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Abstract

In seasonal snow-covered temperate regions, winter serves as a crucial phase for
nitrogen (N) accumulation, yet how intensified freeze-thaw cycles (FTC) influence
the fate of winter-derived N remains poorly understood. We simulated intensified FTC
regimes (increased 0, 6, and 12 cycles) in situ across two contrasting temperate
grasslands, employing dual-labeled isotopes ('"NH4!5NO3) to trace the dynamics of
winter N sources. Our results showed that soil microbes exhibited a strategic
adaptation to FTC stress characterized by C-N decoupling: despite a decline in
microbial biomass C, they maintained or even increased biomass N. Intensified FTC
did not cause ecosystem-level losses of winter N sources, primarily because the soil
and microbes functioned as a crucial N reservoir during the vulnerable early spring
period. The convergence in ecosystem-level !N retention emerged through distinct
compensatory pathways: while the meadow steppe exhibited higher N mineralization
potential, the sandy steppe achieved functionally equivalent retention through more
efficient plant >N uptake, comparable microbial >N immobilization, and similarly
constrained >N leaching. While HFTC reduced community-level plant SN
acquisition, it amplified competitive asymmetry among plant functional types:
dominant cold-adapted species (early spring phenology and deeper roots) increased
5N uptake, while subordinate species (later-active, shallow-rooted species) exhibited
reduced SN acquisition. These findings reveal that winter climate change restructures
grassland N cycling primarily through biological mechanisms, microbial resilience

and trait-mediated plant competition, rather than promoting N losses. Future climate



41

42

43

44

models must incorporate these plant-microbe-soil interactions to accurately predict

ecosystem trajectories under changing winter conditions.

Keywords: freeze-thaw cycle; grassland; N isotope; N dynamic; plant N acquisition;

snowmelt; winter
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1 Introduction

Approximately 50% of terrestrial ecosystems in the Northern Hemisphere experience
seasonal snow cover and winter soil freezing (Sommerfeld et al., 1993; IPCC, 2021).
Remarkably, soil microbes maintain metabolic activity under snowpack and
contribute to nutrient mineralization throughout winter (Larsen et al., 2012; Zhang et
al., 2011). These winter processes, including soil nitrogen (N) mineralization and
microbial N immobilization, constitute a vital nutrient reservoir that supports plant
growth across alpine grasslands, temperate grasslands, and boreal forests (Alatalo et
al., 2014; Collins et al., 2017; Edwards and Jefteries, 2010). The springtime release of
winter-derived N (mainly including NH4", NOs", and dissolved organic N) through
freeze-thaw cycles (FTC) synchronizes nutrient availability with plant demand
(Kaiser et al., 2011), particularly in N-limited ecosystems where winter N

contributions may determine growing season productivity (Schmidt and Lipson,

2004).

Climate warming has emerged as one of the most important global environmental
challenges. Evidence shows that climate warming has primarily occurred during
winter, with the rate of winter warming exceeding the annual average over the past
few decades in China (Zong and Shi, 2020). This trend is expected to intensify, with
an anticipated increase in the frequency of extreme warming events (IPCC, 2021).
Winter warming is projected to alter multiple aspects of freeze-thaw dynamics,

including the intensity, frequency, and duration of freeze-thaw cycles (FTC), as well
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as the timing of their onset in temperate regions (Gao et al., 2018; Rooney and
Possinger, 2024). Among these changes, the elongation of the FTC period, resulting
from a delayed and less stable soil freeze-up in autumn combined with an earlier
spring thaw, is a critical outcome (Henry, 2008). This elongation extends the duration
of the transitional period when soil temperatures fluctuate around 0°C, while an
increase in FTC frequency intensifies the recurrence of such fluctuations within a
given season. Together, these changes substantially increase the window and intensity
of physical and biological disturbances to ecosystem processes. Consequently, this
could affect the availability of winter N sources for plant growth. However, how
intensified FTC regime affects winter N retention remains poorly understood,

particularly its subsequent impacts on plant N uptake and ecosystem functioning.

Intensified FTC induces complex shifts in soil N dynamics by simultaneously
enhancing N mineralization while disrupting microbial immobilization and ecosystem
retention processes. Existing research has demonstrated that intensified FTC can
enhance soil N availability in cold regions (Dai et al., 2020; Nie et al., 2024; Teepe
and Ludwig, 2004). The physical disruption caused by FTC promotes the N release
from both soil organic matter and microbial biomass via cell lysis (Koponen et al.,
2006; Sawicka et al., 2010; Skogland et al., 1988). However, this FTC-induced N
pulse often occurs before plants resume active uptake, leading to substantial N losses
through leaching and gaseous emissions (Chen et al., 2021; Elrys et al., 2021; Ji et al.,

2024). While microbial mortality reduces microbial N immobilization (Gao et al.,
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2018), the surviving microbial community exhibits stimulated microbial activity that
accelerates nutrient cycling (Fitzhugh et al., 2001; Nie et al., 2024; Sharma et al.,
2006; Wang et al., 2024). Notably, a comprehensive meta-analysis by Song et al.
(2017) indicated that FTC have no significant effect on microbial biomass N (MBN)
across various ecosystems, including forest, shrubland, grassland/meadow, cropland,
tundra and wetland ecosystems, which suggests complex compensatory mechanisms

in microbial N retention.

Frequent FTC significantly impact plant-soil N dynamics through multiple pathways.
Root damage caused by FTC directly impairs plant N acquisition capacity (Campbell
et al., 2014; Song et al., 2017), while simultaneously creating temporal mismatches in
N availability. Using !N tracer, Larsen et al. (2012) demonstrated that soil microbes
initially dominate N immobilization following snowmelt, with plant functional types
exhibiting sequential N uptake patterns: evergreen dwarf shrubs are the first to take up
winter N, succeeded by deciduous dwarf shrubs and graminoids in late spring in the
alpine ecosystem. This study highlighted a temporal differentiation in the resumption
of N uptake among plant functional groups after winter. This temporal niche
partitioning is particularly pronounced in temperate regions, where shallower
snowpack and more frequent spring FTC result in distinct competitive environments
compared to alpine systems. Studies in temperate grasslands have shown that
perennial bunch grasses exhibit earlier N uptake than perennial rhizome grasses and

forbs (Ma et al., 2018, 2020), a phenological advantage that becomes more
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pronounced under winter warming conditions (Turner and Henry, 2009). These
findings highlight how FTC-mediated changes in belowground processes interact with

plant functional traits to govern winter N partitioning.

