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Abstract. Sub-seasonal weather forecasting is a major challenge, particularly when high spatial resolution is needed to cap-

ture complex patterns and extreme events. Traditional Numerical Weather Prediction (NWP) models struggle with accurate

forecasting at finer scales, especially for precipitation. In this study, we investigate the use of 3D U-Net architecture for post-

processing sub-seasonal forecasts to enhance both predictability and spatial resolution, focusing on the western U.S. Using

the ECMWF ensemble forecasting system (input) and high-resolution PRISM data (target), we tested different combinations5

of ensemble members and meteorological variables. Our results demonstrate that the 3D U-Net model significantly improves

temperature predictability and consistently outperforms NWP models across multiple metrics. However, challenges remain in

accurately forecasting extreme precipitation events, as the model tends to underestimate precipitation in coastal and mountain-

ous regions. While ensemble members contribute to forecast accuracy, their impact is modest compared to the improvements

achieved through downscaling. The model using the ensemble mean and only the target variables was most efficient. This10

model improved the pattern correlation coefficient for temperature and precipitation by 0.12 and 0.19, respectively, over a

32-day lead time. This study lays the groundwork for further development of neural network-based post-processing methods,

showing their potential to enhance weather forecasts at sub-seasonal timescales.

1 Introduction

Sub-seasonal forecasting based on numerical weather prediction (NWP) models has made significant advances over the past15

few decades, with the ability to predict extreme events such as heat waves up to four weeks in advance (Ardilouze et al., 2017;

Vitart and Robertson, 2018). However, limitations still exist, which have led to increasing interest in deep learning models

as alternative approaches for weather forecasts. Some models directly generate the forecasts from the input data. Weyn et al.

(2021) aimed to provide ensembles similar to those in NWP systems. Two deep learning models, GraphCast and Pangu, have

outperformed NWP in weather and medium-range forecasts, from 1 day to 10 days (Bi et al., 2023; Lam et al., 2023). More20

recently, deep learning models such as Fuxi-S2S have been reported to surpass NWP in sub-seasonal forecasting (Chen et al.,
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2024). Among them, GraphCast does not provide precipitation forecasting, while these models only generate deterministic

forecasts and struggle with predicting extreme weather events (Olivetti and Messori, 2024).

On the other hand, post-processing NWP outputs have also been explored as a means of improving forecast accuracy (Wool-

nough et al., 2024). In recent years, neural network-based post-processing methods have gained traction. The U-Net architecture25

has been widely utilized for weather forecast post-processing due to its ability to capture fine details through contracting and

expanding layers (Horat and Lerch, 2024; Faijaroenmongkol et al., 2023; Deng et al., 2023; Xin et al., 2024). U-Net has also

shown potential in probabilistic forecasting for sub-seasonal predictions (Horat and Lerch, 2024). Furthermore, U-Net was

employed to correct biases in seasonal precipitation forecasts in Thailand (Faijaroenmongkol et al., 2023).

Moreover, generating high-resolution NWP outputs demands significant computational resources, so deep learning has been30

applied to downscale sub-seasonal forecasts and simultaneously improve predictability efficiently. For example, studies in

wildfire weather forecasting in the western United States have successfully downscaled predictions to the county level (Son

et al., 2022). Another example is the improved predictability and downscaling of temperature and precipitation in China,

achieved by using a weighted combination of multiple models based on a U-Net (Xin et al., 2024).

Table 1. Comparison of the proposed method with previous post-processing studies.

Study Type
Input Output

Ensemble Variable Lead time Model by lead time

Our study post-processing individual member used additional variables 0 – 32 days, daily One model for forecast period

Rasp and Lerch (2018) post-processing mean, std used additional variables 48h Lead time specific model

Schulz and Lerch (2022) post-processing mean, std, individual member used additional variables 0–21 h, hourly Lead time specific model

Höhlein et al. (2024) post-processing individual member used additional variables
wind gust: 6h, 12h, 18h

temperature: 24h, 72h, 120h
Lead time specific model

Horat and Lerch (2024) post-processing mean used additional variables
temperature: 3–4W, 5–6 W mean

precipitation: 3–4W, 5–6 W accumulate
Lead time specific model

A key consideration in these studies is the selection of input data. Some studies use only target variables, meaning the same35

variable is used as both input and target, such as using ECMWF precipitation as input and PRISM precipitation as the target

(Xin et al., 2024), while others use a broader set of additional variables (Horat and Lerch, 2024; Weyn et al., 2021). The extent

to which inputs significantly affect sub-seasonal forecasting remains undetermined and case-sensitive. Even though studies on

weather forecasts have found that additional variables play a limited role in temperature forecasting, they have demonstrated

improvements in wind gust predictions (Rasp and Lerch, 2018; Schulz and Lerch, 2022). Additionally, attempts to utilize each40

ensemble member of the NWP for U-Net training resulted in only marginal improvements in weather forecasting accuracy.

