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Abstract. Sub-seasonal weather forecasting is a major challenge, particularly when high spatial resolution is needed to capture
complex patterns and extreme events. Traditional Numerical Weather Prediction (NWP) models struggle with accurate forecast-
ing at finer scales, especially for precipitation. In this study, we investigate the use of 3D U-Net architecture for post-processing
sub-seasonal forecasts to enhance both predictability and spatial resolution, focusing on the western U.S. Using the ECMWF
ensemble forecasting system and high-resolution PRISM data, we tested different combinations of ensemble members and me-
teorological variables. Our results demonstrate that the 3D U-Net model significantly improves temperature predictability, and
consistently outperforms NWP models across multiple metrics. However, challenges remain in accurately forecasting extreme
precipitation events, as the model tends to underestimate precipitation in coastal and mountainous regions. While ensemble
members contribute to forecast accuracy, their impact is modest compared to the improvements achieved through downscal-
ing. This study lays the groundwork for further development of neural network-based post-processing methods, showing their

potential to enhance weather forecasts at sub-seasonal timescales.

1 Introduction

Sub-seasonal forecasting based on numerical weather prediction (NWP) models has made significant advances over the past
few decades, with the ability to predict extreme events such as heat waves up to four weeks in advance (Ardilouze et al., 2017,
Vitart and Robertson, 2018). However, limitations still exist, which has led to increasing interest in deep learning models as
alternative approaches for weather forecasts. Some models directly generate the forecasts from the input data. Weyn et al. aimed
to provide ensembles similar to those in NWP systems. Two deep learning models, Graphcast and Pangu, have outperformed
NWP in weather and medium-range forecasts, from 1 day to 10 days (Bi et al., 2023; Lam et al., 2023). More recently,
deep learning models such as Fuxi-S2S have been reported to surpass NWP in sub-seasonal forecasting (Chen et al., 2024).
Among them, Graphcast does not provide precipitation forecasting, while these models only generate deterministic forecasts
and struggle with predicting extreme weather events (Olivetti and Messori, 2024).

On the other hand, post-processing NWP outputs have also been explored as a means of improving forecast accuracy (Wool-

nough et al., 2024). In recent years, neural network-based post-processing methods have gained traction. U-Net architecture
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has been widely utilized for weather forecast post-processing due to its ability to capture fine details through contracting and
expanding layers (Horat and Lerch, 2024; Faijaroenmongkol et al., 2023; Deng et al., 2023; Xin et al., 2024). U-Net has also
shown potential in probabilistic forecasting for sub-seasonal predictions (Horat and Lerch, 2024). Furthermore, U-Net was
employed to correct biases in seasonal precipitation forecasts in Thailand (Faijaroenmongkol et al., 2023).

Moreover, generating high-resolution NWP outputs demands significant computational resources, so deep learning has been
applied to downscale sub-seasonal forecasts and simultaneously improve predictability efficiently. For example, studies in
wildfire weather forecasting in the western United States have successfully downscaled predictions to the county level (Son
et al., 2022). Another example is the improved predictability and downscaling of temperature and precipitation in China,
achieved by using a weighted combination of multiple models based on U-Net (Xin et al., 2024).

A key consideration in these studies is the selection of input data. Some studies use only target variables (Xin et al., 2024),
while others use a broader subset of variables (Horat and Lerch, 2024; Weyn et al., 2021). The extent to which inputs sig-
nificantly affect sub-seasonal forecasting remains undetermined and case-sensitive. Even though studies on weather forecasts
have found that sub-variables play a limited role in temperature forecasting, they have demonstrated improvements in wind
gust predictions (Rasp and Lerch, 2018; Schulz and Lerch, 2022). Additionally, attempts to utilize each ensemble member of
the NWP for U-Net training resulted in only marginal improvements in weather forecasting accuracy. (Hohlein et al., 2024).

This study enhances predictability in the Western United States through the 3D U-Net-based post-processing plus down-
scaling forecasts to higher spatial resolutions. In doing so, we identify the role played by ensemble members and sub-variables
in enhancing predictability and investigate whether downscaling with neural networks leads to meaningful improvements at
smaller scales such as the county level. Section 2 describes the data, 3D U-Net architecture, pre-processing, and evaluation

metrics, while Section 3 discusses the results and analysis. Lastly, conclusions are presented in Section 4.

