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Highlights:

Irrigation water demand surge critically amplifies water supply-demand risk in arid
regions;

Water resources in arid regions are more susceptible to anthropogenic impacts;

Regional water supply-demand risk continues to rise through the mid-21st century.

Abstract

The dynamic evolution mechanism of regional water supply-demand risks under (BETHR: FhHe 16

the combined effects of climate change and human activities remains unclear.

particularly against the backdrop of agricultural expansion in arid regions. This study

focuses on the Tailan River Basin (TRB), a typical arid watershed in China and a vital

base for high-quality fruit and grain production. By integrating the PLUS (Land Use

Simulation) and InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs)

models, we constructed a water supply-demand risk assessment framework

encompassing 24 climate-land change scenarios to quantify their impacts on regional
1
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water resource patterns and risks. Results reveal that that climate change profoundly

(BETHR: FHEE 16

influences water supply, while land use significantly affects water demand. Under the

Balanced Economic and Ecological Development Scenario (BES), 531.2 km? of

additional cultivated Jand could be developed by 2050. However, this cultivated Jand

(BETHR: FHHE 16

(BETHR: PhEe 46

expansion leads to a sharp increase in irrigation water demand, with the minimum

demand reaching 4.87x10% m?, while the maximum regional water supply is only

0.16x10® m?, resulting in a significant supply-demand gap (>4.71x10% m?). The risk

assessment framework indicates that by 2050, the entire TRB will face a water supply-

demand crisis, with at least 46% of the area experiencing severe (Level I11) or higher

risks. The study demonstrates that continuous cultivated Jand expansion driven by

(BBTHX: PHHE 46

(BBTHR: FHPE 46

agricultural activities—which drastically increases irrigation water demand—is the root

cause of intensifying water supply-demand conflicts and high risks in the TRB. By 2050,

the proportion of irrigation water to total water use will exceed 70%, regardless of

scenario. These findings underscore the necessity of deeply integrating

(BETHR: PhHe 18

(BBTHR: FHHE 46

multidisciplinary approaches within a water risk framework to elucidate land-eco-

hydrological feedback mechanisms and better address water security challenges under

climate change. The results provide a scientific basis for optimizing regional water-land

resource allocation and promoting agro-ecological sustainable

development. Maintaining
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Introduction

Arid zones, covering 41% of the Earth's land area, are critical components of

(BBTHX: FHHE 46

global terrestrial ecosystems. They not only support 38% of the world's population but

also host approximately one-third of the planet's biodiversity hotspots (Berdugo et al.,

2017; Li et al., 2021). However, these regions—predominantly located in developing

countries (Huang et al., 2016; Chen et al., 2024)—face extreme water scarcity and

exhibit high ecological fragility (Li et al., 2021), making them particularly sensitive to

human activities (especially agricultural practices) and climate change. Northwestern

China’s arid regions serve as a typical example of the interplay between ecological

vulnerability and agricultural pressure. Since 1980, cultivated land in this area has

expanded significantly by 25.87% (Zhu et al., 2021), profoundly altering water and land

resource allocation and ecological balance (Liu et al., 2025b). Although climate change

has led to increased runoff (Li et al., 2025b) and rainfall (Yao et al., 2022) in the region,

providing more available water resources (Chen et al., 2023a), agricultural activities

dominated by continuous cultivated land expansion have sharply intensified regional

water stress. Irrigation water use has now become the major consumer of water

resources. Simultaneously, cultivated land expansion has elevated evapotranspiration

levels (Zhu et al., 2025), and inefficient irrigation practices (e.g., the irrigation water

use efficiency in Xinjiang is only 0.585) have further exacerbated groundwater over-

extraction (Yan et al., 2025) and soil salinization (Perez et al., 2024). These factors have

intensified the contradiction between water supply and demand, continuously

constraining sustainable water use options, and amplifying ecological vulnerability
(Huggins et al., 2022) and food security risks (Jones et al., 2024). Water-defieits(supply-
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The imbalance between water supply and demand is influenced by both climate

(BETHR: FHEE 16

change and human activities (particularly agricultural practices). Climate change

profoundly affects key processes in the hydrological cycle, including alterations in

precipitation and evapotranspiration (Konapala et al., 2020). The AR6 Synthesis Report

highlights that for every 0.5°C increase in global temperature, extreme heatwaves,

heavy rainfall, and regional droughts become more frequent and severe (Mukheriji et

al., 2023), elevating risks of extreme floods (surplus) and droughts (deficit). Research

indicates that changes in critical climate variables (precipitation, temperature,

evapotranspiration) significantly disrupt runoff patterns and alter the availability of

surface water resources (Lipczynska et al., 2018).Simultaneously, agricultural activities

(e.g., irrigation) directly impact the water cycle by modifying hydrological processes

such as evaporation, soil moisture, and water storage, while also affecting water and

energy balances through artificially enhanced evaporation (Yan et al., 2025).

Furthermore, agricultural activities directly shape water supply and demand by altering

water use patterns and intensity, thereby creating bidirectional feedback loops with the

water cycle and ecosystems (Chen et al., 2023).Under the influence of climate change

and agricultural activities, the mismatch between the natural endowment of water

resources (in terms of spatiotemporal distribution) and human demands further

exacerbates regional water scarcity, making it increasingly challenging to meet both
6
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ecological and societal needs (Caretta et al., 2022).

(BBTHX: FHHE a6

This mismatch and dislocation are jointly driven by climate change and human

activities (particularly agricultural practices). Studies have demonstrated that the

increased runoff observed during the 20th century resulted from the combined effects

of climate change and land cover changes (Piao et al., 2007). Land use changes can

influence precipitation patterns through modifications in surface energy balance,

hydrological cycles, and large-scale atmospheric circulation (Zhang et al., 2025a),

while climate change exacerbates the impacts of land alterations by reshaping the

hydrological cycle, thereby aggravating meteorological extremes (e.g., floods and

droughts).Furthermore, the relative influences of climate change and agricultural

activities vary significantly across different environmental issues. Climate change
dominates changes in runoff (Zeng et al., 2024). ecosystem services (Jia et al., 2024),
and vegetation dynamics (Hu et al., 2025). In contrast, land use changes exert greater

impacts than climate change on terrestrial productivity (He et al., 2025), carbon use

efficiency (Chen et al., 2024b), and soil variables (Ding et al., 2024). However, the

relative contributions of climate change and land use to water supply-demand balance,

as well as how their interactions shape the spatial patterns and temporal evolution of

supply-demand risks, remain poorly understood. Existing studies on water supply and

demand have predominantly focused on unilateral impacts of either land use (Deng et
al., 2024; Wen et al., 2025) or climate change (Gharib et al., 2023; Li et al., 2024).

Simultaneously considering the effects of both climate and land use changes on water

supply-demand balance is crucial and necessary (Liu et al., 2022; Guo et al., 2023).