While previous studies have examined winter N cycling in high-altitude and high-
latitude regions experiencing rapid warming trends (Alatalo et al., 2014; Brooks et al.,
1996; Edwards and Jefferies, 2010), temperate grasslands, characterized by distinct
freeze-thaw regimes, have received little attention. Critically, existing research has
predominantly relied on laboratory simulations employing artificial freeze-thaw
regimes (DeLuca et al., 1992; Teepe and Ludwig, 2004), creating significant gaps
regarding the ecological impacts of natural in situ freeze-thaw cycles. Field-based
investigations are urgently needed to address two critical questions: (1) how FTC
frequency alters retention dynamics of winter N sources, and (2) whether these
changes create legacy effects on subsequent growing season productivity and plant

community composition in temperate grasslands.

Temperate grasslands cover nearly 40% of China's terrestrial ecosystems (Bardgett et
al., 2021) and are particularly vulnerable to climate change due to their prolonged
near-freezing winter conditions. To quantify how intensified FTC affect the retention
of winter N resources in this vulnerable system, we conducted an in situ "NH4*NO3
tracer experiment in two contrasting temperate grasslands. We hypothesize that: (1)

Intensified FTC would increase ecosystem-level losses of winter-derived N in
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temperate grasslands. Furthermore, the sandy steppe would experience greater N loss
than the meadow steppe due to its inferior edaphic and vegetation conditions (Table
1); and (2) intensified FTC would lead to differential utilization of winter N sources
among plant species, mediated by interspecific variations in their competitive
abilities, root system architecture, and temporal niche partitioning in growth
phenology (Hosokawa et al., 2017; Ma et al., 2018, 2020). Specifically, we expected
that species with earlier spring green-up and deeper root systems (e.g., dominant
species) would increase N utilization under intensified FTC, while subordinate
species with later phenology and shallower roots would show reduced >N uptake

(Table S1; Campbell et al., 2014; Song et al., 2017).

2 Methods

2.1 Experimental site

We conducted parallel experiments in two contrasting temperate grassland
ecosystems: a meadow steppe and a sandy steppe (Table 1; Fig. 1). Soil bulk density,
texture, pH, total C and inorganic N were determined from our own field
measurements and laboratory analysis of soil samples collected during the study
establishment. The meadow steppe was situated at the Hulunber Grassland Ecosystem
Observation and Research Station in northeastern China (49°19' N, 120°02' E, 628
m), while the sandy steppe was located at the Ordos Sandy Grassland Ecology

Research Station in northern China (39°29' N, 110°11' E, 1290 m).
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Both sites have a continental climate. The mean annual precipitation is 420 mm and

310 mm, and the mean annual temperature is -2°C and 6.5°C in the meadow steppe

and the sandy steppe, respectively (http://data.cma.cn/;

https://www.ncei.noaa.gov/maps/hourly/). The non-growing season for the meadow

steppe extends from late September to late April of the following year, with a spring
freeze-thaw period occurring from late March to late April. In contrast, the non-
growing season for the sandy steppe lasts from mid-October to late March, with the
spring freeze-thaw period occurring from late February to late March. During the
study period, the meadow steppe had a persistent snow cover that reached a depth of
20-25 cm in late winter (January-February). In contrast, the sandy steppe exhibited
shallower and more variable snowpack (typically 10 cm depth) due to higher wind
redistribution and lower moisture retention. Under natural conditions, the meadow
steppe in this study experienced a total of 19 freeze-thaw cycles, while the sandy

steppe experienced 21 freeze-thaw cycles in early spring (http://nm.cma.gov.cn/).

The meadow steppe features high plant diversity and fertile soils, while the sandy
steppe exhibits lower diversity and nutrient-poor, coarse-textured soils (Table 1). This
contrast enables a comprehensive assessment of FTC impacts across varying resource
availability and community structures, as evidenced by significant baseline
differences in N dynamics between sites. According to the Chinese Soil Classification
(GB/T 17296-2009), the predominant soil type is loam in the meadow steppe and

sandy loam in the sandy steppe. The meadow steppe soil has higher C and N content
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but slightly lower pH compared to the sandy steppe soil (Table 1). In the meadow
steppe, the dominant plant species are Stipa baicalensis Roshev (perennial bunch
grass), and subordinate species are Leymus chinensis (Trin.) Tzvel (perennial rhizome
grass) and Carex pediformis C. A. Mey. (perennial forb), which together cover
approximately 85% of the site. In the sandy steppe, the dominant species are
Corethrodendron fruticosum (Pall.) B. H. Choi & H. Ohashi (semi-shrub), and
subordinate species are Cleistogenes squarrosa (Trin.) Keng. (perennial bunch grass),
and Klasea centauroides (L.) Cass. (perennial forb), covering about 70% of the site
(Table 1). The complementary strengths of these ecosystems enable robust predictions
about grassland responses to change winter climate regimes. The detail information

was described in Table S1.

2.2 Experimental design

In late October 2020, eighteen 3 m % 3 m plots were established at each site, with a 3-
meter buffer between neighboring plots. The experiment employed a randomized
block design with three treatments and six replicates per site: (1) control (ambient
FTC), (2) intensified low-frequency FTC (LFTC; + 6 times), and (3) intensified high-
frequency FTC (HFTC; + 12 times). These treatments were designed to simulate

projected increases in winter FTC frequency under climate change scenarios.

The treatment levels were based on historical climate data showing approximately 20

natural FTC typically occur during winter and early spring at both sites (Table 1;
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https://data.cma.cn/). According to the definition of freeze-thaw cycling, a freeze-
thaw cycle is defined as the process in which soil temperature (0-10 cm) rises above
0°C and then subsequently drops below°C (Yanai et al., 2007). Therefore, the
intensified FTC correspond to total increases in 30% (+ 6 times) and 60% (+ 12

times) in the frequency of FTC during winter and spring seasons, respectively.

