Supplement to Balloon-borne Stratospheric Vertical Profiling of Carbonyl Sulfide and Evaluation of Ozone Scrubbers

Alessandro Zanchetta et al.

Correspondence to: Huilin Chen (huilin.chen@rug.nl, huilin.chen@nju.edu.cn)

5 S1 Tests on gas species removal due to O₃ scrubbers

The effects of different O₃ scrubbers on COS and O₃, tested on tropospheric compressed air, are shown in Fig. S1 and S2. The p-values of the ANOVA test for each species are reported in Table S1 and Table S2.

When O₃ was not generated, none of the two scrubbers showed significant differences with the bypass channel neither for COS, nor for O₃. Clearly, the O₃ scrubbing was performed quantitatively by the squalene-based scrubber, while the cotton-based one was likely saturated and could not remove the vast majority of the produced ozone. When O₃ was produced in the UV lamp, we measured higher COS molar fractions both with cotton and with squalene. We believe this is due to oxidation of other compounds (e.g., CS₂, DMS) in presence of UV radiation, and not due to the scrubbers themselves. The higher uncertainty for the tests with squalene is due to some spectroscopical effects that affected the instrument precision during part of the tests (not shown). Either way, no sign of negative biases on COS was measured for either of the two scrubbers.

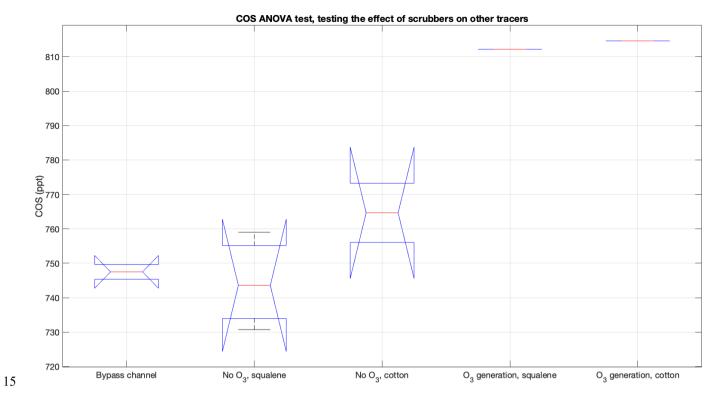


Figure S1: effects of different ozone scrubbers on COS.

Table S1: p-values resulting from the ANOVA test for COS molar fractions in the tracer removal tests. The p-values = 0 are due to a comparison between single measurements, therefore no standard deviation can be computed.

cos	Bypass channel	No O ₃ , squalene	No O ₃ , cotton	O ₃ generation, squalene	O ₃ generation,
Bypass channel		0.792997793	0.192430962	0.036612983	0.0353083
No O ₃ , squalene	0.792997793		0.199969975	0.053576395	0.050245879
No O ₃ , cotton	0.192430962	0.199969975		0.193251053	0.184500858
O ₃ generation, squalene	0.036612983	0.053576395	0.193251053		0
O ₃ generation, cotton	0.0353083	0.050245879	0.184500858	0	

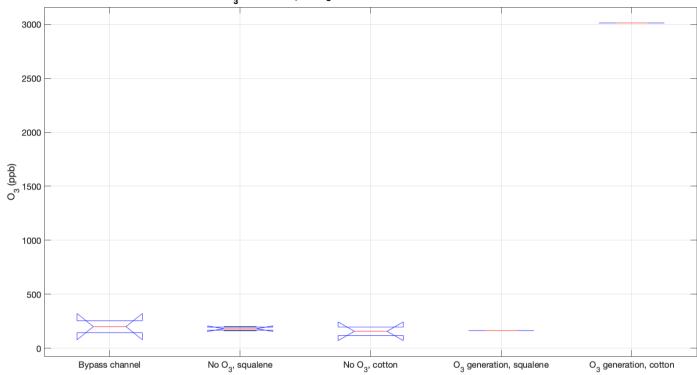


Figure S2: effects of different ozone scrubber on O₃.

Table S2: p-values resulting from the ANOVA test for O_3 molar fractions in the tracer removal tests. The p-values = 0 are due to a comparison between single measurements, therefore no standard deviation can be computed.