Therefore, investigating the response mechanisms of water supply-demand balance and

risks under the combined effects of climate change and agricultural activities represents

a critical scientific question that urgently needs to be addressed.Water—resource
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Model prediction serves as a powerful tool for analyzing land use changes, water

resource evolution, and water supply-demand dynamics. The Patch-generating Land

Use Simulation (PLUS) model, which integrates spatial, empirical, and statistical

approaches, enables accurate analysis of drivers behind land use changes and patch

evolution (Liang et al., 2021). Studies demonstrate that PLUS outperforms many other

models in simulation precision, more realistically capturing the spatial characteristics

of land use changes (Gao et al., 2022). The InVEST model excels in allocating water

resources and evaluating water conservation functions at the watershed scale, offering

advantages such as minimal data requirements and strong spatial representation

capabilities. Its water yield module has been widely applied and validated for water
8
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supply assessments across diverse global basins (Chen et al., 2024a; Ma et al., 2024).

The coupled PLUS-InVEST framework has been extensively utilized in fields such as

carbon storage simulation, habitat quality assessment, and optimization of ecosystem

service spatial patterns (Zhang et al., 2024; Huang et al., 2024; Wang et al., 2024b).
However, its application to deeply explore regional water supply-demand dynamics

under climate change and irrigation agriculture remains limited. Fhe-impaets-of elimate

(BETHR: PhEe 16

Based on this, our study focuses on a typical watershed in the arid region of

Northwest China, aiming to investigate water supply-demand balance under the
9
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influence of climate change and human activities, and to identify the primary factors

driving water supply-demand risks. The specific objectives of this research are: i) To

determine land change trends under six development scenarios (NIS, FSS, EDS, WPS,

EPS, and BES) using the PLUS model, and to identify high-contribution factors driving

land changes: ii) To clarify the dynamics of water supply and demand under 24 land-

climate combination scenarios (incorporating four climate change scenarios and six

land use change scenarios), and to analyze the key drivers behind these changes; iii) To

quantify water supply-demand risks under these land-climate combination patterns and

identify the main factors influencing these risks. By coupling multi-scenario analyses

of climate and land use changes, this study systematically evaluates their impacts on

water supply-demand patterns and associated risks in a typical arid basin, providing

actionable recommendations for optimizing water-land resource allocation and

promoting agro-ecological sustainable development in the region.Medel-prediction
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2 Datasets and methods

2.1 Study Area

The Tailan River originates from the southern foothills of Tomur Peak in the

(BETHR: FHmE BE 1

Tianshan Mountains and is primarily recharged by alpine snow and ice melt, with a

multi-year average runoff of 7.766x10% m?®. The Tailan River Basin (TRB) (Fig. 1) is a

typical inland river basin in the arid region of northwestern China, covering a total area

of 4,218 km?. The basin features diverse landforms including gravel Gobi, alluvial

plains, and fine soil plains, and is characterized by a continental arid climate of the

northern temperate zone with intense solar radiation, high evaporation rates, an average

annual precipitation of only 177.7 mm, and evaporation reaching 2,912 mm. The mean

annual temperature is 8.6°C, with an average wind speed of 1.25 m/s (Fig. S1). Located

in_southern Xinjiang, TRB's climatic and hydrological characteristics are highly

representative of arid regions both in China and globally. The process of water resources

formation in its high mountain areas and consumption in the oasis-desert zones reflects

the universal water cycle and utilization patterns of inland river basins in arid regions.
TRB has a relatively concentrated population and developed oasis agriculture, forming

a diversified agricultural production structure dominated by cotton and food crops,

alongside equally important forestry and fruit industries, making it a typical

representative of oasis economic systems in arid regions. As an important regional

producer of grain, cotton, oil, and fruits, TRB yields high-quality rice and cotton, as

well as abundant walnuts, apples, red dates, and fragrant pears. Its water and land

resource utilization patterns and oasis-desert ecosystem structure provide valuable
12
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references for other arid river basins. Therefore, although TRB is a single basin, its

physiographic conditions, climatic and hydrological characteristics, ecological

structure, and human activity patterns all reflect the universal attributes of inland river

basins in arid regions, possessing both typicality and representativeness for regional

pattern studies.
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Fig. 1. Overview of the Tailan River Basin (TRB): (a) Schematic map showing the location
of TRB in China; (b) Actual landscape of the Tailan River; (c) Digital Elevation Model (DEM) of

TRB; (d) Precipitation and potential evapotranspiration for historical and future periods in TRB.
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2.2 Datasets

This study collected two sets of datasets to simulate land use and water supply-
demand in the TRB (Tab. 1). The first set of data was used to simulate land use change
Fab—1), involving a total of 19 factors influencing land use to establish a driving factor
library. These include 10 socio-economic factors, 3 climate factors, 3 topographic
factors, 2 soil factors, and 1 vegetation factor. The second set of data was used to
simulate water supply and demand quantities, with a total of 12 factors employed for
the simulation-(Tab-2). Additionally, land use and future climate were used as the base
data, and land use data were obtained from RESDC (https://www.resdc.cn/),

constructed using interactive visual interpretation methods based on Landsat MSS,

14
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Distance to primary road

Distance to secondary road

345  TM/ETM and Landsat 8 images (Zhuang et al., 1999), which include cultivated land,
346  forest land, grassland, water bodies, built-up land and unutilized land, with an overall
347  accuracy of more than 95% (Liu et al., 2014). Future meteorological data were obtained
348  from TPDC (https://www.tpdc.ac.cn/), and Coupled Model Intercomparison Project
349  (CMIP6) was selected as the data source. Considering the size of the study area,
350 modeling efficiency, and information richness, bilinear interpolation was employed to
351  harmonize the spatial resolution of all datasets to 30 meters within the
352  Krasovsky 1940_Albers coordinate system.
353  Tab 1. Data Factors of the Land-Climate Model in the Tailan River Basin [&ET%EQ: FHHE 46
Spatial
Model Category Data Year Source
Resolution
Average annual precipitation
2000-2020 https://www.resdc.cn/
Climatic Average annual temperature 1000 m
Drought Index 2022 https://www.plantplus.cn/
Digital Elevation Model
Terrain Slope - https://www.gscloud.cn/
30m
Slope direction
Soil type 2009
Soil https://www.fao.org/
Soil erosion 2019 1000 m
Normalized Difference
PLUS Plant 30m https://www.resdc.cn/
Vegetation Index
2010, 2015,
Population 100 m https://hub.worldpop.org
2020
Gross Domestic Product 1000 m https://www.resdc.cn/
Nighttime lights 500 m https://eogdata.mines.edu
Socio- Distance to railway
economic Distance to highway
Distance to river system 2020 30m https://www.ngce.cn/

