
Increasing Resolution and Accuracy in Sub-Seasonal Forecasting
through 3D U-Net: the Western US
Jihun Ryu1, Hisu Kim2, Shih-Yu (Simon) Wang3, and Jin-Ho Yoon1

1School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
2School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South
Korea
3Department of Plants, Soils and Climate, Utah State University, Logan, UT, USA

Correspondence: Jin-Ho Yoon (yjinho@gist.ac.kr)

Abstract. Sub-seasonal weather forecasting is a major challenge, particularly when high spatial resolution is needed to capture

complex patterns and extreme events. Traditional Numerical Weather Prediction (NWP) models struggle with accurate forecast-

ing at finer scales, especially for precipitation. In this study, we investigate the use of 3D U-Net architecture for post-processing

sub-seasonal forecasts to enhance both predictability and spatial resolution, focusing on the western U.S. Using the ECMWF

ensemble forecasting system and high-resolution PRISM data, we tested different combinations of ensemble members and me-5

teorological variables. Our results demonstrate that the 3D U-Net model significantly improves temperature predictability, and

consistently outperforms NWP models across multiple metrics. However, challenges remain in accurately forecasting extreme

precipitation events, as the model tends to underestimate precipitation in coastal and mountainous regions. While ensemble

members contribute to forecast accuracy, their impact is modest compared to the improvements achieved through downscal-

ing. This study lays the groundwork for further development of neural network-based post-processing methods, showing their10

potential to enhance weather forecasts at sub-seasonal timescales.

1 Introduction

Sub-seasonal forecasting based on numerical weather prediction (NWP) models has made significant advances over the past

few decades, with the ability to predict extreme events such as heat waves up to four weeks in advance (Ardilouze et al., 2017;

Vitart and Robertson, 2018). However, limitations still exist, which has led to increasing interest in deep learning models as15

alternative approaches for weather forecasts. Some models directly generate the forecasts from the input data. Weyn et al. aimed

to provide ensembles similar to those in NWP systems. Two deep learning models, Graphcast and Pangu, have outperformed

NWP in weather and medium-range forecasts, from 1 day to 10 days (Bi et al., 2023; Lam et al., 2023). More recently,

deep learning models such as Fuxi-S2S have been reported to surpass NWP in sub-seasonal forecasting (Chen et al., 2024).

Among them, Graphcast does not provide precipitation forecasting, while these models only generate deterministic forecasts20

and struggle with predicting extreme weather events (Olivetti and Messori, 2024).

On the other hand, post-processing NWP outputs have also been explored as a means of improving forecast accuracy (Wool-

nough et al., 2024). In recent years, neural network-based post-processing methods have gained traction. U-Net architecture
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has been widely utilized for weather forecast post-processing due to its ability to capture fine details through contracting and

expanding layers (Horat and Lerch, 2024; Faijaroenmongkol et al., 2023; Deng et al., 2023; Xin et al., 2024). U-Net has also25

shown potential in probabilistic forecasting for sub-seasonal predictions (Horat and Lerch, 2024). Furthermore, U-Net was

employed to correct biases in seasonal precipitation forecasts in Thailand (Faijaroenmongkol et al., 2023).

Moreover, generating high-resolution NWP outputs demands significant computational resources, so deep learning has been

applied to downscale sub-seasonal forecasts and simultaneously improve predictability efficiently. For example, studies in

wildfire weather forecasting in the western United States have successfully downscaled predictions to the county level (Son30

et al., 2022). Another example is the improved predictability and downscaling of temperature and precipitation in China,

achieved by using a weighted combination of multiple models based on U-Net (Xin et al., 2024).

A key consideration in these studies is the selection of input data. Some studies use only target variables (Xin et al., 2024),

while others use a broader subset of variables (Horat and Lerch, 2024; Weyn et al., 2021). The extent to which inputs sig-

nificantly affect sub-seasonal forecasting remains undetermined and case-sensitive. Even though studies on weather forecasts35

have found that sub-variables play a limited role in temperature forecasting, they have demonstrated improvements in wind

gust predictions (Rasp and Lerch, 2018; Schulz and Lerch, 2022). Additionally, attempts to utilize each ensemble member of

the NWP for U-Net training resulted in only marginal improvements in weather forecasting accuracy. (Höhlein et al., 2024).