2 Data and Method
2.1 Data

This study employs two primary datasets: the European Centre for Medium-Range Weather Forecasts (ECMWF) real-time
perturbed forecasts and the Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset. First, as the
ECMWEF forecast model from sub-seasonal to seasonal (S2S) prediction project continues to evolve, providing an increasing
number of ensemble members, forecast periods, and forecast cycles, we select forecasts from CY40R1 with a 1.5° x 1.5°
resolution, 50 ensemble perturbation forecasts, twice-weekly forecast cycles, and 32-day lead times (Roberts et al., 2018).
We utilize forecasts from CY40R1 to CY48R1, covering the period from January 2015 to December 2023. These forecasts
span weather to sub-seasonal time scales, offering a comprehensive range of meteorological variables essential for our neural
network post-processing model. Next, we utilize the daily PRISM dataset, developed by Oregon State University, which pro-
vides high-resolution climate data for the United States (Daly et al., 2008) for the sake of model validation and high-resolution
reference data. PRISM offers grid estimates of variables at a fine spatial resolution of 0.042° x 0.042° (approximately 4 km).
Only data from January 2015 to January 2024 is used, corresponding to the period of ECMWEF forecasts utilized in this study.
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We chose the Western United States because it is a diverse region, ranging from coastal areas to high mountain ranges, and
the importance of water management emerges in the face of hydrological changes driven by the climate crisis (Siirila-Woodburn
et al., 2021). To evaluate the model’s performance at finer spatial scales, we select five diverse regions in the Western United
States, each representing different climatological socio-economic characteristics. These regions include three highly populated
urban areas and two important agricultural zones. In detail, we choose (1) San Francisco, California, a major high-populated
metropolitan area with a unique coastal climate; (2) Orange County, California, known for its citrus farming and Mediterranean
climate; (3) the area around the Great Salt Lake in Utah, which combines high population density with a distinctive lake-effect
climate; (4) Seattle, Washington, representing the Pacific Northwest’s urban environment and maritime climate; and (5) a vast

wheat farming region in eastern Washington, exemplifying the inland agricultural areas of the West.
2.2 3D U-Net Architecture

The post-processing approach utilizes U-Net architecture, originally proposed by Ronneberger et al. for biomedical image
segmentation. The U-Net is particularly well-suited for our task of enhancing sub-seasonal forecasts due to its ability to
capture multi-scale features and preserve spatial information through skip connections (Horat and Lerch, 2024). We leverage
this architecture to process the data above, as shown in Figure 1 properly.

The 3D U-Net structure consists of a contracting path (encoder) and an expanding path (decoder), connected by a bottleneck
layer. Our implementation features three contracting-expanding cycles, optimized for the spatial scales relevant to sub-seasonal
forecasting. The contracting path progressively reduces spatial dimensions while increasing feature channels, allowing the
model to capture broader contextual information. Conversely, the expanding path restores spatial resolution, enabling precise
localization of weather patterns. In short, this structure concatenates feature maps from the contracting path to the expanding
path so that the model retains fine-grained spatial information that might otherwise be lost during downsampling.

We train the model using ECMWF forecast fields as input and high-resolution PRISM observations as the target output.
To investigate the impact of ensemble forecasting on post-processing performance, we conduct experiments with different
combinations of ensemble members; Using only the first ensemble member (EQ1), utilizing all 50 ensemble members (E50),
and merely exploiting the mean of all 50 ensemble members (ESOM). Further, we explore the impact of input variable selection
on model performance by testing configurations with varying numbers of meteorological sub-variables (V1, V2, V4, V8).
This exploration aims to determine whether incorporating sub-variables beyond the target variable could enhance the model’s
predictive capabilities.

