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Abstract: The spatial distribution of geothermal heat flow (GHF) beneath the Antarctic Ice Sheet is a major source of
uncertainty in projections of ice sheet dynamics and sea-level rise. Direct measurements are sparse, necessitating robust
modeling approaches. In this study, we developed a neural network framework whose architecture and hyperparameters
are optimized using a particle swarm optimization (PSO) algorithm. Trained on a global heat flow compilation and a
suite of geophysical datasets, our model generates a new GHF map for the entire continent. The model's accuracy in
regions lacking direct measurements was confirmed through training density validation, with prediction errors
constrained to within 20%. The resulting map delineates a distinct dichotomy: East Antarctica exhibits predominantly
low GHF values (<60 mW m™) with notable exceptions of high heat flow (>80 mW m™) in the Vostok Subglacial
Highlands and Gamburtsev Subglacial Mountains. In contrast, West Antarctica is characterized by widespread high heat
flow (>60 mW m2), especially in tectonically active regions like the Transantarctic Mountains and the Amundsen Sea
sector. These predictions show agreement when compared with direct borehole measurements. Our work offers a new,
robust estimate of Antarctic GHF, providing a critical boundary condition for ice sheet models. We suggest that future
improvements in accuracy and interpretability can be gained by assimilating more high-resolution drilling data and

integrating physical constraints into the model framework.

1 Introduction

Geothermal heat flow (GHF) refers to the heat energy transferred from Earth's interior to the surface via conduction or
convection (Pollack et al., 2013). As an important heat source beneath the Antarctic ice sheet, GHF directly affects the
hydrological system under the ice sheet (Kang et al., 2022). Meanwhile, GHF also serves as a key constraint in ice sheet

dynamics modeling, enabling estimates of the melting intensity and its distribution (Obase et al., 2023; Seroussi et al., 2017).
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High GHF elevates ice sheet basal temperatures, accelerating basal melting and the formation of basal water, thereby affecting
ice sheet movement and stability (Pollard et al., 2005; Wearing et al., 2024; Llubes et al., 2006). In addition, the complex
interaction between GHF and climate results in a significant degree of variation in Antarctic ice mass distribution. Therefore,
obtaining accurate GHF data is vital for minimizing the errors in ice flow models and improving the reliability of mass balance
predictions of ice sheet (Larour et al., 2012). Further, GHF also constitutes a critical basis for reconstructing Antarctic tectonic
history (Mareschal & Jaupart, 2013), and lays a significant factor for understanding the feedback mechanisms produced by

Antarctic ice mass loss and predicting sea-level change (DeConto et al., 2016).

However, the sparse and uneven distribution of in situ borehole data for GHF, coupled with the severe climatic challenges of
direct measurements in the Antarctic continental interior, presents significant challenges for data acquisition (Fisher et al.,
2015). Therefore, current large-scale GHF studies mainly rely on geophysical models to derive its distribution. Conventional
approaches fall into two categories: one based on the derivation of geothermal processes, such as decreasing west-to-east heat
flow derived from some assumptions of geological conditions (Pollard et al., 2005), crustal and upper-mantle heat flow inferred
from seismic models (Shapiro & Ritzwoller, 2004; Shen et al., 2020; Hazzard & Richard, 2024), and Curie temperature depths
estimated using satellite magnetometry and thermal models (Maule et al., 2005; Martos et al., 2017). The other was from
statistical methods such as multivariate similarity analysis (Stal et al., 2021), Bayesian inversion of multiple datasets (Ldsing
et al., 2020) and machine learning (Ldsing & Ebbing, 2021). These approaches show consistency at continental scales, with
greater GHF beneath the West Antarctic and lower GHF in East Antarctica, but considerable discrepancies in predictions at
regional scales. Specifically, process-based modeling approaches are highly dependent on complex mathematical formulations
and a precise understanding of geophysical processes, while single-feature analysis is limited by the choice of variables,
especially in extreme environments, where the complexity of deconstructing multiple drivers increases significantly. In
contrast, statistical approaches, while versatile, are often inadequate to characterize the geologic processes that regulate the
heat flow response, thereby restricting the ability to infer nonlinear correlations from multivariate data. Key geologic controls
may be neglected if approaches are simplistic and do not fully account for numerous drivers. In summary, the complexity and
high level of uncertainty in the mechanisms of Antarctic GHF further limit the reliability and validity of established approaches,
and modeling Antarctic GHF based on reduced physical parameters faces considerable obstacles. This has led to an urgent

need to investigate more innovative alternative approach.

