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 10 

Highlights: 11 

Irrigation water demand surge critically amplifies water supply-demand risk in arid 12 

regions； 13 

Water resources in arid regions are more susceptible to anthropogenic impacts； 14 

Regional water supply-demand risk continues to rise through the mid-21st century. 15 

 16 

Abstract 17 

The dynamic evolution pattern of regional water supply-demand risks under the 18 

combined effects of climate change and human activities remains unclear, particularly 19 

against the backdrop of agricultural expansion in arid regions. This study focuses on 20 

the Tailan River Basin (TRB), a typical arid watershed in China and a vital base for 21 

high-quality fruit and grain production. By integrating the PLUS (Land Use Simulation) 22 

and InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) models, we 23 

constructed a water supply-demand risk assessment framework encompassing 24 24 

climate-land change scenarios to quantify their impacts on regional water resource 25 



2 
 

patterns and risks. Results reveal that climate change profoundly influences water 26 

supply, while land use significantly affects water demand. Under the Balanced 27 

Economic and Ecological Development Scenario (BES), 531.2 km² of additional 28 

cultivated land could be developed by 2050. However, this cultivated land expansion 29 

leads to a sharp increase in irrigation water demand, with the minimum demand 30 

reaching 4.87×10⁸ m³, while the maximum regional water supply is only 0.16×10⁸ m³, 31 

resulting in a significant supply-demand gap (>4.71×10⁸ m³). The risk assessment 32 

framework indicates that by 2050, the entire TRB will face a water supply-demand 33 

crisis, with at least 46% of the area experiencing severe (Level III) or higher risks. The 34 

study demonstrates that continuous cultivated land expansion driven by agricultural 35 

activities—which drastically increases irrigation water demand—is the root cause of 36 

intensifying water supply-demand conflicts and high risks in the TRB. By 2050, the 37 

proportion of irrigation water to total water use will exceed 70%, regardless of scenario. 38 

These findings underscore the necessity of deeply integrating multidisciplinary 39 

approaches within a water risk framework to elucidate land-eco-hydrological feedback 40 

mechanisms and better address water security challenges under climate change. The 41 

results provide a scientific basis for optimizing regional water-land resource allocation 42 

and promoting agro-ecological sustainable development. 43 

Keywords: Climate change; Anthropogenic activities; Land use; Water supply-44 

demand risk (WSDR); Sustainable water governance 45 
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Introduction 47 

Drylands, covering 41% of the Earth's land area, are critical components of global 48 

terrestrial ecosystems. They not only support 38% of the world's population but also 49 

host approximately one-third of the planet's biodiversity hotspots (Berdugo et al., 2017; 50 

Li et al., 2021). However, these regions—predominantly located in developing 51 

countries (Huang et al., 2016; Chen et al., 2024c)—face extreme water scarcity and 52 

exhibit high ecological fragility (Li et al., 2021), making them particularly sensitive to 53 

human activities (especially agricultural practices) and climate change. Northwestern 54 

China’s arid regions serve as a typical example of the interplay between ecological 55 

vulnerability and agricultural pressure. Since 1980, cultivated land in this area has 56 

expanded significantly by 25.87% (Zhu et al., 2021), profoundly altering water and land 57 

resource allocation and ecological balance (Liu et al., 2025b). Although climate change 58 

has led to increased runoff (Li et al., 2025b) and rainfall (Yao et al., 2022) in the region, 59 

providing more available water resources (Chen et al., 2023a), agricultural activities 60 

dominated by continuous cultivated land expansion have sharply intensified regional 61 

water stress. Irrigation water use has now become the major consumer of water 62 

resources. Simultaneously, cultivated land expansion has elevated evapotranspiration 63 

levels (Zhu et al., 2025), and inefficient irrigation practices (e.g., the irrigation water 64 

use efficiency in Xinjiang is only 0.585) have further exacerbated groundwater over-65 

extraction (Yan et al., 2025) and soil salinization (Perez et al., 2024). These factors have 66 

intensified the contradiction between water supply and demand, continuously 67 

constraining sustainable water use options, and amplifying ecological vulnerability 68 

(Huggins et al., 2022) and food security risks (Jones et al., 2024). 69 

The imbalance between water supply and demand is influenced by both climate 70 

change and human activities (particularly agricultural practices). Climate change 71 

profoundly affects key processes in the hydrological cycle, including alterations in 72 

precipitation and evapotranspiration (Konapala et al., 2020). The AR6 Synthesis Report 73 

highlights that for every 0.5°C increase in global temperature, extreme heatwaves, 74 

heavy rainfall, and regional droughts become more frequent and severe (Mukherji et 75 

al., 2023), elevating risks of extreme floods (surplus) and droughts (deficit). Research 76 
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indicates that changes in critical climate variables (precipitation, temperature, 77 

evapotranspiration) significantly disrupt runoff patterns and alter the availability of 78 

surface water resources (Lipczynska et al., 2018).Simultaneously, agricultural activities 79 

(e.g., irrigation) directly impact the water cycle by modifying hydrological processes 80 

such as evaporation, soil moisture, and water storage, while also affecting water and 81 

energy balances through artificially enhanced evaporation (Yan et al., 2025). 82 

Furthermore, agricultural activities directly shape water supply and demand by altering 83 

water use patterns and intensity, thereby creating bidirectional feedback loops with the 84 

water cycle and ecosystems (Chen et al., 2023b).Under the influence of climate change 85 

and agricultural activities, the mismatch between the natural endowment of water 86 

resources (in terms of spatiotemporal distribution) and human demands further 87 

exacerbates regional water scarcity, making it increasingly challenging to meet both 88 

ecological and societal needs (Caretta et al., 2022). 89 

This mismatch and dislocation are jointly driven by climate change and human 90 

activities (particularly agricultural practices). Studies have demonstrated that the 91 

increased runoff observed during the 20th century resulted from the combined effects 92 

of climate change and land cover changes (Piao et al., 2007). Land use changes can 93 

influence precipitation patterns through modifications in surface energy balance, 94 

hydrological cycles, and large-scale atmospheric circulation (Zhang et al., 2025a), 95 

while climate change exacerbates the impacts of land alterations by reshaping the 96 

hydrological cycle, thereby aggravating meteorological extremes (e.g., floods and 97 

droughts). Furthermore, the relative influences of climate change and agricultural 98 

activities vary significantly across different environmental issues. Climate change 99 

dominates changes in runoff (Zeng et al., 2024), ecosystem services (Jia et al., 2024), 100 

and vegetation dynamics (Hu et al., 2025). In contrast, land use changes exert greater 101 

impacts than climate change on terrestrial productivity (He et al., 2025), carbon use 102 

efficiency (Chen et al., 2024b), and soil variables (Ding et al., 2024). However, the 103 

relative contributions of climate change and land use to water supply-demand balance, 104 

as well as how their interactions shape the spatial patterns and temporal evolution of 105 

supply-demand risks, remain poorly understood. Existing studies on water supply and 106 
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demand have predominantly focused on unilateral impacts of either land use (Deng et 107 

al., 2024; Wen et al., 2025) or climate change (Gharib et al., 2023; Li et al., 2024). 108 

Simultaneously considering the effects of both climate and land use changes on water 109 

supply-demand balance is crucial and necessary (Liu et al., 2022; Guo et al., 2023). 110 