This study enhances predictability in the Western United States through the 3D U-Net-based post-processing plus down-

scaling forecasts to higher spatial resolutions. In doing so, we identify the role played by ensemble members and sub-variables40

in enhancing predictability and investigate whether downscaling with neural networks leads to meaningful improvements at

smaller scales such as the county level. Section 2 describes the data, 3D U-Net architecture, pre-processing, and evaluation

metrics, while Section 3 discusses the results and analysis. Lastly, conclusions are presented in Section 4.

2 Data and Method

2.1 Data45

This study employs two primary datasets: the European Centre for Medium-Range Weather Forecasts (ECMWF) real-time

perturbed forecasts and the Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset. First, as the

ECMWF forecast model from sub-seasonal to seasonal (S2S) prediction project continues to evolve, providing an increasing

number of ensemble members, forecast periods, and forecast cycles, we select forecasts from CY40R1 with a 1.5◦× 1.5◦

resolution, 50 ensemble perturbation forecasts, twice-weekly forecast cycles, and 32-day lead times (Roberts et al., 2018).50

We utilize forecasts from CY40R1 to CY48R1, covering the period from January 2015 to December 2023. These forecasts

span weather to sub-seasonal time scales, offering a comprehensive range of meteorological variables essential for our neural

network post-processing model. Next, we utilize the daily PRISM dataset, developed by Oregon State University, which pro-

vides high-resolution climate data for the United States (Daly et al., 2008) for the sake of model validation and high-resolution

reference data. PRISM offers grid estimates of variables at a fine spatial resolution of 0.042◦× 0.042◦ (approximately 4 km).55

Only data from January 2015 to January 2024 is used, corresponding to the period of ECMWF forecasts utilized in this study.
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We chose the Western United States because it is a diverse region, ranging from coastal areas to high mountain ranges, and

the importance of water management emerges in the face of hydrological changes driven by the climate crisis (Siirila-Woodburn

et al., 2021). To evaluate the model’s performance at finer spatial scales, we select five diverse regions in the Western United

States, each representing different climatological socio-economic characteristics. These regions include three highly populated60

urban areas and two important agricultural zones. In detail, we choose (1) San Francisco, California, a major high-populated

metropolitan area with a unique coastal climate; (2) Orange County, California, known for its citrus farming and Mediterranean

climate; (3) the area around the Great Salt Lake in Utah, which combines high population density with a distinctive lake-effect

climate; (4) Seattle, Washington, representing the Pacific Northwest’s urban environment and maritime climate; and (5) a vast

wheat farming region in eastern Washington, exemplifying the inland agricultural areas of the West.65

2.2 3D U-Net Architecture

The post-processing approach utilizes U-Net architecture, originally proposed by Ronneberger et al. for biomedical image

segmentation. The U-Net is particularly well-suited for our task of enhancing sub-seasonal forecasts due to its ability to

capture multi-scale features and preserve spatial information through skip connections (Horat and Lerch, 2024). We leverage

this architecture to process the data above, as shown in Figure 1 properly.70

The 3D U-Net structure consists of a contracting path (encoder) and an expanding path (decoder), connected by a bottleneck

layer. Our implementation features three contracting-expanding cycles, optimized for the spatial scales relevant to sub-seasonal

forecasting. The contracting path progressively reduces spatial dimensions while increasing feature channels, allowing the

model to capture broader contextual information. Conversely, the expanding path restores spatial resolution, enabling precise

localization of weather patterns. In short, this structure concatenates feature maps from the contracting path to the expanding75

path so that the model retains fine-grained spatial information that might otherwise be lost during downsampling.

We train the model using ECMWF forecast fields as input and high-resolution PRISM observations as the target output.

To investigate the impact of ensemble forecasting on post-processing performance, we conduct experiments with different

combinations of ensemble members; Using only the first ensemble member (E01), utilizing all 50 ensemble members (E50),

and merely exploiting the mean of all 50 ensemble members (E50M). Further, we explore the impact of input variable selection80

on model performance by testing configurations with varying numbers of meteorological sub-variables (V1, V2, V4, V8).

This exploration aims to determine whether incorporating sub-variables beyond the target variable could enhance the model’s

predictive capabilities.

In our specific implementation, we integrate the ensemble members and variables into a channel, utilizing a 3D U-Net

structure with forecast lead time, latitude, and longitude as the dimensions. The forecast period ranges from 1 day to 32 days85

ahead, with a longitude range of 235.5◦ to 253.25◦ and a latitude range of 31.25◦ to 49◦, consisting of 72 grid points in each.