In recent years, deep learning algorithms have shown tremendous potential in the field of Earth sciences due to its high accuracy
and capacity to handle complex data. Particularly in polar research, deep learning has been successfully applied to a number
of tasks, such as super-resolution reconstruction of Antarctic basal topography (Leong et al., 2020), estimation of ice sheet
melting rates (Hu et al., 2021), and identification of subglacial lakes (Xu et al., 2017). Notably, deep neural networks (DNN)
have attracted considerable attention for their nonlinear modeling capabilities. Research indicates that this approach not only

rivals traditional physical parameterization methods but exceeds them in certain contexts (Burgard et al., 2023), establishing a

2



70

75

80

85

90

95

https://doi.org/10.5194/egusphere-2025-3092
Preprint. Discussion started: 31 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

solid basis for accurate predictions. As a result, in data-limited polar regions, neural networks hold promise as a pivotal tool
for elucidating complex geothermal structures, improving prediction accuracy and extracting dependable insights from sparse,

noisy datasets, thus advancing polar science.

Building on this potential, our study introduces a novel framework to construct a continental-scale GHF map of Antarctica.
We employ a neural network whose architecture and hyperparameters are systematically optimized by a particle swarm
optimization (PSO) algorithm. A key innovation of our approach is the use of a global heat flow dataset for model training,
which leverages a diverse range of geothermal environments to enhance the model's predictive power for the Antarctic domain.
This paper details our methodology, including dataset construction and model performance evaluation. We present the
resulting Antarctic GHF distribution, compare it with existing models, and discuss the result's uncertainties and its broader

implications for glaciology and solid Earth geophysics.

2 Data
2.1 Global Heat Flow Dataset

The target variable for this study, GHF, was sourced from the latest global heat flow database released by the International
Heat Flow Commission (IHFC). This comprehensive database compiles approximately 90,000 in-situ measurements, primarily
acquired from bedrock drill holes and thermal probes, with each entry accompanied by a quality assessment grade. The raw
GHF values in the database exhibit an extremely wide range (from -6,120 to 100,000 mW m2). However, such extreme values
are typically considered to be local anomalies associated with non-conductive heat transfer processes (e.g., hydrothermal
circulation) or measurement artifacts, and thus lack regional representativeness for continental-scale conductive heat flow
modeling (Bachu, 1988).

To construct a reliable and representative dataset suitable for modeling GHF across Antarctica, we implemented a multi-step
preprocessing workflow. First, all marine measurements were excluded to focus on the continental domain, and data points
with low-quality assessment grades from the IHFC database were removed. Recognizing that the vast majority of continental
GHF values, particularly in Antarctica, fall below 200 mW m™, we employed a custom interquartile range (IQR) method for
outlier detection. By setting the upper and lower bounds at 1.25 and 1.15 times the IQR, respectively, we constrained the
dataset to a physically plausible range of 0-200 mW m™2. Subsequently, these filtered, high-quality point measurements were
aggregated by calculating the mean value within a 0.5° x 0.5° latitude-longitude grid. This gridding procedure consolidates
the discrete data points into approximately 10,000 representative grid cells, effectively mitigating point-scale noise and
generating a spatially coherent dataset. The final processed GHF dataset has a mean of 65.7 mW m™ and a standard deviation

of 25.6 mW m (Fig. 1).
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Figure 1. Spatial distribution of global GHF used to train the model, with colors from blue to red indicating GHF values from low
(0 mW m™) to high (200 mW m) and density histogram of GHF values, where most of the values are concentrated in the range of
50-60 mW m2, with a few regions of higher values of 150 mW m™ or more. The dataset was obtained from the International Heat
Flow Council and the NGHF dataset(Lucazeau,2019), preprocessed by the IQR approach (see Section 2.2 for details).

2.2 Geophysical Features

The spatial distribution of GHF is governed by a complex interplay of the geological and geophysical properties of the
lithosphere (Goutorbe et al., 2011; Lucazeau, 2019). To build a robust predictive model, we assembled a comprehensive suite
of 16 global-scale feature variables, ensuring complete and consistent spatial coverage that includes the Antarctic continent.

These features and their data sources are detailed in Table 1.

Table 1: Geophysical Features and Sources used for this study.

Index Feature Type Feature name Reference
1 Continuous Global bedrock topography ETOPO2022
2 Depth to Moho Szwillus et al. (2019)
An et al. (2015a)
3 Lithosphere-asthenosphere boundary Afonso etal. (2019)
Depth Pappa et al. (2019)
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4 Thickness of Middle Crust Laske et al. (2012)

5 Thickness of Upper Crust Laske et al.(2012)

6 Pressure Wave Speed Schaeffer & Lebedev (2015)

7 Shear Wave Speed Schaeffer & Lebedev (2015)

8 Bouguer Gravity Anomaly Bonvalot et al. (2012)
Scheinert et al. (2016)

9 Curie Temperature Depth Lietal. (2017)

10 Sediment Thickness Laske et al. (2012)

11 Earth Magnetic Anomaly Maus et al. (2009)

12 Gravity Mean Curvature Ebbing et al. (2018)

13 Classification Rock Type Hartmann & Moosdorf (2012)

14 Tectonic Regionalization Schaeffer & Lebedev (2015)

15 Proximity Distance to hot spot Anderson (2016)

16 Distance to Volcanoes Global Volcanism Program

(2013)