Therefore, investigating the response mechanisms of water supply-demand balance and 111 

risks under the combined effects of climate change and agricultural activities represents 112 

a critical scientific question that urgently needs to be addressed. 113 

Model prediction serves as a powerful tool for analyzing land use changes, water 114 

resource evolution, and water supply-demand dynamics. The Patch-generating Land 115 

Use Simulation (PLUS) model, which integrates spatial, empirical, and statistical 116 

approaches, enables accurate analysis of drivers behind land use changes and patch 117 

evolution (Liang et al., 2021). Studies demonstrate that PLUS outperforms many other 118 

models in simulation precision, more realistically capturing the spatial characteristics 119 

of land use changes (Gao et al., 2022). The InVEST model excels in allocating water 120 

resources and evaluating water conservation functions at the watershed scale, offering 121 

advantages such as minimal data requirements and strong spatial representation 122 

capabilities. Its water yield module has been widely applied and validated for water 123 

supply assessments across diverse global basins (Chen et al., 2024a; Ma et al., 2024). 124 

The coupled PLUS-InVEST framework has been extensively utilized in fields such as 125 

carbon storage simulation, habitat quality assessment, and optimization of ecosystem 126 

service spatial patterns (Zhang et al., 2024; Huang et al., 2024; Wang et al., 2024b). 127 

Furthermore, the PLUS-InVEST coupled model has demonstrated good performance 128 

in regional water supply assessment (Liu et al., 2023). Although its effectiveness in 129 

comprehensive regional water-soil balance analysis remains insufficiently explored 130 

(Liu et al., 2022), it holds potential for functional expansion through integration with 131 

other methods, thereby better supporting efficient regional water and land resource 132 

management. 133 

Based on this, our study focuses on a typical watershed in the arid region of 134 

Northwest China, aiming to investigate water supply-demand balance under the 135 

influence of climate change and human activities, and to identify the primary factors 136 
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driving water supply-demand risks. The specific objectives of this research are: i) To 137 

determine land change trends under six development scenarios (Natural Increase 138 

Scenario (NIS)/ Food Security Scenario (FSS)/ Economic Development Scenario 139 

(EDS)/ Water Protection Scenario (WPS)/ Ecological Protection Scenario (EPS)/ 140 

Balanced Economy and Ecology Scenario (BES)) using the PLUS model, and to 141 

identify high-contribution factors driving land changes; ii) To clarify the dynamics of 142 

water supply and demand under 24 land-climate combination scenarios (incorporating 143 

four climate change scenarios and six land use change scenarios), and to analyze the 144 

key drivers behind these changes; iii) To quantify water supply-demand risks under 145 

these land-climate combination patterns and identify the main factors influencing these 146 

risks. By coupling multi-scenario analyses of climate and land use changes, this study 147 

systematically evaluates their impacts on water supply-demand patterns and associated 148 

risks in a typical arid basin, providing actionable recommendations for optimizing 149 

water-land resource allocation and promoting agro-ecological sustainable development 150 

in the region. 151 

2 Datasets and methods 152 

2.1 Study Area 153 

The Tailan River originates from the southern foothills of Tomur Peak in the 154 

Tianshan Mountains and is primarily recharged by alpine snow and ice melt, with a 155 

multi-year average runoff of 7.766×10⁸ m³. The Tailan River Basin (TRB) (Fig. 1) is a 156 

typical inland river basin in the arid region of northwestern China, covering a total area 157 

of 4,218 km². The basin features diverse landforms including gravel Gobi, alluvial 158 

plains, and fine soil plains, and is characterized by a continental arid climate of the 159 

northern temperate zone with intense solar radiation, high evaporation rates, an average 160 

annual precipitation of only 177.7 mm, and evaporation reaching 2,912 mm. The mean 161 

annual temperature is 8.6°C, with an average wind speed of 1.25 m/s (Fig. S1). Located 162 

in southern Xinjiang, TRB's climatic and hydrological characteristics are highly 163 

representative of arid regions both in China and globally. The process of water resources 164 

formation in its high mountain areas and consumption in the oasis-desert zones reflects 165 

the universal water cycle and utilization patterns of inland river basins in arid regions. 166 



7 
 

TRB has a relatively concentrated population and developed oasis agriculture, forming 167 

a diversified agricultural production structure dominated by cotton and food crops, 168 

alongside equally important forestry and fruit industries, making it a typical 169 

representative of oasis economic systems in arid regions. As an important regional 170 

producer of grain, cotton, oil, and fruits, TRB yields high-quality rice and cotton, as 171 

well as abundant walnuts, apples, red dates, and fragrant pears. Its water and land 172 

resource utilization patterns and oasis-desert ecosystem structure provide valuable 173 

references for other arid river basins. Therefore, although TRB is a single basin, its 174 

physiographic conditions, climatic and hydrological characteristics, ecological 175 

structure, and human activity patterns all reflect the universal attributes of inland river 176 

basins in arid regions, possessing both typicality and representativeness for regional 177 

pattern studies. 178 

Fig. 1. Overview of the Tailan River Basin (TRB): (a) Schematic map showing the location 179 

of TRB in China; (b) Actual landscape of the Tailan River; (c) Digital Elevation Model (DEM) of 180 

TRB; (d) Precipitation and potential evapotranspiration for historical and future periods in TRB 181 

(The base map is from the standard map service system of the Ministry of natural resources (no 182 
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modification) Base map review No. GS (2020) 4619). 183 

2.2 Datasets 184 

This study collected two sets of datasets to simulate land use and water supply-185 

demand in the TRB (Tab. 1). The first set of data was used to simulate land use change, 186 

involving a total of 19 factors influencing land use to establish a driving factor library. 187 

These include 10 socio-economic factors, 3 climate factors, 3 topographic factors, 2 188 

soil factors, and 1 vegetation factor. The second set of data was used to simulate water 189 

supply and demand quantities, with a total of 12 factors employed for the simulation. 190 

Additionally, land use and future climate were used as the base data, and land use data 191 

were obtained from RESDC (https://www.resdc.cn/), constructed using interactive 192 

visual interpretation methods based on Landsat MSS, TM/ETM and Landsat 8 images 193 

(Zhuang et al., 1999), which include cultivated land, forest land, grassland, water bodies, 194 

built-up land and unutilized land, with an overall accuracy of more than 95% (Liu et 195 

al., 2014). Future meteorological data were obtained from TPDC 196 

(https://www.tpdc.ac.cn/), and Coupled Model Intercomparison Project (CMIP6) was 197 

selected as the data source. Considering the size of the study area, modeling efficiency, 198 

and information richness, bilinear interpolation was employed to harmonize the spatial 199 

resolution of all datasets to 30 meters within the Krasovsky_1940_Albers coordinate 200 

system. 201 

Table 1. Data Factors of the Land-Climate Model in the Tailan River Basin 202 

Model Category Data Year 
Spatial 

Resolution 
Source 

PLUS 

Climatic 

Average annual precipitation 
2000–2020 

1000 m 
https://www.resdc.cn/ 

Average annual temperature 

Drought Index 2022 https://www.plantplus.cn/ 

Terrain 

Digital Elevation Model 

- 
30 m 

https://www.gscloud.cn/ Slope 

Slope direction 

Soil Soil type 2009 https://www.fao.org/ 
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Soil erosion 2019 1000 m 