Оз	Bypass channel	No O3, squalene	No O3, cotton	O ₃ generation, squalene	O ₃ generation, cotton
Bypass channel		0.691559115	0.588818228	0.768190602	0.021501555
No O ₃ , squalene	0.691559115		0.510877137	0.510592973	5.93333E-05
No O3, cotton	0.588818228	0.510877137		0.936761332	0.015074124
O ₃ generation, squalene	0.768190602	0.510592973	0.936761332		0
O ₃ generation, cotton	0.021501555	5.93333E-05	0.015074124	0	

20

S2 p-values from ANOVA test on stratospheric-mimicking gas mixture

Figures S3-S6 and their relative Table S3-S6 illustrate the results of the ANOVA tests on the other tracers measured by the QCLS. CO, similarly to COS, seem to be produced during the O₃ generation. The other tracers seem to be affected by O₃ and by squalene only marginally, with their ANOVA tests resulting in non-significant differences.

30

Table S7 and S8 report the p-values related to the ANOVA tests depicted in Fig. 3 and 4 in the main text, respectively.

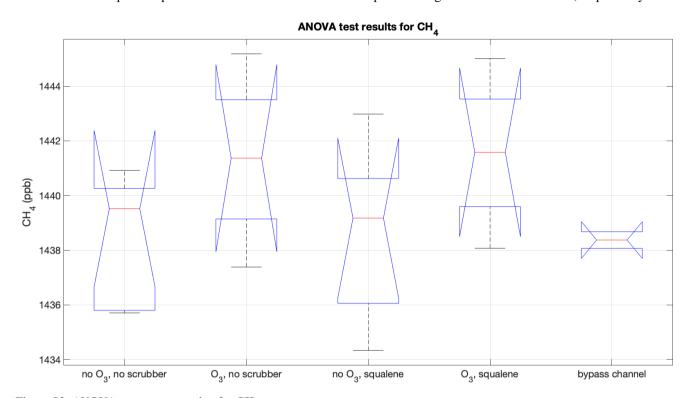


Figure S3: ANOVA test representation for CH₄.

Table S3: p-values resulting from the ANOVA test for CH₄ molar fractions.

CH4	No O ₃ , no scrubber	O ₃ generation, no scrubber	No O3, squalene	O ₃ generation, squalene	Bypass channel
No O ₃ , no scrubber		0.155378193	0.949217256	0.108066673	0.88969152
O ₃ generation, no scrubber	0.155378193		0.236982215	0.915871475	0.288201694
No O ₃ , squalene	0.949217256	0.236982215		0.184145628	0.885169195
O ₃ generation, squalene	0.108066673	0.915871475	0.184145628		0.212687552
Bypass channel	0.88969152	0.288201694	0.885169195	0.212687552	

