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Abstract:  

Drought conditions in Europe in 2018 and the following years led to significant land use and land cover (LULC) changes 

that affect the water balance. One of the regions that experienced strong changes are the Harz mountains in Germany, where 30 

drought conditions have led to tree mortality in its forested catchment areas. The aim of this study is to quantify these 

drought-induced LULC changes and analyze how they affect the water and sediment balance. To this end, remote sensing 

data and a deep learning model were used to derive annual LULC changes including dead tree areas between 2018 and 2023. 

These data were used to set up a SWAT+ model with dynamic LULC changes. The model was calibrated at the gauges of 

three headwater catchments of the Oker river. Kling-Gupta efficiencies indicate varying but at least satisfactory performance 35 

at all gauges during calibration (0.75 to 0.82) and validation period (0.63 to 0.79). Areas of dead trees were modeled as bare 

or sparsely vegetated (recent tree mortality) or as grassland (regrown areas). The LULC change analysis demonstrated strong 

performance (86–88% overall accuracy) and revealed a decrease in coniferous trees by up to 46% in one catchment (19% 

and 25% in the others). The hydrologic impacts were assessed by comparing a model run with LULC changes to a run 

without LULC changes. The results indicate a continuous decrease of evapotranspiration by up to -7.4% in 2023 and a 40 

continuous increase of water yield by up to 11.3% in 2023. The spatial assessment of modeled LULC change impacts shows 

strong increases in water yield and percolation and strong decreases in evapotranspiration associated with tree mortality. The 

increase in water yield can mainly be attributed to an increase in surface runoff. Changes in sediment yield indicate increased 

risk of soil erosion at areas associated with tree mortality. It was found that a dynamic model representation of tree mortality 

is necessary to account for these fast and strong changes and their impacts on hydrology. Moreover, the faster response of 45 

the catchment potentially increases the severity of flood events and the flood risk in downstream areas. The results underline 

that droughts significantly affect hydrology even after the end of the drought event.  Therefore, afforestation with climate-

resilient trees is needed to improve both flood and drought resilience in regions that suffer from drought-induced tree 

mortality.  

Keywords: Land use and land cover change, SWAT+, hydrologic extremes, Harz mountains 50 
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1. Introduction 

Europe has suffered from extreme drought conditions in 2018 and the following years. Rakovec et al. (2022) underline that 

the 2018-2020 drought event had an unprecedented intensity. Moreover, the drought in 2022 was among the most extreme 60 

ones with regard to soil moisture within the last 60 years (Bevacqua et al. 2024). While the recent drought conditions had 

obvious direct impacts on the water balance during the prevailing drought, indirect effects affect the water balance after the 

event. One of these indirect impacts are drought-induced land use and land cover (LULC) changes like the loss of vegetation 

that affect the water balance. LULC changes affect droughts and floods and Auerswald et al. (2025) argue that this driver is 

even more important than increasing temperatures. 65 

Forests are an important carbon sink and therefore essential for climate protection. However, forests are also affected by 

climate change and forest loss exacerbates climate change. In the Mediterranean Basin forest regression and dieback can be 

observed due to increasing drought conditions (Peñuelas & Sardans, 2021).  However, these developments can now also be 

observed in temperate climates: The Harz mountains in central Germany have experienced strong LULC changes in the last 

decade. The prevailing coniferous (spruce) trees are drought sensitive (Sutmöller & Meesenburg, 2018). Therefore, during 70 

the drought event these trees became more vulnerable to bark beetle resulting in large areas of dead trees. These areas 

exponentially increased between 2015 and 2020 in the Harz mountains (Kong et al. 2022).  

In general, tree mortality results in an increase of runoff and a decrease of evapotranspiration, although impacts can differ 

considerably, depending on catchment characteristics (Adams et al. 2012, Zhang et al. 2017). In a global synthesis, Hou et al. 

(2023) found that hydrological sensitivity to changes in forest cover is higher in catchments with a large percentage of the 75 

same tree species and little water retention capacity. These are characteristics that can also be found in low mountain ranges 

like the Harz mountains, underlining the exposure of the study area to potentially strong impacts.   

To adequately assess the impacts of such exponential changes, models are required that allow for a dynamic representation 

of LULC changes (Wagner et al. 2019). Using the cases of three headwater catchments in the Harz mountains, we aim at i) 

assessing annual drought-induced LULC changes between 2018 and 2023, ii) representing these dynamic LULC changes in 80 

a hydrologic model, and iii) assessing the temporal and spatial impacts of continuous LULC changes on water balance 

components. 

2. Methodology 

2.1 Study area 

The study area is composed of three headwater catchments belonging to the Oker river catchment in the Harz mountains, 85 

Germany (Figure 1). The three catchments are defined by the gauges Sennhütte at river Gose (6.1 km²), Altenau (I) at river 

Oker (31.6 km²), and Bad Harzburg (I & II) at river Radau (18.1 km²). In total, they cover an area of 55.8 km². The elevation 

ranges from 360 m to 763 m in the Gose catchment, 407 m to 821 m in the Radau catchment, and 418 m to 929 m in the 
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Oker catchment. LULC is characterized by the predominance of coniferous forest. However, following drought conditions in 

2018, a large percentage of coniferous trees died. 90 

 

Figure 1: The three headwater catchments in the Harz mountains with stream network, gauges, major settlements and 

topography, based on elevation data from LGLN (2022). 

