; significantly
strengthened (R? = 0.59, p < 0.01: Fig. 3h, 3p), confirming that aqueous-phase oxidation is the
primary pathway for C, formation during non-dust periods. This finding complements the
research by Yang et al. (2022) on the synergistic effects of humidity and pH, jointly revealing
the complex regulatory mechanisms of C, formation under different humidity conditions.

3.2 Impact of dust transport on PMz.5s chemical composition

On January 10, 2021, an extensive and intense dust storm, driven by successive cold fronts
and sustained high-velocity winds, swept across northern China, triggering a dramatic surge in
PM; 5 concentrations (Fig. S3). At the foot of Mount Hua, PM> s concentrations rapidly rose
from 95 pg m > to 457 pg m > within 24 hours, reaching 3.4 times the non-dust average (127 +
48 ug m3). Concurrently at the top, PMa s climbed from 46 to 165 pug m>, representing a 5.9-
fold rise compared to typical conditions (28 + 14 pg m™). The cleaner atmospheric
environment at the top amplified the relative impact of dust transport, while at the foot, existing
local pollution partially masked the dust contribution. This contrast highlights the altitude-
dependent response to dust events, with the top showing greater sensitivity due to its lower
background pollution levels.

HYSPLIT trajectory analysis revealed the dust originated from the Inner Mongolia-Gansu
arid region and was transported along a northwest path to the study area (Fig. S4). Dust
transport was closely linked to atmospheric circulation, especially in the troposphere, where
changes in wind speed play a key role in dust dispersion (Yang et al., 2017). During the dust

period, wind speeds at the foot increased from 2.0 to 5.3 m s ™!

, and high-altitude wind speeds
reached 12.2 m s™!, significantly-higher than the average wind speed during non-dust periods
(5.4+£3.0ms™).

Although PMs absolute concentrations rose during the dust period, component
concentration changes at the two sites differed markedly. At the foot of the Mount Hua,
elemental-earben{EC) concentrations remained relatively stable (4.5 + 2.1 during non-dust vs.

4.8 + 1.8 ug m > during dust; Table S2). Organiecarbon{OC) shewed-a-medestincreased from
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17 +£8.0 to 19 4.6 ug m=>, but its mass fraction in PM, s decreased substantially from 13.4%
to 4.4%, reflecting the overwhelming contribution of mineral dust. The top exhibited
stenifieanthdifferent characteristics, with both EC and OC concentrations doubling from 0.9
to 1.8 g m= and 4.7 to 9.4 pg m respectively. OC maintained a higher mass fraction of 6.5%
compared to 4.4% at the foot. These patterns indicate efficient mixing of dust with
anthropogenic carbonaceous aerosols during long-range transport, coupled with more vigorous

secondary formation processes in the free troposphere (Wang et al., 2023; Zheng et al., 2024).

Concentrations of mineral components like calcium and magnesium ions (Ca** and Mg*")

rose signifieantly-(foot: 1.8 to 7.7 pg m3; top: 0.7 to 3.2 pg m ), confirming their established
role as reliable tracers of dust emissions (Li et al., 2016; Liu et al., 2024). SO4> concentrations
also increased significantly-at both sites (foot: 5.8 to 10.0 pg m3; top: 3.8 to 8.7 ug m>). This

increase can be attributed to both the release of inherent sulfate species in dust (e.g., CaSO4)

(Wu et al., 2012) was—mainty-due-to-and heterogeneous ehemieal-reactions on dust particle

surfaces, with-where transition metals like-such as Fe (III) and Mn (II) aet-as—eatalysts—te
promete-catalyze the conversion of atmespherie-sulfurdioxide£SO2) to SO4>~ (Harris et al.,
2013; Myriokefalitakis et al., 2022).

Dust transport significantly—altered the concentrations and molecular distribution of
diacids and their precursors. Although C> remained the most concentrated acidic molecule
during dust periods, its absolute concentration decreased noticeably. At the foot of Mount
Hua, C> concentrations dropped from 674 + 528 ng m > (non-dust periods) to 276 + 20 pg
m~> (dust periods), a-decrease ef-by 59%. At the top of Mount Hua, C> concentrations
decrease from 306 + 204 ng m > to 229 £ 45 ng m >, a reduction of 25%. Severe ozone (O3)
pollution was present in this dust storm event, and the particulate eruption promoted the
generation and dispersion of O3 pollutants. Oz concentrations at the foot increased sharply from
15 pg m > to 62 ug m~ (Fig. S3), much higher than the non-dust average of 26 + 19 pg m™>.