15



Distance to township Road
Distance to residential areas
Monthly precipitation
CMIP6
Monthly temperature
(MRI- 2021-2100 30 https://www.tpdc.ac.cn/
Monthly potential
ESM2.0)
evapotranspiration
Plant available water content https://www.fao.org/
Root restriction layer depth
Soil 2009 -
Per-capita household water Yan (2020)
IhVEST
consumption
Water consumption per 10,000
Xinjiang Uygur Autonomous
¥ GDP
Region Water Resources
Socioecon  Per-hectare farmland irrigation
2000-2020 - Bulletin
omic consumption
GDP of Tailan River Basin WenSu County and the Aksu
POP of Tailan River Basin City Statistical Yearbooks.
Hhab-lA—
tyble-of-
fetorbank
e
e —
dftving—
Spatial-
L Dt e Sotree
Trecplution
ehangein—
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Rliver—
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The research approach of this study is to first predict land use change in the TRB
under six scenarios for the period 2020-2050 and screen for the high-contribution
drivers of land change in the TRB. subsequently predict the change processes of water
supply and demand quantities in the TRB under 24 land-climate combination patterns
for 2020-2050, and analyze the key drivers of these water supply-demand changes.
finally quantify water supply-demand risks under the land-climate combination patterns,
identify the main factors influencing these water supply-demand risks, and propose
management and policy recommendations aligned with regional development. The

framework and workflow of this research approach are illustrated in Fig. 2.

18
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Fig. 2. Framework and Workflow for Multi-Scenario Water Supply-Demand Risk Assessment

Eig2-Framewoscand-Workflowfor Multi-S o-Water Supply-Demand RiskAssessment
2.3.1 Land-Climate Model Setting

To explore the diverse possibilities for TRB's development, this study integrated
the "Aksu Prefecture National Economic and Social Development 14th Five-Year Plan
and Long-Range Objectives Through the Year 2035", the "Aksu Prefecture National
Economic and Social Development Statistical Bulletin (2020-2024)", the "Aksu
Prefecture Territorial Spatial Plan (2021-2035)", the "Xinjiang Uygur Autonomous

Region Territorial Spatial Plan (2021-2035)", and previous research findings (Kulaixi

20
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et al., 2023; Song et al., 2025) to establish six land development scenarios.

Natural Increase Scenario (NIS): Based on the land evolution process in the TRB
from 2000 to 2020, this scenario maintains the current land transition processes, adds
no new policy influences, and imposes no restrictions on the transfer probabilities
between land use types. It serves as a baseline and reference for the other scenarios. It
also functions as a control for observing transitions in the other restricted scenarios.

Food Security Scenario (FSS): Based on the characteristics of the TRB region, this
scenario emphasizes food security and enhances agricultural productivity. It reduces
(by 5%) the transfer probability of cultivated land to other land use types while
increasing (by 10%) the transfer probability from other land use types to cultivated land.

Economic Development Scenario (EDS): Driven by accelerating urbanization and
economic development needs, this scenario enhances economic construction and
fundamental urban capacity. It increases (by 20%) the transfer probability from
cultivated land, forest land, grassland, and unused land to built-up land, keeps the
transfer probability from water bodies to built-up land unchanged, and simultaneously
protects the TRB's economic infrastructure by reducing (by 30%) the probability of
built-up land converting to other land use types except cultivated land.

Water Protection Scenario (WPS): Addressing water scarcity and the need for
aquatic ecological balance, this scenario prioritizes safeguarding ecological functions
such as water resource protection and water conservation from infringement. It
prohibits the encroachment of existing water body areas by other land use types and
reduces (by 30%) the transfer probability from other land types to cultivated land.

Ecological Protection Scenario (EPS): Given the ecological fragility and
sensitivity of the TRB, this scenario aims to enhance the resilience of its eco-
environment. It restricts (by 30%) the transfer probability from other land use types to
built-up land and increases (by 20%) the transfer probability from built-up land to forest
land, grassland, water bodies, and unused land.

Balanced Economy and Ecology Scenario (BES): Responding to the dual demands
of economic development and ecological governance in the TRB;-. this-This scenario

seeks parallel development of urbanization and ecological conservation. It reduces (by
21
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20%) the transfer probability from grassland and water bodies to built-up land, and
reduces (by 10%) the transfer probability from cultivated land and forest land to built-
up land. Building upon this, it reduces (by 20%) the transfer probability from built-up
land to forest land, and reduces (by 10%) the transfer probability from built-up land to
water bodies, grassland, and unused land.

In response to the increasingly severe climate change, combining historical rainfall
and potential evapotranspiration trends in the TRB (Fig. 1). this scenarios with Shared
Socio-economic Pathways (SSP) and Representative Concentration Pathways (RCP)
under CMIP6 were selected. While SSP describes possible future socio-economic
developments, RCP depicts future greenhouse gas concentration and radiative forcing
scenarios (O’Nill et al., 2016, 2017). Here, the typical SSP-RCP scenarios from the
second-generation climate model (MRI-ESM2.0) as developed by the Meteorological
Research Institute (MRI) of Japan were used. This includes: i) land, to compare current
and future climate change; ii) SSP119, the lowest radiative forcing scenario with
radiative forcing of ~1.9 W/m? by 2100; iii) SSP245, a medium radiative forcing
scenario that stabilizes at =4.5 W/m? by 2100; iv) SSP585, a high forcing scenario with
emissions rising to 8.5 W/m? by 2100.

2.3.2 Land Use Projections
This study employed the PLUS model to predict land use evolution trends in the
TRB. The PLUS model consists of the Land Expansion Analysis Strategy (LEAS) and
the CA based on multi-type random patch seeds (CARS) (Liang et al., 2021). The
LEAS module utilizes the random forest algorithm to explore the relationships
between multiple driving factors and different land types, thereby determining the
development potential for each land use type (Shi et al., 2023). The CARS module
simulates patches of different land types by integrating a transition matrix and
neighborhood weights of land use types to achieve the prediction outcome. In this

study, the sampling rate of the random forest was adjusted to 0.2 and the number of

decision trees was set to 60 to adapt to the geographical environment of the TRB._—

(BT HR: PHHAE BEXHE(RGB(051,204)




437 We selected the Figure of Merit (FOM), Overall Accuracy (OA), and Kappa index+ — { ##&=e9: J47554)

438  (Liu, et al., 2017) to measure the accuracy of the simulations. To enhance the
439  applicability and precision of the PLUS model, the collected 19 driving factors were
440  used as a 'factor bank'. Under consistent other simulation parameters, factors with lower
441  contribution capabilities were systematically removed, and land use patterns for both
442 2015 and 2020 were simulated. Driving factors were screened based on the random

443  forest algorithm within the LEAS module and the evaluation metrics. When the number

444 of driving factors was reduced to 13, the simulation achieved the highest accuracy (Tab. (BBTHX: FHHE &R 1

445  3S1) and exhibited strong consistency (Fig. S23). Consequently, this study adopted (BBTHRX: PHHE B5E 1

446 these 13 driving factors for subsequent simulations.
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2.3.3 Water Supply and Demand Forecasting <

(1) Water Supply Forecasting

This study utilized the water yield module of the InVEST model to predict changes
in water yield within the TRB (Tailan River Basin). The Budyko framework (Budyko,
et al., 1974) was applied to determine the difference between precipitation and actual
evapotranspiration for each grid cell, which was then used to calculate water yield
(Chen, et al., 2024a). The calculation formula is as follows:

Yo =175, )P M

where Y is the annual water yield of grid cell x; AET() is the actual-
evapotranspiration in grid cell x; and P is the annual precipitation in grid cell x.