 

2.2 Land use and land cover classifications 95 

Annual LULC classifications between 2018 and 2023 were prepared based on multi-temporal multi-sensor satellite data. For 

the classification, optical Sentinel-2 and radar Sentinel-1 data from the growing season (June-August) were used. The 

Sentinel-2 Level-2A images with 10 spectral bands in the visible, the red-edge, the NIR regions and the shortwave infrared 

regions, various spatial resolutions (10, 20 m) and cloud cover lower than 5% were acquired. The 20 m bands were 

https://doi.org/10.5194/egusphere-2025-3091
Preprint. Discussion started: 9 September 2025
c© Author(s) 2025. CC BY 4.0 License.



5 
 

resampled to 10 m, and a cloud mask was applied to the Sentinel-2 data. For Sentinel-1 images, dual-polarization C-band 100 

Ground Range Detected dataset with a spatial resolution of 10 m was applied. Ground truth data included ESA WorldCover 

maps for 2020 and 2021 for land cover types (ESA WorldCover 2020, 2021), a European LULC map -ELC10- (Venter & 

Sydenham, 2021), a tree species map for classifying coniferous and deciduous trees (Blickensdörfer et al., 2024) and 

manually collected samples of dead trees derived from high-resolution Planetscope images 

(https://www.planet.com/explorer). The ground truth data were split randomly into training, validation, and test dataset at a 105 

ratio of 70:10:20, respectively. The training and validation datasets were used during the training process, while the test 

dataset was used to evaluate the model's performance.  

As classification algorithm U-Net (Ronneberger et al., 2015), a well-known convolutional neural network (CNN) that 

comprises an encoder, bottleneck, and decoder was applied. To this end, the input data was represented as a 3-dimensional 

tensor (256 × 256 × 19), where 256 × 256 represents the width and height of the patch and 19 represents the number of 110 

channels. These channels included 10 spectral bands and 7 vegetation indices generated from Sentinel-2 (SAVI, NDVI, 

NDVI_rededge, IBI, MNDWI, GNDVI, NDBI) (Appendix, Table A1), along with two polarizations (VV and VH) from 

Sentinel-1 images. 

In the encoder, the input images passed through three convolutional blocks, each with two convolutional layers (64, 128, and 

256 filters of size 3×3), followed by batch normalization and ReLU activation. Furthermore, a max-pooling layer was 115 

employed to downscale the spatial resolution to 2×2 matrices, thereby enhancing spectral resolution. Subsequently, in the 

decoder, additional convolutional blocks, including transpose convolutions were utilized to reverse the encoder's effects, 

thereby restoring spatial resolution for LULC classification. The model used multi-class cross-entropy as the loss function 

and Adam as the optimizer, generating a 7-dimensional array that assigned pixel probabilities to the target classes. Overall, 

the following seven LULC classes were considered: cropland, grassland, built-up areas, water body, coniferous, deciduous, 120 

and dead trees. 

In addition, data augmentation techniques such as rotation and flipping were applied during training to enhance the model's 

generalization and robustness. Moreover, U-Net trained up to 100 epochs with an early stopping, to avoid overfitting, of 10 

epochs without improvement in the validation loss value.  

To evaluate the model’s performance, overall accuracy, F1-score, recall and precision derived from confusion matrix were 125 

calculated as follows: 

Overall accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                          (1) 

F1score = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ×2                                     (2) 

Precision = 𝑇𝑇𝑇𝑇
TP+FP

                                                      (3) 

Recall = 𝑇𝑇𝑇𝑇
TP+FN

                                                          (4) 130 
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Where TP (True Positive) represents the number of correctly classified pixels belonging to the target class, TN (True 

Negative) is the number of correctly classified pixels that do not belong to the target class. FP (False Positive) is the number 

of pixels incorrectly classified as belonging to the target class, and FN (False Negative) is the number of pixels of the target 

class that were incorrectly classified as not belonging to it. 135 

The applied workflow for LULC classification is presented in Figure 2: The 2D U-Net model was trained using satellite 

images and ground truth data from 2020 and 2021. Following training, the model’s performance was evaluated using test 

data from these years as well as from 2018. To generate annual LULC maps, the trained model was subsequently applied to 

data from other years. Each image for each year was processed individually through the model, and the predictions were 

combined using majority voting approach to produce the final annual LULC map. 140 

  

Figure 2: Applied workflow for LULC classification. 

2.3 Hydrologic model  

The latest version of the Soil and Water Assessment Tool (Arnold et al. 1998), SWAT+ (Bieger et al. 2017, revision 61.0.1) 

was used to model the water balance and assess the impact of dynamic LULC changes on water balance components. 145 

SWAT+ is a semi-distributed catchment model that uses hydrologic response units (HRUs) defined by the same LULC, soil, 

and slope class in a sub-catchment, as smallest computational unit. 
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To derive the HRUs we used i) a digital elevation model with a spatial resolution of 5 meters (upscaled from DEM1, LGLN 

2022) to derive five slope classes using thresholds at 2%, 9%, 15%, and 25%, ii) a soil map with a spatial resolution of 1:200 

000 (BGR 2022) refined for peat soil areas with the information from a 1:50 000 (LBEG 2024) that was parameterized for 150 

SWAT+, and iii) annual LULC classifications with a spatial resolution of 10 m (2.2) parameterized with suitable LULC 

classes from the SWAT plant database. We used the temperate mountain forest parameterization for coniferous forest 

(frse_tems), deciduous forest (frsd_tems), and grassland (rnge_tems). Settlement areas were modelled with an impervious 

fraction of 38% (class urbn) and the grassland parameterization to account for vegetation influence in urban areas. Dead tree 

areas were represented by the class barren or sparsely vegetated (bsvg) with a slight increase of the fraction of the growing 155 

season when leaf area begins to decline (hu_lai_decl from 0.35 to 0.5) to better represent the vegetation period. The generic 

agriculture class was modelled as winter wheat (wwht) and water bodies were represented by default as a wetland (wetw). 

