
Responses to Reviewer 2 

Dear Reviewer, we appreciate your time and effort in acknowledging and thoroughly reviewing 

our manuscript. We are truly grateful for your constructive comments and insightful suggestions, 

which encourage and help us to improve the manuscript. We have revised the manuscript carefully 

based on your comments.  

In the responses below, your comments are provided in black text and our responses are provided 

in blue text. 

 

Review of “Regime-based Aerosol-Cloud Interactions from CALIPSO-MODIS and the Energy 

Exascale  2 Earth System Model version 2 (E3SMv2) over the Eastern North Atlantic” by Zheng 

et al. 

In this work, the authors investigate aerosol-cloud interactions (ACI) in the Eastern North Atlantic 

(ENA) with satellite observations and nudged Energy Exascale Earth System Model version 2 

(E3SMv2) simulations. In particular, the authors examine differences in liquid water path (LWP), 

droplet number concentration (Nd), and their covariance between observations and simulations. 

They find that, in general, there are systematic seasonal discrepancies between E3SMv2 and 

satellite observations of LWP and Nd that line up with prior studies. They also find the presence 

of the “inverted-V” in the models and observations, with a more pronounced V shape in the model 

output. To investigate the effect of ENA meteorology on these results, the authors employ a 

machine learning method to partition the data into 4 regimes based on synoptic conditions: pre-

trough, post-trough, ridge, and trough. This more-targeted analysis reveals additional, interesting 

insights into the differences between the model and the observations and allow for more specific 

inferences on the importance of meteorology on ACI processes. 

The paper is well-organized and detailed, showcasing valuable results that are interesting on their 

own merit and motivate exciting future research. The reanalysis-clustering method for regime 

analysis in particular I thought was a strong result with broad-reaching applications. ENA is 

strongly governed by transient synoptic weather systems, and I felt this methodology provided an 

interesting alternative to the usual methods of regime classification. While I think this is overall a 



strong paper, I do have some comments that I feel should be addressed before publication. These 

are detailed below. Good work! 

We sincerely appreciate your thoughtful and constructive feedback. All comments have been 

carefully considered, and the manuscript has been revised accordingly. 

 

General comments 

 

One key problem I have with this paper is that I think it “buries the lede” in terms of its subject 

matter. In the abstract, the regime names seem to come out of nowhere, and the title gives no 

indication that synoptic regimes are a key piece of subject matter for this work. Synoptic systems 

as an important lens through which we should be viewing this data aren’t suggested until well into 

the paper (end of section 2) and aren’t truly discussed until section 4. While I understand the desire 

to maintain a clear narrative, I think highlighting this portion of the analysis more clearly in the 

abstract and motivating it more directly in the introduction would help strongly with readability. 

Thanks for the suggestion. We have carefully revised the abstract, introduction, and the narrative 

in Section 3 to better reflect the synoptic regime-based framework of the analyses. 

The new abstract now reads: 

‘Abstract. This study investigates aerosol-cloud interactions in marine boundary layer (MBL) 

clouds using an advanced deep-learning-driven synoptic-regime-based framework, combining 

satellite data (CALIPSO vertically resolved aerosol extinction and MODIS cloud properties) with 

1° nudged Energy Exascale Earth System Model version 2 (E3SMv2) simulation over the Eastern 

North Atlantic (ENA; ~10°×10°, 2006-2014). The E3SMv2 captures observed seasonal variations 

in cloud droplet number concentrations (Nd) and liquid water path (LWP), though it systematically 

underestimates Nd. We then partition ENA meteorology into four synoptic regimes (Pre-Trough, 

Post-Trough, Ridge, Trough) via a deep-learning clustering of ERA5 reanalysis fields, enabling 

regime-dependent aerosol-cloud interactions analyses. Both satellite and E3SMv2 exhibit an 

inverted-V LWP–Nd relationship. In Post‐Trough and Ridge regimes, the satellite shows stronger 

negative LWP–Nd sensitivities than in Pre-Trough regime. The Trough regime displays a muted 



satellite LWP response. In comparison, the model predicts more exaggerated LWP responses 

across regimes, with LWP increasing too quickly at low Nd and decreasing more sharply at high 

Nd, especially in Pre-Trough and Trough regimes. These exaggerated model LWP sensitivities may 

stem from uncertainties in representing drizzle processes, entrainment, and turbulent mixing. As 

for Nd susceptibility to aerosols, Nd increases with MBL aerosol extinction in both datasets, but the 

simulated aerosol-cloud interactions appear oversensitive to meteorological conditions. Overall, 

E3SMv2 better captures aerosol effects under regimes that favor stratiform clouds (Post-Trough, 

Ridge), but performance deteriorates for regimes with deeper, dynamically complex clouds 

(Trough), highlighting the need for improved representations of those cloud processes in climate 

models.’ 