(Höhlein et al., 2024). Prior evaluations of predictor sets and ensemble usage have largely been limited to short lead times (≤5

days) and single valid times (Rasp and Lerch, 2018; Schulz and Lerch, 2022; Höhlein et al., 2024), probing predictability at

an instant (Table 1) (Rasp and Lerch, 2018; Schulz and Lerch, 2022; Höhlein et al., 2024). In contrast, we target sub-seasonal

forecasting by supplying sequences of forecast lead times to encode, thereby extending previous findings to lead times longer.45

This study enhances predictability in the Western United States through the 3D U-Net-based post-processing that encodes

temporal information via forecast lead times and downscaling forecasts to higher spatial resolutions. In doing so, we identify
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the role played by ensemble members and additional variables in enhancing predictability and investigate whether downscaling

with neural networks leads to meaningful improvements at smaller scales such as the county level. Section 2 describes the data,

our 3D U-Net architecture which uses three-dimensional convolution to capture spatial and temporal features, pre-processing,50

and evaluation metrics, while Section 3 discusses the results and analysis. Lastly, conclusions are presented in Section 4.

2 Data and Methodology

2.1 Data

This study employs two primary datasets: the European Centre for Medium-Range Weather Forecasts (ECMWF) real-time

perturbed forecasts and the Parameter-elevation Regressions on Independent Slopes Model (PRISM) dataset. First, as the55

ECMWF forecast model from the sub-seasonal to seasonal (S2S) prediction project continues to evolve, providing an increasing

number of ensemble members, forecast periods, and forecast cycles, we select the 1.5◦ × 1.5◦ resolution (approximately 120

km × 120 km over the study region), 50 ensemble perturbation forecasts, twice-weekly forecast cycles, and 32-day lead times

to match the earliest version of the ECMWF model (Roberts et al., 2018). The 2 m temperature and total column water

are provided as daily averaged, while the other variables are available with 6-hourly frequency. We utilize forecasts from60

CY40R1 to CY48R1, covering the period from January 2015 to December 2023. For detailed information on each version

of the model, please refer to the ECMWF model archive: https://confluence.ecmwf.int/display/S2S/ECMWF+Model. These

forecasts span weather to sub-seasonal time scales, offering a comprehensive range of meteorological variables essential for

our neural network post-processing model. Next, we utilize the daily PRISM dataset, developed by Oregon State University,

which provides high-resolution climate data for the United States (Daly et al., 2008) for the sake of model validation and65

high-resolution reference data. PRISM offers grid estimates of variables including temperature, precipitation, and elevation at

a fine spatial resolution of 0.042◦ × 0.042◦ (approximately 4 km). Only data from January 2015 to January 2024 are used,

corresponding to the period of ECMWF forecasts utilized in this study. An overview of the dataset is provided in Table S1.

We chose the Western United States because it is a diverse region, ranging from coastal areas to high mountain ranges, and

the importance of water management emerges in the face of hydrological changes driven by the climate crisis (Siirila-Woodburn70

et al., 2021). To evaluate the model’s performance at finer spatial scales, we select five diverse regions in the Western United

States, each representing different climatological socio-economic characteristics. These regions include three highly populated

urban areas and two important agricultural zones. In detail, we choose (1) San Francisco, California, a major high-populated

metropolitan area with a unique coastal climate; (2) Orange County, California, known for its citrus farming and Mediterranean

climate; (3) the area around the Great Salt Lake in Utah, which combines high population density with a distinctive lake-effect75

climate; (4) Seattle, Washington, representing the Pacific Northwest’s urban environment and maritime climate; and (5) a vast

wheat farming region in eastern Washington, exemplifying the inland agricultural areas of the West (Fig. S1).
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Figure 1. Schematic of the 3D U-Net architecture adapted for weather forecast post-processing. The model consists of a contracting path

(left, green), an expanding path (right, blue), and a bottleneck layer (center, teal), with skip connections (dashed gray arrows) preserving

spatial information. Operations between layers are described in the dashed box on the right corner.

2.2 3D U-Net Architecture

The post-processing approach utilizes the U-Net architecture, originally proposed by Ronneberger et al. (2015) for biomedical

image segmentation. The U-Net is particularly well-suited for our task of enhancing sub-seasonal forecasts due to its ability80

to capture multi-scale features and preserve spatial information through skip connections (Horat and Lerch, 2024). We add

the height dimension to implement the 3D U-Net structure, accounting for the temporal continuity inherent in meteorological

variables such as temperature and geopotential height, as shown in Fig. 1. In this framework, lead time is treated as the vertical

dimension. This allows the model to utilize information from shorter lead times, which typically exhibit higher predictive skill,

to improve sub-seasonal forecasts. Additionally, this structure enables the generation of daily forecasts, in contrast to traditional85

approaches that rely on weekly averages, thereby providing a finer temporal resolution for downstream applications.

The 3D U-Net structure consists of a contracting path (encoder) and an expanding path (decoder), connected by a bottleneck

layer. Our implementation features three contracting-expanding cycles, optimized for the spatial scales relevant to sub-seasonal

forecasting. The contracting path progressively reduces spatial dimensions (moving from fine to coarse) while increasing

feature channels, allowing the model to capture broader contextual information. Conversely, the expanding path restores spatial90

resolution (from coarse to fine), enabling precise localization of weather patterns. In short, this structure concatenates feature

maps from the contracting path to the expanding path so that the model retains fine-grained spatial information that might

otherwise be lost during downsampling.

We train the model using ECMWF forecast fields as input and high-resolution PRISM reanalysis dataset as the target output.