The dust's-dust’s extinction effect likely reduced aerosol optical thickness, enhancing surface
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369 UV radiation. Combined with a local temperature rise (AT = +5.8°C), this probably triggered
370  free-radical chain reactions, promoting the heterogeneous oxidation of C, on mineral surfaces

371 (Usher, etal., 2003; Lu et al., 2023:Usher,etal;20603). Notably, the proportion of C; in total

372 diacids exhibited contrasting shewed-different-trends at the two sites, decreasing from 37.3%

373 to 32.2% at the foot and increasing from 35.5% to 42.8% at the top (Fig. 4c). This divergence
374  could be closely related to the humidity levels at the two sites. During the dust events, the lower

375  relative humidity at the foot experiencedtowrelative-humidity-(RH = 24 + 8.5%); suppressed
376  inhibiting-aqueoushquid-phase oxidation, whereaswhile the higher humidity at altitade-the top

377  (RH = 44 + 11%) favored seeondary—C, formation_through such reactions. Additionally,

378  variations in aerosol sources, transport pathways, aging processes, and potential

379  contributions from other chemical reactions may also have influenced C;, generation.

380 As a major atmospheric keto acid and key precursor of C, (Kawamura et al., 2012; 2013),
381  ®C, ranked second among the acids detected at both sites during non-dust periods, with
382 concentrations of 214 = 199 ng m™ at the foot and 77 + 52 ng m > at the top of Mount Hua.
383  However, during dust periods, mGly became the second most abundant acid at both sites due
384  to its enrichment on dust-particle surfaces. At the foot, mGly concentration reached 116 + 34
385 ng m > (13.6% of total diacids), up from 5.9% in non-dust periods. At the top, mGly
386 concentration was 38 + 9 ng m > (7.1% of total diacids) (Fig. 4b), slightly higher than the non-
387  dust 5.6%. Phthalic acid (Ph), a photo-oxidation product of naphthalene and other aromatic
388  hydrocarbons, primarily originates from industrial processes and incomplete combustion
389  of coal in heavy and diesel vehicles (Ho et al., 2006). At both foot and top of Mount Hua,
390  the proportion of Ph remains relatively stable, accounting for approximately 4% during
391  both dust and non-dust periods, indicating that its sources are stable and closely related to
392 regional industrial activities and traffic emissions. During dust periods, the C»/Cs4 ratios at
393 the foot and top of Mount Hua rose to 5.24 and 7.75 (Fig. 4c), showing stronger aerosol aging.
394  However, the C3/Cy4 ratio at top of Mount Hua dropped to 0.70, this might result from the
395  combined effects of selective adsorption of C> onto dust particles and enhanced photolysis of

396  C; on mineral dust surfaces.
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3.3 Size distribution characteristics of diacids and related compounds during non-dust
and dust periods

During non-dust periods, the size distribution of C» at both the foot and top of Mount Hua
exhibitsed a distinct bimodal distributionpattera (Fig. 5a and 5(a)), characterized by a
primarysajer peak in the fine particle mode (0.4-1.1 um) and a secondary sinerpeak in the
coarse particle mode (4.7-5.8 um). Fine particles, with their greater specific surface area and
hygroscopic nature, provide a conducive liquid-phase environment that enhances the oxidation
of precursors such as mGly and Pyr, leading to C, formation (Ervens et al., 2011; Wang et al.,
2015). The high correlation between C, and secondary inorganic ions (SO4*, NOs~, NH4")
(with R? values of 0.92-0.95 at the foot and 0.48-0.92 at the top, p <0.01: as shown in Fig. 6)
supports this mechanism, confirming that C, formation during non-dust periods primarily relies
on liquid-phase oxidation reactions on fine particle surfaces. The lower R? values at the top
may be due to the greater influence of long-range transport at high-altitude sites, resulting in
more complex sources of precursors. C; in the coarse particle mode likely originates from direct
adsorption of biogenic emissions (such as plant waxes) or heterogeneous oxidation of gas-
phase precursors on mineral dust surfaces (Wang et al., 2012).