Plant 
Normalized Difference 

Vegetation Index 
2010, 2015, 

2020 

30 m https://www.resdc.cn/ 

Socio-

economic 

Population 100 m https://hub.worldpop.org 

Gross Domestic Product 1000 m https://www.resdc.cn/ 

Nighttime lights 500 m https://eogdata.mines.edu 

Distance to railway 

2020 30 m https://www.ngcc.cn/ 

Distance to highway 

Distance to river system 

Distance to primary road 

Distance to secondary road 

Distance to township Road 

Distance to residential areas 

InVEST 

CMIP6 

（MRI-

ESM2.0） 

Monthly precipitation 

2021–2100 30 m https://www.tpdc.ac.cn/ 
Monthly temperature 

Monthly potential 

evapotranspiration 

Soil 

Plant available water content 

2009 - 

https://www.fao.org/ 

Root restriction layer depth 

Yan（2020） Per-capita household water 

consumption 

Socioecon

omic 

Water consumption per 10,000 

¥ GDP 

2000-2020 - 

Xinjiang Uygur Autonomous 

Region Water Resources 

Bulletin 
Per-hectare farmland irrigation 

consumption 

GDP of Tailan River Basin WenSu County and the Aksu 

City Statistical Yearbooks. POP of Tailan River Basin 

2.3 Methods 203 

The research approach of this study is to first predict land use change in the TRB 204 
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under six scenarios for the period 2020-2050 and screen for the high-contribution 205 

drivers of land change in the TRB. subsequently predict the change processes of water 206 

supply and demand quantities in the TRB under 24 land-climate combination patterns 207 

for 2020-2050, and analyze the key drivers of these water supply-demand changes. 208 

finally quantify water supply-demand risks under the land-climate combination patterns, 209 

identify the main factors influencing these water supply-demand risks, and propose 210 

management and policy recommendations aligned with regional development. The 211 

framework and workflow of this research approach are illustrated in Fig. 2. 212 

 213 

Fig. 2. Framework and Workflow for Multi-Scenario Water Supply-Demand Risk Assessment 214 

2.3.1 Land-Climate Model Setting 215 

To explore the diverse possibilities for TRB's development, this study integrated 216 

the "Aksu Prefecture National Economic and Social Development 14th Five-Year Plan 217 
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and Long-Range Objectives Through the Year 2035", the "Aksu Prefecture National 218 

Economic and Social Development Statistical Bulletin (2020-2024)", the "Aksu 219 

Prefecture Territorial Spatial Plan (2021-2035)", the "Xinjiang Uygur Autonomous 220 

Region Territorial Spatial Plan (2021-2035)", and previous research findings (Kulaixi 221 

et al., 2023; Song et al., 2025) to establish six land development scenarios. 222 

Natural Increase Scenario (NIS): Based on the land evolution process in the TRB 223 

from 2000 to 2020, this scenario maintains the current land transition processes, adds 224 

no new policy influences, and imposes no restrictions on the transfer probabilities 225 

between land use types. It serves as a baseline and reference for the other scenarios. It 226 

also functions as a control for observing transitions in the other restricted scenarios. 227 

Food Security Scenario (FSS): Based on the characteristics of the TRB region, this 228 

scenario emphasizes food security and enhances agricultural productivity. It reduces 229 

(by 5%) the transfer probability of cultivated land to other land use types while 230 

increasing (by 10%) the transfer probability from other land use types to cultivated land. 231 

Economic Development Scenario (EDS): Driven by accelerating urbanization and 232 

economic development needs, this scenario enhances economic construction and 233 

fundamental urban capacity. It increases (by 20%) the transfer probability from 234 

cultivated land, forest land, grassland, and unused land to built-up land, keeps the 235 

transfer probability from water bodies to built-up land unchanged, and simultaneously 236 

protects the TRB's economic infrastructure by reducing (by 30%) the probability of 237 

built-up land converting to other land use types except cultivated land. 238 

Water Protection Scenario (WPS): Addressing water scarcity and the need for 239 

aquatic ecological balance, this scenario prioritizes safeguarding ecological functions 240 

such as water resource protection and water conservation from infringement. It 241 

prohibits the encroachment of existing water body areas by other land use types and 242 

reduces (by 30%) the transfer probability from other land types to cultivated land. 243 

Ecological Protection Scenario (EPS): Given the ecological fragility and 244 

sensitivity of the TRB, this scenario aims to enhance the resilience of its eco-245 

environment. It restricts (by 30%) the transfer probability from other land use types to 246 

built-up land and increases (by 20%) the transfer probability from built-up land to forest 247 
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land, grassland, water bodies, and unused land. 248 

Balanced Economy and Ecology Scenario (BES): Responding to the dual demands 249 

of economic development and ecological governance in the TRB. This scenario seeks 250 

parallel development of urbanization and ecological conservation. It reduces (by 20%) 251 

the transfer probability from grassland and water bodies to built-up land, and reduces 252 

(by 10%) the transfer probability from cultivated land and forest land to built-up land. 253 

Building upon this, it reduces (by 20%) the transfer probability from built-up land to 254 

forest land, and reduces (by 10%) the transfer probability from built-up land to water 255 

bodies, grassland, and unused land. 256 

In response to the increasingly severe climate change, combining historical rainfall 257 

and potential evapotranspiration trends in the TRB (Fig. 1). this scenarios with Shared 258 

Socio-economic Pathways (SSP) and Representative Concentration Pathways (RCP) 259 

under CMIP6 were selected. While SSP describes possible future socio-economic 260 

developments, RCP depicts future greenhouse gas concentration and radiative forcing 261 

scenarios (O’Nill et al., 2016, 2017). Here, the typical SSP-RCP scenarios from the 262 

second-generation climate model (MRI-ESM2.0) as developed by the Meteorological 263 

Research Institute (MRI) of Japan were used. This includes: i) land, to compare current 264 

and future climate change; ii) SSP119, the lowest radiative forcing scenario with 265 

radiative forcing of ≈1.9 W/m² by 2100; iii) SSP245, a medium radiative forcing 266 

scenario that stabilizes at ≈4.5 W/m² by 2100; iv) SSP585, a high forcing scenario with 267 

emissions rising to 8.5 W/m² by 2100. 268 

2.3.2 Land Use Projections 269 

This study employed the PLUS model to predict land use evolution trends in the 270 

TRB. The PLUS model consists of the Land Expansion Analysis Strategy (LEAS) and 271 

the CA based on multi-type random patch seeds (CARS) (Liang et al., 2021). The LEAS 272 

module utilizes the random forest algorithm to explore the relationships between 273 

multiple driving factors and different land types, thereby determining the development 274 

potential for each land use type (Shi et al., 2023). The CARS module simulates patches 275 

of different land types by integrating a transition matrix and neighborhood weights of 276 

land use types to achieve the prediction outcome. In this study, the sampling rate of the 277 
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random forest was adjusted to 0.2 and the number of decision trees was set to 60 to 278 

adapt to the geographical environment of the TRB. We selected the Figure of Merit 279 

(FOM), Overall Accuracy (OA), and Kappa index (Liu, et al., 2017) to measure the 280 

accuracy of the simulations. To enhance the applicability and precision of the PLUS 281 

model, the collected 19 driving factors were used as a 'factor bank'. Under consistent 282 

other simulation parameters, factors with lower contribution capabilities were 283 

systematically removed, and land use patterns for both 2015 and 2020 were simulated. 284 

Driving factors were screened based on the random forest algorithm within the LEAS 285 

module and the evaluation metrics. When the number of driving factors was reduced to 286 