To investigate the impact of ensemble forecasting on post-processing performance, we conduct experiments with different95

combinations of ensemble members: Using only the first ensemble member (E01), utilizing all 50 ensemble members (E50),
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Table 2. Variable list for temperature and precipitation. Additional variable’s order reflects the correlation coefficient, high to low.

Target Additional Variable

Temperature t2m, u500, z200, v200, z500, mslp, topo, tcw

Precipitation pr , mslp, z500, z200, u850, tcw, v500, v10

and employing the mean of all 50 ensemble members (E50M). Further, we explore the impact of input variable selection on

model performance by testing configurations with varying numbers of meteorological additional variables (V1, V2, V4, V8).

This exploration aims to determine whether incorporating additional variables beyond the target variable could enhance the

model’s predictive capabilities.100

In our specific implementation, we integrate the ensemble members and variables into a channel, utilizing a 3D U-Net

structure with forecast lead time, latitude, and longitude as the dimensions. The forecast period ranges from 1 day to 32 days

ahead, with a longitude range of 235.5◦ to 253.25◦ and a latitude range of 31.25◦ to 49◦, consisting of 72 grid points in each.

Based on the forecast start date, the training period spans from January 2015 to December 2020, the validation period from

March 2021 to February 2022, and the test period from January 2023 to December 2023. For example, the E50 V8 configuration105

has 400 input channels, while the E50M V2 configuration has 2 input channels. In the model, the input dimensions are referred

to as height, width, and depth, corresponding to lead time, latitude, and longitude, with sizes of 32, 72, and 72, respectively.

The 3D U-Net model was trained for 100 epochs using the adam-optimizer with an initial learning rate of 1e-4 and a batch

size of 11, selected based on GPU memory limitations (Kingma and Ba, 2017). The network architecture consists of three

encoding and decoding blocks, each composed of 3D convolutional layers with 3×3×3 kernels. Average pooling was used110

for downsampling in the encoder, and transposed convolution was used for upsampling in the decoder. The GeLU activation

function was applied after each convolutional layer. To prevent overfitting, we applied early stopping based on validation loss

with a patience of 10 epochs. The loss function combines mean squared error (MSE) and spatial pattern correlation, with equal

weighting assigned to both components. We chose this combination because each metric emphasizes a different aspect of

prediction performance. MSE evaluates the model’s ability to reproduce the absolute magnitude of values, while spatial pattern115

correlation captures the fidelity of the overall spatial distribution, which is particularly important in sub-seasonal forecasting.

All configurations were selected through trial-and-error experiments to ensure training stability and generalization capability.

These details have been incorporated into the main manuscript for transparency.

2.3 Pre-processing

To assess the sensitivity of the additional variables used in the learning process, we select 16 variables: 2 m temperature,120

precipitation, total column water (tcw), mean sea level pressure (mslp), 10 m u-wind (u10), 10 m v-wind (v10), elevation,

and geopotential height (z), along with u-wind (u) and v-wind (v) at the 850 hPa, 500 hPa, and 200 hPa levels. This includes

variables representing large-scale circulation at four vertical levels: near surface, lower, mid, and upper troposphere. The tcw
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was included to capture atmospheric rivers affecting precipitation in the western US. Elevation was included for its known

benefit in temperature bias correction (Rasp and Lerch, 2018).125

The dataset is split into two pre-processing groups, one being precipitation and tcw, and the other being topography and the

remaining atmospheric variables. For precipitation and tcw, any negative values are set to zero, as they are non-physical for

these types of data. We then apply conservative interpolation, a method that preserves physical quantities like mass or energy

during spatial grid adjustments, to ensure the accurate preservation of values during spatial adjustments. For the remaining

variables, linear interpolation was applied. All datasets were interpolated to the 0.25◦×0.25◦ latitude-longitude grid for model130

input, with PRISM data downscaled from 0.042◦ × 0.042◦ and ECMWF forecasts upscaled from 1.5◦ × 1.5◦. Based on the

fact that predictability can be evaluated using the mean state (Ryu et al., 2024), we calculate the mean state of each additional

variable across both weather and sub-seasonal timescales. The spatial pattern correlation coefficient between the mean state of

each additional variable and that of the target variable is then computed. The absolute values of these correlations are averaged

across the two timescales, and the variables are ranked accordingly. Rankings are shown above each bar in Fig. S2. The top135

eight variables for each target are selected for use in the 3D U-Net model, as summarized in Table 2.

The interpolated dataset is further processed for input into deep learning models. For precipitation and tcw, following Aich

et al. (2024), we applied a transformation to compress the wide range of precipitation values and facilitate stable, efficient

model training. To handle zero values, we added 1 to the data and applied a log10 transformation. The transformed data is

then standardized by calculating the mean and standard deviation, making it suitable for use in the 3D U-Net architecture. For140

the other variables, we follow standardization by computing the mean and standard deviation, similar to the pre-processing

approach used in GraphCast (Lam et al., 2023). This normalization step ensures that all variables are prepared for efficient

training in the 3D U-Net model.

