Responses to Reviewer 2

Dear Reviewer, we appreciate your time and effort in acknowledging and thoroughly reviewing
our manuscript. We are truly grateful for your constructive comments and insightful suggestions,
which encourage and help us to improve the manuscript. We have revised the manuscript carefully

based on your comments.

In the responses below, your comments are provided in black text and our responses are provided

in blue text.

Review of “Regime-based Aerosol-Cloud Interactions from CALIPSO-MODIS and the Energy
Exascale 2 Earth System Model version 2 (E3SMv2) over the Eastern North Atlantic” by Zheng

et al.

In this work, the authors investigate aerosol-cloud interactions (ACI) in the Eastern North Atlantic
(ENA) with satellite observations and nudged Energy Exascale Earth System Model version 2
(E3SMv2) simulations. In particular, the authors examine differences in liquid water path (LWP),
droplet number concentration (Nd), and their covariance between observations and simulations.
They find that, in general, there are systematic seasonal discrepancies between E3SMv2 and
satellite observations of LWP and Nd that line up with prior studies. They also find the presence
of the “inverted-V” in the models and observations, with a more pronounced V shape in the model
output. To investigate the effect of ENA meteorology on these results, the authors employ a
machine learning method to partition the data into 4 regimes based on synoptic conditions: pre-
trough, post-trough, ridge, and trough. This more-targeted analysis reveals additional, interesting
insights into the differences between the model and the observations and allow for more specific

inferences on the importance of meteorology on ACI processes.

The paper is well-organized and detailed, showcasing valuable results that are interesting on their
own merit and motivate exciting future research. The reanalysis-clustering method for regime
analysis in particular I thought was a strong result with broad-reaching applications. ENA is
strongly governed by transient synoptic weather systems, and I felt this methodology provided an

interesting alternative to the usual methods of regime classification. While I think this is overall a



strong paper, I do have some comments that I feel should be addressed before publication. These

are detailed below. Good work!

We sincerely appreciate your thoughtful and constructive feedback. All comments have been

carefully considered, and the manuscript has been revised accordingly.

General comments

One key problem I have with this paper is that I think it “buries the lede” in terms of its subject
matter. In the abstract, the regime names seem to come out of nowhere, and the title gives no
indication that synoptic regimes are a key piece of subject matter for this work. Synoptic systems
as an important lens through which we should be viewing this data aren’t suggested until well into
the paper (end of section 2) and aren’t truly discussed until section 4. While I understand the desire
to maintain a clear narrative, I think highlighting this portion of the analysis more clearly in the

abstract and motivating it more directly in the introduction would help strongly with readability.

Thanks for the suggestion. We have carefully revised the abstract, introduction, and the narrative

in Section 3 to better reflect the synoptic regime-based framework of the analyses.
The new abstract now reads:

‘Abstract. This study investigates aerosol-cloud interactions in marine boundary layer (MBL)
clouds using an advanced deep-learning-driven synoptic-regime-based framework, combining
satellite data (CALIPSO vertically resolved aerosol extinction and MODIS cloud properties) with
1° nudged Energy Exascale Earth System Model version 2 (E3SMv2) simulation over the Eastern
North Atlantic (ENA; ~10°%10°, 2006-2014). The E3SMv2 captures observed seasonal variations
in cloud droplet number concentrations (Ng) and liquid water path (LWP), though it systematically
underestimates Ny. We then partition ENA meteorology into four synoptic regimes (Pre-Trough,
Post-Trough, Ridge, Trough) via a deep-learning clustering of ERAS reanalysis fields, enabling
regime-dependent aerosol-cloud interactions analyses. Both satellite and E3SMv2 exhibit an
inverted-V LWP—Ny relationship. In Post-Trough and Ridge regimes, the satellite shows stronger

negative LWP—N, sensitivities than in Pre-Trough regime. The Trough regime displays a muted