The distribution patterns of short-chain diacids, such as C3 and C; are similar to that of Cz
(Fig. 5b-c and 5(b)-(c)), with primarysain peaks at 0.4-1.1 um and secondary peaks at 4.7-5.8
um, indicating that these acids mainly come from fine particles. In contrast, glutaric (Cs) acid
shows distinct distribution characteristics at the two sites. At the foot, it exhibits a unimodal
distributionsingle—peak— in the coarse particles (4.7-5.8 um) (Fig. 5d), while at the top, it

displays a bimodal distribution (0.4-1.1 pm and 4.7-5.8 pm) (Fig. 5(d)). This significant

difference in modal structure suggests that different atmospheric processes govern the behavior

of Cs at different altitudes. —Fhe-Cs—at-the—footlikelymainlyecomes{romlocal-emissions

proecesses{(ZLhao-andFu204H8)—Adipic (Ce) acid shows a bimodal distribution at both sites,

probably resulting from the oxidation of cyclohexene (in the fine mode) or adsorption of gas-
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phase precursors on coarse particle surfaces (Deshmukh et al., 2016). Azelaic (Co) acid is
stgnifieanthy-enriched only in fine particles at the foot, which may be closely related to the
oxidation of unsaturated fatty acids emitted from biomass burning in northern regions during
winter (Deshmukh et al., 2016). The coarse particle fraction of Ph likely forms through gas-
phase adsorption, consistent with the strong adsorption characteristics of coarse particles
reported by Kanellopoulos et al. (2021).

The particle size distributions of mGly (Fig. 5g and 5(g)) and oC: (Fig. 5j and 5(j))
showed remarkable consistency with that of C; (Fig. 5a and 5(a)), providing direct evidence
that aqueous-phase oxidation serves as the predominant formation pathway for C,. Pyr
exhibited distinct altitudinal variation in its distribution characteristics. At the top of Mount
Hua, Pyr displayed a similar size distribution pattern to C», indicating their shared
photochemical origin. In contrast, at the foot, Pyr demonstrated signifieant-enrichment in
coarse particles (4.7-5.8 um), likely attributable to heterogeneous reactions of gaseous
precursors from local coal combustion on mineral dust surfaces. Gly also exhibits a peak in
coarse particles, likely due to its strong adsorption and chemical stability on particle surfaces.
The diacids concentrations are consistently lower at the top compared to the foot, which is
closely tied to substantial local emissions at the lower elevation. As shown in Fig. 6, the coal
combustion and biomass burning tracer Cl- demonstrates an exceptionally strong correlation
with Cz (R? = 0.88, p< 0.01) at the foot.

The dust transport process signtficanthy-impacted the size distributions altered-the-partiele
size-distribution-charaeteristies-of diacids in aerosols (Fig. 5). At the foot of the mountain, the

C> concentration in fine particles (<2.1 um) decreased markedly-from 8662 ng m to 4880 ng

m~ (a reduction of 43.7%reduetion) during dust events, while the concentration in coarse

particle (>2.1 pm) eoncentrationshowed-a-medestincreased from 2718 ng m~ to 2843 ng m™>

(an increase of 4.6%) (Table 3). A more pronounced change was observed at the high-altitude

top of Mount Hua, where the C> concentration in coarse particles (2301 ng m>) exceeded that

in fine particles (2161 ng m) during dust events, indicating a shift in the dominant particle

size distribution from fine to coarse modes. This shift in particle size distribution can be
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attributed to the formation of Ca(NOs)2 coatings resulting from the reaction between calcium

carbonate and NO3~ during dust aging (Li and Shao, 2009: Zhi et al., 2025). These hygroscopic

coatings create favorable conditions for the adsorption and oxidation of gaseous organic

compounds, thereby promoting the formation of SOA on the surfaces of coarse particles.