Within each plot, we established a fixed 1 m x 1 m subplot for 1N tracing. Building
upon established SN tracing approaches (Ma et al. 2020), we applied "NH4!*NOs
solution prior to the onset of winter soil freezing. A solution containing 600 mg N L-
! of ISNH4!’NO; was injected into 100 holes with a syringe guided by a grid frame (1
m % 1 m), with each hole receiving 2 mL of the labeled solution. The total application
per subplot was 200 mL, which is equal to 120 mg SN m™2. The added >N was kept
within the natural fluctuation range of inorganic N in the soil, approximately 7%—10%
of background soil inorganic N levels. We injected water into control treatments
instead of the 'SN tracer, and there were no significant differences in plant/microbial
N concentrations when compared to the >N treatments. This indicates that the "N

application did not disrupt natural N cycling processes (Ma et al., 2018).

Based on recent 5-year climatic records, our initial FTC treatments were scheduled
approximately 15 days prior to the natural spring FTC period (late winter). For the
freezing-thaw manipulation, a closed-top tent (3 m length x 3 m width x 2 m height)

was installed in each plot during each warming manipulation. The heating tents were



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

constructed with polyester fabric, featuring sealed tops and mesh-sided windows to
prevent excessive CO; accumulation while maintaining temperature control. Within
each tent, we used a propane air heater (Mr. Heater, USA) to raise soil temperature to
2-3°C (0-15cm), maintaining this temperature continuously for 8 to 10 hours each
time. Continuous temperature logging was performed using a temperature detector per
treatment positioned at 10 cm soil depth, with data recorded at half-hour intervals
throughout the experiment. The temperature was then allowed to drop to
approximately -2°C over a period of 4 hours to complete one freeze-thaw cycle, the 5
cm depth was periodically verified with a handheld thermometer specifically during
FTC treatments to ensure target temperature thresholds were met. Two intensified
FTC regimes were implemented: (i) high-frequency FTC (HFTC) with 12 additional
cycles administered every 1-6 days, and (ii) low-frequency FTC (LFTC) with 6
additional cycles every 3-8 days. During the natural freeze-thaw period, all artificial
FTC treatments were deliberately conducted when daily mean temperatures remained

below -2°C to avoid interference with natural cycles.

2.3 Sampling and processing

Field soil and plant sampling

A comprehensive characterization of baseline soil properties and plant community
was conducted in August 2020, prior to the establishment of experimental treatments.
Soil samples were collected from the top 20 cm depth at 10 randomly selected points

within each site. Soil pH was determined in a 1:2.5 soil:water suspension. Soil clay
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texture was determined by an optical size analyser (Mastersizer 2000). Soil total C
was determined using an elemental analyser (Elementar analyzer Vario MAX 257 CN,
Germany). Soil inorganic N was determined using a flow injection autoanalyzer
(Scalar SANplus segmented flow 305 analyzer, Netherlands). Plant community cover
was assessed by visual estimation using ten randomly placed 1x1 m quadrats at each

site (Table 1).

Field samplings were conducted after the freeze-thaw treatments and during the
succeeding growing season. In the meadow steppe, we collected the samples on the
following dates: 26 March 2021 (early spring); 4 May 2021 (late spring); 23 June
2021 (early summer); 22 July 2021 (late summer); and 26 September 2021 (late
autumn). Similarly, in the sandy steppe, samplings were collected on 5 March

2021 (early spring); 29 April 2021 (late spring); 21 June 2021 (early summer); 26 July

2021 (late summer); and 15 October 2021 (late autumn).

For plant materials, soil blocks (20 cm length x 20 cm width x 20 cm height)
containing different plant species were carefully excavated and sectioned. Plant roots
were washed with distilled water to remove surface '°N, then separated into
aboveground and belowground components. All plant materials were oven-dried at
65°C for 48 hours. For soil samples, we randomly excavated three soil cores at 20 cm
depth (diameter is 3.5 cm) from each plot. We combined three soil core into a

composite sample, which was passed through a 2 mm sieve. Within 4 hours of
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collection, the composite sample was separated into two portions: one was air-dried

for soil analysis, and the other was stored at -20°C for microbial analysis.

Soil moisture and temperature

Soil moisture and temperature at a depth of 10 cm were monitored using a HOBO
H21-002 data logger (Onset Computer Corporation, USA) coupled with 10HS soil
moisture sensors. The 10HS sensor estimates VWC by measuring the soil dielectric
permittivity at a frequency of 70 MHz. The sensors were deployed with their factory-
predefined standard calibration equation, which directly converts the measured
dielectric readings into volumetric water content values (m? m). The negative values
occurred primarily in cold and frozen soil conditions and are a known artifact of the
sensor's calibration at the extremely lower end of its measurement range. All negative
VWC values have been set to 0 m*> m™, reflecting that the liquid water content was at
or below the sensor's effective detection limit. The number and magnitude of these
values were negligible and did not influence the statistical outcomes or overall

conclusions.

Soil and plant properties

Soil and plant samples (including aboveground and belowground parts) were dried,
pulverized, and then sieved through 100-mesh and 80-mesh sieves, respectively. The
sieved samples were analyzed for C and N content using an elemental analyzer

(Elementar analyzer Vario MAX CN, Germany). Fresh soil samples were extracted
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with 2 M KCl at a 1:5 soil-to-solution ratio (10 g fresh soil with 50 mL KCI) by
shaking for 1 hour on a mechanical shaker. The extract was then filtered and used for
the determination of NH4" and NOs™ analysis. Soil net ammonification and
nitrification rates were analyzed using the method of polyvinyl chloride plastic (PVC)
core (Raison et al., 1987). A pair of PVC cores was vertically inserted into the soil to a
depth of 20 cm in each plot to incubate soil without plant uptake. One core was
collected as the initial (unincubated) sample to determine the concentrations of NHy4"-
N and NO;-N using a flow injection autoanalyzer (Scalar SANplus segmented flow
analyzer, Netherlands). The other core was incubated in situ for two weeks within
capped cores. After incubation, we analyzed the NH4*-N and NO3™-N in these samples
as well. Net ammonification and nitrification rates were estimated based on the

changes in NH4"-N and NO3™-N levels between the incubated and initial values.