satellite LWP response. In comparison, the model predicts more exaggerated LWP responses
across regimes, with LWP increasing too quickly at low Ny and decreasing more sharply at high
Nu, especially in Pre-Trough and Trough regimes. These exaggerated model LWP sensitivities may
stem from uncertainties in representing drizzle processes, entrainment, and turbulent mixing. As
for Ny susceptibility to aerosols, Nyincreases with MBL aerosol extinction in both datasets, but the
simulated aerosol-cloud interactions appear oversensitive to meteorological conditions. Overall,
E3SMv2 better captures aerosol effects under regimes that favor stratiform clouds (Post-Trough,
Ridge), but performance deteriorates for regimes with deeper, dynamically complex clouds
(Trough), highlighting the need for improved representations of those cloud processes in climate

models.’

And we have highlighted the importance of synoptic regimes in assessing the ACI in the

introduction:

‘Moreover, synoptic systems organize boundary-layer clouds on multi-day timescales and strongly
modulate aerosol-cloud-precipitation pathways (Mechem et al., 2018; Lee et al., 2025). Therefore,
quantifying the untangled aerosol-cloud sensitivities require conditioning on the synoptic
environment. For example, Zhang et al. (2022) found that the relationship between LWP and N, is
not only sensitive to aerosol loading but also modulated by the underlying meteorological
conditions. And McCoy et al. (2020) used a cyclone compositing approach to demonstrate that
aerosol-cloud interactions (e.g., the sign of LWP change with N,) can differ inside vs. outside
midlatitude cyclones. These considerations motivate our use of an objective synoptic-regime

classification to control meteorology when evaluating the synoptic-regime-dependent ACI.’

In line with my previous comment, I feel the paper is a little lacking in terms of background on
synoptic regime analysis with respect to ACI. While the authors do mention McCoy et al., 2020,
which is important background for this work, it is done in the somewhat vague context of
“atmospheric regimes” (particularly when “cloud regimes” and “meteorology regimes” are

specified in the next few paragraphs). I think, generally, prior authors examining ACI in a synoptic



meteorology context have taken a more cyclone-specific approach (as in, compositing around low-
pressure centers), as opposed to the trough/ridge classification approach. Differentiating synoptic
regimes from more general “atmospheric” regimes here would help with seeding this idea early
on. Also, I think adding some additional analysis contrasting these results with the prior literature
in this area (e.g., McCoy et al., 2020) would add some critical context to the results/conclusions
of this paper. If the authors feel that the analysis presented is too novel to be usefully compared to
prior analyses of ACI in synoptic scale contexts, then that needs to be defended more thoroughly

in the manuscript.

We appreciate the reviewer’s feedback and agree that referencing cyclone-based ACI literature
strengthens our work. Our goal is to introduce a data-driven methodology to untangle meteorology
from cloud responses, allowing the machine-learning framework to decide what aspects of the
atmospheric pattern matter, without relying on pre-identifying specific synoptic systems (e.g.,
cyclones). This approach performs well: the clustered patterns naturally encompass the traditional
cyclone separation, including pre-trough, post-trough, and trough phases. We also view this as
transferable to other regions of the globe, including marine stratocumulus areas with weaker

cyclone influence (e.g., the southeastern Atlantic).

That said, we have made several revisions to acknowledge and compare with prior work:

We have added references to McCoy et al. (2020) and related studies in the Introduction to
highlight the importance of synoptic regime in aerosol-cloud interactions, as stated in above
response. We acknowledge prior evidence that meteorological context influences ACI, thereby
motivating our use of a synoptic clustering framework. This addition makes it clear to readers that
our approach is built on the foundation of such findings, as we are extending the idea of regime-

dependent ACI that others have established.

In Section 5 of the revised manuscript, we explicitly contrast our findings with McCoy et al. (2020).
They reported LWP increases with aerosol in cyclonic regimes and little or opposite effect outside
cyclones; we see the same pattern in satellite observations, enhanced LWP at higher N, in the Pre-

Trough (cyclone) regime and suppressed LWP in the Ridge (non-cyclone) regime. We also note



that our model evaluation aligns with McCoy’s diagnosis of climate model bias: just as UM GA7.1
overestimated LWP response outside cyclones, E3SMv2 tends to over-respond in the Ridge regime.
We qualitative argue that our study’s conclusions support and extend the conclusions of cyclone-
focused studies, thereby firmly embedding our contributions in the context of existing literature,

while offering a more flexible, generalizable pathway via objective synoptic clustering.