Evapotranspiration of vegetation under the various land use types was calculated (i.e.,

@) after Zhang et al. (2004) as follows:
)

Yo

AET, AET, PET, ,\“
@ _ gy (x)_[“_( (x)) ] @

P Py Py
where PET(x) is the potential evapotranspiration (mm) of grid cell x, and ® is an-
empirical value related to natural climate and soil properties. The term w(x) is

calculated after Donohue (2012) as:

AWC
w(x) =Z—"% 4125 3)

Py
AWC(yy = min(MaxSoilDepthy), RootDepth ) X PAWC(, )

where Z is a seasonal constant of the water yield model, representings
hydrogeological characteristics such as regional precipitation distribution. Based on
"the Wensu County Water Resources Development Plan for the 14th Five-Year Plan
Period" and "the Comprehensive Report on the Tailan River Basin Planning", the
surface water resources volume in the plain area was determined to be 65 x 10° m?.

Through manual optimization, it was found that when the model parameter Z = 7.5, the
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476  discrepancy between the simulated and observed values was minimized (Fig. 4S3).—

—e—TRB
30 1

Difference/10® i’
irs

477
478

479

480 AWCy) is the effective water content of grid cell x; PAWCx is the effective water+ (WA B Eh%HE 2 7H

481  content of vegetation in grid cell x; MaxSoilDepth) is the maximum soil depth in grid
482  cell x; and RootDepth(y) is the root depth in grid cell x. The term PAWC(x) is as follows
483  (Zhou et al., 2005):

484 PAWC ) = 54.509 — 0.132SAND ) — 0.003(SAND )" — 0.055SILT,,

485 ~ 0.006(SILT(xy)” — 0.738CLAY,y) + 0.007(CLAY )"

486 — 2.6990My) + 0.501(0My))” (5)

487 where SAND(x), SILT (v), CLAY ), and OMx) respectively stand for sand, silt, clay,- (Wit sk BB 2 7

488  and organic matter contents of grid cell x.

489 (2) Water Demand Forecasting

490 As indicated by "the Wensu County Statistical Bulletin on National Economic and
491  Social Development" and "the Aksu Statistical Bulletin on National Economic and
492  Social Development", the water use structure in the TRB (Tailan River Basin) is well-
493  defined, primarily sourced from agricultural irrigation, residential consumption, and
494  economic development activities. Therefore, this study conducted separate projections

495  for agricultural water demand, domestic water demand, and economic water demand
25



496  within the TRB. In order to account for the impact of climate change on the average
497  crop water requirement in the TRB, and based on the findings of Li et al. (2020), which
498  indicate that a temperature increase of 2 °C leads to an increase in the average crop
499  water requirement of 19 mm, the formula for calculating irrigation water demand per

500 hectare was derived as follows:

501 Acwd (g py = 9.5 X (T, — Ty) (6)
502 n(a'b) = do + ACWd(a'b) (7)
503 where Acwd «,b, represents the change in average crop water requirement for grid

504  cell binyear a, T1 denotes the air temperature for a grid cell during the baseline period,
505  and T2 denotes the air temperature for the same grid cell during the change period. n¢,)
506 is the irrigation water demand per hectare for grid cell 4 in year a under climate change
507  impacts, and do is the irrigation water demand per hectare during the baseline period.
508  Therefore, the calculation formulas for agricultural water demand, domestic water

509 demand, and economic water demand are as follows:

P(ab
510 PODp) = on @) __x pop, ®
Yb=1DP(ab)
9 (a,b)
511 9aApapy = o X GDP, 9
@b Yh=1 Y(ab) “ &)
512 WD (ap)y = POPap) X Liapy T 9AP(ap) X Ma(ap) T 9T @b) X Nab) (10)
‘513 where p(ab) and gb) are respectively the initial population and economic status< [%’I‘ﬁiﬁﬂ’\]: ik BITHEE 2 FF

514  of grid cell b in year a; POPa and GDPa are respectively the population and GDP in year
515  a; pop(ab) and gdp(apb) respectively the calibrated population and GDP of grid cell 4 in
|516 year a; and agr(ab) is the cultivated land area of grid cell b in year a. the-The terms la,
517  ma, and na respectively represent the per capita water use, water use per 10,000 Yuan
518  of GDP, and irrigation water use per hectare of farmland in year a. To exclude recharge
519  from the mountain in the study area, the amount of surface water resources in the
520  mountains was equally dispersed in a raster. The population and GDP for 2030-2050
521  were determined using linear regression method. To exclude the water contribution
522  from the upper reaches of the Tailan River to this study, the multi-year average runoff
523  from the upper reaches was evenly allocated to each grid cell to reduce its influence on

524  water demand calculations. Additionally, this study employed linear regression to
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project the population and GDP for the period 2030-2050, which was used to support
the prediction of the temporal change in water demand within the TRB from 2030 to
2050.
2.3.4 Risk Framing of Water Supply and Demand
The water supply-demand risk framework serves as a crucial tool for assessing
regional water supply-demand risks. Moran_—(2017-—) classified the computational
results generated within this framework into seven categories (Tab. 42), enabling the
assessment of regional water risk levels by calculating the water supply-demand
relationship and facilitating the quantification of regional water supply-demand risk
grades. This framework comprises four indicators: the water supply-demand ratio, the
trend in the water supply-demand ratio, the water supply trend, and the water demand
trend. The calculation procedures for these indicators are as follows:
1) The water supply and demand ratio that expresses spatial heterogeneity of water
supply and demand contradictions:
Ry = WY@y / WD, ©)
where R(x) is the water supply-demand ratio of grid cell x; and WY x) and WD(x)
are respectively the water supply and demand of grid cell x.
2) The trend of water supply-demand ratio expresses the relative changes in water
supply and demand:
Ry =R, — R; (10)
where Re is the difference between water supply-demand ratios in years i and j; Ri
and R;j are respectively the water supply-demand ratios in years 7 and ;.
3) The trend of water supply and demand volume expresses the absolute changes
in water supply and demand volume:
Ser = WY, — WY 1D
Dy = WD; — WD; (12)
where St and Dy are respectively the differences in water supply and demand+
volumes; WYi and WYj respectively the water supply volumes in years i and j; WDi
and WD;j respectively the water demand volumes in years i and ;.