Based on the forecast start date, The training period spans from January 2015 to December 2020, the validation period from

March 2021 to February 2022, and the test period from January 2023 to December 2023. The loss function incorporates mean

squared error and pattern correlation, and we use the Adam with a learning rate of 0.001 for model optimization.
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Figure 1. Schematic of the 3D U-Net architecture adapted for weather forecast post-processing. The model consists of a contracting path

(left, blue), an expanding path (right, green), and a bottleneck layer (center, purple), with skip connections (dashed gray arrows) preserving

spatial information.

2.3 Pre-processing90

To assess the sensitivity of the sub-variables used in the learning process, we select 16 variables: 2m temperature, precipitation,

total column water (TCW), mean sea level pressure (MSLP), 10m u-wind (u10), 10m v-wind (v10), elevation, and geopotential

height (z), along with u-wind (u) and v-wind (v) at the 850hPa, 500hPa, and 200hPa levels. The dataset is split into two pre-

processing groups, one being precipitation and TCW, and the other being topography and the remaining atmospheric variables.

For precipitation and TCW, any negative values are set to zero, as they are non-physical for these types of data. We then95

apply conservative interpolation to ensure the accurate preservation of values during spatial adjustments. For the remaining

variables, linear interpolation was applied. All variables are interpolated onto a 0.25◦× 0.25◦ latitude-longitude grid. Given

the established relationship between the mean state and predictability (Ryu et al., 2024), we calculate the mean state of each

sub-variable across both weather and sub-seasonal timescales. The pattern correlation coefficient between the mean state of
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each sub-variable and the target variable is then determined. The absolute values of these correlations are averaged, and the top100

eight variables with the highest correlations are selected for further analysis (Figure S1, and Table S1).

The interpolated dataset is further processed for input into deep learning models. For precipitation and TCW, to handle zero

values, we transform the data by adding 1 and applying a log10 transformation, following established methods (Aich et al.,

2024). The transformed data is then standardized by calculating the mean and standard deviation, making it suitable for use in

the 3D U-Net architecture. For the other variables, we follow standardization by computing the mean and standard deviation,105

similar to the pre-processing approach used in Graphcast (Lam et al., 2023). This normalization step ensures that all variables

are prepared for efficient training in the 3D U-Net model.

2.4 Evaluation Metrics

Intending to assess the performance of our 3D U-Net-based post-processing model comprehensively, we employ the following

three key evaluation metrics; pattern correlation, root mean square error (RMSE), and Epre (Ryu et al., 2024). The first two110

metrics quantify the model’s ability to capture the spatial patterns of temperature and precipitation and the average magnitude

of forecast errors. Both metrics are commonly selected to evaluate sub-seasonal predictions. Lastly, we incorporate the Epre

metric, which builds upon the concept of Taylor diagrams and has been utilized in several studies for evaluating forecast

performance (Ryu et al., 2024; Wang et al., 2021; Yang et al., 2013). This metric offers a comprehensive assessment by

integrating both the variance ratio and the correlation between predictions and observations. We measure Epre per lead time115

by averaging values of all initial dates.

Epre =
1
N

N∑

i=1

log




(
σobs,i

σpre,i
+ σpre,i

σobs,i

)2

(1 + r0)4

(1 + ri)
4


 (1)

Here, σobs,i and σpre,i denote the standard deviations of observed and predicted values respectively. r0 represents an ideal

correlation (set to 1), and ri is the actual correlation at time step i. N stands for the number of initial dates. The Epre metric

is designed to yield a value of 0 for perfect predictions, with increasing values indicating greater discrepancies between fore-120

casts and observations. By incorporating both spread and accuracy considerations, this metric proves particularly valuable for

evaluating the nuanced performance of ensemble predictions in sub-seasonal forecasting contexts.

3 Results and Discussion

3.1 Role of Ensemble and Variables

The performance of the 3D U-Net model in comparison to traditional NWP forecasts was evaluated across different ensemble125

configurations and input variable sets. A comprehensive overview of all cases in Figure S2 in the supplementary material

demonstrates a clear superiority of 3D U-Net models over NWP in both forecasts across all three evaluation metrics. The focus

of this analysis is the relationship between ensemble size and forecast skill. Next, we clustered experiments with the same

sub-variables and ensemble configurations to validate the role of auxiliary variables and ensembles.
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Figure 2. Ensemble sensitivity benchmark scores for the Western U.S., comparing NWP and 3D U-Net models (E01, E50, E50M) for

temperature (top row) and precipitation (bottom row) forecasts over 32 days. Columns show (a, d) pattern correlation, (b, e) RMSE, and (c,

f) Epre, respectively.