Soil microbial biomass

The microbial biomass C (MBC) and microbial biomass N (MBN) were assessed by
the fumigation-extraction method with a total organic C analyzer (TOC multiN/C
3100, Analytik Jena, Germany; Vance et al., 1987). Fresh soil samples were first
moistened to 60% water-holding capacity and incubated in the dark at 25°C for a
week. After incubation, portions of 15 g fresh soil were weighed for both the
fumigated and non-fumigated treatments. The fumigated portions were exposed to
ethanol-free chloroform (CHCI3) vapor for 24 hours in a vacuum desiccator. Both

fumigated and non-fumigated soils were extracted with 60 mL of 0.5 M K>SO4 (a 1:4
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soil-to-solution ratio based on fresh weight) by shaking for 30 minutes and then
filtered. After filtration, the extractable concentration of organic C or N was
determined by a total organic C analyzer. Simultaneously, the soil water content was
determined gravimetrically by oven-drying separate 15 g fresh soil subsamples at

105 °C to constant weight. MBC and MBN were calculated by dividing the
differences in extractable C and N between the fumigated and non-fumigated samples

by the conversion factor of 0.45 (Ma et al., 2025).

I5N levels in soil, plant and microbe

The >N values of plant (2 mg) and soil (20 mg) subsamples were determined using an
elemental analyzer (Vario MAX CN, Elementar, Germany) interfaced with a
continuous flow isotope ratio mass spectrometer (Isoprime Precision, Isoprime, USA).
Soil microbial >N was measured using alkaline persulfate oxidation, followed by a
modified diffusion method (with slight heating and acid-soaked glass fiber filters as
the trap), and the filters containing the absorbed N were then measured using the same
EA-IRMS system (Stark and Hart, 1996; Zhou et al., 2003). Soil immobilized '*N was
then calculated by subtracting microbial >N from soil total '’N (Ma et al., 2018; Qu et

al., 2025).

The SN acquisition (% of applied '’N) in the shoot and root were calculated as: [(*3N;
- I’Na) x biomass/!*Nt] x 100, where '*Nj and '’Na are the !N concentrations (g'’N g-

!'sample) in the labeled and the control samples; biomass is the shoot or root biomass
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at each sampling time (g m), and '*Nt is the amount of total added >N tracer (g >N
m2). The soil or microbial biomass >N recovery (% of applied '’N) was calculated as:
[('3N1 - SNa) xVx BD /"Nt] x 100, where V represents the soil volume of the 20 cm

soil profile (cm® m?), and BD is the bulk density (g cm™).

2.4 Statistical Analysis

Statistical significance of treatment effects was assessed by one-way ANOVA.
Differences between treatments were reported as non-significant at p > 0.05 or
significant at p < 0.05. Repeated measures ANOVA was used to analyze the
influences of different FTC treatments, sampling times, and grassland types on the
measured indicators. Spearman correlation analyses were used as initial screening tool
to identify relationships between environmental factors and plant SN acquisition
across different treatments. Random Forest analysis was then employed as a more
robust machine learning method that can handle high-dimensional data and minimize
overfitting, while effectively ranking variable importance and handling collinearity
among predictors. Spearman correlation coefficients between variables were
calculated using the rcorr function (in the Hmisc R package). To assess the relative
importance of predictors for plant '*N acquisition capacity, a random forest model was
constructed using the randomForest and rfPermute packages in R. The dataset was
randomly partitioned into a training set (70%) for model development and a testing
set (30%) for model validation. All above-mentioned analyses were conducted with

SPSS 21.0 (IBM, Chicago, IL, USA) and RStudio 2025.5.0 (Posit Software, Boston,
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MA, USA). All graphics were generated using SigmaPlot 14.0 (Systat Software, Inc.,
San Jose, CA, USA), Origin 2021 (OriginLab Corp., Northampton, MA, USA) and

RStudio 2025.5.0.

3 Results

3.1 Soil microclimate

The edaphic conditions, including soil total C content, inorganic N content, and
texture, exhibited significant differences between the two temperate grasslands (Table
1). Throughout the winter freezing period, the minimum soil temperatures (0—10cm)
were about -23°C in the meadow steppe and -20°C in the sandy steppe, respectively
(Fig. 2a, b). In early spring, soil temperatures rose rapidly, accompanied by significant
snowmelt. However, neither intensified LFTC nor HFTC had any significant impact
on soil temperature in the subsequent growing season. In contrast, intensified low-
frequency FTC (LFTC) and high-frequency FTC (HFTC) enhanced soil moisture by

0.03 m* m3 and 0.05 m* m*, respectively, over much of the seasons (Fig. 2¢, d).

3.2 Soil properties

Intensified HFTC significantly increased soil NH4"-N concentrations and net
ammonification rates in both grasslands during spring, with the most pronounced
effects observed in the meadow steppe (Fig. 3a, b, e, f). In contrast, soil NO3-N
concentrations and net nitrification rates remained stable across all treatments (Fig.

3c,d, g, h).
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Intensified HFTC significantly decreased the soil microbial biomass C (MBC) in
spring, while the effect of HFTC on microbial biomass N (MBN) persisted to summer
(Fig. 4a-d). In the meadow steppe, HFTC significantly decreased MBC by

16.2% (Fig. 4a), while LFTC and HFTC significantly increased MBN by 26.2% and
26.9%, respectively (Fig. 4c). In the sandy steppe, HFTC significantly decreased
MBC by 11.3% in early spring. Unlike MBC, both LFTC and HFTC significantly

increased MBN by 8.5% and 28.2%, respectively (Fig. 4b, d).