In our specific implementation, we integrate the ensemble members and variables into a channel, utilizing a 3D U-Net
structure with forecast lead time, latitude, and longitude as the dimensions. The forecast period ranges from 1 day to 32 days
ahead, with a longitude range of 235.5° to 253.25° and a latitude range of 31.25° to 49°, consisting of 72 grid points in each.
Based on the forecast start date, The training period spans from January 2015 to December 2020, the validation period from
March 2021 to February 2022, and the test period from January 2023 to December 2023. The loss function incorporates mean

squared error and pattern correlation, and we use the Adam with a learning rate of 0.001 for model optimization.
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Figure 1. Schematic of the 3D U-Net architecture adapted for weather forecast post-processing. The model consists of a contracting path
(left, blue), an expanding path (right, green), and a bottleneck layer (center, purple), with skip connections (dashed gray arrows) preserving

spatial information.

2.3 Pre-processing

To assess the sensitivity of the sub-variables used in the learning process, we select 16 variables: 2m temperature, precipitation,
total column water (TCW), mean sea level pressure (MSLP), 10m u-wind (u10), 10m v-wind (v10), elevation, and geopotential
height (z), along with u-wind (u) and v-wind (v) at the 850hPa, 500hPa, and 200hPa levels. The dataset is split into two pre-
processing groups, one being precipitation and TCW, and the other being topography and the remaining atmospheric variables.
For precipitation and TCW, any negative values are set to zero, as they are non-physical for these types of data. We then
apply conservative interpolation to ensure the accurate preservation of values during spatial adjustments. For the remaining
variables, linear interpolation was applied. All variables are interpolated onto a 0.25° x 0.25° latitude-longitude grid. Given
the established relationship between the mean state and predictability (Ryu et al., 2024), we calculate the mean state of each

sub-variable across both weather and sub-seasonal timescales. The pattern correlation coefficient between the mean state of
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each sub-variable and the target variable is then determined. The absolute values of these correlations are averaged, and the top
eight variables with the highest correlations are selected for further analysis (Figure S1, and Table S1).

The interpolated dataset is further processed for input into deep learning models. For precipitation and TCW, to handle zero
values, we transform the data by adding 1 and applying a log10 transformation, following established methods (Aich et al.,
2024). The transformed data is then standardized by calculating the mean and standard deviation, making it suitable for use in
the 3D U-Net architecture. For the other variables, we follow standardization by computing the mean and standard deviation,
similar to the pre-processing approach used in Graphcast (Lam et al., 2023). This normalization step ensures that all variables

are prepared for efficient training in the 3D U-Net model.
2.4 Evaluation Metrics

Intending to assess the performance of our 3D U-Net-based post-processing model comprehensively, we employ the following
three key evaluation metrics; pattern correlation, root mean square error (RMSE), and E,,,.. (Ryu et al., 2024). The first two
metrics quantify the model’s ability to capture the spatial patterns of temperature and precipitation and the average magnitude
of forecast errors. Both metrics are commonly selected to evaluate sub-seasonal predictions. Lastly, we incorporate the Fp,..
metric, which builds upon the concept of Taylor diagrams and has been utilized in several studies for evaluating forecast
performance (Ryu et al., 2024; Wang et al., 2021; Yang et al., 2013). This metric offers a comprehensive assessment by
integrating both the variance ratio and the correlation between predictions and observations. We measure E,,.. per lead time

by averaging values of all initial dates.

2
N Oobs,i Opre,i 1+T )4
1 (0'177‘61' + O'obsi) ( 0
Eye=— log " @))
pre N; (1+7‘i)4

Here, 04ps,; and opre,; denote the standard deviations of observed and predicted values respectively. 7o represents an ideal
correlation (set to 1), and r; is the actual correlation at time step 4. /N stands for the number of initial dates. The E,,,.. metric
is designed to yield a value of O for perfect predictions, with increasing values indicating greater discrepancies between fore-
casts and observations. By incorporating both spread and accuracy considerations, this metric proves particularly valuable for

evaluating the nuanced performance of ensemble predictions in sub-seasonal forecasting contexts.