Reasonable plant growth was ensured by assessing the development of the leaf area index for all LULC classes. Streams 

were delineated based on the DEM and a stream map (LGLN 2022) using a threshold of 0.2 km².  

Eight weather stations were available in and nearby the catchment area, provided by the German Weather Service (DWD) 160 

and the regional water supplier Harzwasserwerke. Precipitation data, daily minimum and maximum temperatures were 

available at the eight stations, humidity at five stations, wind speed and solar radiation at three stations. Missing values in the 

weather data were filled using a regression approach and the weather station that showed the highest correlation (Wagner et 

al. 2012). Remaining gaps were filled using the station with the second highest correlation. Due to the small number of 

stations with recorded wind speed, an additional station (Braunlage) was considered for gap filling. As solar radiation data at 165 

two of the three stations showed large gaps, and the Brocken station had only 5 missing days, the gap-filled global radiation 

record from the Brocken station was used for the entire catchment. Precipitation data was quality-checked with the help of 

double mass curves.  

To improve the spatial representation precipitation, temperature, humidity and wind speed data were interpolated to a 1 km² 

grid. Due to the few weather stations and the spatial variability of precipitation in the Harz mountains, interpolation was 170 

carried out using a covariate. Usually, a suitable covariate for precipitation is elevation. However, the use of this covariate 

still resulted in an underestimation of measured streamflow. Therefore, the mean spatial distribution of precipitation 

(CHELSA data, Karger et al. 2017) was used as a covariate. The precipitation data were interpolated using a regression 

inverse distance weighting approach at all days at which precipitation showed a significant relationship with the covariate on 

a weekly basis (Wagner et al. 2012). At the other days, the covariate was not used and an inverse distance weighting 175 

approach was used for interpolation. Temperature and humidity were also spatially interpolated in this way using elevation 

as covariate. As the three stations with wind speed measurements show no significant correlation with altitude, an inverse 

distance weighting approach was used to interpolate the wind speed. After interpolation, daily values of precipitation, 

minimum and maximum temperature, relative humidity and wind speed from 1990 to 2023 were available as a model input 

with a spatial resolution of 1 km. 180 
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The SWAT model has been proven to be capable of depicting dynamic LULC change impacts (Nepal et al. 2023, Wagner et 

al. 2019, 2023). Here we use the land use update tool SWAT-LUT (Morisasi et al. 2019) to apply annual updates to the 

LULC distribution in the SWAT+ model.  

To account for the influence of groundwater, a second groundwater layer was implemented (Pfannerstill et al. 2014, Wagner 

et al. 2022). The first layer was parameterized for fast groundwater response and the second layer for slow groundwater 185 

response. Mostly standard values were used and only three parameters were included in calibration (rchg_dp, alpha_bf, 

alpha_bf2, Table 1).  

Table 1: Calibration parameters and the upper and lower boundaries used for calibration of 

the SWAT+ model. The last column shows the final calibrated values and adjustments for the 

absval and abschg change types, respectively. 

Parameter Description min max change 

final value/ 

adjustment   

cn2 Curve number condition II +10 +25 abschg* +24.8 

surlag Surface runoff lag 

coefficient 

0.1 0.3 absval** 0.235 

esco Soil evaporation 

compensation coefficient 

0.05 0.95 absval 0.051 

bd Bulk density (mg/m³) +10 +30 pctchg*** +28.9 

awc Available water capacity of 

the soil layer (mm 

H2O/mm soil) 

-0.01 +0.08 abschg -0.009 

cn3_swf Soil water factor for curve 

number condition III 

-20 +20 pctchg -13.3 

perco Percolation coefficient 0.7 0.98 absval 0.960 

rchg_dp Aquifer percolation 

coefficient fast to slow 

aquifer 

0.25 0.5 absval 0.478 

alpha_bf Baseflow recession 

constant fast aquifer 

0.5 1 absval 0.695 

alpha_bf2 Baseflow recession 

constant slow aquifer 

0.0003 0.005 absval 0.002 

snomelt_tmp Snow melt temperature 

(°C) 

-3 1 absval -0.840 

*abschg adds an absolute value to the initial parameter value; ** absval replaces the initial parameter value with an absolute value, 