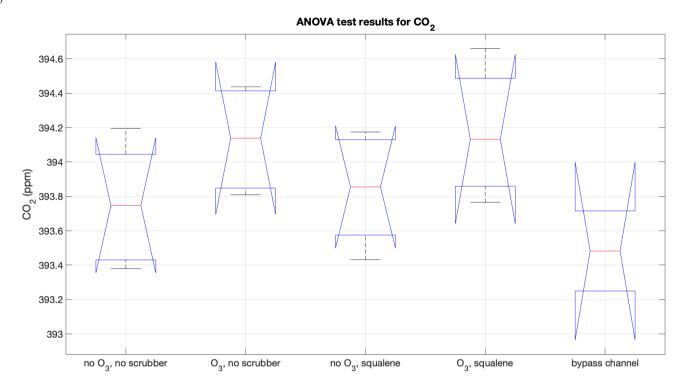
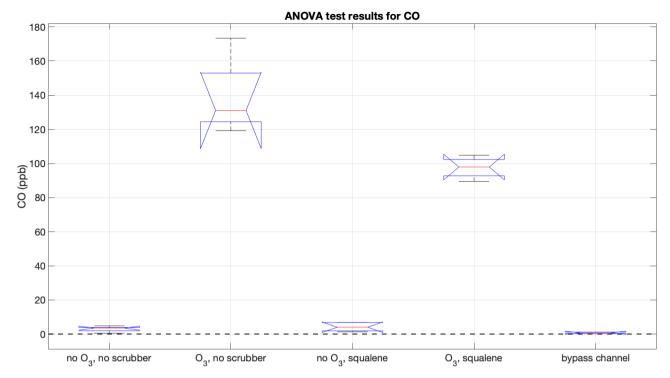
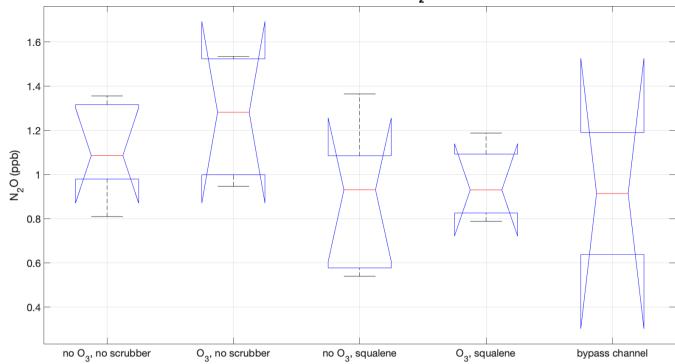


Figure S4: ANOVA test representation for CO₂.

Table S4: p-values resulting from the ANOVA test for CO₂ molar fractions.

CO ₂	No O3, no scrubber	O ₃ generation, no scrubber	No O3, squalene	O ₃ generation, squalene	Bypass channel
No O ₃ , no scrubber		0.120593543	0.674240248	0.111410702	0.351443899
O ₃ generation, no scrubber	0.120593543		0.178580774	0.875554317	0.084883879
No O ₃ , squalene	0.674240248	0.178580774		0.161549618	0.200493163
O ₃ generation, squalene	0.111410702	0.875554317	0.161549618		0.104353378
Bypass channel	0.351443899	0.084883879	0.200493163	0.104353378	




Figure S5: ANOVA test representation for CO.

40

Table S5: p-values resulting from the ANOVA test for CO molar fractions.

СО	No O ₃ , no scrubber	O ₃ generation,	No O ₃ , squalene	O ₃ generation,	Bypass channel
No O3, no scrubber	561 410 201	5.44265E-07	0.382133147	4.43905E-10	0.100030491
		211.2332 07	0.002100117		3.133320131
O ₃ generation, no scrubber	5.44265E-07		6.06495E-07	0.015757839	0.001519548
No O3, squalene	0.382133147	6.06495E-07		8.38815E-10	0.123950163
O ₃ generation, squalene	4.43905E-10	0.015757839	8.38815E-10		3.69703E-05
Bypass channel	0.100030491	0.001519548	0.123950163	3.69703E-05	

ANOVA test results for N₂O

45 Figure S6: ANOVA test representation for N₂O.

Table S6: p-values resulting from the ANOVA test for N₂O molar fractions.

N ₂ O	No O3, no	O ₃ generation,	No O3,	O ₃ generation,	Bypass
	scrubber	no scrubber	squalene	squalene	channel
No O3, no scrubber		0.359325384	0.217409312	0.277689103	0.377699683
O ₃ generation,	0.359325384		0.112412874	0.137165062	0.289831556
no scrubber	0.339323364		0.112412074	0.137103002	0.207031330
No O ₃ , squalene	0.217409312	0.112412874		0.761757143	0.972574391
O ₃ generation, squalene	0.277689103	0.137165062	0.761757143		0.843816095
Bypass channel	0.377699683	0.289831556	0.972574391	0.843816095	

Table S7: p-values resulting from the ANOVA test for COS molar fractions (see Fig. A2 in the main text).

cos	No O ₃ , no scrubber	O ₃ generation, no scrubber	No O ₃ , squalene	O ₃ generation, squalene	Bypass channel
No O ₃ , no scrubber		0.00096097	0.38152	0.0048316	0.16598
O ₃ generation,	0.00096097		0.0090425	0.028935	0.028613

no scrubber					
No O ₃ , squalene	0.38152	0.0090425		0.11413	0.92189
O ₃ generation, squalene	0.0048316	0.028935	0.11413		0.0080331
Bypass channel	0.16598	0.028613	0.92189	0.0080331	