Research by Li et al. (2025) further confirms that agSOA formed on dust surfaces can

effectively enhance SOA production and drive a transition in the size distribution from the

submicron to the supermicron range, which is highly consistent with the observational results

of this study. Size-segregated ion data (Fig. S5) provide direct evidence for the above

mechanism. Ca>" was primarily present in the coarse mode (3.3—5.8 um), while during dust

events, NO3~ at the top migrated from the fine mode (0.4—1.1 um) to the coarse mode (3.3-5.8

um) and coexisted with Ca®' in the same size range, strongly supporting the formation of

Ca(NO3)» coatings on dust particle surfaces. In contrast, at the foot of the mountain, although

the concentration of NOs~ decreased, it remained predominantly in the fine mode. This spatial

difference may stem from more thorough aging and reactions of aerosols at the top due to

longer transport times. Meanwhile, the foot is influenced by local pollution, resulting in higher

background NOs3;~ concentrations and competitive reactions with components such as SO4>",

which may collectively delay the distinct shift of NO3~ to the coarse mode. Fhese-findingsshow

Analysis of the dust/non-dust concentration ratio (Rp/n) revealed Rp/x values of 0.3 and
0.6 for fine and coarse particles at the foot, respectively, while these values reached 0.4 and 1.1
at the top, indicating that dust processes have a more signifieant-impact on the particle size
distribution of diacids at high-altitude regions. Further investigations confirmed significant

enrichment of C; precursors (mGly, Pyr, and ®C>) in the coarse particle fraction (>2.1 pum).
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Observational data from the top of Mount Hua revealed that the concentration ratio (Rpn) of
these precursors in coarse particles during dust periods reaches 0.8-1.4 during dust periods,
higher than the 0.5-0.7 ratio in fine particles (<2.1 um), demonstrating the crucial contribution
of heterogeneous oxidation on dust particle surfaces to C, formation. Throughout dust episodes,
the particle size distribution patterns of diacids (C2-Cs) consistently displayed a pronounced
shift from fine to coarse particles (4.7-5.8 um) (Fig. 5). Notably, concentrations of the biomass
burning tracer Co decreased during dust episodes, while Ph and isophthalic acid (iPh) showed
distinct peaks in the coarse particle mode. This phenomenon indicates that dust particles
effectively scavenge gaseous pollutants through strong adsorption, thereby suppressing the
formation of local fine-mode secendary—erganic—aerosols(SOA). However, these gaseous
precursors adsorbed onto coarse particle surfaces can still undergo heterogeneous oxidation
reactions to form SOA.

During dust events, the correlation between C> and mineral ions (Ca®*, Mg®*) showed
significant enhancement (with R? values of 0.33-, 0.30; p<0.05 at the foot and 0.65-, 0.39;
p<0.01 at the top). This finding showsed excellent agreement with the recent research results
of Li et al. (2025), who similarly observed stronger correlations between Ca*" and exalateC>
(R?=0.46-0.95) in the coarse particle phase. This arises as organic acids like exalie-aeidC, in
aged carbonate-containing dust particles react with carbonates to form stable salts (Ervens et
al., 2008; Lim et al., 2010). This process inhibits the volatility of organic acids and stabilizes
them in the coarse particle phase. Furthermore, due to differences in rock types and weathering
processes, Asian dust particles inherently contain higher concentrations of alkaline metal
elements (Ca and Mg) compared to dust from other regions (Yu et al., 2025). The size-resolved
correlations between Cz, Ca?*, and Mg?* (Fig. 6), further support this conclusion. During dust
events, the concentrations of Cz, Ca®", and Mg?" exhibited synchronous increases with
increasing particle size. In contrast, during non-dust periods, the peak concentration of C»
occurred in the fine particle size range, while mineral ion concentrations did not show
corresponding increases. As described in Section 3.2, dust events led to significantreductions

in C> concentrations in PMz s (foot: 674 + 528 ng m™> during non-dust periods vs. 276 + 20 ng
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m~ during dust periods; top: 306 + 204 ng m~ during non-dust periods vs. 229 + 45 ng m™>
during dust periods).

Overall, the transformation mechanisms of C; and its precursors underwent significant
alterations during dust events, shifting from aqueous-phase oxidation dominated in fine
particles during non-dust periods to heterogeneous oxidation on coarse particle surfaces as the
primary pathway during dust episodes. Regional comparative analysis further revealed that
atmospheric chemical processes at the mountain foot were mainly influenced by local emission
sources such as coal combustion and biomass burning, whereas the summit site more clearly
reflected the complex interactions between long-range dust transport and regional atmospheric
processes.