***pctchg increases or decreases of the initial parameter value by the given percentage of the value 

 190 
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The model was calibrated using Latin Hypercube Sampling to derive 5400 parameter sets for common calibration parameters 

and ranges given in Table 1. The model with the highest average Kling-Gupta Efficiency for all gauges was selected. The 

period with dynamic LULC changes from 2018 to 2023 was used for model calibration, assuming that parameters calibrated 

for dynamically changing LULC conditions, will also be valid for a constant LULC. The period from 2011 to 2017 is used 

for model validation and the year 2010 as model spin-up time. 195 

2.4 Hydrologic impact assessment  

To assess the impacts of continuous LULC changes (tree mortality) on the water resources, two model runs were conducted: 

i) a model run with the baseline LULC of 2018 and ii) a model run with continuously updated LULC maps (2.2). Both 

models were run for the same period from 2010 to 2023. Changes in the water balance components (mainly 

evapotranspiration, water yield, surface runoff, percolation) were assessed by comparing the outputs from the two model 200 

runs. In addition, we scale the (uncalibrated) output of the model for sediment yield to the maximum changes, to derive an 

indicator of changed erosion risk. Spatial as well as temporal changes are analyzed. 

3. Results 

3.1 Evaluation of LULC classifications 

Test data from 2020, 2021 and 2018 were used to assess the accuracy of the satellite-derived LULC classification (Table 2). 205 

The accuracy assessment based on test data from 2020 and 2021 indicated an acceptable overall accuracy of 88% for the 

LULC classification. Among the seven classes, cropland achieved the highest F1-score (97%), whereas dead tree had the 

lowest F1-score (69%) and precision (56%). The remaining classes achieved satisfactory accuracy, with F1-scores exceeding 

0.70. 

Table 2: Assessment metrics for the LULC classification based on test data from 2020, 2021, and 2018. 210 

 

Class 

Based on test data from 2020 and 2021 Based on test data from 2018 

Precision Recall F1-score Precision Recall F1-score 

Grassland 0.76 0.65 0.70 0.84 0.41 0.56 

Cropland 0.96 0.97 0.97 0.98 0.89 0.93 

Built-up 0.67 0.88 0.76 0.40 0.92 0.56 

Water 0.93 0.91 0.92 0.98 0.81 0.88 

Coniferous tree 0.87 0.71 0.78 0.76 0.93 0.83 

Deciduous tree 0.84 0.97 0.90 0.88 0.97 0.92 

Dead tree 0.56 0.88 0.69 0.69 0.54 0.61 

Overall accuracy 0.88 0.86 
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Additionally, the accuracy assessment, conducted by comparing the 2018 predicted LULC map with the ELC-10 ground 

truth data for 2018, indicated an overall accuracy of 86% (Table 2). As shown in Table 2, similar to the metrics from 2020 

and 2021, a higher F1-score was observed for cropland. For the dead tree class, precision, recall, and F1-score were 69%, 

54%, and 61%, respectively, indicating an improvement in precision but a decrease in recall and F1-score compared to the 215 

2020 and 2021 results. 

For the 2023 evaluation, accuracy metrics were calculated with a specific focus on dead tree classification due to limited 

ground truth availability for other land cover classes. Manual annotation efforts were concentrated exclusively on dead tree 

samples, resulting in a similar performance as the 2018 data (Table 2) with precision, recall, and F1-scores of 72%, 50%, and 

59%, respectively. 220 

3.2 Land use and land cover change analysis 

In 2018, the LULC map was predominantly comprised of coniferous trees, accounting for approximately 92.8% (16.79 km²), 

91.6% (5.57 km²), and 85.4% (27.02 km²) of the Radau, Gose, and Oker catchments, respectively (Table 3). The small 

remaining areas of all catchments consisted of other classes, including deciduous trees, grasslands and built-up areas. Figure 

3 illustrates the changed and unchanged areas, in which the changed areas depict the LULC from the 2023 classification for 225 

all three catchments. As shown in Figure 3, the major changes between 2018 and 2023 are changes to the classes of dead 

trees and grassland. 

Additionally, a transition matrix and net changes in LULC classes across all catchments from 2018 to 2023 were calculated 

and are presented in Table 3 and Figure 4. The diagonal values in the transition matrix represent LULC classes that remained 

unchanged between 2018 and 2023. The transition analysis revealed that between 2018 and 2023, 52.1% (9.42 km²), 78.7% 230 

(4.78 km²), and 69.4% (21.95 km²) of the LULC remained unchanged in the catchments of the Radau, Gose, and Oker, 

respectively, while 47.9% (8.67 km²), 21.3% (1.22 km²), and 30.6% (9.68 km²) experienced changes. As Table 3 and Figure 

4 show, the Radau catchment exhibited the strongest LULC changes. Particularly grassland/regrown areas expanded from 

1.33% (0.24 km²) in 2018 to 31.2% (5.65 km²) in 2023. Additionally, dead tree areas in the Radau catchment increased from 

0.05% (0.01 km²) in 2018 to 14.42% (2.61 km²) in 2023. Coniferous tree areas decreased significantly from 92.81% (16.79 235 

km²) in 2018 to 46.82% (8.47 km²) in 2023, primarily due to their conversion into dead tree and grassland/regrown areas 

during this period. No significant changes were observed in the deciduous tree class (4.25% to 5.58%) between 2018 and 