Table 42. Assessment of water supply and demand risk level in the study area
27
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Water Water trend of Trend of water

Grad
r; ¢ Risk grade supply—demand ratio  supply—demand ratio Supply (Si) and
code
(R) (Re) demand (Dy)
Extinct/
I R=0 Ry <0 —
Dormant
Critically
11 0<R<1 Ry <0 S¢<0,Dx>0
endangered
Str < 0, Dtr <0or
I Endangered 0<R<1 Re=0
Se>=0,Dy =0
Sir < 0, Dy <0 or
v Dangerous 0<R<1 Ry>0
Se>0,D¢ >0
v Undersupplied 0<R<1 Ry <0 St >0,Dr <0
VI Vulnerable R>1 Ry>0 —
VII Safe R>1 Ry>0 —
555 3 Results
556 3.1 Spatial heterogeneity of land use to multi scenario
557 The evolution of land use in the TRB from 2020 to 2050 under six scenarios was
558  simulated using the PLUS model. Overall, the land use structure remained relatively
559  stable across the multiple scenarios, with the most significant changes primarily
560 manifested in cultivated land (33%) and grassland (29%) areas (Fig. 53). Notably,
561  grassland area generally exhibited significant degradation (with an average reduction
562  of 535.36 km?), whereas cultivated land area expanded substantially (The contribution
563  of population is the highest (0.22) (Fig. 4)) due to factors such as policy incentives and
564  population growth (with an average increase of 524.87 km?). Under the NIS, the
565 intensity of cultivated land reclamation continuously increased, with its proportion
566  jumping from 33% (2020) to 46% (2050). A significant portion of this expansion
567  stemmed from the reclamation of grassland. Simultaneously, the encroachment of built-
568  up land also constituted a major component of grassland conversion. Compared to NIS,
569  the FSS resulted in a greater expansion of cultivated land (545.28 km?). This scenario
570  emphasizes intensive land use and promotes sustainable cultivated land development
571  through the consolidation of fragmented farmland. The cultivated land expansion under
572  FSS primarily originated from the conversion of grassland. Under the EDS, the area of
573  built-up land surged from 62.88 km? (2020) to 113.05 km? (2050), significantly
574  exceeding that in other scenarios. Urban—expansion—primarily—eneroached—upon
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575  eultivatedland-and-srassland(in-et-al2045) Relative to NIS, the WPS mitigated

576  grassland reclamation and degradation, increased water conservation and ecological
577 land, and augmented grassland area through soil conservation measures and the
578  development of wasteland. Building upon WPS, the EPS further restricted human
579  activities, resulting in the smallest built-up land area (104.08 km?). While controlling
580 the growth rate of cultivated land area, it significantly increased the area of ecological
581 land, such as grassland and water bodies, thereby further restoring the fragile
582  ecosystems in the arid region. As a key measure to balance ecology and economy in the
583  arid oasis region, the BES maintained a relatively high cultivated land area (531.20 km?)
584  to safeguard the agricultural economic backbone. Simultaneously, it ensured that
585  ecological land, such as woodland and water bodies, remained free from encroachment.
586  Furthermore, it involved further development of unused land (wasteland and saline-
587  alkali land), converting it into grassland (31.08 km?) with ecological conservation

588  functions.

1530.09 1539.65 | 154528 1556.83 = 152699 154427

s L L
'WPS scenarios EPS scenarios BES scenarios

S:Start E:End CU:Cultivated land FO:Forest land GR:Grassland WA:Water bodies BU:Built-up land UN:Unused land

o scu B sFo [USGR I swa I sBU I suN

N ecu N £Fo EGR EWA 00 EBU N EuN
589 Fig. 5:3 Transfer process under six land-use scenarios in the Tailan River Basin, 2020-2050
590 (Scenario labels indicate cultivated land expansion area (blue; in km?) and grassland degradation
591 area (green; in km?)).
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593  Different land types exhibit significantly varying degrees of responsiveness to driving
594  factors due to differences in their spatial demand and evolutionary trajectories (Fig. 64).
595  Specifically, population plays a core driving role in the evolution of multiple land types:

596 it exhibits the highest contribution rates to cultivated land (0.2022), forest land (0.19),

597  grassland (0.17), built-up land (0.18), and unutilized land (0.43). Other key driving
598  factors also show specific influences: the Nighttime Light Index has relatively high
599  contributions to cultivated land (0.12) and built-up land (0.29), the Aridity Index to
600  forest land (0.11) and grassland (0.09), and the Digital Elevation Model (DEM) also

601  contributes significantly to water bodies (0.38).

River System - - Temperature
Temperature -
prnli- — Residential Areas
Factor eontribution value _ Seil Type Factor contribution value
7 Sail Erosion - ~ Township Road 1

Residential Areas -
Tawnship Road - - Secondary Road
Secondary road -
Primary road -
Precipitation -
way -

~ Primary Road

- Precipitation

~ Railway
0 Population - 0.08
Nighttime lights -

Normalized Difference Vegetation Index -

pulation

- Nighttime Lights

Factor feature screening

Highway - - Normalized Difference Vegetation Index
Gross Domestic Product -
Drought Index - ~ Gross Domestic Product

Digital Elevation Model | Drosght Index

Digital Elevation Model Slope -

Digital Elevation Model Aspect - - Digital Elevation Model
e L [ e

o o g e o \, a0 e ged o
c\;\\'\‘-“ ‘:\:“",‘b‘“i &‘Zeg‘fwo‘\;@w (.,\“‘“\& “'ﬁ oy \‘z(::: ‘v@‘
602 Fig. 64. Driver banks (left) and screened high contributors (right
.l g g

603 3.2 Multi-Scenario Water Supply-Demand Dynamics

604 (1) Variation in water supply

‘605 Based on the InVEST model, the variation trends of water supply under different- [ﬁ”]‘ﬁiﬁﬂ’] Rt EITHRE 2 T
606  climate change and land use scenarios were investigated. The spatial distribution of

607  water resources supply remains consistent across scenarios, with a stable water supply
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pattern (Fig. 7a5a). This pattern demonstrates significantly higher water supply in the
northern region than elsewhere, which is closely linked to the spatial distribution of
precipitation in the TRB. During 2020-2050, water supply trends under different
scenarios show distinct variations: both Land and S245 exhibit an upward trend, with
S245 increasing at a significantly faster rate than land. In contrast, the water yield
capacity of S119 and S585 gradually declines over time, though their decreasing trends
differ substantially (Tab. 5S2). Furthermore, the contribution of water yield capacity
from different land types to water supply also varies, with grassland providing
significantly higher water supply than cultivated land_(Fig. 5a). Using the scenario
maintaining current rainfall and potential evapotranspiration (Land) as the baseline,
TRB's water supply fluctuates under different land use scenarios, ranging from 64.78 x
10° m?® to 65.7 x 10° m*. Under different climate scenarios, TRB's water supply shows
pronounced variations, with a fluctuation range of 25.33 x 10° m? to 162.2 x 10° m?
when referenced against the NIS baseline scenario. The highest water supply in TRB
(162.8 x 10° m®) occurs under the S245-FSS, while the lowest (25.23 x 10° m?) is
observed under the S119-EPS._
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‘630 (2) Variation in water demand « (st it BHREE 0 FH