3.4 Stable carbon isotopes (6'*C) of oxalic acid

Synchronized observations at the foot and top of Mount Hua (2060 m asl) revealed an
inverse correlation between Cx concentration and §'°C values in PM, s (Fig. 7a and 7b). When
C> concentration at the foot increased to 2424 ng m™>, its §'°C value decreased to -34.5%o, while
at the top, a concentration of 917 ng m~> corresponded to a §'*C of -24.7%o. Conversely, during
low concentration periods, §'°C at the foot rose to -21.9%o (258 ng m>) and at the top to -17.2%o
(63 ng m>). This systematic variation provides clear evidence for signifieantkinetic carbon
isotope fractionation during atmospheric aqueous-phase oxidation processes. Specifically,
volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) with
lower 8'3C values preferentially react to form aqSOA, resulting in '3C-depleted products (Xu
et al., 2022).

Spatially, the 6'*C values of C; in PM2 5 at the top of Mount Hua (-28.4%o to -12.8%o,
mean -21.5%o) were significantly-higher than those at the foot (-36.2%o0 to -14.9%0, mean -
27.6%o0). This vertical gradient primarily results from long-range transport of aerosols at high
altitudes coupled with deep oxidation processes. The higher C»/C4 ratio observed at Mount Hua
(5.84 vs. 4.74 at the foot) indicates more pronounced atmospheric aging characteristics. This
distribution pattern originates from prolonged photochemical oxidation during long-range

transport, where preferential cleavage of '>C-'2C bonds (due to their lower bond energy) leads
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to relative *C enrichment in residual C». In contrast, surface aerosols dominated by local fresh
emissions undergo shorter oxidation periods and exhibit weaker isotope fractionation effects.
Moreover, 6'°C can provide insights into the sources of aerosols, Pavuluri and Kawamura
(2016) found that biogenic aerosols had higher mean §'*C values (-15.8%o) than anthropogenic
sources (-19.5%o). Our study shows that foot aerosols were mainly influenced by anthropogenic
sources (biomass burning and coal combustion), while the top was more affected by natural
sources due to richer vegetation, with long-range transport potentially weakening local isotope
fractionation effects.

During dust events, C> concentrations in PM> s showed signifieant-decreasing trends,
declining from 674 + 528 ng m™ to 276 + 20 ng m™> at the foot and from 306 + 204 ng m~ to
229 + 45 ng m™ at the top of Mount Hua. Concurrently, the §'*C values of C, exhibited distinct
positive shifts, increasing from -27.6%o to -23.9%o at the foot and from -21.5%o to -13.2%o at
the top. This phenomenon reveals key chemical transformation mechanisms during dust
transport: alkaline mineral surfaces promote heterogeneous catalytic oxidation of exalate-C,
precursors, with coarse-mode mineral components (Ca**/Mg?* etc.) preferentially combining
with 1*C-labeled C; to form stable compounds like calcium oxalate. This mechanism is strongly
supported by observational data during dust events, both oxalic acid and Ca*/Mg**
concentrations showed signitieant-increases with growing particle size, while exhibiting high
correlations (R?= 0.30-0.65) during dust periods. Simultaneously, >C-enriched C> produced
on fine particle surfaces moves to coarse particles through gas-particle conversion or
coagulation, resulting in '*C-enriched residues remaining in fine particles. As demonstrated by
the aforementioned research findings, the concentration of oxalic acid in coarse particles
showed a marked increase during dust events, with this variation being particularly pronounced
at the top. These two synergistic processes collectively altered both aerosol size distribution
and isotopic composition characteristics.

4. Conclusions
This study provides compelling evidence for the dual role of dust transport in modulating

oxalic acid formation and isotopic composition in atmospheric aerosols. Through
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comprehensive analysis of PM2 s and size-segregated samples, we demonstrate that dust events
trigger a fundamental shift in oxalic acid production pathways from predominant aqueous-
phase oxidation in fine particles during non-dust periods (showing strong humidity dependence
below 75% RH) to mineral heterogeneous chemistry in coarse particles during dust episodes
(Fig. 8). The dust induced transformations are particularly pronounced at high-altitude sites
like Mount Hua, where we observed: (1) enhanced aerosol aging indicators (C»/Cs ratio
increasing to 7.75); (2) signifieant-0"*C enrichment (+8.3%o0 compared to non-dust periods);
and (3) preferential partitioning of Coexalate to coarse-mode particles (coarse/fine particle ratio
reaching 1.1). These changes result from synergistic effects of surface-catalyzed oxidation
favoring '°C retention and metal-oxalate complexation. Conversely, surface sites exhibited
stronger local anthropogenic influences, with higher Coexalate concentrations (674 + 528 ng
m?) but lower 6"*C values (-27.6%o), reflecting less processed aerosols. The identified inverse
oxalateCr-0"3C relationship and altitude-dependent response to dust transport provide new
quantitative tools for evaluating aerosol aging processes and improving regional air quality
models, particularly in dust-prone regions under changing climate conditions.
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938 Figure 6 Correlation of C; with water-soluble ions at the foot and top of Mount Hua during non-dust