13, the simulation achieved the highest accuracy (Tab. S1) and exhibited strong 287 

consistency (Fig. S2). Consequently, this study adopted these 13 driving factors for 288 

subsequent simulations. 289 

2.3.3 Water Supply and Demand Forecasting 290 

(1) Water Supply Forecasting 291 

This study utilized the water yield module of the InVEST model to predict changes 292 

in water yield within the TRB (Tailan River Basin). The Budyko framework (Budyko, 293 

et al., 1974) was applied to determine the difference between precipitation and actual 294 

evapotranspiration for each grid cell, which was then used to calculate water yield 295 

(Chen, et al., 2024a). The calculation formula is as follows: 296 

𝑌(𝑥) = (1 −
𝐴𝐸𝑇(𝑥)

𝑃(𝑥)
) × 𝑃(𝑥) (1) 297 

where Y(x) is the annual water yield of grid cell x; AET(x) is the actual 298 

evapotranspiration in grid cell x; and P(x) is the annual precipitation in grid cell x. 299 

Evapotranspiration of vegetation under the various land use types was calculated (i.e., 300 

𝐴𝐸𝑇(𝑥)

𝑃(𝑥)
) after Zhang et al. (2004) as follows: 301 

𝐴𝐸𝑇(𝑥)

𝑃(𝑥)
= 1 +

𝐴𝐸𝑇(𝑥)

𝑃(𝑥)
− [1 + (

𝑃𝐸𝑇(𝑥)

𝑃(𝑥)
)

𝜔

]

1
𝜔⁄

(2) 302 

where PET(x) is the potential evapotranspiration (mm) of grid cell x, and ω is an 303 

empirical value related to natural climate and soil properties. The term ω(x) is 304 
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calculated after Donohue (2012) as: 305 

𝜔(𝑥) = 𝑍
𝐴𝑊𝐶(𝑥)

𝑃(𝑥)
+ 1.25 (3) 306 

𝐴𝑊𝐶(𝑥) = 𝑚𝑖𝑛(𝑀𝑎𝑥𝑆𝑜𝑖𝑙𝐷𝑒𝑝𝑡ℎ(𝑥), 𝑅𝑜𝑜𝑡𝐷𝑒𝑝𝑡ℎ(𝑥)) × 𝑃𝐴𝑊𝐶(𝑥) (4) 307 

where Z is a seasonal constant of the water yield model, representing 308 

hydrogeological characteristics such as regional precipitation distribution. Based on 309 

"the Wensu County Water Resources Development Plan for the 14th Five-Year Plan 310 

Period" and "the Comprehensive Report on the Tailan River Basin Planning", the 311 

surface water resources volume in the plain area was determined to be 65 × 10⁵ m³. 312 

Through manual optimization, it was found that when the model parameter Z = 7.5, the 313 

discrepancy between the simulated and observed values was minimized (Fig. S3). 314 

AWC(x) is the effective water content of grid cell x; PAWC(x) is the effective water 315 

content of vegetation in grid cell x; MaxSoilDepth(x) is the maximum soil depth in grid 316 

cell x; and RootDepth(x) is the root depth in grid cell x. The term PAWC(x) is as follows 317 

(Zhou et al., 2005): 318 

𝑃𝐴𝑊𝐶(𝑥) = 54.509 − 0.132𝑆𝐴𝑁𝐷(𝑥) − 0.003(𝑆𝐴𝑁𝐷(𝑥))
2

− 0.055𝑆𝐼𝐿𝑇(𝑥)319 

− 0.006(𝑆𝐼𝐿𝑇(𝑥))
2

− 0.738𝐶𝐿𝐴𝑌(𝑥) + 0.007(𝐶𝐿𝐴𝑌(𝑥))
2

320 

− 2.699𝑂𝑀(𝑥) + 0.501(𝑂𝑀(𝑥))
2

                                                            (5) 321 

where SAND(x), SILT(x), CLAY(x), and OM(x) respectively stand for sand, silt, clay, 322 

and organic matter contents of grid cell x. 323 

(2) Water Demand Forecasting 324 

As indicated by "the Wensu County Statistical Bulletin on National Economic and 325 

Social Development" and "the Aksu Statistical Bulletin on National Economic and 326 

Social Development", the water use structure in the TRB (Tailan River Basin) is well-327 

defined, primarily sourced from agricultural irrigation, residential consumption, and 328 

economic development activities. Therefore, this study conducted separate projections 329 

for agricultural water demand, domestic water demand, and economic water demand 330 

within the TRB. In order to account for the impact of climate change on the average 331 

crop water requirement in the TRB, and based on the findings of Li et al. (2020), which 332 
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indicate that a temperature increase of 2 °C leads to an increase in the average crop 333 

water requirement of 19 mm, the formula for calculating irrigation water demand per 334 

hectare was derived as follows: 335 

∆𝑐𝑤𝑑(𝑎,𝑏) = 9.5 × (𝑇2 − 𝑇1) (6) 336 

𝑛(𝑎,𝑏) = 𝑑0 + ∆𝑐𝑤𝑑(𝑎,𝑏) (7) 337 

where ∆cwd（a,b）represents the change in average crop water requirement for grid 338 

cell b in year a, T1 denotes the air temperature for a grid cell during the baseline period, 339 

and T2 denotes the air temperature for the same grid cell during the change period. n(a,b) 340 

is the irrigation water demand per hectare for grid cell b in year a under climate change 341 

impacts, and d0 is the irrigation water demand per hectare during the baseline period. 342 

Therefore, the calculation formulas for agricultural water demand, domestic water 343 

demand, and economic water demand are as follows: 344 

𝑝𝑜𝑝(𝑎,𝑏) =
𝑝(𝑎,𝑏)

∑ 𝑝(𝑎,𝑏)
𝑛
𝑏=1

× 𝑃𝑂𝑃𝑎 (8) 345 

𝑔𝑑𝑝(𝑎,𝑏) =
𝑔(𝑎,𝑏)

∑ 𝑔(𝑎,𝑏)
𝑛
𝑏=1

× 𝐺𝐷𝑃𝑎 (9) 346 

𝑊𝐷(𝑎,𝑏) = 𝑝𝑜𝑝(𝑎,𝑏) × 𝑙(𝑎,𝑏) + 𝑔𝑑𝑝(𝑎,𝑏) × 𝑚𝑎(𝑎,𝑏) + 𝑎𝑔𝑟(𝑎,𝑏) × 𝑛(𝑎,𝑏) (10) 347 

where p(a,b) and g(a,b) are respectively the initial population and economic status 348 

of grid cell b in year a; POPa and GDPa are respectively the population and GDP in year 349 

a; pop(a,b) and gdp(a,b) respectively the calibrated population and GDP of grid cell b in 350 

year a; and agr(a,b) is the cultivated land area of grid cell b in year a. The terms la, ma, 351 

and na respectively represent the per capita water use, water use per 10,000 Yuan of 352 

GDP, and irrigation water use per hectare of farmland in year a. To exclude recharge 353 

from the mountain in the study area, the amount of surface water resources in the 354 

mountains was equally dispersed in a raster. The population and GDP for 2030–2050 355 

were determined using linear regression method. To exclude the water contribution 356 

from the upper reaches of the Tailan River to this study, the multi-year average runoff 357 

from the upper reaches was evenly allocated to each grid cell to reduce its influence on 358 

water demand calculations. Additionally, this study employed linear regression to 359 

project the population and GDP for the period 2030–2050, which was used to support 360 

the prediction of the temporal change in water demand within the TRB from 2030 to 361 
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2050. 362 