The selected features provide multi-dimensional physical constraints on the thermal state and structure of the lithosphere.
Fundamental parameters controlling heat flow include Moho depth, lithosphere-asthenosphere boundary (LAB) depth, crustal
thickness, and sediment thickness. Crustal thickness largely determines the total amount of radiogenic heat production from
elements such as uranium, thorium, and potassium, which is a primary source of surface heat flow. The LAB depth defines the
thermal boundary layer of the lithosphere, with a shallower LAB typically corresponding to a higher geothermal gradient.
Sedimentary layers, due to their low thermal conductivity, act as an insulating blanket, significantly influencing the dissipation
of deep-seated heat. Seismic wave velocities, which are inversely correlated with temperature, serve as an effective proxy for
the thermal state of the crust and upper mantle. The Curie point depth, corresponding to an isotherm of approximately 580°C,
offers a direct constraint on the geothermal gradient. Potential field data, such as Bouguer gravity and magnetic anomalies,
indirectly reflect variations in crustal density, composition, and structure, which have empirical relationships with thermal
properties and heat production rates.

To account for the influence of deep mantle processes, we incorporated tectonic and geodynamic features. We utilized the
tectonic provinces from the global model of Schaeffer and Lebedev (2015), which is derived from cluster analysis of global
surface-wave tomography and has the advantage of not requiring a priori assumptions about Earth's structure. The Global
Lithological Map (GLiM) database (Hartmann & Moosdorf, 2012) provides surface rock type data, explaining spatial
variations in thermal conductivity. Furthermore, as active thermal features like volcanoes and hotspots are significant
indicators of high advective heat transport, we calculated the distance from the center of each grid cell to the nearest Quaternary

volcano and mantle plume hotspot using the Haversine formula. To ensure dataset consistency, all predictor variables were
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resampled to a uniform 0.5° x 0.5° grid using Ordinary Kriging. The final feature set thus comprises three data types:
continuous (e.g., crustal thickness), categorical (e.g., lithology, tectonic province), and distance-based (e.g., distance to

130  volcanoes).

3 Methods

Figure 2 illustrates the methodological workflow for modeling GHF across Antarctica. The process begins with the compilation
and preprocessing of the global GHF dataset (the target variable) and the 16 associated geophysical features (as detailed in
Section 2). To ensure model robustness, a collinearity analysis is first performed on the predictor variables to mitigate potential
135 issues arising from multicollinearity. The core of our methodology is a deep neural network (DNN), whose architecture and
hyperparameters are systematically optimized using a particle swarm optimization (PSO) algorithm. The model's performance
and generalization capability are rigorously evaluated using a 5-fold cross-validation scheme. The final continent-wide GHF
map is generated by ensembling the predictions from the best-performing model in each fold, and the associated model

uncertainty is quantified by the variance among these predictions.
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Figure 2. Schematic of PSO-DNN model structure and GHF prediction. The left side shows the input features of the model. The

middle shows the PSO-DNN model structure, which contains multiple hidden layers (the number of layers and neurons are

determined by the particle swarm optimization algorithm PSQO), and ReLU is used as the activation function. The right side shows
145 the GHF prediction results output by the model, with the color from blue to red indicating the heat flow values from low to high.
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3.1 Deep Neural Networks

Neural networks are increasingly utilized in the Earth sciences for their capacity to effectively model complex, non-linear
relationships and automatically extract hierarchical features from data (Fausett, 2006; Hastie et al., 2009). This study employs
a deep neural network (DNN), an extension of the classic multi-layer perceptron. A DNN consists of an input layer, multiple
hidden layers, and an output layer. All hidden layers use the Rectified Linear Unit (ReLU) activation function to mitigate the
vanishing gradient problem and enhance computational efficiency. Compared to shallower architectures, increasing the depth

with more hidden layers allows the model to learn progressively more abstract and intricate patterns from the input features.

A key advantage of DNNs and other supervised machine learning techniques is their ability to reproduce complex non-linear
systems without requiring predefined governing equations. Instead, performance relies on a supervised training phase where
the network's internal parameters—the weights and biases of its neurons—are adjusted. During training, the model iteratively
tunes these parameters using the backpropagation algorithm, guided by the Adam optimizer, to minimize a mean squared error
loss function between the predicted and observed GHF values. The training dataset is randomly partitioned into mini-batches,
and the weights are optimized batch by batch. A complete cycle through all mini-batches defines one training epoch, with the
weights and biases being continuously refined over multiple epochs. Concurrently, the model's performance on a separate
validation dataset is monitored to track its ability to generalize to unseen data. Upon completion of training, the model's final

performance is assessed using a test dataset that was entirely withheld from the training and validation processes.