939 and dust periods (Circles in the figure represent non-dust periods, and triangles represent dust periods)
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942 Figure 7 Stable carbon isotopes (6°C) of C; in PM> s at the foot and top of Mount Hua
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Table 1 Average concentrations of dicarboxylic acids and related compounds in PM, s at the foot and

top of Mount Hua during non-dust periods

Foot Top
Compound Daytime  Nighttime Whole Daytime  Nighttime Whole Rer
(N=26) (N=27) (N=53) (N=26) (N=27) (N=53)
Dicarboxylic acids
Oxalic, C2 766 +552  585+497 674+528 312+£224 299+186 306+204 2.2
Malonic, Cs3 86 £ 58 71 £55 78 £56 54 + 39 53+£32 53+35 1.5
Succinic, Cy4 152 + 83 112+ 77 132+ 82 60 + 47 57+ 46 58 +£46 2.3
Glutaric, Cs 38+ 19 27+ 14 32+17 22427 18+ 16 20+£22 1.6
Adipic, Cg 17+ 15 14+ 13 15+ 14 12+13 10+ 6.3 11+9.8 1.4
Pimelic, C; 15+5.0 12+5.0 13+£5.1 92+33 89+23 9.0+2.8 1.4
Suberic, Cg 16 £4.1 14+34 15+3.8 13+3.7 12+3.5 12+3.6 1.3
Azelaic, Co 175+ 110 131+106 153 +110 28 +£19 27+17 27+18 5.7
Sebacic, Cio 19+15 14+11 16+ 14 53+35 53+37 53+3.5 3.0
Undecanedioic, C;1 14 +3.8 12+2.5 13+£3.3 99+1.8 92+1.7 9.6+1.8 1.4
Methylmalonic, iCs4 36 £17 24+ 13 29+ 16 13+94 12+7.6 13+£8.5 2.2
Mehtylsuccinic, iCs 16 £ 5.4 16+7.9 16 £6.7 10+3.2 10+2.4 10+2.8 1.6
Methylglutaric, iCe 18+6.7 14+54 16+ 6.3 19+7.7 19+6.2 19+6.9 0.8
Maleic, M 22+ 12 17+11 19+12 13+10 13+£5.7 13+7.9 1.5
Fumaric, F 13+34 11+24 12+3.0 10+1.2 10+1.0 9.7+1.1 1.2
Methylmaleic, mM 29+ 18 27+29 28+24 17+9.1 16 +6.2 16 +7.7 1.8
Phthalic, Ph 89 +43 71 £45 80+44 44 + 23 39+20 41+22 2.0
Isophthalic, iPh 15+5.4 13+£7.0 14+£6.3 6.5+1.2 6.5+0.8 6.5+1.0 2.2
Ketopimelic, kCy 102+23 94+2.1 9.8+2.2 83+1.9 8.0+1.7 81+1.8 1.2
Ketocarboxylic acids
Pyruvic, Pyr 85+45 73 +£59 79 +53 52+38 54+30 53+34 1.5
Glyoxylic, ®Ca 230 +£201 198+200 214+199 79 + 58 75+ 47 77+52 2.8
a-Dicarbonyls
Glyoxal, Gly 29+ 15 29 +£23 29+19 23+ 13 24 £ 10 24 +12 1.2
Methylglyoxal, - e 40 87442 107449 49428 48423  48+25 22
mGly

Others
Benzoic, Ha 15+7.1 12+6.7 13+6.9 9.6+54 93+5.1 94+£52 1.4

Total detected 2029 + 1594 + 1807 £+
(ng m™) 1294 1238 1280 879 £ 591 842+481 860 +534 2.1
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950 Table 2 Average concentrations of dicarboxylic acids and related compounds in PM s at the foot and