2.4 Evaluation Metrics

Intending to assess the performance of our 3D U-Net-based post-processing model comprehensively, we employ the following145

three key evaluation metrics: pattern correlation (Eq. S1), root mean square error (RMSE) (Eq. S2), and Epre (Eq. 1) (Ryu et al.,

2024). Pattern correlation evaluates the model’s ability to reproduce the spatial distribution of temperature and precipitation

fields, while RMSE quantifies the average magnitude of forecast errors at each grid point. Both metrics are commonly selected

to evaluate sub-seasonal predictions. Lastly, we incorporate the Epre metric, which builds upon the concept of Taylor diagrams

and has been utilized in several studies for evaluating forecast performance (Ryu et al., 2024; Wang et al., 2021; Yang et al.,150

2013). This metric offers a comprehensive assessment by integrating both the variance ratio and the correlation between

predictions and observations. We measure Epre per lead time by averaging values of all initial dates.

Epre =
1

N

N∑
i=1

log


(

σobs,i

σpre,i
+

σpre,i

σobs,i

)2

(1+ r0)
4

4(1+ ri)
4

 (1)

Here, σobs,i and σpre,i denote the standard deviations of observed and predicted values respectively. r0 represents an ideal

correlation (set to 1), and ri is the actual correlation at time step i. N stands for the number of initial dates. The Epre metric is155
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Figure 2. Ensemble sensitivity benchmark scores for the Western U.S., comparing NWP and 3D U-Net models (E01, E50, E50M) for

temperature (top row) and precipitation (bottom row) forecasts over 32 days. Columns show (a, d) pattern correlation, (b, e) RMSE, and (c,

f) Epre, respectively.

designed to yield a value of 0 for perfect predictions, with increasing values indicating greater discrepancies between forecasts

and reanalysis dataset. By incorporating both spread and accuracy considerations, this metric proves particularly valuable for

evaluating the nuanced performance of ensemble predictions in sub-seasonal forecasting contexts.

3 Results and Discussion

3.1 Role of Ensemble and Variables160

The performance of the 3D U-Net model, compared to traditional NWP forecasts, was evaluated across twelve cases combining

three ensemble configurations and four input variable sets (Fig. S3). The 3D U-Net consistently outperformed the raw NWP

forecasts across three evaluation metrics, except for Epre in precipitation. Statistical tests comparing each model’s evaluation

metrics with those of the NWP baseline showed that, apart from the Epre metric for precipitation, the improvements were

significant. For precipitation Epre, the results were mixed: five models (E01 V4, E50 V2, E50 V8, E50M V1, and E50M V2)165

showed no significant improvement, while seven models exhibited significant degradation.

Before conducting a detailed analysis of the results, we examined the potential for seasonal bias and the performance by

land cover type. Our findings show improvements in all seasonal evaluation metrics for both temperature and precipitation,

except for precipitation Epre in spring and summer (Figs. S4 and S5). This suggests that the enhanced performance is not
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Figure 3. Additional variable sensitivity benchmark scores for the Western U.S., comparing NWP and 3D U-Net models with varying input

variables (V1, V2, V4, V8) for temperature and precipitation forecasts over 32 days. Layout is the same as in Fig. 2.

simply due to the model converging toward the seasonal mean across all seasons. Rather, the improvements reflect the model’s170

ability to capture relevant patterns within each season. Additionally, we analyzed model performance by land cover type using

the National Land Cover Database (NLCD). The western United States is dominated by three land cover classes, Shrub/Scrub,

Evergreen Forest, and Grassland/Herbaceous, which collectively cover over 80 percent of the study area (Fig. S6). Our analysis

focused on these classes and found consistent performance patterns across all three (Figs. S7 and S8).

We then grouped experiments with the same input variables and ensemble configurations to assess the role of auxiliary175

variables and ensemble structure, for example, averaging E50 V1, E50 V2, E50 V4, and E50 V8 for the E50 group. Fig. 2

illustrates benchmark scores with respect to the ensemble configurations. In temperature predictions, E50M (see Section 2.2)

shows the best performance and E01 is the most deficient in all metrics. Precipitation predictions also exhibit analogous

operational characteristics: nonetheless, E50 and E50M exhibit significantly aligned trajectories and the overall disparity among

all configurations has diminished in both pattern correlation and RMSE metrics. In contrast, Epre for precipitation does not180

show significant differences between NWP, likely due to limitations in precipitation variance. Results in Fig. 2 interestingly

imply that E01 proved insufficient for effective learning by only the first ensemble member, resulting in performance lagging

behind the other ensemble configurations. However, the performance difference between using E50 and E50M was negligible.

To support these findings, we conducted a complementary experiment trained and tested with ERA5 data and tested on 2022

forecasts. The results indicate that ensembles of 10 and 20 members achieved performance comparable to E50 (Fig. S9). This185

suggests that while post-processing significantly improves forecast skill, the benefits of increasing ensemble members beyond

the mean are limited for both temperature and precipitation predictions in the current setting. This is consistent with previous
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research that ensemble spread plays a limited role in improving weather forecast accuracy, and these findings suggest that this

limitation extends to sub-seasonal forecasts as well (Höhlein et al., 2024). In other words, using the ensemble mean could be

sufficient for achieving optimal performance with the 3D U-Net model.190

Our current approach produces deterministic forecasts and therefore cannot fully represent the uncertainty that NWP ensem-

bles are designed to capture. To address this limitation, future work could consider several directions. One option is to train the

3D U-Net to generate probabilistic forecasts, for example via quantile regression with a pinball loss or by predicting parametric

distributions (e.g., Gaussian) optimized with the Continuous Ranked Probability Score (CRPS)(Hersbach, 2000; Gneiting and

Raftery, 2007). Another is to evaluate the reliability and the relationship between spread and skill using Brier scores, rank195

histograms, and calibration methods such as isotonic regression. Finally, more advanced avenues could include modifying the

network to produce its own ensemble or adopting Bayesian deep learning frameworks.