The added discussion now reads:

‘It is noteworthy that previous ACI studies in a synoptic context have been largely cyclone-centric
(e.g., McCoy et al., 2020; Lee et al., 2025). Our regime-stratified results are consistent with that
literature: in cyclone-associated conditions (Pre-Trough, Trough) we see LWP increases or smaller
decreases with higher Nd, whereas in the anticyclonic conditions (Ridge) LWP decreases markedly
with higher Nd, as expected in stable, dry high-pressure environments. Our clustering approach
extends the synoptic pattern classification by providing a flexible, data-driven identification that
captures the same physical contrasts as cyclone masks while explicitly considering the other two
regimes (Ridge and Post-Trough). Therefore, our approach might be more general, and remaining
applicable beyond the regions dominated by midlatitude storm tracks. Model behavior also
parallels prior findings: E3SMv2’s overly steep LWP reductions in Ridge conditions mirror the
overestimation of LWP sensitivity outside cyclones reported by McCoy et al. In short, our aim is
to develop a data-driven way to untangle meteorology from cloud responses without pre-
specifying synoptic systems, and the learned regimes would naturally recover the traditional
cyclone phases (pre-, post-trough, trough). And we also view this as transferable to other regions
of the globe, including marine stratocumulus regions with weaker cyclone influence (e.g., the

southeastern Atlantic).’

Throughout the manuscript, there are many figures with errorbars. It is unclear to me outside of
figures 4 and 7) what precisely the ranges on these errorbars represent. In a note on Table 3, the
range values are described as propagated uncertainties of variables used in the covariance. Is that

the case for the bounds of the errorbars in the remainder of the figures? Or are they representing



other statistics of the distribution (e.g. standard deviation like Figs. 4, 7)? More thorough
descriptions of these errorbars in their respective figure labels are necessary for reader
understanding. Additionally, I think some more detail on the sources of uncertainty (as mentioned
in Table 3) would be helpful for overall understanding. Specific uncertainty values are mentioned
once in the paper on L139 for MODIS-retrieved LWP. It is clear, however, that other sources of
uncertainty — from satellite observations and from simulations — are considered for calculating the
bounds in Table 3 (and perhaps elsewhere). To the authors’ credit, the uncertainties inherent to the
utilized satellite retrievals (particularly with respect to their analysis of the trough regime) are
discussed in the paper. But to contextualize the results, more thoroughly and specifically describing

the sources of uncertainty and how they’ve factored into the analysis is necessary.

Thank you for pointing this out. We would like to clarify that we use two different notions of

“error” in the manuscript:
1. Error bars in Figs. 4, 7, 8

These are standard deviations (SD) from the binned statistics shown in each panel (i.e., spread of

the data that fall in that bin), and they do not represent propagated analytical uncertainty.
2. “£”values in Table 3 (now Table 4 in revised manuscript) and for slope estimates

These are standard errors (SE) of fitted slopes for the dln(LWP)/dIn(N,) and din(Ny)/
dln(oygL)-
As for the

dIn(LWP) _ 9n(Ng)
din(Ng)  dln(ompL)’

The uncertainty SE is obtained by propagating the two slope SEs. Assuming independence,

A

Var(AB) SE(A)? SE(B)? SE(D\®  [SE(B)\’
(AB)? ~ + 52 ,hence, SE(AB) ~ |AB]| + B
Here A = 0ln(LWP)/dIn(N;) and B = dIn(N,)/dIn(oyp,) . We have revised the

corresponding figure and table captions to state this.