3.3 Plant properties

In contrast to the significant effects of HFTC, intensified LFTC had no significant
impact on the shoot or root biomass N of the selected plant species at either site (Fig.
5a-f). In the meadow steppe, HFTC significantly increased shoot and root biomass N
of Stipa baicalensis (perennial bunch grass) by 19.7% and 21.8% at the end of the
growing season, respectively (Fig. 5a). In contrast, HFTC significantly reduced
biomass N in the perennial rhizome grass Leymus chinensis (shoot: 23.9%; root:
16.2%) and the perennial forb Carex pediformis (shoot: 22.2%:; root: 18.0%) (Fig. 5c,
e). A similar differential response was observed in the sandy steppe. HFTC
significantly increased biomass N in the semi-shrub Corethrodendron fruticosum
(shoot: 22.6%; root: 23.7%) but significantly reduced it in the perennial bunch grass
Cleistogenes squarrosa (shoot: -25.3%; root: -12.1%) and the perennial forb Klasea

centauroides (shoot: -23.1%; root: -20.3%) (Fig. 5b, d, f).
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3.4 N Retention in the soil-microbe-plant systems

In both grassland types, soil >N recovery peaked in early spring, followed by a rapid
decline from late spring to late summer. This was then followed by a gradual increase
in recovery until late autumn (Fig. 6¢, d). In contrast, plant >N acquisition increased
steadily throughout the growing season in both grasslands, while microbial >N

recovery exhibited only modest fluctuations over the entire growing season (Fig. 6e-

h).

During the early growing season, intensified LFTC had no significant effect on total
5N recovery in soil-microbe-plant systems, while intensified HFTC significantly
increased total >N recovery (Fig. 6a, b). LFTC did not significantly impact soil >N
recovery, but HFTC significantly increased soil >N recovery in the two grasslands
Fig. 6¢, d). In the meadow steppe, intensified LFTC and HFTC significantly enhanced
microbial N recovery by 38.0% and 26.6%, respectively, and by 49.5% and 32.5%
in the sandy steppe (Fig. 6e, ). In contrast to the positive effects on microbial
recovery, HFTC significantly reduced plant >N acquisition in both grasslands. LFTC
had no significant effect on plant '°N acquisition (Fig. 6g, h). The leaching >N
(deepsoil: 30-50 cm) in meadow steppe was more than that in the sandy steppe. In

both grasslands, neither LFTC nor HFTC had a significant effect on the leaching N

(Fig. 6i, j).
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In the meadow steppe, the '*N acquisition in the shoots of S. baicalensis (perennial
bunch grass) and C. pediformis (perennial forb) were comparable, while L. chinensis
(perennial rhizome grass) exhibited lower SN acquisition. In contrast, the highest >N
acquisition in roots was observed in L. chinensis, followed by C. pediformis and S.
baicalensis (Fig. 7a, ¢, €). In the sandy steppe, both shoot and root '*N acquisition of
C. fruticosum (semi-shrub) were the highest among the studied species. This was
followed by the shoot >N acquisition of C. squarrosa (perennial bunch grass) and K.
centauroides (perennial forb). Notably, the root N acquisition of K. centauroides

was higher than that of C. squarrosa (Fig. 7b, d, f).

HFTC significantly altered these acquisition patterns in a species-specific manner
(Fig. 7). In the meadow steppe, HFTC significantly increased shoot and root >N
acquisition of S. baicalensis by 5.8% and 9.3%, respectively, but significantly
decreased it in L. chinensis (shoot: 16.4%; root: 12.1%) and C. pediformis (shoot:
4.9%; root: 7.8%) (Fig. 7a, c, e). Similarly, in the sandy steppe, HFTC significantly
increased N acquisition in C. fruticosum (shoot: 3.8%; root: 18.4%) but significantly
reduced it in C. squarrosa (shoot: 16.7%; root: 14.4%) and K. centauroides (shoot:

16.1%; root: 14.1%) (Fig. 7b, d, f).

3.5 Controls on plant >N acquisition
The correlation analysis revealed distinct and treatment-specific shifts in the

relationships between plant SN acquisition and environmental predictors across two
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grasslands (Fig. 8). In both grasslands, plant >N acquisition exhibited the strongest
positive correlation with microbial >N retention under control treatment (Fig. 8a, b).
In the meadow steppe, under both LFTC and control, microbial N retention, soil
temperature, soil moisture and soil NOs™-N levels were positively correlated with
plant N acquisition (Fig. 8a, ¢). Under HFTC, plant '>N acquisition also exhibited a
positive correlation with MBC (Fig. 8e). In the sandy steppe, under LFTC and HFTC,
plant N acquisition exhibited the strongest positive correlation with microbial
biomass N, followed by soil temperature, and soil NO3™-N levels (Fig. 8d, f).
Conversely, soil !N retention, net nitrification rate, and net ammonification rate were
negatively correlated (Fig. 8d, f). Under HFTC, plant '*N acquisition also exhibited a

positive correlation with soil moisture (Fig. 8d).

Random forest analysis revealed that soil temperature and soil >N retention were the
primary predictors of plant >N acquisition across all treatments (Fig. 9). Notably,
MBC and NH4"-N levels did not emerge as a significant predictor in any of the
models. However, the importance of other predictors varied between grasslands and
treatments. In the meadow steppe, the control, LFTC, and HFTC treatments each
retained five key predictors. Dominant predictors under LFTC included net
ammonification rate, soil NO3™-N levels and microbial '’N retention. Under HFTC,
key predictors shifted to soil moisture, microbial >N retention and net
ammonification rate. Neither net nitrification rate nor MBN emerged as significant

predictors under LFTC or HFTC (Fig. 9c, e). In the sandy steppe, net nitrification rate
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and soil moisture were key predictors under both LFTC and HFTC (Fig. 9d, f). Both
LFTC and HFTC exhibited more predictors than control. Under LFTC, MBN was not
a significant predictor (p = 0.089), under HFTC, net ammonification rate and

microbial SN retention were also not significant predictors.

4 Discussion

Our in-situ *N tracer experiment demonstrates that intensified winter freeze-thaw
cycles (FTC) reshape winter N availability in temperate grasslands by stabilizing soil
and microbial N retention and creating competitive hierarchies among plants, without

causing losses of winter N sources.