Figure 2 illustrates benchmark scores with respect to the ensemble configurations. In temperature predictions, E50M (see130

Section 2.2) shows the best performance and E01 is the most deficient in all matrices. Precipitation predictions also exhibit

analogous operational characteristics; nonetheless, E50 and E50M exhibit significantly aligned trajectories and the overall

disparity among all configurations has diminished in both pattern correlation and RMSE metrics. In contrast, Epre for pre-

cipitation does not show significant differences between NWP, likely due to limitations in precipitation variance. Results in

Figure 2 interestingly imply that E01 proved insufficient for effective learning by only the first ensemble member, resulting in135

performance lagging behind the other ensemble configurations. However, the performance difference between using E50 and

E50M was negligible. To support these findings, we performed additional experiments on ensembles of 10, 20, and 25 mem-

bers, which showed similar performance to E50 (Figure not shown). This suggests that while post-processing significantly

improves forecast skill, the benefits of increasing ensemble members beyond the mean are limited for both temperature and

precipitation predictions in the current setting. This is consistent with previous research that ensemble spread plays a limited140

role in improving weather forecast accuracy, and these findings suggest that this limitation extends to sub-seasonal forecasts

as well (Höhlein et al., 2024). In other words, using the ensemble mean could be sufficient for achieving optimal performance

with the 3D U-Net model.

The impact of input variables on model performance is further explored in Figure 3. The 3D U-Net models consistently

outperform NWP across all lead times for both temperature and precipitation forecasts. This superiority reinforces the ro-145
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Figure 3. Sub-variable sensitivity benchmark scores for the Western U.S., comparing NWP and 3D U-Net models with varying input

variables (V1, V2, V4, V8) for temperature and precipitation forecasts over 32 days. Layout is the same as in Figure 2.

bustness of the neural network approach. Specifically, V8 slightly surpasses the others in all temperature metrics. This result

aligns with previous studies that suggest elevation can enhance temperature post-processing accuracy (Rasp and Lerch, 2018).

However, for precipitation forecasts, V1, V2, V4, and V8 reveal insignificant variations in terms of their predictability scores.

The Epre values for precipitation exhibited comparable patterns to those observed in Figure 2(f), attributable to analogous un-

derlying mechanisms. An intriguing observation is that the performance differences among the 3D U-Net models with varying150

numbers of input variables are minimal for both target variables. This contrasts with prior research, which has suggested that

sub-variables contribute to forecast improvement (Schulz and Lerch, 2022). However, our finding is consistent with studies that

indicate sub-variables may contribute only marginally or in a limited role, particularly when used mean state (Rasp and Lerch,

2018; Höhlein et al., 2024). This indicates that increasing the number of sub-variables in the 3D U-Net model does not signifi-

cantly enhance its ability to extract relevant information or improve forecast skills in this context. Such a result challenges the155

conventional wisdom that more input data invariably leads to better predictions, and suggests that the 3D U-Net architecture

in the current setting may be efficiently capturing the most relevant features for the prediction even with a limited set of input

variables. Thus we use E50M V1 and V8 for the following analysis.
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Figure 4. Comparison of precipitation forecasts (104 forecasts in 2023 are averaged) and differences across lead times for the Western U.S.

Rows represent (a) PRISM observations, (b) NWP forecasts, (c) 3D U-Net E50M V1 predictions, (d) 3D U-Net E50M V8 predictions, (e)

differences between NWP and PRISM, (f) differences between E50M V1 and PRISM, and (g) differences between E50M V8 and PRISM.