50 Table S8: p-values resulting from the ANOVA tests for O₃ molar fractions (see Fig. A2 in the main text).

O ₃	No O3, no	O ₃ generation,	No O3,	O ₃ generation,	Bypass
	scrubber	no scrubber	squalene	squalene	channel
No ozone, no scrubber		1.0201E-09	0.55868	0.56586	0.89317
O ₃ generation, no scrubber	1.0201E-09		3.0293E-10	8.3646E-08	3.3303E-05
No O3, squalene	0.55868	3.0293E-10		0.89497	0.72736
O ₃ generation, squalene	0.56586	8.3646E-08	0.89497		0.68112
Bypass channel	0.89317	3.3303E-05	0.72736	0.68112	

S3 Tropopause heights of the presented flights

Figures S7 – S15 show lapse rate and relative humidity for all flights. The tropopause height was identified following the thermal tropopause height definition by WMO (1957). For TRN1, no temperature or relative humidity data was available, therefore the tropopause height could not be identified. SOD5 (Fig. S11) shows a particularly weak tropopause, with H_2O injections up to almost 15 km of altitude.

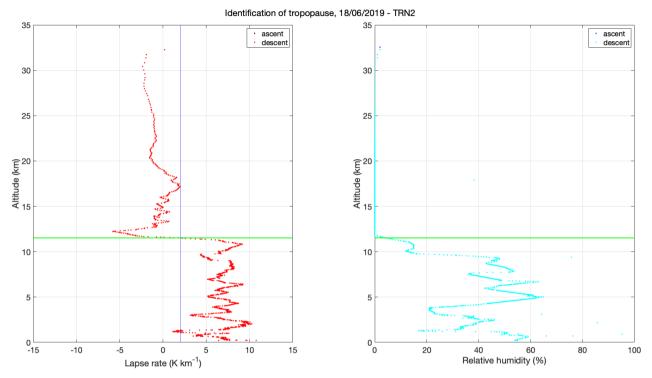


Figure S7: identification of the tropopause height for TRN2 (11.54 km).

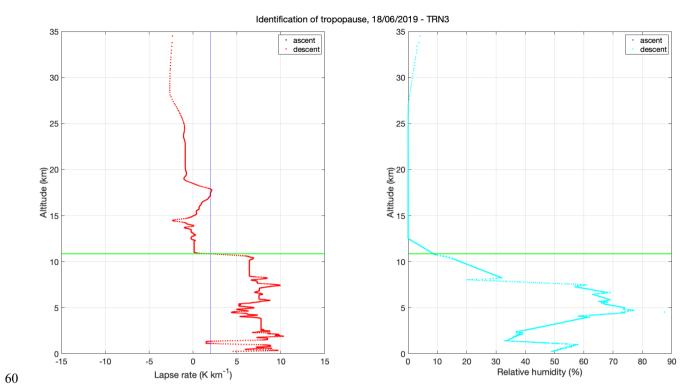


Figure S8: identification of the tropopause height for TRN3 (10.79 km).