4.1 Microbial nutrient-use strategies shift under intensified FTC

Our study reveals that intensified FTC triggers a strategic shift in soil microbial
nutrient use, characterized by a notable decoupling between microbial C and N
dynamics (Fig. 4). The significant reduction in MBC during the early growing season
aligns with the previous observations of microbial lysis and physiological stress
induced by freeze-thaw events (DeLuca et al., 1992; Walker et al., 2006). A critical
finding was the stability or even increase in MBN under C-limited conditions in early
spring (Fig. 4), indicating a decoupled microbial response. We propose this reflects a
microbial adaptation to prioritize N retention. Faced with an inorganic N pulse from
cell lysis and aggregate disruption (Fig. 3) yet constrained by C scarcity, microbes

engage in luxury N immobilization. This strategy allows them to secure and store N,
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preventing its loss from the system (Christopher et al., 2008; Skogland et al., 1988;
Wang et al., 2024). This physiological trade-off maintains ecosystem N retention at
the expense of C use efficiency (Schimel and Bennett, 2004; Yu et al., 2011).
Therefore, the microbial response to FTC is one of strategic re-allocation, shifting
their stoichiometry to optimize N storage during a critical window of availability and

instability.

4.2 Ecosystem-level retention of winter N sources under intensified FTC
Contrary to our first hypothesis, intensified FTC did not increase lead to ecosystem-
level losses of the total 'SN tracer in either temperate grasslands. Instead, high-
frequency FTC (HFTC) significantly enhanced total !N recovery within the soil-
microbe-plant system during the early growing season (Fig. 6a, b), indicating that
effective conservation mechanisms were activated. This finding challenging the
prevailing paradigm that winter climate change inevitably promotes widespread N

loss (Han et al., 2018; Song et al., 2017).

This observed retention capacity can be explained through three interconnected
mechanisms. First, the soil pool acted as a major and persistent sink. The significantly
elevated soil >N retention under HFTC (Fig. 6) points to the efficient physical
protection and chemical stabilization of the released N. This protection likely
occurred through incorporation within stable soil aggregates and adsorption onto

organic matter surfaces, reducing N mobility and availability for loss pathways
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(Bhattacharyya et al., 2019).

Second, soil microbes served as a crucial biological buffer during the critical early
spring period. The significant increase in microbial "N immobilization during early
spring (Fig. 6) indicates their rapid capture of winter-derived N. Crucially, this
microbial immobilization occurred when plant uptake was minimal, thereby securing
the N pulse during this vulnerable window (Turner and Henry, 2009; Zheng et al.,
2024). Third, FTC-induced increases in soil moisture mediated '°N availability. Our
random forest analyses identified soil moisture as a significant predictor of plant "N
acquisition (Fig. 8). The elevated moisture under FTC treatments (Fig. 2b) likely
enhanced N mobility, facilitating diffusion to roots. This moisture-driven promotion
of N flux created favorable conditions for plant uptake, yet within the framework of
effective ecosystem retention as evidenced by the absence of significant leaching

losses.

While the stability of the microbial '>N pool over time indicates limited direct transfer
of immobilized N to plants, its role in initial N stabilization during the vulnerable
early spring period was paramount. Subsequent plant N uptake likely derived from
other soil pools replenished by mineralization, indicating a decoupling of the typical

synchrony between microbial and plant N partitioning.

4.3 Cross-site convergence in ecosystem SN retention
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Contrary to our first hypothesis, total N recovery was statistically similar between
the two contrasting grassland ecosystems under intensified FTC conditions (Fig. 6).
This convergence in ecosystem-level >N retention can be explained by several
compensatory mechanisms: First, while the meadow steppe exhibited higher net N
mineralization rates in early spring, releasing a larger initial nitrogen pulse, the sandy
steppe compensated through more efficient microbial and plant uptake of the N
sources. This was evidenced by significantly lower soil NH4*-N concentrations in the
sandy steppe (Fig. 4), suggesting adaptation for rapid N acquisition in this resource-
limited system. Consequently, both ecosystems achieved statistically similar '*'N
levels in microbial and plant pools despite their divergent soil conditions (Fig. 4e-h;

Table 1).

Second, hydrological pathways of winter-derived N loss were similarly constrained in
both grasslands. The minimal >N levels detected in deep soil layers (30-50 ¢cm) (Fig.
Se, ) indicate limited leaching losses, demonstrating that intensified FTC did not
disproportionately enhance N loss in the coarser-textured sandy steppe. This
established a similar baseline of physical N conservation in both systems. Therefore,
the similar levels of ecosystem >N retention were not achieved through identical
processes, but through different yet effective strategies in plant N uptake, physical

conservation, and microbial immobilization.

4.4 Divergent plant strategies for 15N acquisition under intensified FTC
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Our results strongly support the second hypothesis that intensified FTC alter species-
specific acquisition of winter N sources. While HFTC significantly reduced N
acquisition at the community-level, this overall trend concealed strongly species-level
divergence (Fig. 7). This divergence was not random but was clearly aligned with key
plant functional traits, particularly spring phenology and root system architecture

(Table S1).

The enhanced >N acquisition under HFTC by dominant species, S. baicalensis in the
meadow steppe and H. mongolicum in the sandy steppe, exemplifies a trait-based
strategy for exploiting freeze-thaw induced N pulses (Table S1). In the meadow
steppe, S. baicalensis capitalized on its early spring growth and dense root
morphology (Ma et al., 2018) to dominate N acquisition. The high root density
provided a superior absorptive surface area in the topsoil, where FTC-mobilized N
was concentrated, granting it a competitive advantage over species with coarser or
less-developed root systems. In the sandy steppe, the deep-rooted legume C.
fruticosum (Lonati et al., 2015) buffered against surface perturbations by accessing
stable subsurface N and water. The success of these species underscores that the
coupling of early phenology or deep resource access with robust root systems is a
critical adaptation to FTC-induced stress, allowing them to effectively monopolize

winter N resources (Miller et al., 2009).