2023. The Gose catchment also experienced an increase in grassland and deciduous trees at the cost of coniferous forest 

(Table 3 and Figure 4). The area covered by grassland increased by 13.08% (0.84 km²), whereas deciduous trees increased 

from 7.91% (0.48 km²) to 12.66% (0.77 km²). No dead trees were recorded in 2018, but by 2023, they covered 0.49% (0.03 240 

km²). Coniferous forest cover declined over this period, from 91.76% (5.57 km²) to 72.65% (4.41 km²). In the Oker 

catchment (Table 3 and Figure 4) grassland increased significantly by 16.03 percentage points (from 0.88 km² to 5.95 km²) 

while deciduous tree cover increased by 2.65 percentage points (from 2.96 km² to 3.80 km²). The area of dead trees also 
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showed a net increase of 6.03%. Meanwhile, coniferous tree cover declined by 25.45 percentage points (from 27.02 km² to 

18.97 km²). No significant change in built-up areas or water bodies were detected in the three catchments. 245 

A visual analysis of the initial occurrence of dead tree areas showed a spatio-temporal pattern of deforestation between 2018 

and 2023 (Figure 5). Dead tree areas were first observed near the Brocken in the Harz mountains, and these areas expanded 

steadily over the years from the southeast towards the central and western parts of the study area. 

 

Figure 3: Land use and land cover change in the catchments (a: Radau, b: Gose, c: Oker): Areas that have been changed between 250 
2018 and 2023 are depicted with the LULC of 2023. Unchanged areas are shown in white. 
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Table 3: Transition matrix of LULC classes for the catchments (Radau, Gose and Oker) from 2018 to 2023 (in km2). 

 

Radau 

LULC in 2023 Total 

2018 Grassland Built-up Coniferous tree Deciduous tree Dead tree 

 

 

LUL

C 

2018 

Grassland 0.23 0 0.01 0 0 0.24 

Built-up 0.02 0.25 0.02 0 0 0.28 

Coniferous tree 5.37 0.10 8.32 0.39 2.61 16.79 

Deciduous tree 0.03 0 0.12 0.62 0 0.77 

Dead tree 0 0 0 0 0 0 

 Total 2023 5.65 0.35 8.47 1.01 2.61 18.08 

 

Gose 

LULC in 2023 Total 

2018 Grassland Built-up Coniferous tree Deciduous tree Dead tree 

 

LUL

C 

2018 

Grassland 0 0 0 0 0 0 

Built-up 0 0.01 0.01 0 0 0.02 

Coniferous tree 0.84 0.02 4.34 0.34 0.03 5.57 

Deciduous tree 0 0 0.05 0.43 0 0.48 

 Total 2023 0.84 0.03 4.41 0.77 0.03 6.07 

 

Oker 

LULC in 2023 Total 

2018 Grassland Built-up Water Coniferous 

tree 

Deciduous 

tree 

Dead tree 

 

 

LUL

C 

2018 

Grassland 0.83 0 0 0.04 0.01 0 0.88 

Built-up  0.01 0.51 0 0.10 0.01 0 0.62 

Water 0 0 0.15 0.01 0 0 0.15 

Coniferous tree 5.04 0.33 0.01 18.20 1.53 1.91 27.02 

Deciduous tree 0.06 0 0 0.64 2.26 0 2.96 

 Total 2023 5.95 0.84 0.16 18.97 3.80 1.91 31.63 

 265 
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Figure 4: Percentage of net changes in LULC classes across all catchments from 2018 to 2023. 

 

Figure 5: Initial occurrence map of dead trees areas from 2018 to 2023, overlaid on a true color composition Sentinel-2 image with 

catchment outlines: red for the Radau catchment, white for the Gose catchment, and pink for the Oker catchment. 270 
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3.3 Hydrologic model evaluation 

Overall model performance is reasonable judged by KGE values during the calibration period (0.75-0.82). The validation 

period shows a decrease in performance at the gauges Sennhütte (by -0.19 in KGE) and Bad Harzburg (by -0.08 in KGE) 

and an increase at gauge Altenau (+0.04). Observed streamflow is underestimated during the calibration period by -6.2% to -275 

10.7% (PBIAS,  Table 3). During the validation period the underestimation is very low at the gauges Sennhütte and Altenau 

(PBIAS between -1.0% and -1.8%), but an overestimation by +18.0% can be observed at gauge Bad Harzburg. This gauge 

generally shows a lower performance as the other two gauges – particularly with regard to the representation of streamflow 

dynamics as indicated by the NSE (Table 3). Similarly, the hydrographs show that the same events are often replicated with 

different accuracies at the three gauges, e.g. the event at the beginning of 2020 is well represented at gauge Sennhütte but 280 

strongly overestimated at gauge Bad Harzburg, whereas the event at the end of 2023 is best represented at gauge Bad 

Harzburg (Figure 6). Both, hydrograph and flow duration curves show an underestimation of peak flows (Figure 6 and 7). At 

gauge Bad Harzburg mid flows are overestimated and low flows are underestimated. At the other two gauges mid and low 

flow segments of the flow duration curves are well represented by the model (Figure 7). 