3 Results and Discussion
3.1 Role of Ensemble and Variables

The performance of the 3D U-Net model in comparison to traditional NWP forecasts was evaluated across different ensemble
configurations and input variable sets. A comprehensive overview of all cases in Figure S2 in the supplementary material
demonstrates a clear superiority of 3D U-Net models over NWP in both forecasts across all three evaluation metrics. The focus
of this analysis is the relationship between ensemble size and forecast skill. Next, we clustered experiments with the same

sub-variables and ensemble configurations to validate the role of auxiliary variables and ensembles.
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Figure 2. Ensemble sensitivity benchmark scores for the Western U.S., comparing NWP and 3D U-Net models (EO1, E50, ESOM) for
temperature (top row) and precipitation (bottom row) forecasts over 32 days. Columns show (a, d) pattern correlation, (b, e) RMSE, and (c,

f) Epre, respectively.

Figure 2 illustrates benchmark scores with respect to the ensemble configurations. In temperature predictions, ESOM (see
Section 2.2) shows the best performance and EO1 is the most deficient in all matrices. Precipitation predictions also exhibit
analogous operational characteristics; nonetheless, E50 and ESOM exhibit significantly aligned trajectories and the overall
disparity among all configurations has diminished in both pattern correlation and RMSE metrics. In contrast, E,,.. for pre-
cipitation does not show significant differences between NWP, likely due to limitations in precipitation variance. Results in
Figure 2 interestingly imply that EO1 proved insufficient for effective learning by only the first ensemble member, resulting in
performance lagging behind the other ensemble configurations. However, the performance difference between using E50 and
ES50M was negligible. To support these findings, we performed additional experiments on ensembles of 10, 20, and 25 mem-
bers, which showed similar performance to ESO (Figure not shown). This suggests that while post-processing significantly
improves forecast skill, the benefits of increasing ensemble members beyond the mean are limited for both temperature and
precipitation predictions in the current setting. This is consistent with previous research that ensemble spread plays a limited
role in improving weather forecast accuracy, and these findings suggest that this limitation extends to sub-seasonal forecasts
as well (Hohlein et al., 2024). In other words, using the ensemble mean could be sufficient for achieving optimal performance
with the 3D U-Net model.

The impact of input variables on model performance is further explored in Figure 3. The 3D U-Net models consistently

outperform NWP across all lead times for both temperature and precipitation forecasts. This superiority reinforces the ro-
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Figure 3. Sub-variable sensitivity benchmark scores for the Western U.S., comparing NWP and 3D U-Net models with varying input

variables (V1, V2, V4, V8) for temperature and precipitation forecasts over 32 days. Layout is the same as in Figure 2.

bustness of the neural network approach. Specifically, V8 slightly surpasses the others in all temperature metrics. This result
aligns with previous studies that suggest elevation can enhance temperature post-processing accuracy (Rasp and Lerch, 2018).
However, for precipitation forecasts, V1, V2, V4, and V8 reveal insignificant variations in terms of their predictability scores.
The E,,,.. values for precipitation exhibited comparable patterns to those observed in Figure 2(f), attributable to analogous un-
derlying mechanisms. An intriguing observation is that the performance differences among the 3D U-Net models with varying
numbers of input variables are minimal for both target variables. This contrasts with prior research, which has suggested that
sub-variables contribute to forecast improvement (Schulz and Lerch, 2022). However, our finding is consistent with studies that
indicate sub-variables may contribute only marginally or in a limited role, particularly when used mean state (Rasp and Lerch,
2018; Hohlein et al., 2024). This indicates that increasing the number of sub-variables in the 3D U-Net model does not signifi-
cantly enhance its ability to extract relevant information or improve forecast skills in this context. Such a result challenges the
conventional wisdom that more input data invariably leads to better predictions, and suggests that the 3D U-Net architecture
in the current setting may be efficiently capturing the most relevant features for the prediction even with a limited set of input

variables. Thus we use ESOM V1 and V8 for the following analysis.
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3.2 Predictability and Downscaling