2.3.4 Risk Framing of Water Supply and Demand 363 

The water supply-demand risk framework serves as a crucial tool for assessing 364 

regional water supply-demand risks. Moran (2017) classified the computational results 365 

generated within this framework into seven categories (Tab. 2), enabling the assessment 366 

of regional water risk levels by calculating the water supply-demand relationship and 367 

facilitating the quantification of regional water supply-demand risk grades. This 368 

framework comprises four indicators: the water supply-demand ratio, the trend in the 369 

water supply-demand ratio, the water supply trend, and the water demand trend. The 370 

calculation procedures for these indicators are as follows:  371 

1) The water supply and demand ratio that expresses spatial heterogeneity of water 372 

supply and demand contradictions: 373 

𝑅(𝑥) = 𝑊𝑌(𝑥) ∕ 𝑊𝐷(𝑥) (9) 374 

where R(x) is the water supply-demand ratio of grid cell x; and WY(x) and WD(x) 375 

are respectively the water supply and demand of grid cell x. 376 

2) The trend of water supply-demand ratio expresses the relative changes in water 377 

supply and demand: 378 

𝑅𝑡𝑟 = 𝑅𝑖 − 𝑅𝑗 (10) 379 

where Rtr is the difference between water supply-demand ratios in years i and j; Ri 380 

and Rj are respectively the water supply-demand ratios in years i and j. 381 

3) The trend of water supply and demand volume expresses the absolute changes 382 

in water supply and demand volume: 383 

𝑆𝑡𝑟 = 𝑊𝑌𝑖 − 𝑊𝑌𝑗 (11) 384 

𝐷𝑡𝑟 = 𝑊𝐷𝑖 − 𝑊𝐷𝑗 (12) 385 

where Str and Dtr are respectively the differences in water supply and demand 386 

volumes; WYi and WYj respectively the water supply volumes in years i and j; WDi 387 

and WDj respectively the water demand volumes in years i and j. 388 

Table 2. Assessment of water supply and demand risk level in the study area 389 
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3 Results 390 

3.1 Land use change characteristics under multiple scenarios 391 

The evolution of land use in the TRB from 2020 to 2050 under six scenarios was 392 

simulated using the PLUS model. Overall, the land use structure remained relatively 393 

stable across the multiple scenarios, with the most significant changes primarily 394 

manifested in cultivated land (33%) and grassland (29%) areas (Fig. 3). Notably, 395 

grassland area generally exhibited significant degradation (with an average reduction 396 

of 535.36 km²), whereas cultivated land area expanded substantially (The contribution 397 

of population is the highest (0.22) (Fig. 4)) due to factors such as policy incentives and 398 

population growth (with an average increase of 524.87 km²). Under the NIS, the 399 

intensity of cultivated land reclamation continuously increased, with its proportion 400 

jumping from 33% (2020) to 46% (2050). A significant portion of this expansion 401 

stemmed from the reclamation of grassland. Simultaneously, the encroachment of built-402 

up land also constituted a major component of grassland conversion. Compared to NIS, 403 

the FSS resulted in a greater expansion of cultivated land (545.28 km²). This scenario 404 

emphasizes intensive land use and promotes sustainable cultivated land development 405 

through the consolidation of fragmented farmland. The cultivated land expansion under 406 

FSS primarily originated from the conversion of grassland. Under the EDS, the area of 407 

built-up land surged from 62.88 km² (2020) to 113.05 km² (2050), significantly 408 

exceeding that in other scenarios. Relative to NIS, the WPS mitigated grassland 409 

Grade 

code 
Risk grade 

Water 

supply–demand ratio 

(R) 

Water trend of 

supply–demand ratio 

(Rtr) 

Trend of water 

Supply (Str) and 

demand (Dtr) 

Ⅰ 
Extinct/ 

Dormant 
R = 0 Rtr < 0 — 

II 
Critically 

endangered 
0 < R < 1 Rtr < 0 Str < 0, Dtr ≥ 0 

III Endangered 0 < R < 1 Rtr ≥ 0 
Str < 0, Dtr < 0 or 

Str ≥ 0, Dtr ≥ 0 

IV Dangerous 0 < R < 1 Rtr ≥ 0 
Str < 0, Dtr < 0 or 

Str ≥ 0, Dtr ≥ 0 

V Undersupplied 0 < R < 1 Rtr < 0 Str ≥ 0, Dtr < 0 

VI Vulnerable R ≥ 1 Rtr ≥ 0 — 

VII Safe R ≥ 1 Rtr ≥ 0 — 
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reclamation and degradation, increased water conservation and ecological land, and 410 

augmented grassland area through soil conservation measures and the development of 411 

wasteland. Building upon WPS, the EPS further restricted human activities, resulting 412 

in the smallest built-up land area (104.08 km²). While controlling the growth rate of 413 

cultivated land area, it significantly increased the area of ecological land, such as 414 

grassland and water bodies, thereby further restoring the fragile ecosystems in the arid 415 

region. As a key measure to balance ecology and economy in the arid oasis region, the 416 

BES maintained a relatively high cultivated land area (531.20 km²) to safeguard the 417 

agricultural economic backbone. Simultaneously, it ensured that ecological land, such 418 

as woodland and water bodies, remained free from encroachment. Furthermore, it 419 

involved further development of unused land (wasteland and saline-alkali land), 420 

converting it into grassland (31.08 km²) with ecological conservation functions. 421 

Fig. 3 Transfer process under six land-use scenarios in the Tailan River Basin, 2020–2050 422 

(Scenario labels indicate cultivated land expansion area (blue; in km²) and grassland degradation 423 

area (green; in km²)). 424 

Different land types exhibit significantly varying degrees of responsiveness to 425 

driving factors due to differences in their spatial demand and evolutionary trajectories 426 

(Fig. 4). Specifically, population plays a core driving role in the evolution of multiple 427 

land types: it exhibits the highest contribution rates to cultivated land (0.22), forest land 428 



19 
 

(0.19), grassland (0.17), built-up land (0.18), and unutilized land (0.43). Other key 429 

driving factors also show specific influences: the Nighttime Light Index has relatively 430 

high contributions to cultivated land (0.12) and built-up land (0.29), the Aridity Index 431 

to forest land (0.11) and grassland (0.09), and the Digital Elevation Model (DEM) also 432 

contributes significantly to water bodies (0.38). 433 

Fig. 4. Driver banks (left) and screened high contributors (right) 434 

3.2 Multi-Scenario Water Supply-Demand Dynamics 435 

(1) Variation in water supply 436 

Based on the InVEST model, the variation trends of water supply under different 437 

climate change and land use scenarios were investigated. The spatial distribution of 438 

water resources supply remains consistent across scenarios, with a stable water supply 439 

pattern (Fig. 5a). This pattern demonstrates markedly higher water supply in the 440 

northern region than elsewhere, which is closely linked to the spatial distribution of 441 

precipitation in the TRB. During 2020-2050, water supply trends under different 442 

scenarios show distinct variations: both Land and S245 exhibit an upward trend, with 443 