Precipitation amounts (rows a-d) are shown using the scale in the upper color bar (0-8 mm/day), while differences (rows e-g) are depicted

using the scale in the lower color bar (-6 to +6 mm/day). Columns show forecasts for Days 1, 11, 21, and 31.
8
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Figure 5. Temperature forecasts and differences similar to Figure 4. The layout is the same, with temperature values and differences shown

in Kelvin (K).
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3.2 Predictability and Downscaling

Next, we compare the spatial pattern of the forecast between NWPs and E50M 3D U-Net with both V1, which uses only the160

target variables, and V8, which includes all variables. The 3D U-Net model demonstrates significant improvements in both

predictability and downscaling capabilities for temperature forecasts. While precipitation forecasts also show improvement,

the gains are less pronounced than for temperature. For precipitation (Figure 4), the 3D U-Net models achieve higher spatial

resolution compared to NWP, revealing fine-scale patterns. However, a consistent underestimation of precipitation is observed

across all lead times, particularly in coastal and mountainous regions, regardless of the number of input variables used. This165

reduction in precipitation is also observed in other regions during downscaling and U-Net-based post-processing (Xin et al.,

2024). Temperature forecasts (Figure 5) showcase more substantial improvements. The 3D U-Net models significantly enhance

spatial resolution and reduce overall forecast errors compared to NWP. The 3D U-Net approach, especially E50M V8, captures

fine-scale temperature patterns effectively, showing reduced biases across various terrain types.

The performance of the 3D U-Net model in extreme cases provides further insights into its capabilities and limitations.170

Figure 6 presents an extreme precipitation event in California from March 7 to March 13, 2023. The 3D U-Net models (E50M

V1 and V8) demonstrate improved spatial detail compared to NWP. On March 10, the 3D U-Net model captures the rainfall

that NWP doesn’t (Figure 6(b-4, c-4, d-4)) and specifies the location, both coastal area and inland, more accurately on 2023-

03-11. Even so, the models still struggle with accurately capturing the intensity of heavy precipitation events. Increasing the

training data can be one alternative to improve precipitation extremes (Hu et al., 2023). Alternatively, this limitation may stem175

from the post-processing technique itself and warrants further investigation.

Even in extreme temperature cases, Figures S3 and S4 confirm results that 3D U-Nets are superior to NWP. The overall

performance of E50M V1 in the high-temperature case and E50M V8 in the low-temperature case, as well as the overall

differences and recovery from cold waves, appear to outperform NWP. However, limitations are evident, highlighting the

persistent challenges in predicting extreme events despite the improved spatial resolution.180

The contrasting performance between precipitation and temperature forecasts underscores the varying complexities in pre-

dicting these two variables. Although some challenges are left in precipitation forecasting, the 3D U-Net model’s ability to

capture fine-scale patterns and improve spatial resolution for both variables represents a significant advancement. These results

suggest that with further refinement, particularly in handling extreme events and complex terrain interactions, neural network-

based post-processing methods like 3D U-Net have the potential to substantially improve both temperature and precipitation185

forecasts at sub-seasonal timescales.

3.3 Predictability in County-scale

To assess the model’s performance at finer spatial scales, crucial for local decision-making and resource management, we eval-

uate forecasts for five selected county-level regions in the Western U.S. Figure 7 presents comprehensive performance metrics

for temperature and precipitation forecasts across these 5 regions, comparing NWP and various 3D U-Net model configura-190

tions over a 32-day lead time. For temperature forecasts at the county scale, 3D U-Net models generally demonstrate improved
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Figure 6. Daily precipitation forecasts for the Western U.S. from March 7 to March 13, 2023, with initial condition on March 6. In other

words, March 7 (13) is the forecast with lead day 1 (7). The layout is the same as Figure 4.
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Figure 7. Performance metrics for temperature (Temp) and precipitation (Precip) forecasts across five county-level regions in the Western

U.S., comparing NWP and various 3D U-Net model configurations (E01, E50, E50M with V1-V8 input variables) over a 32-day lead

time. Metrics include tCorr and RMSE. (a) Temperature correlation, (b) Temperature RMSE, (c) Precipitation correlation, (d) Precipitation

RMSE. Columns represent different regions: (1) San Francisco, CA (2) Orange farm, CA, (3) Salt Lake City, UT, (4) Seattle, WA, and (5)

Wheat farming area, WA.
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or comparable performance relative to NWP while the degree of enhancement varies significantly across regions. Along with

the result of Section 3.1, E50M surpasses the other ensemble configuration’s scores, and no conspicuous performance dif-

ference between varying the number of variables yields. Some areas, such as Seattle, show more pronounced enhancements

in predictability, possibly due to the region’s more uniform maritime climate. In contrast, areas with more complex terrain195

or microclimates show more modest improvements, highlighting the persistent challenges in downscaling to highly localized

conditions.