The impact of input variables on model performance is further explored in Fig. 3, which represents the averages of E01,

E50, and E50M. The 3D U-Net models consistently outperform NWP across all lead times for both temperature and precipi-

tation forecasts. This superiority reinforces the robustness of the neural network approach. Specifically, V8 shows significant200

improvements over V2 and V4 in all temperature metrics, but performs similarly to V1. This may be attributed to the inclusion

of altitude, which has been shown to be one of the most important variables in temperature post-processing (Rasp and Lerch,

2018). However, for precipitation forecasts, V1, V2, V4, and V8 reveal insignificant variations in terms of their predictability

scores. The Epre values for precipitation exhibited comparable patterns to those observed in Fig. 2(f), attributable to analogous

underlying mechanisms. An intriguing observation is that the performance differences among the 3D U-Net models with vary-205

ing numbers of input variables are minimal for both target variables. This contrasts with prior research, which has suggested

that additional variables contribute to forecast improvement (Schulz and Lerch, 2022). However, our finding is consistent with

studies that indicate additional variables may contribute only marginally or in a limited role, particularly when used mean state

(Rasp and Lerch, 2018; Höhlein et al., 2024). This indicates that increasing the number of additional variables in the 3D U-Net

model does not significantly enhance its ability to extract relevant information or improve forecast skills in this context. Such a210

result challenges the conventional wisdom that more input data invariably leads to better predictions, and suggests that the 3D

U-Net architecture in the current setting may be efficiently capturing the most relevant features for the prediction even with a

limited set of input variables. Thus we use E50M V1 and V8 for the following analysis.

3.2 Predictability and Downscaling

Next, we compare the spatial pattern of the forecast between NWPs and E50M 3D U-Net with both V1, which uses only the215

target variables, and V8, which includes all variables. The 3D U-Net model demonstrates significant improvements in both

predictability and downscaling capabilities for temperature forecasts. While precipitation forecasts also show improvement,

the gains are less pronounced than for temperature. For precipitation (Figs. 4 and S10), the 3D U-Net models achieve higher

spatial resolution compared to NWP, revealing fine-scale patterns. However, a consistent underestimation of precipitation is

observed across all lead times, with larger biases than those of the NWP model, particularly in coastal and mountainous220

regions, regardless of the number of input variables. Similar reductions in precipitation during downscaling and U-Net-based
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Figure 4. Comparison of precipitation forecasts (104 forecasts in 2023 are averaged) differences across lead times for the Western U.S. Rows

represent (a) differences between NWP and PRISM, (b) differences between E50M V1 and PRISM, and (c) differences between E50M V8

and PRISM. Columns show forecasts for Days 1, 11, 21, and 31. Differences are depicted using the scale in the lower color bar (-6 to +6

mm/day).

10



Figure 5. Temperature forecasts differences similar to Fig. 4. The layout is the same, with temperature differences shown in Kelvin (K).

post-processing have also been reported in other regions (Xin et al., 2024). Temperature forecasts (Figs. 5 and S11) showcase

more substantial improvements. The 3D U-Net models significantly enhance spatial resolution and reduce overall forecast

errors compared to NWP. The 3D U-Net approach, especially E50M V8, captures fine-scale temperature patterns effectively,

showing reduced biases across various terrain types. Moreover, improvements were observed across the three dominant land225

cover types, which together account for over 80% of the study area (Figs. S7 and S8).

The performance of the 3D U-Net model in extreme cases provides further insights into its capabilities and limitations. Fig. 6

presents an extreme precipitation event in California from March 7 to March 13, 2023. The 3D U-Net models (E50M V1 and

V8) demonstrate improved spatial detail compared to NWP. On March 10, the 3D U-Net model captures the rainfall that NWP

doesn’t (Fig. 6(b-4, c-4, d-4)) and specifies the location, both coastal area and inland, more accurately on 2023-03-11. Even230

so, the models still struggle with accurately capturing the intensity of heavy precipitation events. Increasing the training data

can be one alternative to improve precipitation extremes (Hu et al., 2023). Alternatively, this limitation may stem from the

post-processing technique itself and warrants further investigation.
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Figure 6. Daily precipitation forecasts for the Western U.S. from March 7 to March 13, 2023, with initial condition on March 6. In other

words, March 7 (13) is the forecast with lead day 1 (7). Rows represent (a) PRISM observations, (b) NWP forecasts, (c) 3D U-Net E50M V1

predictions, (d) 3D U-Net E50M V8 predictions, (e) differences between NWP and PRISM, (f) differences between E50M V1 and PRISM,

and (g) differences between E50M V8 and PRISM. Precipitation amounts (rows a-d) are shown using the scale in the upper color bar, while

differences (rows e-g) are depicted using the scale in the lower color bar. Columns show forecasts for Days 1, 11, 21, and 31.