Next, we compare the spatial pattern of the forecast between NWPs and ESOM 3D U-Net with both V1, which uses only the
target variables, and V8, which includes all variables. The 3D U-Net model demonstrates significant improvements in both
predictability and downscaling capabilities for temperature forecasts. While precipitation forecasts also show improvement,
the gains are less pronounced than for temperature. For precipitation (Figure 4), the 3D U-Net models achieve higher spatial
resolution compared to NWP, revealing fine-scale patterns. However, a consistent underestimation of precipitation is observed
across all lead times, particularly in coastal and mountainous regions, regardless of the number of input variables used. This
reduction in precipitation is also observed in other regions during downscaling and U-Net-based post-processing (Xin et al.,
2024). Temperature forecasts (Figure 5) showcase more substantial improvements. The 3D U-Net models significantly enhance
spatial resolution and reduce overall forecast errors compared to NWP. The 3D U-Net approach, especially ESOM V8, captures
fine-scale temperature patterns effectively, showing reduced biases across various terrain types.

The performance of the 3D U-Net model in extreme cases provides further insights into its capabilities and limitations.
Figure 6 presents an extreme precipitation event in California from March 7 to March 13, 2023. The 3D U-Net models (E5S0M
V1 and V8) demonstrate improved spatial detail compared to NWP. On March 10, the 3D U-Net model captures the rainfall
that NWP doesn’t (Figure 6(b-4, c-4, d-4)) and specifies the location, both coastal area and inland, more accurately on 2023-
03-11. Even so, the models still struggle with accurately capturing the intensity of heavy precipitation events. Increasing the
training data can be one alternative to improve precipitation extremes (Hu et al., 2023). Alternatively, this limitation may stem
from the post-processing technique itself and warrants further investigation.

Even in extreme temperature cases, Figures S3 and S4 confirm results that 3D U-Nets are superior to NWP. The overall
performance of ESOM V1 in the high-temperature case and ESOM V8 in the low-temperature case, as well as the overall
differences and recovery from cold waves, appear to outperform NWP. However, limitations are evident, highlighting the
persistent challenges in predicting extreme events despite the improved spatial resolution.

The contrasting performance between precipitation and temperature forecasts underscores the varying complexities in pre-
dicting these two variables. Although some challenges are left in precipitation forecasting, the 3D U-Net model’s ability to
capture fine-scale patterns and improve spatial resolution for both variables represents a significant advancement. These results
suggest that with further refinement, particularly in handling extreme events and complex terrain interactions, neural network-
based post-processing methods like 3D U-Net have the potential to substantially improve both temperature and precipitation

forecasts at sub-seasonal timescales.
3.3 Predictability in County-scale

To assess the model’s performance at finer spatial scales, crucial for local decision-making and resource management, we eval-
uate forecasts for five selected county-level regions in the Western U.S. Figure 7 presents comprehensive performance metrics
for temperature and precipitation forecasts across these 5 regions, comparing NWP and various 3D U-Net model configura-

tions over a 32-day lead time. For temperature forecasts at the county scale, 3D U-Net models generally demonstrate improved

10
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Figure 7. Performance metrics for temperature (Temp) and precipitation (Precip) forecasts across five county-level regions in the Western
U.S., comparing NWP and various 3D U-Net model configurations (EO1, E50, ESOM with V1-V8 input variables) over a 32-day lead
time. Metrics include tCorr and RMSE. (a) Temperature correlation, (b) Temperature RMSE, (c) Precipitation correlation, (d) Precipitation
RMSE. Columns represent different regions: (1) San Francisco, CA (2) Orange farm, CA, (3) Salt Lake City, UT, (4) Seattle, WA, and (5)
Wheat farming area, WA.
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or comparable performance relative to NWP while the degree of enhancement varies significantly across regions. Along with
the result of Section 3.1, ESOM surpasses the other ensemble configuration’s scores, and no conspicuous performance dif-
ference between varying the number of variables yields. Some areas, such as Seattle, show more pronounced enhancements
in predictability, possibly due to the region’s more uniform maritime climate. In contrast, areas with more complex terrain
or microclimates show more modest improvements, highlighting the persistent challenges in downscaling to highly localized
conditions.