S245 increasing at an appreciably faster rate than land. In contrast, the water yield 444 

capacity of S119 and S585 gradually declines over time, though their decreasing trends 445 

differ substantially (Tab. S2). Furthermore, the contribution of water yield capacity 446 

from different land types to water supply also varies, with grassland providing higher 447 

water supply than cultivated land (Fig. 5a). Using the scenario maintaining current 448 

rainfall and potential evapotranspiration (Land) as the baseline, TRB's water supply 449 

fluctuates under different land use scenarios, ranging from 64.78 × 10⁵ m³ to 65.7 × 10⁵ 450 

m³. Under different climate scenarios, TRB's water supply shows pronounced variations, 451 
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with a fluctuation range of 25.33 × 10⁵ m³ to 162.2 × 10⁵ m³ when referenced against 452 

the NIS baseline scenario. The highest water supply in TRB (162.8 × 10⁵ m³) occurs 453 

under the S245-FSS, while the lowest (25.23 × 10⁵ m³) is observed under the S119-EPS.  454 

Fig. 5. Spatial patterns of water supply (a) and water demand (b) in the Tailan River Basin under 455 

the Natural Increase Scenario (NIS) in 2050. 456 

(2) Variation in water demand 457 

Compared with water supply, the spatial distribution and pattern of water demand 458 

also remain relatively consistent and stable across different scenarios (Fig. 5b) This 459 

pattern exhibits stronger water demand capacity in the southwestern and central-eastern 460 

regions but weaker capacity in the northern and southeastern areas, which is closely 461 

associated with the spatial distribution of land use and population aggregation density 462 

in the TRB (Fig. 5b). During 2020-2050, water demand under all scenarios shows a 463 

continuous upward trend, though with significant variations in the rate of increase. 464 

Furthermore, the contribution of water demand capacity from different land types varies 465 

markedly, with cultivated land and built-up land demonstrating stronger demand 466 

capacity, while unutilized land shows the weakest capacity. Using the scenario 467 

maintaining current rainfall and temperature (Land) as the baseline. TRB's water 468 

demand exhibits significant variations under different land use scenarios (Tab. S2), 469 

ranging from 1575 × 10⁵ m³ to 4935 × 10⁵ m³. Under different climate scenarios, TRB's 470 

water demand displays similar upward trends over time, with a fluctuation range of 471 

1887 × 10⁵ m³ to 5316 × 10⁵ m³ relative to the NIS baseline scenario. The highest water 472 

demand (5390 × 10⁵ m³) occurs under the S585-FSS scenario, whereas the lowest (1575 473 
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× 10⁵ m³) is observed in the Land-WPS scenario. Agricultural water use has consistently 474 

constituted the primary consumption component in the TRB. Across all land and 475 

climate change scenarios, irrigation accounts for over 70% of the total share (Fig. 6a, 476 

b). Although the proportion of irrigation water gradually decreases over time, its total 477 

volume continues to increase (Fig. 6c). Nevertheless, unilateral studies of water supply 478 

or demand alone cannot directly reflect water resource allocation capacity. The impacts 479 

arising from supply-demand imbalances remain unclear and warrant further 480 

investigation. To better elucidate the impacts of water supply-demand dynamics on 481 

TRB's water resources, in-depth analysis of regional water security risks is required, 482 

which will facilitate the formulation of tailored water management and conservation 483 

strategies. 484 

Fig. 6. Dynamics of total water demand and agricultural irrigation demand with proportional 485 

distribution across latitudinal gradients in the Tailan River Basin, 2030–2050(a) Different land 486 

change scenarios (Natural Increase Scenario (NIS)/ Food Security Scenario (FSS)/ Economic 487 

Development Scenario (EDS)/ Water Protection Scenario (WPS)/ Ecological Protection Scenario 488 

(EPS)/ Balanced Economy and Ecology Scenario (BES)); (b) Different climate change scenarios 489 

(Land/S119/S245/S585); (c) Temporal evolution (percentages in the figure represent the 490 

proportion of irrigation water to the total water demand). 491 

3.3 Multi-Scenario Water Supply-Demand Risks and Attribution 492 

To assess water supply-demand risks in the TRB region, an evaluation framework 493 

was established using four indicators: water supply-demand ratio, trend of water 494 

supply-demand ratio, water supply trend, and water demand trend. Spatial patterns of 495 

water supply-demand risk in the TRB exhibit heterogeneity across scenarios (Fig. 7). 496 

Although risk classification levels vary under different climate scenarios, no grid cell 497 
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in the TRB escapes hazardous (Level IV) risk (Tab. 2 indicates a 7-level classification 498 

system). This is closely linked to continuously increasing water demand in the TRB. 499 

Using NIS as the baseline, the scenario maintaining current rainfall and potential 500 

evapotranspiration (Land) shows the most severe water scarcity: Level II risk accounts 501 

for 51.31%, while Level IV risk constitutes merely 0.85%. Under the other three climate 502 

scenarios, water supply-demand risks are alleviated, with Level IV risk proportions 503 

being 29.24% (S119), 53.60% (S245), and 49.34% (S585) respectively (Fig. 8). The 504 

S245-EPS scenario achieves maximum risk mitigation in the TRB, as its rainfall levels 505 

increase steadily per decade among the three climate scenarios (Fig. 1d), thereby 506 

alleviating regional water stress. While the TRB's harsh current climate exacerbates 507 

water risks, future climatic changes may moderately alleviate these risks compared to 508 

present conditions. In summary, by 2050 the entire TRB will face water supply-demand 509 

crises, with at least 46% of the area subjected to endangered (Level III) risk, including 510 

no less than 10% of land confronting critical endangered (Level II). 511 
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Fig. 7. Spatial evolution of water supply-demand risk classification levels in the Tailan River 512 

Basin under 24 climate-land combination scenarios (2020–2050) 513 

(Land change scenarios (Natural Increase Scenario (NIS)/ Food Security Scenario (FSS)/ 514 

Economic Development Scenario (EDS)/ Water Protection Scenario (WPS)/ Ecological Protection 515 

Scenario (EPS)/ Balanced Economy and Ecology Scenario (BES)); Climate change scenarios 516 

(Land/S119/S245/S585); Color gradient indicates decreasing risk from Level I (highest) to Level 517 

Ⅶ (lowest)) 518 
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Fig. 8. Temporal variation in proportional distribution of risk classification levels across the 519 

Tailan River Basin (TRB) under 24 climate-land combination scenarios (2020–2050) (decreasing 520 

risk from I to VII) 521 

4 Discussion 522 

4.1 Multi-Scenario Land Use Spatial Patterns 523 

Land use changes alter regional hydrological processes and water resource 524 

patterns—such as infiltration, groundwater recharge, baseflow, and runoff—thereby 525 

affecting regional water supply and demand dynamics (Lin et al., 2007). During 2020–526 

2050, land type transitions in the TRB will predominantly involve cultivated land and 527 

grassland, which will profoundly influence water supply-demand dynamics (Fig. 3). In 528 

this study, the Food Security Scenario (FSS) prioritizes cohesive cultivated land 529 

expansion with high intensification and contiguity (1,937.58 km²). Although rapid 530 

cultivated land growth directly boosts regional agricultural economies, it significantly 531 

increases agricultural irrigation water demands (Sharofiddinov et al., 2024), 532 

intensifying pressure on water supply-demand balance. Notably, under the Economic 533 

Development Scenario (EDS), further intensification of human activities exacerbates 534 

this pressure. Rapid urbanization not only elevates domestic and industrial water 535 

demands (He et al., 2021) but may also degrade water quality and availability by 536 

altering surface runoff and amplifying non-point source pollution (Strokal et al., 2021).  537 