 285 

 

 

 

 

 290 

 

 

 

 

 295 

 

 

Table 3: Comparison of goodness-of-fit indicators: Nash-Sutcliffe efficiency (NSE), percentage bias 

(PBIAS), Kling-Gupta efficiency (KGE) and ratio of the root mean square error (RMSE) between 

simulated and observed values to the standard deviation of the observations (RSR).  

 calibration validation 

 

Sennhütte 

(Gose) 

Altenau 

(Oker) 

Bad 

Harzburg 

(Radau) 

Sennhütte 

(Gose) 

Altenau 

(Oker) 

Bad 

Harzburg 

(Radau) 

NSE 0.69 0.68 0.56 0.57 0.66 0.51 

PBIAS (%) -6.6 -10.7 -6.2 -1.8 -1.0 18.0 

KGE 0.82 0.75 0.78 0.63 0.79 0.70 

RSR 0.55 0.57 0.66 0.65 0.58 0.70 
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Figure 6: Comparison of modeled and measured hydrographs at all gauges for the calibration period (1 January 2018 – 31 

December 2023). 300 
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Figure 7: Comparison of measured and modeled flow duration curves at all gauges for the calibration period (1 January 2018 – 31 

December 2023). 

 

3.3 Temporal assessment of land use and land cover change impacts 305 

The assessment of LULC change impacts shows a dynamic response of the water balance components, starting with the first 

updated LULC map in 2019 and increasing towards 2023. In response to tree mortality, model results show a general 

increase in water yield and a decrease in evapotranspiration. These changes can be attributed to the loss of vegetation, 

resulting in decreased transpiration and consequently more water yield. Decreases in evapotranspiration can particularly be 

observed during the vegetation period. Moreover, the increase in water yield can be attributed to an increase in surface runoff 310 

as the monthly differences between the averaged changes in all three catchments in water yield and surface runoff are 

smaller than 0.2 mm. Major increases in water yield occur in months with more precipitation (Figure 8, r=0.57 for averaged 

changes in all catchments between 2019 and 2023). This effect is stronger between 2021 and 2023 (r=0.76), when tree 

mortality affects more areas and the impacts are more pronounced. Against the general trend water yield showed major 

decreases in March 2020 and in March 2022 by up to 5% and 33%, respectively (strongest change in the Radau catchment, 315 

Figure 8). This effect can be traced back to the dominance of recession phases in these months. While LULC changes led to 

increased peak flows, water yield is lower during the recession phase (Figure 9). March 2022 had the lowest precipitation in 

the investigation period (14 mm average for all catchments) and soil water storage increased by up to 21% (Radau 

catchment). Moreover, evapotranspiration increased in June 2022 in all catchments (strongest change by +15% in the Gose 

catchment) and in June 2023 in the Gose (+4%) and Oker (+1%) catchment. The increased evapotranspiration demand is 320 

supplied from soil water storage as the increase in soil water storage is smaller as compared to the previous month (May) 

whereas changes in percolation were small in these months (Figure 8).   
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While all three catchments show an increase in water yield and a decrease in evapotranspiration, the strength of the response 

varies. The Radau catchment shows the strongest and the Gose catchment the lowest response. This aligns very well with the 

magnitude of LULC changes (e.g. percentage of dead tree areas) in these catchment (Figure 4). Moreover, the eastern 325 

catchments (Oker and Radau) that have experienced tree mortality earlier (Figure 5) show an earlier response than the Gose 

catchment in the west, where the first major changes in the water balance components can be observed in the year 2021 

(Figure 8). The strength of changes affects the strength of impacts: Assessing changes in the final year (2023) the model 

shows that the loss of coniferous forest by 46% led to an increase in water yield by 11.3% and a decrease in ET by -7.4% in 

the Radau catchment. In the Gose and the Oker catchment a loss of coniferous forest by 19% and 25%, led to a water yield 330 

increase by 2.8% and 3.1% and a decrease in ET by -2.2% and -3.4%, respectively. Hence, the response in water yield is 4.1 

(Radau) to 8.1 (Oker) times smaller and the response in ET is 6.2 (Radau) to 8.6 (Gose) times smaller than the main LULC 

change in coniferous forest. 

   

 335 
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Figure 8: Temporal impacts of dynamic LULC changes on evapotranspiration, water yield, percolation and soil water storage in 

the three headwater catchments. 
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 340 

 

 

Figure 9: Impact of LULC changes on the hydrograph in the Radau catchment.  

 

3.4 Spatial assessment of land use and land cover change impacts 345 

The spatial assessment shows how tree mortality affects the water balance components. Areas that were changed from forest 

to dead trees or grassland are clearly visible, showing a decrease in evapotranspiration and an increase in surface runoff and 

percolation. Figure 10 underscores the continuous increase of impacts, as in 2019 only one major area of dead trees in the 

Radau catchment was present and major impacts were associated with this area. In the following years, the percentage of 

affected areas increased continuously. It has to be noted that the percentage increase shown in Figure 10 shows stronger 350 

changes in years, in which low values were present in the baseline, e.g., in relatively dry years like 2021. Moreover, the 

response also depends on the other characteristics of the HRUs, i.e. the soil and slope class. Particularly, peat soils present in 

the catchment of the Radau showed a stronger response, as surface runoff was comparatively low with unchanged 

conditions. The patterns of erosion risk underline increased erosion risk on dead tree areas. These correspond to areas with 

changes in surface runoff, as changes in sediment yield and surface runoff are correlated (r=0.71 between absolute changes 355 

in both variables).    
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Figure 10: Spatio-temporal impacts of dynamic LULC changes on evapotranspiration, surface runoff, percolation and erosion risk 

in the three headwater catchments. 360 
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4. Discussion 