In contrast, subordinate species (L. chinensis, C. pediformis, C. squarrosa, K.
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centauroides) showed significantly decreased SN acquisition, a consequence of their
phenological and architectural mismatch with the FTC-altered regime. Their later
phenology likely prevented utilization of the early N pulse, while shallow, damage-
susceptible root systems further constrained access to winter N sources (Table S1; Ma
et al., 2018). This competitive disadvantage arose through two interconnected
mechanisms. First, phenological asynchrony placed the subordinate species at a
critical disadvantage. The early-season N pulse released by HFTC occurred before
these later-active species had initiated substantial root activity or shoot growth (Table
S1). Consequently, they missed the peak window of N pulse, which was preemptively

captured by early-season competitors.

Second, structural vulnerability exacerbated their disadvantage. The fine, shallow root
systems of perennial forbs, particularly C. pediformis and K. centauroides, are highly

susceptible to HFTC-induced root damage (Table S1; Campbell et al., 2014; Ye et al.,

2017). This vulnerability was supported by our data showing the significant reduction
in root biomass N for these species (Fig. 5). Such damage not only increased fine root
mortality but also further constrained their capacity to access winter-derived N

(Hosokawa et al., 2017; Reinmann et al., 2019).

Ecologically, the divergent responses among plant species can be primarily attributed
to a disruption of temporal niche partitioning. HFTC generate an early-season N pulse

that preferentially favors species with pre-existing adaptations to cold-season
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conditions, such as early spring phenology and robust root systems. This initial
advantage is further amplified by the greater susceptibility of later-active species to
root damage, thereby intensifying competitive asymmetry and potentially driving
long-term shifts in plant community structure. Despite the stability of soil and
microbial N pools, the overall reduction in community-level N acquisition under
HFTC suggests a potential decoupling between ecosystem N retention and plant N
utilization. This indicates that ecosystem resilience, defined as the capacity to
maintain both structure and function, may be compromised, as the ability to conserve

N does not necessarily ensure unchanged patterns of plant resource acquisition.

4.5 Limitations and future work

This study provides valuable insights into ecosystem N cycling under intensified FTC,
yet several limitations should be acknowledged. First, while our '°N tracer approach
precisely tracked the fate of winter-derived inorganic N, it did not capture dynamics
of the native soil N pool, particularly mobilization and loss pathways of unlabeled
organic N. Second, the temporal resolution of our sampling, while appropriate for
quantifying seasonal patterns of plant N uptake, was insufficient to capture rapid
microbial N transformations and gaseous fluxes occurring within days following FTC
events. Third, while sampling the 0-20 cm soil layer captured the majority (70%—
80%) of the root systems, it may not fully represent the absolute >N acquisition by
deep-rooted species was likely underestimated. Finally, due to equipment constraints,

we did not monitor photosynthetically active radiation (PAR) or precise CO: levels
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within experimental tents; including these parameters in future studies would offer a

more comprehensive understanding of microclimatic perturbations.

Building on these limitations, we propose two key priorities for future research: First,
pinpoint the sources of newly available N during FTC. It would be valuable to
differentiate the specific origins of newly available N during FTC, whether derived
from microbial cell lysis, root mortality, or physical disruption of soil aggregates.
Clarifying these sources is essential to accurately trace the pathways and retention
mechanisms of FTC-mobilized N. Second, conduct high-frequency monitoring of
greenhouse gas fluxes. Simultaneous monitoring of greenhouse gases (particularly
N20 and CO») with high temporal resolution during FTC events is crucial. This
approach would help elucidate the coupling of microbial C and N cycling, especially
given that FTC-induced N>O peaks often occur without corresponding CO; increases,
a phenomenon potentially related to the decoupled responses of microbial biomass C
and N observed in our study. By systematically addressing these research priorities,
we can significantly advance the mechanistic understanding of N cycling and

ecosystem responses to winter climate change.

5 Conclusions
Our in-situ N tracer experiment provides integrated mechanistic insights into the fate
of winter N sources under intensified high-frequency freeze-thaw cycles (FTC) in

temperate grasslands. The key findings demonstrate that these ecosystems possess
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remarkable capacity to conserve winter-derived N, challenging the paradigm of
significant N loss under winter climate change. First, intensified FTC did not lead to
losses of total 1SN tracer at the ecosystem level. This conservation was achieved
through complementary mechanisms: efficient physical protection within the soils and
rapid immobilization by microbial communities that secured N during the vulnerable
early spring period. Second, the meadow and sandy steppes showed convergent
ecosystem-level 1°N retention under intensified FTC. This likely arose from
equivalent plant '’N uptake via divergent strategies, similarly constrained >N losses,
and comparable microbial >N immobilization. Third, intensified FTC restructured
plant N acquisition by amplifying competitive hierarchies based on functional traits.
Dominant species with early spring phenology and robust root systems enhanced their
5N uptake, while subordinate species with later phenology and shallower roots were

disadvantaged.

These findings demonstrate that microbial communities buffer against N loss during
FTC events, while plant functional traits mediate ecosystem responses to winter
climate change. The species-specific shifts in '*N acquisition induced by high-
frequency FTC are ecologically meaningful. The amplified competitive asymmetry,
favoring cold-adapted dominants while suppressing subordinates, could initiate
directional changes in plant community composition if sustained over years.
Although immediate productivity may be sustained, the observed trade-off between

ecosystem N retention and plant N utilization suggests a decline in long-term
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resource-use efficiency. Consequently, these N partitioning patterns serve as an early
indicator of how winter climate change could compromise plant community resilience
and trigger ecosystem restructuring. Integrating these critical plant-microbe-soil
interactions into models is therefore essential for predicting future ecosystem

trajectories.
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meadow steppe and the sandy steppe.