12



Even in extreme temperature cases, Figs. S12 and S13 confirm results that 3D U-Nets are superior to NWP. The overall

performance of E50M V1 in the high-temperature case and E50M V8 in the low-temperature case, as well as the overall235

differences and recovery from cold waves, appear to outperform NWP. However, limitations are evident, highlighting the

persistent challenges in predicting extreme events despite the improved spatial resolution.

The contrasting performance between precipitation and temperature forecasts underscores the varying complexities in pre-

dicting these two variables. Although some challenges are left in precipitation forecasting, the 3D U-Net model’s ability to

capture fine-scale patterns and improve spatial resolution for both variables represents a significant advancement. These results240

suggest that with further refinement, particularly in handling extreme events and complex terrain interactions, neural network-

based post-processing methods like 3D U-Net have the potential to substantially improve both temperature and precipitation

forecasts at sub-seasonal timescales.

3.3 Predictability in County-scale

To assess the model’s performance at finer spatial scales, crucial for local decision-making and resource management, we245

evaluate forecasts for five selected county-level regions in the Western U.S. Fig. 7 presents comprehensive performance metrics

for temperature and precipitation forecasts across these 5 regions (Fig. S1), comparing NWP with the most efficient model

(E50M V1) over a 32-day lead time. Results for all models are shown in Fig. S14. The Epre metric was excluded for county-

level results because its calculation requires spatial pattern correlation, which cannot be obtained from area-averaged values.

For temperature forecasts at the county scale, 3D U-Net models generally demonstrate improved or comparable performance250

relative to NWP while the degree of enhancement varies significantly across regions. Along with the result of Section 3.1,

E50M surpasses the other ensemble configuration’s scores, and no conspicuous performance difference between varying the

number of variables yields. Some areas, such as Seattle, show more pronounced enhancements in predictability, possibly due

to the region’s more uniform maritime climate. In contrast, areas with more complex terrain or microclimates show more

modest improvements, highlighting the persistent challenges in downscaling to highly localized conditions. Incorporating land255

cover, which is already a key input in NWP models (López-Espinoza et al., 2020), could offer additional improvements in such

regions.

For precipitation forecasts, 3D U-Net models enhance correlation on the weather scale but not on the sub-seasonal scale

especially in two regions in Washington (Fig. 7(c-4,5)). Moreover, correlation exhibits higher variability in performance across

different 3D U-Net configurations compared to temperature forecasts. Fig. 7(d) reveals a complex pattern. In most regions,260

3D U-Net models and NWP show comparable RMSE values, with neither consistently outperforming the other across all lead

times.

Note that the performance differences among 3D U-Net configurations for both targets are generally small at this county

scale, while not identical to the patterns observed at larger spatial scales. This may be partly due to the very small size of the

counties, which can increase uncertainty in the evaluation. As suggested by the land cover analysis, including a sufficiently265

large number of grids makes performance improvements more apparent, implying that the limited spatial coverage may have
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Figure 7. Performance metrics for temperature (Temp) and precipitation (Precip) forecasts across five county-level regions in the Western

U.S., comparing NWP with the most efficient model (E50M V1) over a 32-day lead time. Metrics include tCorr and RMSE. (a) Temperature

correlation, (b) Temperature RMSE, (c) Precipitation correlation, (d) Precipitation RMSE. Columns represent different regions: (1) San

Francisco, CA (2) Orange farm, CA, (3) Salt Lake City, UT, (4) Seattle, WA, and (5) Wheat farming area, WA.

constrained the observed benefits. Additionally, this implies that the benefits of increased model complexity may diminish at

very fine spatial resolutions, where local factors become increasingly dominant.
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Figure 8. RMSE comparison across five U.S. counties for extreme temperature and precipitation forecasts. Results show NWP and various

3D U-Net configurations (E01, E50, E50M) with different input variables (V1-V8). Temperature metrics include 90th percentile (tx90) and

10th percentile (tx10). Precipitation uses 90th percentile (px90). (a) Temperature tx90 RMSE, (b) Temperature tx10 RMSE, (c) Precipitation

px90 RMSE. Columns represent the same regions as in Fig. 7.
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Fig. 8 elaborates the RMSE of each five regions regarding heat, cold, and precipitation extremes. Extreme events are defined

as the 39 cases corresponding to the top 10% and bottom 10% of daily temperature, and the top 10% of daily precipitation,270

within the period from January 2023 to January 2024. The temperature and precipitation distributions for this period are shown

in Fig. S15. Even though predicting heat extremes in Salt Lake City and Seattle in weather-scale is improved (Fig. 8(a-3,4)),

3D U-Net models don’t outperform NWP in these extreme cases. Still, performance varies considerably on location, period,

and extreme type. These can be attributed to several factors: Deep learning models are predisposed to yield results in which

extreme values are smoothed out, called blurring effect (Lam et al., 2023), and tend to converge to the mean state (Bonavita,275

2024). Furthermore, Olivetti and Messori (2024) highlights the similar result of Fig. 8 that global scale deep learning models

often struggle with capturing the full range of variability in extreme events, especially in long-term prediction.