951 top of Mount Hua during dust events
Foot Top
Compound Daytime  Nighttime = Whole Daytime  Nighttime Whole
V=1 w=1) (v=2) @v=1 w=1) (N=2)
Oxalic, C 289 262 276 £20 261 197 229+ 45
Malonic, C3 28 38 33+73 21 21 21+0.1
Succinic, Cs4 47 59 53+89 28 33 30+3.5
Glutaric, Cs 15 16 15+0.5 8.4 11 10+1.9
Adipic, Cg 9.8 10.2 10+0.3 6.2 6.4 6.3+0.2
Pimelic, C; 7.6 9.2 84+1.1 6.3 6.3 6.3+0.0
Suberic, Cg 9.2 11 10+1.3 6.9 11 8.7+£2.6
Azelaic, Co 41 54 47+£9.4 13 19 16 +4.1
Sebacic, Cio 4.7 5.6 51+0.7 32 3.2 32+£0.0
Undecanedioic, C; 9.3 10 9.8+0.7 8.0 7.9 8.0+£0.0
Methylmalonic, iCs 15 16 16 £0.3 8.2 9.1 87+0.6
Mehtylsuccinic, iCs 12 11 12+ 0.9 9.4 10.2 9.8+0.6
Methylglutaric, iCs 15 16 16 £0.3 9.5 10.0 9.8+0.3
Maleic, M 7.8 10 9.1+1.8 7.3 5.6 64+13
Fumaric, F 13 15 14+14 10.5 11.3 10.9+0.6
Methylmaleic, mM 12 13 13+0.2 10.3 10.2 10.3+0.0
Phthalic, Ph 39 41 40+1.3 22 27 24+35
Isophthalic, iPh 9.5 12 11+1.6 5.9 59 59+0.0
Ketopimelic, kC; 7.5 7.9 7.7+0.3 7.2 7.1 7.2+0.1
Pyruvic, Pyr 29 52 40=+17 0.6 19 9.8+13
Glyoxylic, ®C» 51 87 69 +26 33 38 36+4.0
Glyoxal, Gly 14 8.7 12+4.1 9.8 10.9 10.4+0.7
Methylglyoxal,
mGly 92 140 116 £34 32 44 38+ 8.6
Benzoic, Ha 12 17 15+3.8 8.7 10.7 9.7+14
Total detected 855+
(ng ) 761 949 " 535 533 534+£92
952
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955

956

Table 3 Comparison of concentrations of dicarboxylic acids and related compounds in

particulate matter of different particle size ranges (<2.1 pm and >2.1 pm) at the foot and top of

Mount Hua during non-dust and dust periods

Foot Top
Non-dust Dust Ron Non-dust Dust Ron
Compound
<21 >21 <21 >21 <21 >21 <21 >21 <21 >21 <21 >21
pm  pm  pm  pm  pm  pm  pm pm  pm  pym  pm pum
Oxalic, C» 8662 2718 4880 2843 0.3 0.6 5512 2217 2161 2301 04 1.1
Malonic, C; 750 388 361 371 0S5 1.0 757 359 305 253 0S5 0.8
Succinic, Cs 1505 594 829 505 04 06 986 488 371 294 0.5 0.8
Glutaric, Cs 238 350 199 297 1.5 1.5 557 390 334 324 07 1.0
Adipic, Cs 427 277 347 292 0.6 0.8 457 275 290 240 0.6 0.8
Azelaic, Co 2313 371 1097 304 0.2 03 646 302 379 396 0.5 1.0
Methylglyoxal. 237 119 217 90 0.5 04 146 67 49 55 0.5 1.1
mGly
Glyoxal, Gly 312 268 237 145 09 06 192 129 140 114 07 0.8
Pyruvic, Pyr 729 800 687 513 1.1 0.7 1022 521 451 633 0.5 1.4
Glyoxylic, ®C; 2181 1171 979 663 0.5 0.7 1138 678 658 545 0.6 0.8
Phthalic, Ph 1018 652 499 386 0.6 0.8 564 481 302 356 09 1.2
Isophthalic, iPh 206 184 157 163 09 1.0 162 173 146 169 1.1 1.2

(ng m3)
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