3.2 Particle Swarm Optimization

The predictive performance of DNN exhibits high sensitivity to hyperparameter configurations, rendering manual
hyperparameter tuning inefficient and suboptimal. To address this challenge, this study employs Particle Swarm Optimization
algorithm, a population-based stochastic optimization technique inspired by the collective social behavior of bird flocks
(Eberhart & Kennedy, 1995), to systematically search for optimal DNN hyperparameter combinations. In the PSO
implementation, each "particle" within the swarm represents a unique candidate set of DNN hyperparameters, encompassing
the number of hidden layers, neuron count per layer, initial learning rate, batch size, and regularization strength. The particle
swarm iteratively explores the hyperparameter space, with each particle adjusting its trajectory based on its personal best
solution and the global best solution to minimize the loss function on the validation set, thereby optimizing both predictive

accuracy and generalization capability. The velocity and position updates for particle i follow the equations:

vi(t+ 1) = wv;(t) + c1r1(pi — % (1)) + cara(g — x:(D)) (1)

Xl'(t + 1) = xi(t) + Ui(t + 1) (2)
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where v;(t) and x; (t) represent the velocity and position of the ith particle at iteration ¢, respectively, where p; is the individual
optimal position, g is the global optimal position. The inertia coefficient w controls momentum preservation, while cognitive
c;and social c,coefficients weight the attraction toward p; and g. r; and r, are random numbers between [0,1] to provide
randomness to enhance the diversity of the search. In this study, PSO was employed to optimize DNN hyperparameters within
the following ranges: number of hidden layers (2-8), neurons per hidden layer (12-128), learning rate (0.0001-1.0), batch size
(16-100), and regularization strength (0.0001-0.1).

3.3 Training process

To satisfy neural network input requirements and optimize training performance, we implemented a two-step preprocessing
pipeline for the feature set. First, label encoding was applied to categorical variables such as rock type and tectonic province,
converting their non-numerical labels into unique integer representations. Second, all continuous predictor variables and the
target GHF variable underwent standardization by subtracting the mean and dividing by the standard deviation, with statistical
parameters computed exclusively from training data within each cross-validation fold to prevent data leakage. This
standardization step is crucial for the gradient-based Adam optimizer, ensuring all features operate on similar numerical scales,
thereby stabilizing the training process and mitigating risks of slow convergence or gradient explosion.

To robustly evaluate model performance and minimize bias associated with single train-test splits, we employed a 5-fold cross-
validation framework. The dataset was partitioned into five mutually exclusive folds, with the model trained five times, each
iteration using one fold as the test set and the remaining four as the training set. During each training iteration, the Adam
optimizer was selected to leverage its computational efficiency and adaptive learning rate characteristics. To control model
complexity and reduce overfitting risk, L2 regularization was applied, and batch normalization was implemented after each
hidden layer to stabilize the learning process and accelerate convergence. Additionally, an early stopping mechanism was
established, terminating training if validation loss failed to decrease for 10 consecutive epochs, with model weights
corresponding to the lowest validation loss retained.

In the final inference stage, an ensemble model was constructed using the five independent models generated through cross-
validation to provide comprehensive coverage across the entire Antarctic continent. The final GHF prediction at any given
location represents the arithmetic mean of the five model outputs, with this ensemble strategy enhancing predictive accuracy
and robustness by averaging individual model biases. Simultaneously, the standard deviation of the five predictions at each

grid point was calculated to serve as a quantitative indicator of model prediction uncertainty.

3.4 Model Evaluation Metrics

In order to assess the strength of the model's prediction results, we used two coupling parameters: the coefficient of
determination (R?) and the root mean square error (NRMSE) metrics. The combination of these two metrics, combined with a
robust procedure to avoid overfitting the input data, provides a widely recognized strategy for assessing the goodness of

predictive performance in regression analysis (Branco et al., 2016).
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R? is an important measure of the goodness of fit of a model and is used to assess the ability of a model to predict unknown
samples. Its value usually ranges from 0 to 1, with the highest value being 1.0, which indicates that the model perfectly explains

the variability of the data. The formula for R? is as follows:

RZ =1 _M (3)
Z?=1 i —y)?

where y; is the observed value, ¥; is the predicted value, 3_1 is the mean of the observed value, and n is the sample size. In this
study, the higher R? value indicates that the model is able to effectively capture the relationship between input features and
GHF.

NRMSE is a commonly used metric for assessing the relative magnitude of prediction errors, and removes the effect of

magnitude by normalizing the error to a proportion of the predicted mean. The formula is as follows:

s, -9

-~

y

NRMSE =

4

where y; is the observed value, J; is the predicted value, y is the mean of the predicted value, and n is the sample size. In this
study, the NRMSE reflects the proportion of prediction error relative to the level of GHF prediction. For example, an error of

0.15 can be interpreted as an average relative error of 15% in the prediction.