4 Conclusions

The findings of this study highlight the dual benefits of using the 3D U-Net architecture for sub-seasonal forecasting, namely

enhanced accuracy and improved spatial resolution. By applying 3D U-Net-based post-processing to NWP models, the study280

demonstrated significant improvements in predicting both temperature and precipitation, especially in complex terrains and

localized regions. The model’s ability to downscale forecasts to higher spatial resolutions provided finer details, which are

crucial for decision-making in regional disaster management. Furthermore, our results suggest that incorporating additional

model-derived predictors or individual ensemble members yields limited improvement in sub-seasonal forecast postprocessing.

Notably, the ensemble mean alone performs comparably to using the full set of ensemble components, pointing to a more285

computationally efficient alternative. These findings extend prior conclusions drawn from short-range forecasting studies (Rasp

and Lerch, 2018; Schulz and Lerch, 2022; Höhlein et al., 2024) into the sub-seasonal prediction regime. Overall, the most

efficient model was the ensemble average using only the target variables (E50M V1), and improvements were confirmed

across all evaluation metrics except for the Epre index for precipitation. In particular, at a 32-day lead time, temperature and

precipitation showed increases of 0.12 and 0.18, respectively, in the pattern correlation coefficient compared to NWP, along290

with reductions of approximately 31% and 22% in RMSE.

Nonetheless, some possible drawbacks remain evident. First and foremost, there was a spatial pattern improvement in precip-

itation, but the underestimation of precipitation in coastal and mountainous areas persisted. The added diversity in data could

not resolve these limitations. Second, predicting extreme precipitation events with high accuracy is a challenging task. While

the 3D U-Net could capture general patterns and improve spatial details, it still struggled to fully enhance extreme forecasts’295

accuracy.

The 3D U-Net model showed mixed performance for both temperature and precipitation forecasts at the county level. While

3D U-Net outperformed NWP models in predicting temperature such as in Seattle, its performance in precipitation forecast-

ing was less consistent. The model was able to enhance spatial resolution and predictability for temperature at finer scales

but struggled to deliver comparable improvements for precipitation. While the 3D U-Net model is effective for downscaling300
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temperature forecasts at the county level, further refinement is needed to improve its ability to capture precipitation patterns,

particularly in regions with complex weather dynamics.

In conclusion, 3D U-Net’s integration into sub-seasonal forecasting models offers substantial improvements such as captur-

ing fine-scale weather patterns over traditional NWPs while maintaining computational efficiency. This model’s ability makes

it a promising tool for a wide range of atmospheric science applications, from short-term weather to sub-seasonal predictions.305

To move beyond “artificial neural network improves NWP,” we emphasize operational feasibility and application value: an

ensemble-mean, target-only configuration reduces input channels from 400 to 1–2, lowering memory and latency by more than

two orders of magnitude and enabling daily, high-resolution S2S post-processing on commodity GPUs for routine water, fire,

and agricultural decision-support. The approach is robust across seasons and land-cover types, yet skill still degrades for heavy

precipitation in complex terrain, addressing these extremes and optimizing the complexity skill balance are priorities. To meet310

these challenges, we propose advancing into the probabilistic domain.
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2025), and at https://zenodo.org/records/14776781

Author contributions. The study was conceptualized by Jihun Ryu, and Jin-Ho Yoon. Jihun Ryu has done the data analysis, visualization,315

and writing the original draft. Hisu Kim has done the data analysis and writing the original draft. Reviewing and editing the manuscript is

done by Shih-Yu (Simon) Wang and Jin-Ho Yoon.

Competing interests. The authors declare no competing interests.

Acknowledgements. This research is funded by the National Research Foundation of Korea under RS-2025-02363044 and the Korean Me-

teorological Agency under the grant KMI2018-07010.320

17

https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/
https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/
https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/
https://prism.oregonstate.edu/
https://zenodo.org/records/14776781


References

Aich, M., Hess, P., Pan, B., Bathiany, S., Huang, Y., and Boers, N.: Conditional diffusion models for downscaling & bias correction of Earth

system model precipitation, arXiv preprint arXiv:2404.14416, 2024.

Ardilouze, C., Batté, L., and Déqué, M.: Subseasonal-to-seasonal (S2S) forecasts with CNRM-CM: a case study on the July 2015 West-

European heat wave, Advances in Science and Research, 14, 115–121, 2017.325

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks,

Nature, 619, 533–538, 2023.

Bonavita, M.: On some limitations of current machine learning weather prediction models, Geophysical Research Letters, 51,

e2023GL107 377, 2024.

Chen, L., Zhong, X., Li, H., Wu, J., Lu, B., Chen, D., Xie, S.-P., Wu, L., Chao, Q., Lin, C., et al.: A machine learning model that outperforms330

conventional global subseasonal forecast models, Nature Communications, 15, 6425, 2024.

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive

mapping of climatological temperature and precipitation across the conterminous United States, International Journal of Climatology: a

Journal of the Royal Meteorological Society, 28, 2031–2064, 2008.

Deng, Q., Lu, P., Zhao, S., and Yuan, N.: U-Net: A deep-learning method for improving summer precipitation forecasts in China, Atmospheric335

and Oceanic Science Letters, 16, 100 322, 2023.

Faijaroenmongkol, T., Sarinnapakorn, K., and Vateekul, P.: Sub-Seasonal Precipitation Bias-Correction in Thailand Using Attention U-Net

With Seasonal and Meteorological Effects, IEEE Access, 11, 135 463–135 475, 2023.