As for the satellite instrumental uncertainties, we have added the following discussion in

Section 2:

‘Although the relative errors in Ngretrieval can be significant at the pixel scale (Grosvenor et al.,
2018), previous studies have shown that the Nscompares well with measurements from 11 aircraft
campaigns, demonstrating a decent correlation when sampling the marine stratocumulus clouds,
with 72 values of 0.5~0.8 (Gryspeerdt et al., 2022). Therefore, to minimize known retrieval
uncertainties, we focus on low-level liquid clouds where satellite Nsshows the strongest aircraft
agreement and typical normalized root mean squared deviation of ~30-50 % (Gryspeerdt et al.,
2022). Moreover, the aggregated collocation method significantly reduces the MODIS Aqua Ny
bias (Painemal et al., 2020), resulting in a relationship between aerosol and cloud properties less

affected by artifacts.’

Furthermore, we assessed how satellite retrieval uncertainty could affect the LWP-N,

relationship £L,:

Since satellite (MODIS) Ny study report the report normalized RMS differences of ~30-50 %
against aircraft data, we modeled Ns errors as multiplicative, mean-one lognormal noise with
coefficient of variation (CV) 30-50 %. In log-log Ordinary Least Squares (OLS) fits, this is

equivalent to additive noise in InNs. With log-space error standard deviation is o, =

JIn (1 4+ CV?) (=0.29 for 30 % and ~=0.47 for 50 %), and u = — % 02, the effect in log-space is:

lnNd,obs = lnNd,true +1, n~NW o).
Hence, the OLS with noise in the predictor InN,; would experience the regression-dilution effect
and the expected slope would be attenuated as:

Var(InNg)
Var(InNg)+Var(n)’

E[Lo] = Lo *

which implies ~10-30 % potential slope damping. Consistent with this expectation, a Monte-Carlo
sensitivity test, multiplying the satellite N; with lognormal noise (coefficient of variation ~30-50%)
and refitting for 1000 times, attenuated the bulk satellite slope from —0.192 (baseline) to a median
of —0.157 (~18 % attenuation), with a 95 % sensitivity band of [-0.170, —0.143]. However, this



does not alter the sign or the comparative result we report, but it does indicate that observed

magnitudes should be interpreted with caution.

For E3SMv2 Ny there is no instrument error, its uncertainty manifests as model bias and state-
dependent spread. We therefore treat model N, as as-simulated and discuss the biases in the results,

rather than inserting an additional error term into slope SEs.

We have added the above discussion in the revised Section 3:

‘To gauge how satellite retrieval uncertainty affects the LWP versus Ny relationship, we note that
satellite Ny studies report normalized root-mean-square differences of about 30 to 50% relative to
aircraft data as in Gryspeerdt et al. (2022). In log space a multiplicative Ny error is additive in InNy,
implying an expected slope damping of roughly 10 to 30%. Consistent with this expectation, a
Monte Carlo test that multiplied satellite Ns by lognormal noise with coefficient of variation ~30-
50% and refit the slope 1000 times reduced the bulk satellite slope from -0.192 to a median of -
0.157, an attenuation of about 18%, with a 95 percent sensitivity band of -0.170 to -0.143. However,
this does not alter the sign or the comparative result reported here, but it does indicate that observed

magnitudes should be interpreted with caution.’

Specific comments:

L185: What ERAS outputs are used for nudging the model, specifically? What is the relaxation

time? More information as to how the model has been nudged is necessary.
We have added the nudging detail as below:

‘In this study, EAMv2 was run at standard resolution (~110 km) with the meteorology nudged to
ERAS. The model was nudged toward the ERAS zonal (U) and meridional (V) wind and
temperature fields using a relaxation time of 6 h. This nudging reduces errors in the simulated

meteorology, facilitating the examination of aerosol and cloud properties.’



L189: You define cEXT already on L129

Thanks, it has been corrected now.

References: Mechem et al., 2018, is cited throughout the paper, but seems to be absent from your

list of references.

This reference is corrected listed now.

Table S1: I found myself frequently referencing Table S1 during my review of this paper and feel

that it would be a useful inclusion in the main manuscript.

We have moved the Table S1 to main text.