4 Results
4.1 Collinearity Analysis

Collinearity analysis of input features represents a critical step in constructing multivariate regression models, ensuring model
stability and interpretability. High linear correlations among predictor variables, known as multicollinearity, inflate the
variance of regression coefficients, thereby compromising predictive performance. Given that GHF is governed by complex
interactions among multiple geophysical factors, detecting and mitigating such correlations is essential. To quantify
multicollinearity, we employed the Variance Inflation Factor (VIF), which measures the degree to which the variance of

regression coefficients increases due to multicollinearity. For the i-th predictor variable, VIF is defined as:

VIF, = (5)

1-R?

where R? represents the coefficient of determination obtained from regressing the i-th predictor against all other predictor

variables.
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Figure 3. Collinearity analysis of factors.(a) VIF values for all factors. (b) Collinearity analysis after removing factors with high VIF
values. MCT: Middle Crust Thickness; UCT: Upper Crust Thickness;SedThk: Sediment Thickness; DTVolcanoes: Distance to
Volcanoes; DTHotspot: Distance to Hotspot.

The analysis result revealed pronounced collinearity between P-wave velocity and S-wave velocity, as well as between Middle
Crust Thickness and Upper Crust Thickness (Fig.3a). Following the removal of Vs and Middle Crust Thickness, VIF values
for the remaining features decreased to acceptable levels (Fig.3b). Consequently, these 14 selected features were employed as

inputs for the GHF model, establishing a robust foundation for reliable predictions.

4.2 PSO Parameter Sensitivity Analysis

PSO is extensively applied in function optimization and neural network training. The selection of PSO parameters is crucial
for algorithm performance and efficiency, as these parameters exhibit interdependencies across different parameter spaces.
Typically, parameter selection relies on empirical knowledge. This study employed the pyswarm implementation, with
adjustable parameters including particle number (m), inertia weight (w), learning factors (c; and c,), and maximum iterations.
The inertia weight controls the influence of a particle's previous velocity on its current trajectory, thereby achieving a balance
between global and local search capabilities. We adopted the linearly decreasing weight proposed by Shi & Eberhart (1998):

Winax — Wmin
W= Wiy =t (6)
max

where Wy, 4, and wy,;,, represent the maximum and minimum inertia weights (typically set to 0.9 and 0.4, respectively), t

denotes the current iteration number, and T,,,, represents the maximum iteration count. The learning factors c¢; and c,

10
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determine the stochastic accelerations toward personal best and global best positions, respectively. Previous studies have
proposed various recommendations: Kennedy and Eberhart suggested setting both to 2, while subsequent researchers argued
for asymmetric values, with experimental evidence supporting ¢; = 2.8. Suganthan (1999) tested a method for linearly
decreasing both acceleration coefficients over time but observed that fixing acceleration coefficients at 2 produced superior
solutions. Regarding particle number, He et al. (2016) demonstrated through their experiments that a particle number of 20 is
sufficient for standard optimization problems, whereas more complex scenarios may require up to 50 particles.

Based on prior research, this study designed four experimental configurations with different c;, c¢,, and m values to determine
optimal parameter settings: Configl (c; = ¢, =2, m =20), Config2 (¢; = ¢, =2, m =50), Config3 (¢; =2.8, ¢, = 1.0, m =20),
and Config4 (c; = 2.8, ¢, = 1.0, m = 50). The experimental procedure involved PSO-based neural network hyperparameter
optimization with the objective of minimizing RMSE on the validation set. Each configuration underwent 100 iterations with
linearly decreasing inertia weight while maintaining fixed learning factors and particle numbers. Convergence curves showing

RMSE variation with iteration count are presented in Fig. 4.

—— Configl (c1=c2=2, m=20)
Config2 (c1=c2=2, m=50)

B4 —— Config3 (c1=2.8, c2=1.0, m=20)

—— Config4 (c1=2.8, c2=1.0, m=50)

(MW m~2)

._,

u

=}
)

RMSE Loss

14.8 L\

14.6 1

T T T T

0 20 40 60 80 100
lteration

Figure 4. RMSE Convergence Curves for PSO Configurations. Convergence curves of four PSO configurations for optimizing neural
network hyperparameters over 100 iterations.

Figure 4 illustrates RMSE trends across 100 iterations for the four configurations. Initial RMSE values of approximately 15.4

mW m™ reflect high initial prediction errors. Configl and Config2 achieved rapid RMSE reduction to approximately 14.6

11
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mW mbefore stabilizing, regardless of particle number, indicating that increased particle count did not significantly improve
convergence. Config3 and Config4 demonstrated superior performance, reducing RMSE to 14.8 mW m™2 within 20 iterations,
with further stabilization at 14.6 mW m2 when m = 50. This indicates that asymmetric learning factor settings combined with
higher particle numbers enhance convergence efficiency. Analysis reveals that Config4 maintained the lowest RMSE in later
iterations, validating the advantages of asymmetric learning factors and larger particle swarms in complex GHF modeling,

thereby providing an optimal parameter foundation for subsequent training.