4.1 Land use and land cover change 

LULC classifications from 2018 to 2023 were generated by combining a U-Net architecture with multi-temporal, multi-365 

sensor satellite data. This approach integrated spectral bands and vegetation indices from Sentinel-2, as well as VV and VH 

polarizations from Sentinel-1. The accuracy assessment based on the test data from 2020 and 2021 demonstrated good model 

performance, with an overall accuracy of 88%. Additionally, the results indicated that cropland achieved higher accuracy 

metrics than the other classes, likely due to the higher number of training samples available (40% of the total training 

samples). Conversely, the dead tree class demonstrated a lower accuracy, which can be attributed to the limited number of 370 

samples for this class (1% of total training samples). Furthermore, the acceptable accuracy score (overall accuracy of 86%) 

achieved by comparing the ELC-10 map with the 2018 predicted LULC map underscores the reliability of this method. The 

lower F1-scores for all LULC classes in 2018, except for coniferous and deciduous trees, compared with those in 2020 and 

2021, may be attributed to differences in the reliability of the ground truth data. For training and testing, we used ESA maps 

from 2020 and 2021, which had overall accuracies of 75% and 77%, respectively (ESA WorldCover 2020, 2021), whereas 375 

the ELC-10 dataset had an overall accuracy of 90% (Venter & Sydenham, 2021). Notably, we selected ESA maps 

(2020/2021) over ELC-10 (2018) for model training to exploit their larger training sample sizes. 

For the dead tree class, the F1-score in 2023 declined compared to that in 2020 and 2021 (59% vs. 69%), likely due to forest 

loss and regrowth on formerly dead tree areas. Similarly, the F1-score in 2018 was lower than that in 2020 and 2021 (61% 

vs. 69%), despite fewer dead trees being present in 2018. This decline is related to a low recall value for the dead tree class, 380 

suggesting an underestimation of dead trees due to a higher number of false negatives. It has to be acknowledged that the 

shift from a healthy state to a dead state occurs gradually. Consequently, areas in the intermediate stages of defoliation were 

not accounted for, potentially leading to misclassification and reduced accuracy of the dead tree class. This may also 

contribute to confusion between coniferous trees and dead trees (see confusion matrix in Appendix, Figure A1). 

Furthermore, the management strategy in the Harz mountains, where dead trees are removed to prevent bark-beetle 385 

infestations and regrowth of grass and shrubs occurs (Thonfeld et al., 2022), contributes to minor confusion between dead 

trees and grassland (Figure A1). These confusions have intensified in 2022–2023 as tree mortality increased. It is also worth 

noting that the precision for dead trees improved by 13% in 2018 and 16% in 2023 compared to that in 2020 and 2021, likely 

because of the majority voting approach used to generate annual LULC prediction maps. 

The analysis also indicated a similar trend in the net LULC changes across all catchments from 2018 to 2023 (Figures 3 and 390 

4), with dead tree and grassland areas expanding primarily at the cost of coniferous forests. The decline in coniferous trees 

can be linked to tree mortality caused by bark beetle infestations and prolonged drought, particularly from 2018 to 2022 

(Knapp et al., 2024). Drought both directly and indirectly contributes to an increase in dead trees and a decline in coniferous 

forest cover by weakening the natural defenses of trees against infestation (Rohde et al., 2021). Furthermore, the increase in 
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grassland can be attributed to the fact that regrowth of dead tree areas is classified as grassland. Therefore, both, the dead 395 

tree and the grassland areas shall be used as a proxy of total LULC changes due to deforestation. 

As shown in Figures 3 and 4, the Radau catchment experienced the most significant changes, with the highest conversion of 

coniferous trees to grassland and dead tree areas compared to the other two catchments. Given the found spatio-temporal 

development with an expansion of tree mortality from the south-east to the (north-)west, it can be expected that the other 

catchments may expect further and more severe changes in the future, particularly if drought conditions apply. 400 

4.2 Hydrologic impacts 

We attribute the differences in measured and modeled discharge to (i) the precipitation input as well as to (ii) trade-offs 

associated with the derivation of one set of parameters for all gauges. Although a better spatial representation of precipitation 

(i) was achieved by applying an interpolation scheme, the low density of precipitation stations in this heterogeneous 

mountain region still limits the possibilities to improve the spatial representation of the precipitation input. Particularly small 405 

catchments like the Gose catchment upstream of gauge Sennhütte are affected by non-representative precipitation patterns. 

The closest precipitation gauge for this catchment is located at the Grane reservoir at a lower elevation and at the northern 

edge of the Harz mountains. For example, a local event occurred on 22 May 2023 with 23 mm recorded in Grane, whereas 

only about 2 mm rainfall were recorded in the upstream (Schulenberg and Brocken). The stronger reaction to this local event 

shown in the measurements (increase by 0.157 m³/s in mean daily discharge as compared to the previous day) indicates that 410 

the measured data from the downstream was probably more representative for the catchment than the measured data from the 

upstream or the used interpolated data that only let to an increase by 0.0024 m³ mean daily discharge in the model. With 

regard to model parameters (ii), trade-offs of multi-gauge calibration are clearly shown when analyzing the optimum range 

of the surface runoff lag coefficient (surlag) judged by the NSE that is at the lower end of the applied parameter range for the 

gauge Bad Harzburg and at the upper end for the gauge Altenau. Consequently, an optimization for the individual gauges 415 

with regard to KGE (i.e. a single gauge calibration) would yield a better representation of dynamics for Bad Harzburg (NSE: 

0.61, KGE: 0.79, PBIAS: -7.7%), whereas the performance increase at gauge Sennhütte and Altenau is negligible 

(improvement of NSE ≤ 0.01 and KGE ≤ 0.02) during the calibration period.  