For precipitation forecasts, 3D U-Net models enhance correlation on the weather scale but not on the sub-seasonal scale
especially in two regions in Washington (Figure 7(c-4,5)). Moreover, correlation exhibits higher variability in performance
across different 3D U-Net configurations compared to temperature forecasts. Figure 7(d) reveals a complex pattern. In most
regions, 3D U-Net models and NWP show comparable RMSE values, with neither consistently outperforming the other across
all lead times.

Note that the performance differences among 3D U-Net configurations in both targets are generally small at this county
scale, consistent with the findings at larger spatial scales. This implies that the benefits of increased model complexity may

diminish at very fine spatial resolutions, where local factors become increasingly dominant.
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Figure 8. RMSE comparison across five U.S. counties for extreme temperature and precipitation forecasts. Results show NWP and various
3D U-Net configurations (EO1, E50, ESOM) with different input variables (V1-V8). Temperature metrics include 90th percentile (tx90) and
10th percentile (tx10). Precipitation uses 90th percentile (px90). (a) Temperature tx90 RMSE, (b) Temperature tx10 RMSE, (c) Precipitation

px90 RMSE. Columns represent the same regions as in Figure 7.
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Figure 8 elaborates the RMSE of each five regions regarding heat, cold, and precipitation extremes. Even though predicting
heat extremes in Salt Lake City and Seattle in weather-scale is improved (Figure 8(a-3,4)), 3D U-Net models don’t outperform
NWP in these extreme cases. Still, performance varies considerably on location, period, and extreme type. These can be
attributed to several factors: Deep learning models are predisposed to yield results in which extreme values are smooth-out,
called blurring effect (Lam et al., 2023), and tend to converge to the mean state (Bonavita, 2024). Furthermore, Olivetti and
Messori highlights the similar result of Figure 8 that global scale deep learning models often struggle with capturing the full

range of variability in extreme events, especially in long-term prediction.

4 Conclusions

The findings of this study highlight the dual benefits of using the 3D U-Net architecture for sub-seasonal forecasting, namely
enhanced accuracy and improved spatial resolution. By applying 3D U-Net-based post-processing to NWP models, the study
demonstrated significant improvements in predicting both temperature and precipitation, especially in complex terrains and
localized regions. The model’s ability to downscale forecasts to higher spatial resolutions provided finer details, which are
crucial for decision-making in regional disaster management. Nonetheless, some possible drawbacks remain evident. First
and foremost, there was a spatial pattern improvement in precipitation, but the underestimation of precipitation in coastal
and mountainous areas persisted. The added diversity in data could not resolve these limitations. Second, predicting extreme
precipitation events with high accuracy is a challenging task. While the 3D U-Net could capture general patterns and improve
spatial details, it still struggled to fully enhance extreme forecasts’ accuracy.

The 3D U-Net model showed mixed performance for both temperature and precipitation forecasts at the county level. While
3D U-Net outperformed NWP models in predicting temperature such as in Seattle, its performance in precipitation forecast-
ing was less consistent. The model was able to enhance spatial resolution and predictability for temperature at finer scales
but struggled to deliver comparable improvements for precipitation. While the 3D U-Net model is effective for downscaling
temperature forecasts at the county level, further refinement is needed to improve its ability to capture precipitation patterns,
particularly in regions with complex weather dynamics.

In conclusion, 3D U-Net’s integration into sub-seasonal forecasting models offers substantial improvements such as captur-
ing fine-scale weather patterns over traditional NWPs while maintaining computational efficiency. This model’s ability makes
it a promising tool for a wide range of atmospheric science applications, from short-term weather to sub-seasonal predictions.
Still, further refinements are necessary to address the underperformance in extreme event predictions and to explore the optimal
balance between model complexity and forecast skill. Future work could focus on enhancing the model’s ability to handle ex-
treme weather conditions and exploring new approaches for post-processing sub-seasonal predictions in diverse and complex

terrains.
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Code and data availability. The ECWMF perturbed forecast can be downloaded from https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/
type=cf/. The PRISM dataset can be downloaded from https://prism.oregonstate.edu/. The model code is archived on Zenodo(Ryu et al.,
2025), and at https://zenodo.org/records/14776781
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