4.3 GHF Prediction With Limited Local Data

A significant challenge in this modeling lies in predicting GHF in regions with sparse in-situ measurements, such as Antarctica.
To quantitatively assess model performance under such data-constrained conditions and address validation requirements in
data-scarce regions, we adopted the training density analysis approach proposed by Rezvanbehbahani et al. (2017). This
method systematically evaluates the relationship between prediction accuracy and local training data availability through a

training density metric defined for a specified Region of Interest (ROI):

N!
Proi = (1 - NR‘”) x 100% (7

ROI

where Ny, represents the total number of data points within the target ROI used for training, and Ny, denotes the number of
data points within the ROI that are deliberately excluded from the training set and reserved exclusively for model validation.

This experiment utilized Europe's well-documented dense heat flow dataset as the test subject, with the ROI defined as a
representative region covering the most extensive data range. Data points were randomly sampled from the ROI at 10%
increments (10% to 90%) and combined with all data points outside the ROI to form the training set. Simultaneously, the
remaining data points within the ROI served as an independent validation set to evaluate model prediction performance at
corresponding densities. To ensure statistical robustness, this random sampling process was repeated five times at each density

level, with corresponding calculations of mean values and standard deviations for performance metrics.

12
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Figure 5. Performance of DNN and linear regression methods in experiments with different densities of ROI regions. (a). Test region
and gray circles represent ROL. (b). Performance of DNN and linear regression under different pgo;.

Experimental results (Fig.5) demonstrate a pronounced positive correlation between data density and model performance.
As training density within the ROI systematically increased from 10% to 90%, DNN model predictive capability exhibited
significant improvement: mean R? values steadily increased from 0.44 to 0.62, while mean NRMSE correspondingly decreased
from 0.26 to a minimum of 0.18. In contrast, linear regression achieved R? values progressing from 0.0 to 0.2, with NRMSE
remaining within the 0.4-0.5 range.

Analysis reveals significant advantages of DNN over linear regression. Even under 10% local data conditions, DNN achieved
an R? 0f 0.44, demonstrating exceptional robustness attributable to its nonlinear modeling capabilities trained on global datasets,
effectively learning geological and geophysical spatiotemporal patterns suitable for regions with insufficient "local
experience." Linear regression, constrained by linear relationship assumptions, struggles to capture the complex nonlinear
characteristics of GHF, resulting in inferior performance. As training density increases, DNN performance continues to
optimize, validating its iterative improvement capacity for integrating new information, while linear regression remains limited
by linear assumptions with constrained improvement potential. These characteristics establish DNN as an ideal tool for GHF

prediction in data-scarce regions such as Antarctica.
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4.4 Antarctic GHF Prediction

We applied our model to the entire Antarctic continent to obtain an integrated anticipated GHF distribution (see Fig. 4). The
results suggest that most sections of the East Antarctica have low GHF values ranging from 30-60 mW m™. Notably, the
lowest GHF values are concentrated in Dronning Maud Land and the Wilkes Subglacial Basin, a characteristic likely associated
with the stable Craton lithosphere and limited geothermal activity in these regions. However, in the Gamburtsev Subglacial
Mountains, Vostok Subglacial Highlands, and the area around Subglacial Lake Vostok, there is an increasing trend of heat
flow values, which shows that these regions may have been affected by deep tectonic activity or localized heat sources
(Artemieva, 2022). In comparison, the heat flow characteristics of the West Antarctica are significantly different, with heat
flow values often higher than 60 mW m™, indicating more active geothermal activity. The high heat flow values are most
prominent along the Transantarctic Mountains belt, and are also broadly distributed along the Amundsen Sea coast, the Siple
Coast, and throughout the Antarctic Peninsula region in the West Antarctica. These locations of significant heat flow are tightly
connected with regional tectonic deformation and ice sheet dynamics, exhibiting complicated geologic processes driven by

crustal strain, volcanism, or other thermal anomalies.
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Figure 6: GHF prediction results and uncertainty analysis of the Antarctic continent. (a) Demonstrates the distribution of GHF
predictions across Antarctica, with generally lower heat flow values at East Antarctica and higher values at West Antarctica. (b)

Demonstration of the standard deviation of GHF predictions resulting from the five-fold cross-validation.