 

And we have highlighted the importance of synoptic regimes in assessing the ACI in the 

introduction: 

‘Moreover, synoptic systems organize boundary-layer clouds on multi-day timescales and strongly 

modulate aerosol-cloud-precipitation pathways (Mechem et al., 2018; Lee et al., 2025). Therefore, 

quantifying the untangled aerosol-cloud sensitivities require conditioning on the synoptic 

environment. For example, Zhang et al. (2022) found that the relationship between LWP and Nd is 

not only sensitive to aerosol loading but also modulated by the underlying meteorological 

conditions. And McCoy et al. (2020) used a cyclone compositing approach to demonstrate that 

aerosol-cloud interactions (e.g., the sign of LWP change with Nd) can differ inside vs. outside 

midlatitude cyclones. These considerations motivate our use of an objective synoptic-regime 

classification to control meteorology when evaluating the synoptic-regime-dependent ACI.’ 

 

 

In line with my previous comment, I feel the paper is a little lacking in terms of background on 

synoptic regime analysis with respect to ACI. While the authors do mention McCoy et al., 2020, 

which is important background for this work, it is done in the somewhat vague context of 

“atmospheric regimes” (particularly when “cloud regimes” and “meteorology regimes” are 

specified in the next few paragraphs). I think, generally, prior authors examining ACI in a synoptic 



meteorology context have taken a more cyclone-specific approach (as in, compositing around low-

pressure centers), as opposed to the trough/ridge classification approach. Differentiating synoptic 

regimes from more general “atmospheric” regimes here would help with seeding this idea early 

on. Also, I think adding some additional analysis contrasting these results with the prior literature 

in this area (e.g., McCoy et al., 2020) would add some critical context to the results/conclusions 

of this paper. If the authors feel that the analysis presented is too novel to be usefully compared to 

prior analyses of ACI in synoptic scale contexts, then that needs to be defended more thoroughly 

in the manuscript. 

 

We appreciate the reviewer’s feedback and agree that referencing cyclone-based ACI literature 

strengthens our work. Our goal is to introduce a data-driven methodology to untangle meteorology 

from cloud responses, allowing the machine-learning framework to decide what aspects of the 

atmospheric pattern matter, without relying on pre-identifying specific synoptic systems (e.g., 

cyclones). This approach performs well: the clustered patterns naturally encompass the traditional 

cyclone separation, including pre-trough, post-trough, and trough phases. We also view this as 

transferable to other regions of the globe, including marine stratocumulus areas with weaker 

cyclone influence (e.g., the southeastern Atlantic). 

 

That said, we have made several revisions to acknowledge and compare with prior work: 

We have added references to McCoy et al. (2020) and related studies in the Introduction to 

highlight the importance of synoptic regime in aerosol-cloud interactions, as stated in above 

response. We acknowledge prior evidence that meteorological context influences ACI, thereby 

motivating our use of a synoptic clustering framework. This addition makes it clear to readers that 

our approach is built on the foundation of such findings, as we are extending the idea of regime-

dependent ACI that others have established. 

In Section 5 of the revised manuscript, we explicitly contrast our findings with McCoy et al. (2020). 

They reported LWP increases with aerosol in cyclonic regimes and little or opposite effect outside 

cyclones; we see the same pattern in satellite observations, enhanced LWP at higher Nd in the Pre-

Trough (cyclone) regime and suppressed LWP in the Ridge (non-cyclone) regime. We also note 



that our model evaluation aligns with McCoy’s diagnosis of climate model bias: just as UM GA7.1 

overestimated LWP response outside cyclones, E3SMv2 tends to over-respond in the Ridge regime. 

We qualitative argue that our study’s conclusions support and extend the conclusions of cyclone-

focused studies, thereby firmly embedding our contributions in the context of existing literature, 

while offering a more flexible, generalizable pathway via objective synoptic clustering.  