Gneiting, T. and Raftery, A. E.: Strictly proper scoring rules, prediction, and estimation, Journal of the American statistical Association, 102,

359–378, 2007.340

Hersbach, H.: Decomposition of the continuous ranked probability score for ensemble prediction systems, Weather and Forecasting, 15,

559–570, 2000.

Höhlein, K., Schulz, B., Westermann, R., and Lerch, S.: Postprocessing of ensemble weather forecasts using permutation-invariant neural

networks, Artificial Intelligence for the Earth Systems, 3, e230 070, 2024.

Horat, N. and Lerch, S.: Deep Learning for Postprocessing Global Probabilistic Forecasts on Subseasonal Time Scales, Monthly Weather345

Review, 152, 667–687, 2024.

Hu, W., Ghazvinian, M., Chapman, W. E., Sengupta, A., Ralph, F. M., and Delle Monache, L.: Deep learning forecast uncertainty for

precipitation over the Western United States, Monthly Weather Review, 151, 1367–1385, 2023.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, https://arxiv.org/abs/1412.6980, 2017.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., et al.:350

Learning skillful medium-range global weather forecasting, Science, 382, 1416–1421, 2023.

López-Espinoza, E. D., Zavala-Hidalgo, J., Mahmood, R., and Gómez-Ramos, O.: Assessing the impact of land use and land cover data

representation on weather forecast quality: A case study in central mexico, Atmosphere, 11, 1242, 2020.

Olivetti, L. and Messori, G.: Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES,

Pangu-Weather and GraphCast, EGUsphere, 2024, 1–35, https://doi.org/10.5194/egusphere-2024-1042, 2024.355

Rasp, S. and Lerch, S.: Neural networks for postprocessing ensemble weather forecasts, Monthly Weather Review, 146, 3885–3900, 2018.

18

https://arxiv.org/abs/1412.6980
https://doi.org/10.5194/egusphere-2024-1042


Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P.: Climate model configurations of the ECMWF Integrated

Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP, Geoscientific model development, 11, 3681–3712, 2018.

Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Com-

puting and Computer-Assisted Intervention – MICCAI 2015, edited by Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F., pp.360

234–241, Springer International Publishing, Cham, ISBN 978-3-319-24574-4, 2015.

Ryu, J., Wang, S.-Y., Jeong, J.-H., and Yoon, J.-H.: Sub-seasonal prediction skill: is the mean state a good model evaluation metric?, Climate

Dynamics, pp. 1–16, 2024.

Ryu, J., Kim, H., Wang, S.-Y. S., and Yoon, J.-H.: W-US-BCSR/IRnAF: 1.0 Initial Release (v1.0), https://doi.org/10.5281/zenodo.14776781,

2025.365

Schulz, B. and Lerch, S.: Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison, Monthly

Weather Review, 150, 235–257, 2022.

Siirila-Woodburn, E. R., Rhoades, A. M., Hatchett, B. J., Huning, L. S., Szinai, J., Tague, C., Nico, P. S., Feldman, D. R., Jones, A. D.,

Collins, W. D., et al.: A low-to-no snow future and its impacts on water resources in the western United States, Nature Reviews Earth &

Environment, 2, 800–819, 2021.370

Son, R., Ma, P.-L., Wang, H., Rasch, P. J., Wang, S.-Y., Kim, H., Jeong, J.-H., Lim, K.-S. S., and Yoon, J.-H.: Deep learning provides

substantial improvements to county-level fire weather forecasting over the western united states, Journal of Advances in Modeling Earth

Systems, 14, e2022MS002 995, 2022.

Vitart, F. and Robertson, A. W.: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events, npj climate and

atmospheric science, 1, 3, 2018.375

Wang, L., Qian, Y., Leung, L. R., Chen, X., Sarangi, C., Lu, J., Song, F., Gao, Y., Lin, G., and Zhang, Y.: Multiple metrics informed

projections of future precipitation in China, Geophysical Research Letters, 48, e2021GL093 810, 2021.

Weyn, J. A., Durran, D. R., Caruana, R., and Cresswell-Clay, N.: Sub-seasonal forecasting with a large ensemble of deep-learning weather

prediction models, Journal of Advances in Modeling Earth Systems, 13, e2021MS002 502, 2021.

Woolnough, S., Vitart, F., Robertson, A. W., Coelho, C. A., Lee, R., Lin, H., Kumar, A., Stan, C., Balmaseda, M., Caltabiano, N., et al.:380

Celebrating 10 Years of the Subseasonal to Seasonal Prediction Project and Looking to the Future, Bulletin of the American Meteorological

Society, 105, E521–E526, 2024.

Xin, F., Shen, Y., and Lu, C.: Application of a weighted ensemble forecasting method based on online learning in subseasonal forecast in the

South China, Geoscience Letters, 11, 5, 2024.

Yang, B., Qian, Y., Lin, G., Leung, L. R., Rasch, P. J., Zhang, G. J., McFarlane, S. A., Zhao, C., Zhang, Y., Wang, H., et al.: Uncertainty385

quantification and parameter tuning in the CAM5 Zhang-McFarlane convection scheme and impact of improved convection on the global

circulation and climate, Journal of Geophysical Research: Atmospheres, 118, 395–415, 2013.

19

https://doi.org/10.5281/zenodo.14776781