Table 1 Climate, soil and plant properties (+ Standard Error, n = 6), and treatment time in the

Term Meadow steppe Sandy steppe
Site
Location 49°19'N, 120°02' E 39°29'N, 110°11'E
information
Soil type Loam soil Sandy loam soil
MAT (C) -2 6.5
MAP (mm) 420 310
Elevation (m) 628 1290
Frequency of
spring freeze-
19 21
thaw cycle
(times)
Soil property  TC (kg m?) 3.98 +£0.14* 1.00 +0.10
IN (g m?) 1.79 £0.09* 0.86 £ 0.05
20-2000 pum (%) 63.71 £ 1.58* 48.59 +1.98
2-20 um (%) 2723 £0.63* 36.74 £ 067
<2 um (%) 10.13 £0.23* 6.42+0.13
pH 7.36 £0.26 8.57+0.07
BD (g cm?) 1.37+0.13 1.26 £0.10
Plant property  Cover (%) Stipa 40 Corethrodendron 35
baicalensis Sfruticosum
Leymus 20 Cleistogenes 23
chinensis squarrosa
Carex 25 Klasea 12
pediformis centauroides
Treatment HFTC 7 March, 9 March, 10 10 February, 16 February, 18
time March, 12 March, 14 March, February, 20 February, 21
15 March, 17 March, 18 February, 23 February, 25
March, 20 March, 21 March,  February, 26 February, 28
23 March, and 26 March February, 1 March, 3 March,
2021 and 5 March 2021
LFTC 7 March, 10 March, 14 10 February, 18 February, 21

March, 17 March, 20 March,
and 23 March 2021

February, 25 February, 28
February, and 3 March 2021

Significant differences between sites were identified using one-way ANOVA: *, p < 0.05. MAT,
mean annual temperature; MAP, mean annual precipitation; TC, soil total C content; IN, soil
inorganic N content; BD, soil bulk density; HFTC, increased high frequency freeze-thaw cycles

(12 times); LFTC, increased low frequency freeze-thaw cycles (6 times).
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Figure 2. Soil temperature (a, b) and moisture (c, d) during the study period under
intensified low-frequency freeze-thaw cycles (LFTC; 6 times) and high-frequency freeze-
thaw cycles (HFTC; 12 times) treatments in a meadow steppe and a sandy steppe. Shaded
vertical bars indicate processing (treatment) period. Vertical lines indicate natural freeze-thaw
periods. Nablas indicate sampling times, dates for !N tracer injection and sampling dates are also

shown.
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Figure 3. Soil NH4*-N and NO3™-N concentrations, net ammonification rate and net
nitrification rate under intensified low-frequency freeze-thaw cycles (LFTC; 6 times) and
high-frequency freeze-thaw cycles (HFTC; 12 times) treatments in the meadow steppe and
the sandy steppe. In the meadow steppe, samplings were collected on 26 March (early spring), 4
May (late spring), 23 June (early summer), 22 July (late summer), and 26 September (late autumn)
in 2021. In the sandy steppe, samplings were collected on 5 March (early spring), 29 April (late
spring), 21 June (early summer), 26 July (late summer), and 15 October (late autumn) in 2021.
Vertical bars indicate the standard error (SE) of the means (n = 6). Different lowercase letters
indicate statistically significant differences among treatment groups within sampling periods (p <
0.05).
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Figure 4. Soil microbial biomass C and N under intensified low-frequency freeze-thaw cycles
(LFTC,; 6 times) and high-frequency freeze-thaw cycles (HFTC; 12 times) treatments in the
meadow steppe and the sandy steppe. In the meadow steppe, samplings were collected on 26
March (early spring), 4 May (late spring), 23 June (early summer), 22 July (late summer), and 26
September (late autumn) in 2021. In the sandy steppe, samplings were collected on 5 March (early
spring), 29 April (late spring), 21 June (early summer), 26 July (late summer), and 15 October
(late autumn) in 2021. Vertical bars indicate the standard error (SE) of the means (n = 6). Different
lowercase letters indicate statistically significant differences among sampling periods (p < 0.05).
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Figure 5. Plant biomass N (shoot and root) under intensified low-frequency freeze-thaw

cycles (LFTC; 6 times) and high-frequency freeze-thaw cycles (HFTC; 12 times) treatments
in the meadow steppe and the sandy steppe. In the meadow steppe, samplings were collected on
26 March (early spring), 4 May (late spring), 23 June (early summer), 22 July (late summer), and
26 September (late autumn) in 2021. In the sandy steppe, samplings were collected on 5 March
(early spring), 29 April (late spring), 21 June (early summer), 26 July (late summer), and 15
October (late autumn) in 2021. Vertical bars indicate the SE of the means (n = 6). Different
lowercase letters indicate statistically significant differences among sampling periods (p < 0.05).
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Figure 6. Dynamics of SN retention in soil-microbe-plant system, and leaching 5N (deepsoil,
30-50 cm) under intensified low-frequency freeze-thaw cycles (LFTC; 6 times) and high-
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frequency freeze-thaw cycles (HFTC; 12 times) treatments in the meadow steppe and the
sandy steppe. In the meadow steppe, samplings were collected on 26 March (early spring), 4 May
(late spring), 23 June (early summer), 22 July (late summer), and 26 September (late autumn) in
2021. In the sandy steppe, samplings were collected on 5 March (early spring), 29 April (late spring),
21 June (early summer), 26 July (late summer), and 15 October (late autumn) in 2021. Vertical bars
indicate the SE of the means (n = 6). Different lowercase letters indicate statistically significant
differences among sampling periods (p < 0.05).
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Figure 7. Plant N acquisition under intensified low-frequency freeze-thaw cycles (LFTC; 6
times) and high-frequency freeze-thaw cycles (HFTC; 12 times) treatments in a meadow
steppe and a sandy steppe. In the meadow steppe, samplings were collected on 26 March (early
spring), 4 May (late spring), 23 June (early summer), 22 July (late summer), and 26 September
(late autumn) in 2021. In the sandy steppe, samplings were collected on 5 March (early spring), 29
April (late spring), 21 June (early summer), 26 July (late summer), and 15 October (late autumn)
in 2021. Vertical bars indicate the SE of the mean (n = 6). Different lowercase letters indicate
statistically significant differences among sampling periods (p < 0.05).
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Figure 8. Relationships (Spearman correlaltion) between plant SN acquisition and

environmental predictors under control (ambient condition), intensified low freeze-thaw
cycle (LFTC; 6 cycles) and high freeze-thaw cycle (HFTC; 12 times) treatments in the

meadow steppe and the

sandy steppe.
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