Consistent with prior research (An et al., 2015a; Fox Maule et al., 2005; Shapiro & Ritzwoller, 2004), all GHF distribution

maps indicate a dichotomous pattern of high values int the west and low in the east of Antarctica (see Fig. 6). This feature is
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primarily caused by considerable changes in its tectonic genesis and geological age (Boger, 2011; Veevers, 2012), with active
335 geology and volcanism considerably influencing regional GHF (Barletta et al., 2018; Haeger et al., 2019). In contrast to
previous models, Martos et al. constructed a model based on magnetic data showing higher values of heat flow around West
Antarctica (up to 240 mW m2) and lower inland, while Shen et al. used seismic data to show that the GHF is higher along the
coast and lower inland, and does not exceed 90 mW m™ on a continent-wide scale. Moreover, the model of Losing and Stal et
al. falls somewhere in between, presenting a compromise pattern. Our model’s prediction results are closest to the distributional
340 properties of the Martos et al. results (see Fig. 7), but with much lower GHF extremes at the East Antarctica. This mismatch
may be mainly related to the fact that very high values in the heat flow data are deleted during data preprocessing to limit the

interference of outliers in the model.
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On a local scale, our model identifies two substantial regions of heat flow anomalies in the central East Antarctica: the Vostok
Subglacial Highlands and the Gamburtsev Subglacial Mountains, both with heat flow values surpassing 80 mW m2. The high
heat flow in the Vostok Highlands may hint at underlying magmatism at the bottom of the lake, a feature that may explain the
significant enhancement of ice-sheet melting and melt-water generation in the region (Artemieva, 2022), and suggests that the
East Antarctica is not exclusively dominated by the cold, stable Craton lithosphere (Shen et al., 2018). In contrast, the heat
flow distribution in the West Antarctica displays greater fluctuation. In instance, in the Pine Island Glacier and Byrd Subglacial
Basin regions, the GHF anticipated by our model is much lower than that indicated by other models. This result may reflect
variances in model sensitivity to local geology characteristics or be related to the underrepresentation of high heat flow samples

in the training data.

4.5 Uncertainty

To quantify the prediction uncertainties of the model, we adopted the mean standard deviation of ensemble predictions as the
metric and further incorporated 446 Antarctic GHF data points compiled by Burton-Johnson et al. (2020) for validation.
Although these data, estimated from temperature gradients within ice caps or loose sediments, are subject to high uncertainties
due to interference from climatic forcing, hydrothermal circulation, and ice dynamics (Fisher et al., 2015), they nonetheless
provide important support for deepening the model's understanding of the distribution of Antarctic GHF. Based on this, we

present quantitative comparisons of prediction uncertainty (see Fig. 8).
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Figure 8. Location of heat flow in Antarctic continental boreholes and results of uncertainty quantification. (a) Distribution of
Antarctic GHF borehole validation sites, categorized as bedrock boreholes (red), ice boreholes (green), and unconsolidated sediment
sites (blue). Data source: Burton-Johnson et al. (2020). (b) Ordered prediction interval comparison between predicted values (blue
dots) and observed values (orange line), with blue shading representing the standard deviation of predictions. The horizontal axis
denotes heat flow values (0 — 200 mW m2), while the vertical axis ranks predicted and observed values, highlighting model prediction

biases and uncertainties.

The results of the research reveal that the model's uncertainty estimates in heat flow prediction are generally reasonable, with
the confidence interval encompassing the majority of observed values (as shown in Fig 8b). Specifically, the predicted values
align well with observations in low-heat-flow regions (0—100 mW m™2), whereas significantly higher uncertainties emerge in
extreme-value regions (heat flow exceeding 150 mW m™2). This discrepancy may stem from the uneven distribution of training
data particularly the scarcity of ultra-high heat flow samples or could reflect inherent limitations in the model's architecture to

fully capture complex geological features.

5Discussion

In this study, we apply a DNN framework to predict Antarctic GHF. To optimize the model performance, we automatically
adjusted the hyperparameters, including the number of hidden layers, the number of neurons per layer, the activation function,
the optimization approaches , the batch size, and the learning rate, through the PSO algorithm. The model also achieved high
prediction accuracy in data-sparse areas. However, there are still significant inconsistencies in the results of the present model
compared to prior investigations. For example, in the Thwaites Basin in the middle West Antarctica, Schroeder et al. (2014)
calculated a GHF of 114 £ 10 mW m™, while the present analysis anticipated an average value of 87.2 mW m™=. This
discrepancy may result from the heterogeneity of local geologic features, differences in raw data processing methods, or the
influence of complex processes such as shallow water circulation and unsteady convection in the lithosphere, and further
studies are needed to elucidate the underlying mechanisms.

A deeper understanding and quantitative assessment of subglacial GHF in Antarctica necessitates refined analysis of crustal
geological characteristics and their inherent complexity. Conventional studies, constrained by insufficient observational heat
production data, have often oversimplified or neglected these factors. However, recent research demonstrates that crustal heat
generation plays a non-negligible role in the modeling of subglacial heat flow (Li & Aitken, 2024), driving interdisciplinary
integration between glaciology (including observations and modeling) and subglacial geology. At the same time, Antarctic
bedrock boreholes face great challenges, with measurements now available only in a few ice-free or subglacial regions. These
data mainly reflect localized temperature structures and are highly uncertain because most boreholes fail to reach solid bedrock
and estimate heat flow only from temperature gradients within ice caps or loose sediments, which are susceptible to climate
forcing, hydrothermal circulation, and ice dynamics (Fisher et al., 2015). Therefore, direct validation of data becomes a