The LULC change observed in the Harz mountains is probably the most extreme LULC change in Germany in recent years 

and it is of particular importance to depict such extreme changes in models as this is a prerequisite for accurate impact 420 

assessment and management of impacts. The continuous increase of the hydrological impacts of LULC change underline the 

capability of SWAT+ to depict LULC change in space and time (Nepal et al. 2023, Wagner et al. 2019, 2023) and the 

successful implementation of SWAT-LUT for SWAT+ (Moriasi et al. 2019).  

The found increase of water yield and decrease of evapotranspiration as a consequence of tree mortality are generally 

reasonable and in agreement with the literature (Adams et al. 2012, McGinn et al. 2021, Zhang et al. 2017). In a synthesis of 425 

disturbance effects in coniferous forests, Goeking and Tarboton (2020) found that evapotranspiration sometimes increased 
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after forest loss due to higher subcanopy radiation and increased transpiration of postdisturbance growth. Such effects were 

considered in two ways: 1) dead tree areas were modeled as barren or sparsely vegetated, and 2) areas with vegetation were 

classified as grassland / regrown areas. However, we found that -although these effects were accounted for-, a decrease in 

evapotranspiration dominated on the catchment scale. In fact, model results show that transpiration from plants and 430 

evaporation from interception in the canopy decreased whereas soil evaporation increased. 

Moreover, the results shed light on possible consequences. Due to forest loss and decreased evapotranspiration, the 

catchments react faster. In particular, the extremes are exacerbated as peak flows are increased and low flows are decreased 

(Figure 9). This increases the probability and frequency of flood events in the downstream – where a major flood event had 

already led to significant damage in 2017, i.e. before the major LULC changes. In addition, increased erosion risk on dead 435 

tree areas is plausible given very low erosions rates in undisturbed forests. These pose an additional risk during flood events 

and likely contribute to faster sedimentation of reservoirs, like the Oker reservoir downstream of gauge Altenau.     

5. Conclusion 

Driven by drought conditions the Harz mountains experienced tree mortality and exceptional changes in LULC between 

2018 and 2023. The strength of these LULC changes has strong impacts on hydrology. Consequently, these changes need to 440 

be considered in hydrologic models.  

LULC changes were detected using a synergistic combination of Sentinel-2 optical imagery and Sentinel-1 radar data, 

processed through a U-Net deep learning architecture. The model achieved robust performance, with both visual 

interpretation and quantitative accuracy metrics, confirming the reliability of our results. The analysis revealed widespread 

coniferous forest decline, particularly in the Radau catchment where coverage dropped from 93% to 47%, accompanied by 445 

substantial increases in dead tree areas and grassland expansion. While the growing season-focused model showed 

reasonable accuracy (overall accuracy = 86-88%) future improvements incorporating longer sequence data could enhance 

detection robustness. Furthermore, since some misclassification might be attributed to the uncertainty of ESA maps (with an 

overall accuracy of 75–77%) and manual dead tree annotation errors, future work could focus on label refinement. 

The SWAT+ model proofed capable of representing these changes and their spatio-temporal impacts on hydrology. In 450 

general, a decrease in evapotranspiration and an increase in surface runoff, percolation, and erosion risk were found. The 

strength of impacts increased over time with the increasing loss of coniferous forests. Moreover, the spatial impact 

assessment showed that impacts can be traced back to dead tree areas. As a consequence of the observed changes, the 

catchments respond faster leading to increased flood probability and frequency in downstream areas. In particular, 

hydrological extremes are exacerbated due to an increase in peak flows and a decrease in low flows. Afforestation with 455 

climate-resilient trees could improve both, the resilience to droughts and floods in regions with drought-induced tree 

mortality like the Harz mountains.  
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Appendix 

 565 
Table A1: Computed indices and their formulae. 

Vegetation indices Formula  Reference 

NDVI Normalized Difference Vegetation 

Index 

(NIR-Red)/(NIR+Red) (Rouse et al., 1973) 

GNDVI Green Normalized Difference Index (NIR-Green)/(NIR+Green) (Gitelson et al., 1996) 

NDVI_red edge Red Edge Normalized Difference 

Vegetation Index 

(NIR-Red_edge)/(NIR+Red_edge) (Fernández-Manso et 

al., 2016) 

SAVI Soil-Adjusted Vegetation Index ((NIR-Red)/(NIR+Red+L)) × (1+L) (Huete, 1988) 

MNDWI Modified Normalized Difference 

Water Index 

(Green-SWIR)/(Green+SWIR) (Xu, 2006) 

NDBI Normalized Difference Built-up 

Index 

(SWIR-NIR)/(SWIR+NIR) (Zha et al., 2003) 

IBI Index-based Built-up Index (NDBI-(SAVI+MNDWI)/2)/ 

(NDBI+(SAVI+MNDWI)/2) 

(Xu, 2008) 

Note: NIR: near-infrared, SWIR: short wave infrared, and L = 0.428 
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 570 
Figure A1: Confusion matrix based on test data from 2020 and 2021. 
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