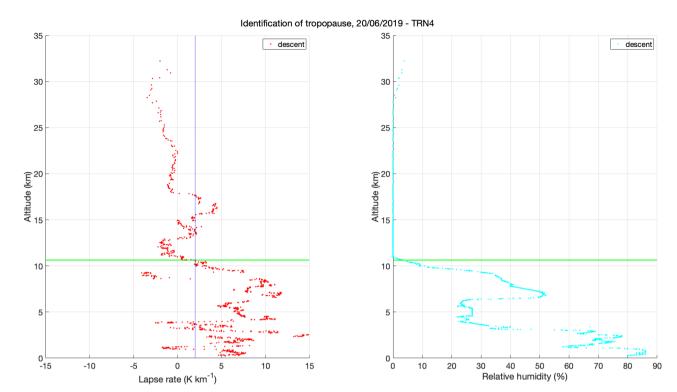
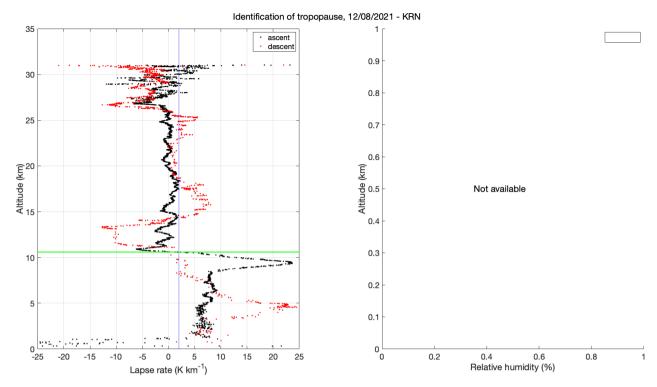



Figure S9: identification of the tropopause height for TRN4 (10.69 km).

65 Figure S10: identification of the tropopause height for KRN (10.93 km).

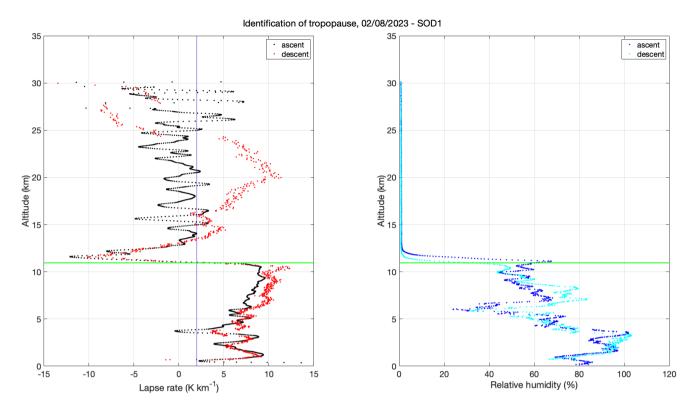


Figure S11: identification of the tropopause height for SOD1 (10.94 km).

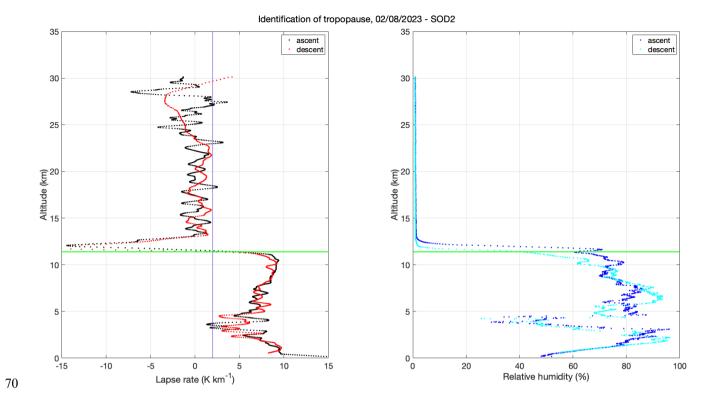


Figure S12: identification of the tropopause height for SOD2 (11.37 km).