In contrast, the Ecological Protection Scenario (EPS) reinforces ecological barriers 538 

by restraining agricultural expansion and limiting grassland conversion, thereby 539 
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reducing water consumption. The Water Protection Scenario (WPS) mitigates land 540 

fragmentation, potentially preserving more natural hydrological processes and water 541 

conservation functions. Together, these measures slow ecological degradation and 542 

indirectly support long-term water sustainability. These results demonstrate that the rate 543 

of natural resource consumption by human activities (particularly agricultural practices) 544 

far exceeds the rate of natural recovery, and this antagonistic relationship weakens as 545 

human interventions intensify. Consequently, the Balanced Economic and Ecological 546 

Development Scenario (BES) seeks to reconcile economic growth with ecological 547 

conservation (especially water resources) by moderately controlling cultivated land and 548 

construction land expansion (reducing encroachment on grassland to 689.17 km²), 549 

making it a prioritized land use model for the future. Different land use scenarios 550 

highlight the critical leverage of land use policies in water resource management. The 551 

significant spatial heterogeneity across the region calls for targeted strategies to 552 

alleviate future pressures from human activities (especially agriculture) on water 553 

resource systems. 554 

Table S1 indicates that using more driving factors does not necessarily improve 555 

model performance, and the selection of these factors is a critical source of uncertainty 556 

in the results. Although the Random Forest algorithm effectively addresses 557 

multicollinearity among factors, complex interactions between driving factors can still 558 

introduce noise and increase the predictive uncertainty of simulations (Liang et al., 559 

2021). Specifically, this study achieved optimal simulation accuracy with 13 driving 560 

factors. Adding factors with low contributions beyond this number distorted the 561 

direction and quantity of simulations, thereby reducing model accuracy. Conversely, 562 

when the number of factors was reduced to 7, simulation performance declined 563 

significantly. This high sensitivity suggests that the PLUS model is vulnerable to input 564 

uncertainty; the absence of key driving factors directly increases bias in the accuracy 565 

of simulations. The significant differences in factor contributions (Fig. 4) further 566 

highlight uncertainties arising from human activities. The intensity of human activities 567 

and population distribution density profoundly influence land use change processes. 568 

Changes in population size trigger cascading effects on land resources, agricultural 569 
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ecosystems, and water resources by altering wealth levels and food calorie demands 570 

(Beltran et al., 2020; Harifidy et al., 2024). Land use change is a multidirectional 571 

process, and quantifying human activities (e.g., economic dynamics and population 572 

migration) remains challenging. Climate variability further exacerbates simulation 573 

uncertainties. Therefore, it is essential to employ multi-scenario simulations to provide 574 

decision-makers with a range of possible future land change pathways, thereby 575 

reducing policy risks. 576 

4.2 Land Use and Climate Change Impacts on Water Supply-Demand Dynamics 577 

(1) Impacts of Climate Change and Land Use on Water Supply 578 

Water supply in the TRB is jointly constrained by human activities and climate 579 

change. Under the same climate change conditions, there are differences in water 580 

supply between different land use scenarios (Tab. S2), and these differences are caused 581 

by different land use structures (Jia et al., 2022). Analysis of variance across the 24 582 

climate-land combination scenarios revealed that their variability range was 583 

significantly lower than that of different climate change scenarios (Tab. S3), indicating 584 

that climate change (precipitation) exerts a more pronounced influence on water supply 585 

in the TRB than human activities (land use) (Luo et al., 2025). Because precipitation 586 

change is the decisive factor driving interannual water supply variation (Zhang et al., 587 

2025b), water yield capacity is highly sensitive to rainfall levels (Shirmohammadi et 588 

al., 2020). Significantly similar trends between rainfall and water supply have been 589 

found in 17 typical Chinese basins (Guo et al., 2023), and this has also been validated 590 

in multiple watersheds in Argentina (Nuñez et al., 2024), the Gulf of Mexico Basin 591 

(Ouyang et al., 2025), and the United States (Duarte et al., 2024).  592 

Furthermore, precipitation exerts a profound influence on the spatial distribution 593 

of water resources (Zhang et al., 2011). Rainfall determines the uneven distribution of 594 

water resources across different regions, and this influence exhibits distinct 595 

characteristics in arid versus humid areas (Zhang et al., 2014; Feng et al., 2025). In arid 596 

regions, water supply demonstrates a significant correlation with rainfall, and 597 

precipitation can explain a substantial portion of the variability in water availability 598 

(Adem et al., 2024). Notably, although water supply in humid areas is more sensitive 599 
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to rainfall variations than in arid regions, the extreme scarcity of water resources in arid 600 

areas means that even minor changes in precipitation can lead to significant 601 

discrepancies in water supply-demand relationships. Consequently, arid regions face 602 

higher risks and vulnerability regarding water scarcity and thus require greater attention 603 

(Taylor et al., 2019). 604 

(2) Impacts of Climate Change and Land Use on Water Demand 605 

Water demand in the TRB is also constrained by both human activities and climate 606 

change (Tab. S2). Under the same land use scenario, water demand varies across 607 

different climate scenarios, with this variation driven by temperature-induced changes 608 

in irrigation water use (Li et al., 2020). Analysis of variance across the 24 climate-land 609 

combination scenarios revealed that the impact of climate change on water demand was 610 

significantly lower than that of land use changes (Tab. S3), indicating that human 611 

activities (land use) exert a more substantial influence on water demand in the TRB 612 

than climate change. It is clear that irrigation water consumption accounts for the 613 

majority of TRB water consumption (Fig. 6). Changes in TRB's irrigation water are 614 

closely linked to (1) conversions between cultivated land and other land types, and (2) 615 

adjustments in planting patterns within cultivated areas. Studies demonstrate that 616 

volatile land allocation significantly affects agricultural irrigation, particularly through 617 

land type conversions (Cao et al., 2024). Simultaneously, land fragmentation levels 618 

influence water user numbers, while changes in irrigated area and frequency intensify 619 

irrigation water pressure (Sharofiddinov et al., 2024). This indicates that expanding 620 

cultivated land areas drive increased irrigation water usage (Liu et al., 2025a), aligning 621 

with our findings. Additionally, planting area and planting structure significantly 622 

impact irrigation water use (Chen et al., 2020). Sun et al. (2024) confined irrigation 623 

water within manageable levels while boosting yield and carbon sequestration by 624 

adjusting rice, maize, and soybean cultivation areas; Other research reduced irrigation 625 

water by 34.48% while decreasing crop greenhouse gas emissions by 10% through 626 

planting structure optimization (Li et al., 2025a). Moreover, interactions between 627 

irrigation technology and planting structure adjustments affect irrigation demand. Wu 628 

et al. (2024) found that combining deficit irrigation with high-density planting reduces 629 
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irrigation water by 20% without compromising cotton yield. Furthermore, growers' 630 

strong traditional agricultural values make produce value and labor costs more critical 631 

concerns than irrigation water consumption (McArthur et al., 2017; Nourou et al., 632 

2025).For instance, widespread maize cultivation (an economic crop) in the TRB 633 

substantially increases regional irrigation water volumes (Huang et al., 634 

2015).Consequently, adjusting regional cropping structures within a macro-agricultural 635 

framework is crucial for ensuring sustainable water use and safeguarding growers' 636 

economic returns. 637 

Currently, most studies on water supply and demand focus primarily on the 638 

unilateral impacts of either climate or human activities (land use changes) (Wen et al., 639 