631 Compared with water supply, the spatial distribution and pattern of water demand
|632 also remain relatively consistent and stable across different scenarios (Fig. #b5b) This
633  pattern exhibits stronger water demand capacity in the southwestern and central-eastern
634  regions but weaker capacity in the northern and southeastern areas, which is closely
635  associated with the spatial distribution of land use and population aggregation density
636 in the TRB_(Fig. 5b). During 2020-2050, water demand under all scenarios shows a
637  continuous upward trend, though with significant variations in the rate of increase.
638  Furthermore, the contribution of water demand capacity from different land types varies
639  markedly, with cultivated land and built-up land demonstrating stronger demand
640  capacity, while unutilized land shows the weakest capacity. Using the scenario
641  maintaining current rainfall and temperature (Land) as the baseline;—. TRB's water
642  demand exhibits significant variations under different land use scenarios (Tab. 5S2),
643  ranging from 1575 x 10° m? to 4935 x 105 m®. Under different climate scenarios, TRB's
644  water demand displays similar upward trends over time, with a fluctuation range of
645 1887 x 10°m?to 5316 x 10° m® relative to the NIS baseline scenario. The highest water
646  demand (5390 x 10° m®) occurs under the S585-FSS scenario, whereas the lowest (1575
647 % 10°m?)is observed in the Land-WPS scenario. Agricultural water use has consistently
648  constituted the primary consumption component in the TRB. Across all land and
|649 climate change scenarios, irrigation accounts for over 70% of the total share (Fig. 8a0a,
650  b). Although the proportion of irrigation water gradually decreases over time, its total
|651 volume continues to increase (Fig. 8e6c). Nevertheless, unilateral studies of water
652  supply or demand alone cannot directly reflect water resource allocation capacity. The
653  impacts arising from supply-demand imbalances remain unclear and warrant further
654  investigation. To better elucidate the impacts of water supply-demand dynamics on
655  TRB's water resources, in-depth analysis of regional water security risks is required,
656  which will facilitate the formulation of tailored water management and conservation

657  strategies.
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JFig. 86. Dynamics of total water demand and agricultural irrigation demand with

proportional distribution across latitudinal gradients in the Tailan River Basin, 2030-2050(a)

Different land change scenarios (Natural Increase Scenario (NIS)/ Food Security Scenario (FSS)/

Economic Development Scenario (EDS)/ Water Protection Scenario (WPS)/ Ecological Protection

Scenario (EPS)/ Balanced Economy and Ecology Scenario (BES)); (b) Different climate change

scenarios_(Land/S119/S245/S585); (c) Temporal evolution_(percentages in the figure represent the

proportion of irrigation water to the total water demand),

3.3 Multi-Scenario Water Supply-Demand Risks and Attribution

To assess water supply-demand risks in the TRB region, an evaluation framework
was established using four indicators: water supply-demand ratio, trend of water
supply-demand ratio, water supply trend, and water demand trend. Spatial patterns of

water supply-demand risk in the TRB exhibit heterogeneity across scenarios (Fig. 97).

Although risk classification levels vary under different climate scenarios, no grid cell

in the TRB escapes hazardous (Level IV) risk (Tab. 3-2 indicates a 7-level classification
system). This is closely linked to continuously increasing water demand in the TRB.
Using NIS as the baseline, the scenario maintaining current rainfall and potential
evapotranspiration (Land) shows the most severe water scarcity: Level II risk accounts
for 51.31%, while Level IV risk constitutes merely 0.85%. Under the other three climate
scenarios, water supply-demand risks are alleviated, with Level IV risk proportions
being 29.24% (S119), 53.60% (S245), and 49.34% (S585) respectively (Fig. 108). The

S245-EPS scenario achieves maximum risk mitigation in the TRB, as its rainfall levels
33
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682

683

684

685

686

687

increase steadily per decade among the three climate scenarios (Fig. 1d), thereby
alleviating regional water stress. While the TRB's harsh current climate exacerbates
water risks, future climatic changes may moderately alleviate these risks compared to
present conditions. In summary, by 2050 the entire TRB will face water supply-demand
crises, with at least 46% of the area subjected to endangered (Level III) risk, including

no less than 10% of land confronting critical endangered (Level II).
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689 JFig. 97, Spatial evolution of water supply-demand risk classification levels in the Tailan River [iﬁi?ﬁi: FhRHE: EE 1

(BETHR: PHme: &6 1

690 Basin (TRB) under 24 climate-land combination scenarios (2020-2050)

691 (Land change scenarios (Natural Increase Scenario (NIS)/ Food Security Scenario (FSS)/ [ RETHRI: FHAEE FE 1

692 Economic Development Scenario (EDS)/ Water Protection Scenario (WPS)/ Ecological Protection

693 Scenario (EPS)/ Balanced Economy and Ecology Scenario (BES)): Climate change scenarios [i&ﬁ?ﬁﬁ: FhRHE EE 1

694 (Land/S119/S245/8585); ¢Color gradient indicates decreasing risk from Level I (highest) to Level

695 VI (lowest))
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Fig. 108. Temporal variation in proportional distribution of risk classification levels across
the Tailan River Basin (TRB) under 24 climate-land combination scenarios (2020-2050)
(decreasing risk from I to VII)
4 Discussion
4.1 Multi-Scenario Land Use Spatial Patterns

Land use changes alter regional hydrological processes and water resource

(BBTHX: FHHE g6

patterns—such as infiltration, groundwater recharge, baseflow, and runoff—thereby

affecting regional water supply and demand dynamics (Lin et al., 2007). During 2020—

2050, land type transitions in the TRB will predominantly involve cultivated land and

rassland, which will profoundly influence water supply-demand dynamics (Fig. 3). In

this study, the Food Security Scenario (FSS) prioritizes cohesive cultivated land

expansion with high intensification and contiguity (1,937.58 km?). Although rapid

cultivated land growth directly boosts regional agricultural economies, it significantly

increases _agricultural irrigation water demands (Sharofiddinov et al., 2024)

intensifying pressure on water supply-demand balance. Notably, under the Economic

Development Scenario (EDS). further intensification of human activities exacerbates

this pressure. Rapid urbanization not only elevates domestic and industrial water

demands (He et al., 2021) but may also degrade water quality and availability by

altering surface runoff and amplifying non-point source pollution (Strokal et al., 2021).