substantial bottleneck in current research.
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Recent breakthroughs in Interpretable Machine Learning (IML) and Explainable Al (XAI) (Gunning & Aha, 2019; Murdoch
et al., 2019) have opened new avenues for deciphering the "black-box" nature of deep learning models. While deep learning
outperforms conventional simplistic models in predictive accuracy, its opaque decision-making process hinders intuitive
understanding of feature importance and directional influences (Dramsch, 2020).To bridge this gap, validating the
compatibility of model mechanisms with current geologic information can be beneficial in boosting their credibility (Dwivedi
et al., 2023), while offering new routes for studying and interpreting complicated linkages in geoscientific data. By
understanding the process of machine learning models, we can get insights into how diverse input features interact and
influence geoscientific events, including relationships that may be difficult to discover through conventional analyses (e.g.,
Ham et al., 2023; Jiang et al., 2024).

Future research should emphasize the collecting of more high-quality field GHF data to validate and refine model prediction
results, especially in places with complicated geology conditions in the East Antarctica. In terms of model improvement, one
interesting route is to add physical restrictions into the activation function design to make the model outputs more physically
consistent, and the development of this technique is to be expected. In addition, a posteriori interpretation of model outputs in
conjunction with interpretability assessments is also crucial. By integrating an interdisciplinary approach of glaciology,
geology, and artificial intelligence, this study provides a new technological pathway for accurate estimation of the Antarctic
GHF, which is expected to provide critical basic data support for ice sheet dynamics research and global climate change

prediction.

6 Data Availability

The heat flow database used in this study is sourced from the following repositories: The IHFC Global Heat Flow Database is
available at https://ihfc-iugg.org/products/global-heat-flow-database/data (Global Heat Flow Data Assessment Group,2024).
The NGHF dataset from Lucazeau (2019) can be obtained here: https://doi.org/10.1029/2019GC008389. The borehole data
can be accessed from Burton-Johnson et al. (2020), at https://github.com/RicardaDziadek/Antarctic-GHF-DB.The geophysical
features employed for model training are detailed in Table 1. Visualization results were generated using ArcGIS. Our GHF
dataset in this paper is available at https://zenodo.org/records/15254076(Tang et al., 2025). The python code used to generate
the maps is available at https://github.com/alibdsd/Antarctica GHF _PSO_DNN.

7 Conclusions

In this study, a DNN model based on particle swarm optimization is developed for predicting Antarctic GHF, and a continent-
wide scale GHF map is generated by combining the global heat flow dataset and multi-source geological features. Through
regional density experiments, we found that PSO-DNN is far superior to the commonly used linear regression method in terms

of prediction accuracy and nonlinear modeling ability in areas where data is scarce.Subsequently, the model is applied to the
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Antarctic continent. The prediction results show that the heat flow values in East Antarctica are generally low (30-60 mW
m~2), but there are heat flow anomalies (>80 mW m™) in some local areas (such as the Vostok Subglacial Highlands and the
Gamburtsev Subglacial Mountains), which may be related to deep tectonic activities. In West Antarctica, high heat flows (>60
mW m?) are dominant, concentrated in regions such as the Transantarctic Mountains and the coast of the Amundsen Sea,
which is consistent with the active geological structures. Compared with previous studies, the results of this model are most
similar to the distribution characteristics of the magnetic data model by Martos et al. However, the extreme values of the GHF
in East Antarctica are lower, and the predicted values in some areas of West Antarctica(such as the Thwaites Basin) are lower
than the existing estimates. For example, the predicted value in this study is 87.2 mW m™, while the estimated value by
Schroeder et al. (2014) is 114 + 10 mW m™2. These differences may be due to the exclusion of extreme values during the data
preprocessing process or the influence of local geological complexity. The uncertainty analysis shows that the 95% confidence
interval of the model prediction covers most of the observed value. However, the uncertainty is higher in the areas of extreme
values, reflecting the uneven distribution of the training data and the limitations of the model framework.

By integrating geophysical data and artificial intelligence approaches, this study not only verifies the application potential of
neural networks in environments with sparse data but also provides new insights into the spatial variability of the GHF in
Antarctica. However, the current results are still limited by the scarcity of in-situ data and the lack of model interpretability.
Future research should prioritize obtaining more high-quality borehole data to improve prediction accuracy, especially in areas
with complex geological conditions in East Antarctica. At the same time, efforts should be made to explore the introduction
of physical constraints and interpretability analysis to enhance the physical consistency and scientific credibility of the model.
These improvements will further promote the progress of research on ice sheet dynamics, subglacial hydrology, and global
sea-level changes. With the increasing application of neural networks in Earth system science, this study provides a reference

for further exploration and optimization of this approach, demonstrating broad application prospects.
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