2025; Bai et al., 2025; Deng et al., 2024), or emphasize recent temporal changes. For 640 

example, Chen et al. (2024a) quantitatively evaluated the water conservation function 641 

of the Yangtze River over the past 40 years, while Ma et al. (2023) analyzed the effects 642 

of land use and land cover (LULC) changes on water yield (WY) in the Bosten Lake 643 

region from 2000 to 2020.However, studies have shown that complex interactive 644 

feedback mechanisms exist between climate change and land use, but their degrees of 645 

influence on water resources differ (Qi et al., 2025). Changes in water supply and 646 

demand are also affected by their combined impacts (Dey et al., 2017; Tan et al., 2025; 647 

Tian et al., 2025). Therefore, it is essential to assess future water supply-demand 648 

relationships under the dual influences of climate and land use changes. Based on 649 

comprehensive calculations across 24 climate-land combination scenarios, this study 650 

revealed a notable disparity between the change in water supply (137.47×10⁵ m³) and 651 

the change in water demand (3815×10⁵ m³), indicating that human activities have a 652 

greater impact on water resources in the TRB than climate change. This significant 653 

imbalance between water supply and demand will have profound implications for 654 

regional water supply-demand risks. 655 

4.3 Land Use and Climate Change Impacts on Water Supply-Demand Risks 656 

By mid-century, water resource vulnerability in the TRB will be profoundly 657 

impacted by climate change and human activities (Fig. 7). Global parallels exist: Lu et 658 

al. (2024b) demonstrated under multiple land-climate scenarios that synergies between 659 
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crop production and water yield requirements increase agricultural output but 660 

exacerbate water deficits. Chen et al. (2023a) documented significant oasis expansion 661 

in China (1987-2017), where increased precipitation and runoff provided partial 662 

compensation, yet climate-land changes substantially altered regional water supply. 663 

Gaines et al. (2023) found forest cover crucial for maintaining consistent surface water 664 

areas across climate-land cover scenarios. Based on this, the study established a water 665 

supply-demand risk assessment framework, confirming that water demand continues to 666 

increase over time, primarily driven by expanding cropland leading to rising irrigation 667 

water needs—a finding consistent with previous reports (Qi et al., 2025). Furthermore, 668 

this growing demand will exacerbate water supply-demand risks. Although agriculture 669 

water demand share of total water demand declines during 2020-2050, it remains 670 

dominant (70%) (Fig. 6). This correlates directly with Section 4.2 findings: (1) 671 

conversions between cultivated land and other land types, and (2) adjustments in 672 

planting patterns within cultivated areas. Crucially, the arid TRB's limited rainfall 673 

cannot meet growing irrigation demands, elevating water supply-demand risk (Land 674 

scenario). Compared to current rainfall, three other climate scenarios increase 675 

precipitation (2020-2050), improving supply and moderately reducing water supply-676 

demand risk (Fig. 7-8). Nevertheless, supply-demand gaps persist at nearly two orders 677 

of magnitude, with all areas remaining in "hazardous (Level IV) risk". Thus, human 678 

activities remain the primary driver of TRB's water supply-demand risks. Human 679 

activities dominate multiple dimensions within these climate-human interactions. Wang 680 

et al. (2025) identified human withdrawals as the key driver of reduced runoff and 681 

dampened seasonal variability in the Wei River Basin. Similarly, human exceed climate 682 

effects on soil moisture decline in China's monsoon loess critical zone (Wang et al., 683 

2024a). Therefore, amid increasing uncertainty, integrating multi-method approaches 684 

within water risk frameworks to decipher land-eco-hydrological feedbacks, quantify 685 

risks, implement preemptive water regulations, and minimize secondary disasters to 686 

ecosystems and societies is imperative. 687 

4.4 Limitations and recommendations for future research 688 

Nevertheless, this study has certain limitations. (1) While land use change served 689 
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as the starting point of our research, and multiple driving factors were incorporated for 690 

land change simulation, uncertainties in the direction and process of land evolution 691 

persist—despite the use of defined transition probability ranges and multiple land use 692 

scenarios. These uncertainties may constrain an in-depth exploration of the conversion 693 

and evolution processes among different land classes. Although we filtered out driving 694 

factors with low contributions, the influence of the TRB’s unique geographical 695 

environment and ecological processes on land class conversion warrants further 696 

investigation. Future studies could explore the impact of arid region ecology-climate-697 

environment on land use transition processes under the premise of quantifying national 698 

land planning and government policy guidance. 699 

(2) This study utilized the InVEST model to simulate water yield and employed 700 

24 climate-land combination scenarios to reduce uncertainty in TRB’s development. 701 

Although the biophysical table in the water yield module was constructed based on the 702 

FAO’s Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements 703 

(https://www.fao.org/) and relevant research (Yan et al., 2020), the evapotranspiration 704 

coefficients and plant root depth parameters relied heavily on accurate input values. 705 

The dynamic nature of crop growth and water demand processes introduces additional 706 

uncertainty into the simulations. To better isolate the independent effects of climate, 707 

soil, and vegetation on water supply, follow-up studies should incorporate long-term 708 

crop observation data and crop models based on clarified regional cropping structures. 709 

This would help refine key parameters (e.g., evapotranspiration coefficients) and 710 

disentangle the individual contributions of climate, soil, and vegetation to water supply, 711 

thereby reducing uncertainties in the simulation process. 712 

Located in an arid oasis region, water resources constitute the lifeline for human 713 

activities and ecosystems in the TRB. However, the arid and rain-scarce climate of TRB 714 

has led to a continuous amplification of the impact of human activities on the ecological 715 

environment, with irrigation water demand escalating daily (Chen et al., 2023a; Zhu et 716 

al., 2025). Concurrently, human survival necessitates improved living standards and 717 

economic development, intensifying human-land conflicts. Based on our findings, we 718 

recommend adopting the Balanced Economy and Ecology Scenario (BES) 719 
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development model in the TRB, implementing diverse water-saving measures 720 

(sprinkler irrigation, subsurface drip irrigation, brackish water irrigation) to control 721 

water consumption (Han et al., 2022; Liang et al., 2024), thereby expanding cultivable 722 

land reserves. 723 

5 Conclusions 724 

Elucidating the impacts of climate change and human activities on water supply-725 

demand risks is critical. We applied the PLUS model with six land change scenarios to 726 

identify suitable land development strategies for the TRB, and coupled it with the 727 

InVEST model under 24 climate-land scenarios to simulate dynamic changes in water 728 

supply and demand. Based on this, a water supply-demand risk framework was 729 

established to quantify TRB's water supply-demand risks during 2020-2050.Results 730 

show that the Balanced Economy and Ecology Scenario (BES) land development 731 

model promotes agricultural growth while protecting ecological barriers, adding 531.2 732 

km² of cultivated land by 2050.However, this cultivated land expansion creates a water 733 

demand deficit (increasing to 4.87×10⁸ m³), while maximum regional supply reaches 734 

only 0.16×10⁸ m³, disrupting water balance. Consequently, the entire TRB will face 735 

water crises by 2050, with ≥46% of the area subjected to endangered (Level III) risk. 736 

Climate change and human activities jointly drive escalating water supply-demand risks. 737 

The root cause lies in persistent cultivated land expansion from intensive human 738 

activities, increasing irrigation demand and intensifying supply-demand conflicts. 739 

Findings emphasize deep integration of multi-method approaches within the risk 740 

framework to decipher land-eco-hydrological feedbacks and consider the complex 741 

interrelationships between climate, land, and water supply-demand. Deepening 742 

understanding of these linkages is vital for developing effective water scarcity 743 

mitigation strategies, providing crucial scientific support for policymakers and land 744 

managers. 745 
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