In contrast, the Ecological Protection Scenario (EPS) reinforces ecological barriers by

restraining agricultural expansion and limiting grassland conversion, thereby reducing
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water consumption. The Water Protection Scenario (WPS) mitigates land fragmentation,

potentially preserving more natural hydrological processes and water conservation

functions. Together, these measures slow ecological degradation and indirectly support

long-term water sustainability. These results demonstrate that the rate of natural

resource consumption by human activities (particularly agricultural practices) far

exceeds the rate of natural recovery, and this antagonistic relationship weakens as

human interventions intensify. Consequently, the Balanced Economic and Ecological

Development Scenario (BES) seeks to reconcile economic growth with ecological

conservation (especially water resources) by moderately controlling cultivated land and

construction land expansion (reducing encroachment on grassland to 689.17 km?),

making it a prioritized land use model for the future. Different land use scenarios
highlight the critical leverage of land use policies in water resource management. The

significant spatial heterogeneity across the region calls for targeted strategies to

alleviate future pressures from human activities (especially agriculture) on water

resource systems.Fhe-seleetion-ofandusepatterns-determines—the-spatial-layout-and
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Table S1, indicates that using more driving factors does not necessarily improve

(BETHR: PHhHe 18

model performance, and the selection of these factors is a critical source of uncertainty

in the results. Although the Random Forest algorithm effectively addresses

multicollinearity among factors, complex interactions between driving factors can still

introduce noise and increase the predictive uncertainty of simulations (Liang et al.,

2021). Specifically, this study achieved optimal simulation accuracy with 13 driving

factors. Adding factors with low contributions beyond this number distorted the

direction and quantity of simulations, thereby reducing model accuracy. Conversely,

when the number of factors was reduced to 7, simulation performance declined

significantly. This high sensitivity suggests that the PLUS model is vulnerable to input

uncertainty; the absence of key driving factors directly increases bias in the accuracy

of simulations. The significant differences in factor contributions (Fig. 4) further

highlight uncertainties arising from human activities. The intensity of human activities

and population distribution density profoundly influence land use change processes.

Changes in population size trigger cascading effects on land resources, agricultural
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ecosystems, and water resources by altering wealth levels and food calorie demands

(Beltran et al., 2020; Harifidy et al., 2024). Land use change is a multidirectional

process, and quantifying human activities (e.g., economic dynamics and population

migration) remains challenging. Climate variability further exacerbates simulation

uncertainties. Therefore, it is essential to employ multi-scenario simulations to provide

decision-makers with a range of possible future land change pathways, thereby

reducing policy risks ResutsfromTable 3reveal-that-tnereasingthe number-of-driving

4.2 Land Use and Climate Change Impacts on Water Supply-Demand Dynamics
(1) Impacts of Climate Change and Land Use on Water Supply
Water supply in the TRB is jointly constrained by human activities and climate
change. Under the same climate change conditions, there are differences in water

supply between different land use scenarios (Tab. S2), and these differences are caused

(BBTHX: FHHE &R 1

by different land use structures (Jia et al., 2022). Analysis of variance across the 24

(RBTHR: FHEE 81

climate-land combination scenarios revealed that their variability range was

significantly lower than that of different climate change scenarios (Tab. S2), indicatin

that climate change (precipitation) exerts a more pronounced influence on water supply

40
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in the TRB than human activities (land use) (Luo et al., 2025). —Differentgeographical

aetivities{{and-use—chanse)buo—et-al—2025)Because precipitation change is the

decisive factor driving interannual water supply variation (Zhang et al., 2025b), water

yield capacity is highly sensitive to rainfall levels (Shirmohammadi et al., 2020).
Significantly similar trends between rainfall and water supply have been found in 17
typical Chinese basins (Guo et al., 2023), and this has also been validated in multiple
watersheds in Argentina (Nuiez et al., 2024), the Gulf of Mexico Basin (Ouyang et al.,

2025), and the United States (Duarte et al., 2024). Furthermore, precipitation exerts a

(BETHR: FHmE: &6 1

profound influence on the spatial distribution of water resources (Zhang et al., 2011).

Rainfall determines the uneven distribution of water resources across different regions,

and this influence exhibits distinct characteristics in arid versus humid areas (Zhang et

al., 2014; Feng et al., 2025). In arid regions, water supply demonstrates a significant

correlation with rainfall, and precipitation can explain a substantial portion of the

variability in water availability (Adem et al., 2024). Notably, although water supply in

humid areas is more sensitive to rainfall variations than in arid regions, the extreme

scarcity of water resources in arid areas means that even minor changes in precipitation

can lead to significant discrepancies in water supply-demand relationships.

Consequently, arid regions face higher risks and vulnerability regarding water scarcity

and thus require greater attention (Taylor et al., 2019).tn-eurstudy—preeipitation-and

(2) Impacts of Climate Change and Land Use on Water Demand

Water demand in the TRB is also constrained by both human activities and climate
4
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change_(Tab. S2). Under the same land use scenario, water demand varies across
different climate scenarios, with this variation driven by temperature-induced changes

in irrigation water use (Li et al., 2020). Analysis of variance across the 24 climate-land

(BB TH=R: FHMG: 52X HERCB(0,51,204)

combination scenarios revealed that the impact of climate change on water demand was

significantly lower than that of land use changes(Tab. S2), indicating that human

activities (land use) exert a more substantial influence on water demand in the TRB

than climate change. Hewever—ehmate—change—impaets—on—water—demand—are

elimate-change-It is clear that irrigation water consumption accounts for the majority

of TRB water consumption (Fig. 86). Changes in TRB's irrigation water are closely

(RETHR: FHHE #E 1

(BETHR: hAe B 1

(BETHR: ThAe B6 1

linked to (1) conversions between cultivated land and other land types, and (2)
adjustments in planting patterns within cultivated areas. Studies demonstrate that
volatile land allocation significantly affects agricultural irrigation, particularly through
land type conversions (Cao et al., 2024). Simultaneously, land fragmentation levels
influence water user numbers, while changes in irrigated area and frequency intensify
irrigation water pressure (Sharofiddinov et al., 2024). This indicates that expanding
cultivated land areas drive increased irrigation water usage (Liu et al., 2025a), aligning
with our findings. Additionally, planting area and planting structure significantly
impact irrigation water use (Chen et al., 2020). Sun et al. (2024) confined irrigation
water within manageable levels while boosting yield and carbon sequestration by
adjusting rice, maize, and soybean cultivation areas; Other research reduced irrigation
water by 34.48% while decreasing crop greenhouse gas emissions by 10% through
planting structure optimization (Li et al., 2025a). Moreover, interactions between
irrigation technology and planting structure adjustments affect irrigation demand. Wu
et al. (2024) found that combining deficit irrigation with high-density planting reduces
irrigation water by 20% without compromising cotton yield. Furthermore, growers'
strong traditional agricultural values make produce value and labor costs more critical
concerns than irrigation water consumption (McArthur et al., 2017; Nourou et al.,

2025).For instance, widespread maize cultivation (an economic crop) in the TRB
42
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substantially increases regional irrigation water volumes (Huang et al.,
2015).Consequently, adjusting regional cropping structures within a macro-agricultural
framework is crucial for ensuring sustainable water use and safeguarding growers'
economic returns.