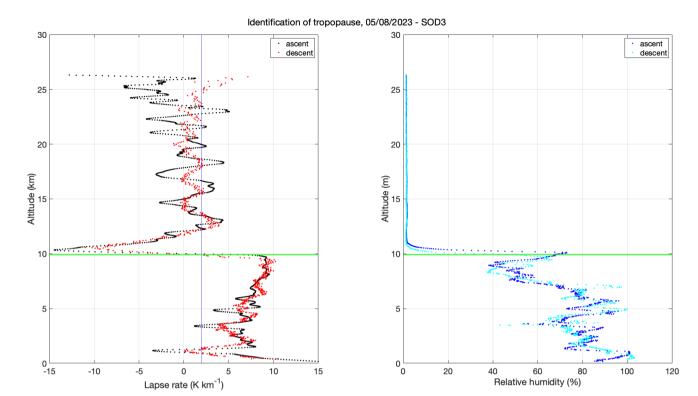
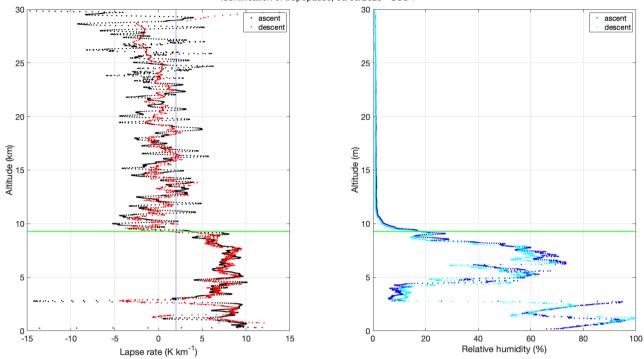
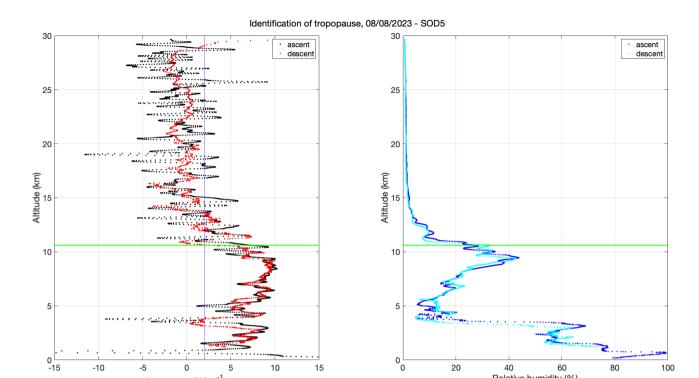




Figure S13: identification of the tropopause height for SOD3 (9.92 km).

75 Figure S14: identification of the tropopause height for SOD4 (9.25 km).


40 60 Relative humidity (%)

Figure S15: identification of the tropopause height for SOD5 (10.59 km).

Lapse rate (K km⁻¹)

-10

S4 Correlation between CH₄ and N₂O in the observed profiles

80 Figure S16: correlation between CH₄ and N₂O in the Trainou campaign (2019).

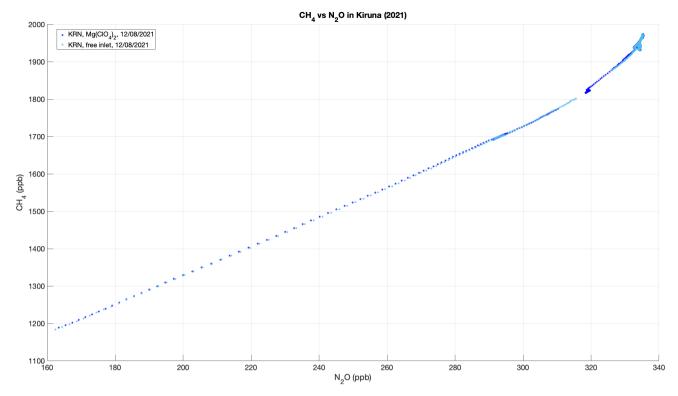


Figure S17: correlation between CH4 and N2O in the Kiruna campaign (2021).

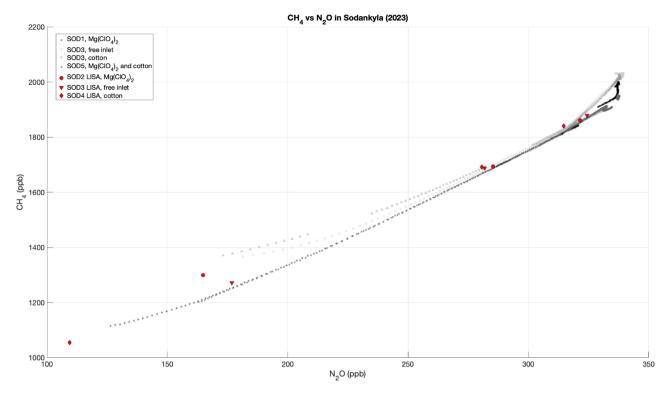


Figure S18: correlation between CH4 and N2O in the Sodankylä campaign (2023).