For precipitation forecasts, 3D U-Net models enhance correlation on the weather scale but not on the sub-seasonal scale

especially in two regions in Washington (Figure 7(c-4,5)). Moreover, correlation exhibits higher variability in performance

across different 3D U-Net configurations compared to temperature forecasts. Figure 7(d) reveals a complex pattern. In most200

regions, 3D U-Net models and NWP show comparable RMSE values, with neither consistently outperforming the other across

all lead times.

Note that the performance differences among 3D U-Net configurations in both targets are generally small at this county

scale, consistent with the findings at larger spatial scales. This implies that the benefits of increased model complexity may

diminish at very fine spatial resolutions, where local factors become increasingly dominant.205

13

https://doi.org/10.5194/egusphere-2025-308
Preprint. Discussion started: 26 March 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 8. RMSE comparison across five U.S. counties for extreme temperature and precipitation forecasts. Results show NWP and various

3D U-Net configurations (E01, E50, E50M) with different input variables (V1-V8). Temperature metrics include 90th percentile (tx90) and

10th percentile (tx10). Precipitation uses 90th percentile (px90). (a) Temperature tx90 RMSE, (b) Temperature tx10 RMSE, (c) Precipitation

px90 RMSE. Columns represent the same regions as in Figure 7.
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Figure 8 elaborates the RMSE of each five regions regarding heat, cold, and precipitation extremes. Even though predicting

heat extremes in Salt Lake City and Seattle in weather-scale is improved (Figure 8(a-3,4)), 3D U-Net models don’t outperform

NWP in these extreme cases. Still, performance varies considerably on location, period, and extreme type. These can be

attributed to several factors: Deep learning models are predisposed to yield results in which extreme values are smooth-out,

called blurring effect (Lam et al., 2023), and tend to converge to the mean state (Bonavita, 2024). Furthermore, Olivetti and210

Messori highlights the similar result of Figure 8 that global scale deep learning models often struggle with capturing the full

range of variability in extreme events, especially in long-term prediction.

4 Conclusions

The findings of this study highlight the dual benefits of using the 3D U-Net architecture for sub-seasonal forecasting, namely

enhanced accuracy and improved spatial resolution. By applying 3D U-Net-based post-processing to NWP models, the study215

demonstrated significant improvements in predicting both temperature and precipitation, especially in complex terrains and

localized regions. The model’s ability to downscale forecasts to higher spatial resolutions provided finer details, which are

crucial for decision-making in regional disaster management. Nonetheless, some possible drawbacks remain evident. First

and foremost, there was a spatial pattern improvement in precipitation, but the underestimation of precipitation in coastal

and mountainous areas persisted. The added diversity in data could not resolve these limitations. Second, predicting extreme220

precipitation events with high accuracy is a challenging task. While the 3D U-Net could capture general patterns and improve

spatial details, it still struggled to fully enhance extreme forecasts’ accuracy.

The 3D U-Net model showed mixed performance for both temperature and precipitation forecasts at the county level. While

3D U-Net outperformed NWP models in predicting temperature such as in Seattle, its performance in precipitation forecast-

ing was less consistent. The model was able to enhance spatial resolution and predictability for temperature at finer scales225

but struggled to deliver comparable improvements for precipitation. While the 3D U-Net model is effective for downscaling

temperature forecasts at the county level, further refinement is needed to improve its ability to capture precipitation patterns,

particularly in regions with complex weather dynamics.

In conclusion, 3D U-Net’s integration into sub-seasonal forecasting models offers substantial improvements such as captur-

ing fine-scale weather patterns over traditional NWPs while maintaining computational efficiency. This model’s ability makes230

it a promising tool for a wide range of atmospheric science applications, from short-term weather to sub-seasonal predictions.

Still, further refinements are necessary to address the underperformance in extreme event predictions and to explore the optimal

balance between model complexity and forecast skill. Future work could focus on enhancing the model’s ability to handle ex-

treme weather conditions and exploring new approaches for post-processing sub-seasonal predictions in diverse and complex

terrains.235
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Code and data availability. The ECWMF perturbed forecast can be downloaded from https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/

type=cf/. The PRISM dataset can be downloaded from https://prism.oregonstate.edu/. The model code is archived on Zenodo(Ryu et al.,

2025), and at https://zenodo.org/records/14776781
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