Currently, most studies on water supply and demand focus primarily on the

(BETHR: 7HmE BE 1

unilateral impacts of either climate or human activities (land use changes) (Wen et al.,

2025:; Bai et al., 2025; Deng et al., 2024), or emphasize recent temporal changes. For

example, Chen et al. (2024a) quantitatively evaluated the water conservation function

of the Yangtze River over the past 40 years, while Ma et al. (2023) analyzed the effects

of land use and land cover (LULC) changes on water yield (WY) in the Bosten Lake

region from 2000 to 2020.However, studies have shown that complex interactive

feedback mechanisms exist between climate change and land use, but their degrees of

influence on water resources differ (Qi et al., 2025). Changes in water supply and

demand are also affected by their combined impacts (Dey et al., 2017; Tan et al., 2025;

Tian et al., 2025). Therefore, it is essential to assess future water supply-demand

relationships under the dual influences of climate and land use changes. Based on

comprehensive calculations across 24 climate-land combination scenarios, this study

revealed a notable disparity between the change in water supply (137.47x10° m?) and

the change in water demand (3815%10° m?), indicating that human activities have a

greater impact on water resources in the TRB than climate change. This significant

imbalance between water supply and demand will have profound implications for

regional water supply-demand risks.Climate—change-and-human-aetivities-exert-non-
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4.3 Land Use and Climate Change Impacts on Water Supply-Demand Risks

By mid-century, water resource vulnerability in the TRB will be profoundly
impacted by climate change and human activities_ (Fig. 7). Global parallels exist: Lu et
al. (2024b) demonstrated under multiple land-climate scenarios that synergies between
crop production and water yield requirements increase agricultural output but
exacerbate water deficits. Chen et al. (2023a) documented significant oasis expansion
in China (1987-2017), where increased precipitation and runoff provided partial
compensation, yet climate-land changes substantially altered regional water supply.
Gaines et al. (2023) found forest cover crucial for maintaining consistent surface water

areas across climate-land cover scenarios. Based on this, the study established a water

(BEBTHR: Fhle: #E 1

(RETHR: FHHE BE 1

supply-demand risk assessment framework, confirming that water demand continues to

increase over time, primarily driven by expanding cropland leading to rising irrigation

water needs—a finding consistent with previous reports (Qi et al., 2025). Furthermore

this growing demand will exacerbate water supply-demand risks. Fhese—findings

2025)-Although agriculture water demand share of total water demand declines during

2020-2050, it remains dominant (70%) (Fig. 86). This correlates directly with Section
4.2 findings: (1) conversions between cultivated land and other land types, and (2)
adjustments in planting patterns within cultivated areas. Crucially, the arid TRB's
limited rainfall cannot meet growing irrigation demands, elevating water_supply-
demand risk (Land scenario). Compared to current rainfall, three other climate

scenarios increase precipitation (2020-2050), improving supply and moderately
44
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reducing water supply-demand risk (Fig. 97-108). Nevertheless, supply-demand gaps

(BEBTHR: Fhle: &R 1

persist at nearly two orders of magnitude, with all areas remaining in "hazardous (Level
IV) risk". Thus, human activities remain the primary driver of TRB's water supply-
demand risks. Human activities dominate multiple dimensions within these climate-
human interactions. Wang et al. (2025) identified human withdrawals as the key driver
of reduced runoff and dampened seasonal variability in the Wei River Basin. Similarly,
human exceed climate effects on soil moisture decline in China's monsoon loess critical
zone (Wang et al., 2024a). Therefore, amid increasing uncertainty, integrating multi-
method approaches within water risk frameworks to decipher land-eco-hydrological
feedbacks, quantify risks, implement preemptive water regulations, and minimize
secondary disasters to ecosystems and societies is imperative.

4.4 Limitations and recommendations for future research

Nevertheless, this study has certain limitations. (1) While land use change served

(BEBTHR: The: R 1

as the starting point of our research, and multiple driving factors were incorporated for

land change simulation, uncertainties in the direction and process of land evolution

persist—despite the use of defined transition probability ranges and multiple land use

scenarios. These uncertainties may constrain an in-depth exploration of the conversion

and evolution processes among different land classes. Although we filtered out driving

factors with low contributions, the influence of the TRB’s unique geographical

environment and ecological processes on land class conversion warrants further

investigation. Future studies could explore the impact of arid region ecology-climate-

environment on land use transition processes under the premise of quantifying national

land planning and government policy guidance. (2) This study utilized the InVEST

model to simulate water yield and employed 24 climate-land combination scenarios to

reduce uncertainty in TRB’s development. Although the biophysical table in the water

yield module was constructed based on the FAO’s Crop Evapotranspiration: Guidelines

for Computing Crop Water Requirements (https://www.fao.org/) and relevant research

(Yan et al., 2020), the evapotranspiration coefficients and plant root depth parameters

(RETHR: THHAE HE 1

relied heavily on accurate input values. The dynamic nature of crop growth and water

demand processes introduces additional uncertainty into the simulations. To better
45
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isolate the independent effects of climate, soil, and vegetation on water supply, follow-

up studies should incorporate long-term crop observation data and crop models based

on clarified regional cropping structures. This would help refine key parameters (e.g.,

evapotranspiration coefficients) and disentangle the individual contributions of climate,

soil, and vegetation to water supply, thereby reducing uncertainties in the simulation

s et el D e Dbl i s b e o

Located in an arid oasis region, water resources constitute the lifeline for human

activities and ecosystems in the TRB. However, the arid and rain-scarce climate of TRB
has led to a continuous amplification of the impact of human activities on the ecological
environment, with irrigation water demand escalating daily (Chen et al., 2023a; Zhu et
al., 2025). Concurrently, human survival necessitates improved living standards and
economic development, intensifying human-land conflicts. Based on our findings, we

recommend adopting the Balanced Economy and Ecology Scenario (BES)
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development model in the TRB, implementing diverse water-saving measures
(sprinkler irrigation, subsurface drip irrigation, brackish water irrigation) to control
water consumption (Han et al., 2022; Liang et al., 2024), thereby expanding cultivable
land reserves.
5 Conclusions

Elucidating the impacts of climate change and human activities on water supply-
demand risks is critical. We applied the PLUS model with six land change scenarios to
identify suitable land development strategies for the TRB, and coupled it with the
InVEST model under 24 climate-land scenarios to simulate dynamic changes in water
supply and demand. Based on this, a water supply-demand risk framework was
established to quantify TRB's water supply-demand risks during 2020-2050.Results
show that the Balanced Economy and Ecology Scenario (BES) land development
model promotes agricultural growth while protecting ecological barriers, adding 531.2
km? of cultivated land by 2050.However, this cultivated land expansion creates a water
demand deficit (increasing to 4.87x10% m?®), while maximum regional supply reaches
only 0.16x10% m?, disrupting water balance. Consequently, the entire TRB will face
water crises by 2050, with >46% of the area subjected to endangered (Level III) risk.
Climate change and human activities jointly drive escalating water supply-demand risks.
The root cause lies in persistent cultivated land expansion from intensive human
activities, increasing irrigation demand and intensifying supply-demand conflicts.
Findings emphasize deep integration of multi-method approaches within the risk
framework to decipher land-eco-hydrological feedbacks and consider the complex
interrelationships between climate, land, and water supply-demand. Deepening
understanding of these linkages is vital for developing effective water scarcity
mitigation strategies, providing crucial scientific support for policymakers and land
managers.
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