 

The added discussion now reads: 

‘It is noteworthy that previous ACI studies in a synoptic context have been largely cyclone-centric 

(e.g., McCoy et al., 2020; Lee et al., 2025). Our regime-stratified results are consistent with that 

literature: in cyclone-associated conditions (Pre-Trough, Trough) we see LWP increases or smaller 

decreases with higher Nd, whereas in the anticyclonic conditions (Ridge) LWP decreases markedly 

with higher Nd, as expected in stable, dry high-pressure environments. Our clustering approach 

extends the synoptic pattern classification by providing a flexible, data-driven identification that 

captures the same physical contrasts as cyclone masks while explicitly considering the other two 

regimes (Ridge and Post-Trough). Therefore, our approach might be more general, and remaining 

applicable beyond the regions dominated by midlatitude storm tracks. Model behavior also 

parallels prior findings: E3SMv2’s overly steep LWP reductions in Ridge conditions mirror the 

overestimation of LWP sensitivity outside cyclones reported by McCoy et al. In short, our aim is 

to develop a data-driven way to untangle meteorology from cloud responses without pre-

specifying synoptic systems, and the learned regimes would naturally recover the traditional 

cyclone phases (pre-, post-trough, trough). And we also view this as transferable to other regions 

of the globe, including marine stratocumulus regions with weaker cyclone influence (e.g., the 

southeastern Atlantic).’ 

 

 

Throughout the manuscript, there are many figures with errorbars. It is unclear to me outside of 

figures 4 and 7) what precisely the ranges on these errorbars represent. In a note on Table 3, the 

range values are described as propagated uncertainties of variables used in the covariance. Is that 

the case for the bounds of the errorbars in the remainder of the figures? Or are they representing 



other statistics of the distribution (e.g. standard deviation like Figs. 4, 7)? More thorough 

descriptions of these errorbars in their respective figure labels are necessary for reader 

understanding. Additionally, I think some more detail on the sources of uncertainty (as mentioned 

in Table 3) would be helpful for overall understanding. Specific uncertainty values are mentioned 

once in the paper on L139 for MODIS-retrieved LWP. It is clear, however, that other sources of 

uncertainty – from satellite observations and from simulations – are considered for calculating the 

bounds in Table 3 (and perhaps elsewhere). To the authors’ credit, the uncertainties inherent to the 

utilized satellite retrievals (particularly with respect to their analysis of the trough regime) are 

discussed in the paper. But to contextualize the results, more thoroughly and specifically describing 

the sources of uncertainty and how they’ve factored into the analysis is necessary. 

Thank you for pointing this out. We would like to clarify that we use two different notions of 

“error” in the manuscript: 

1. Error bars in Figs. 4, 7, 8 

These are standard deviations (SD) from the binned statistics shown in each panel (i.e., spread of 

the data that fall in that bin), and they do not represent propagated analytical uncertainty. 

2. “±” values in Table 3 (now Table 4 in revised manuscript) and for slope estimates 

These are standard errors (SE) of fitted slopes for the 𝜕ln(𝐿𝑊𝑃)/𝜕ln(𝑁𝑑)  and 𝜕𝑙𝑛(𝑁𝑑)/

𝜕ln(𝜎𝑀𝐵𝐿).  

As for the  
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Here 𝐴 =  𝜕ln(𝐿𝑊𝑃)/𝜕ln(𝑁𝑑)  and 𝐵 =  𝜕𝑙𝑛(𝑁𝑑)/𝜕ln(𝜎𝑀𝐵𝐿) . We have revised the 

corresponding figure and table captions to state this. 

 



As for the satellite instrumental uncertainties, we have added the following discussion in 

Section 2: 

‘Although the relative errors in Nd retrieval can be significant at the pixel scale (Grosvenor et al., 

2018), previous studies have shown that the Nd compares well with measurements from 11 aircraft 

campaigns, demonstrating a decent correlation when sampling the marine stratocumulus clouds, 

with 𝑟2  values of 0.5~0.8 (Gryspeerdt et al., 2022). Therefore, to minimize known retrieval 

uncertainties, we focus on low-level liquid clouds where satellite Nd shows the strongest aircraft 

agreement and typical normalized root mean squared deviation of ~30-50 % (Gryspeerdt et al., 

2022). Moreover, the aggregated collocation method significantly reduces the MODIS Aqua Nd 

bias (Painemal et al., 2020), resulting in a relationship between aerosol and cloud properties less 

affected by artifacts.’ 

Furthermore, we assessed how satellite retrieval uncertainty could affect the LWP-Nd 

relationship 𝓛𝟎: 

Since satellite (MODIS) Nd study report the report normalized RMS differences of ~30–50 % 

against aircraft data, we modeled Nd errors as multiplicative, mean-one lognormal noise with 

coefficient of variation (CV) 30–50 %. In log-log Ordinary Least Squares (OLS) fits, this is 

equivalent to additive noise in lnNd. With log-space error standard deviation is 𝜎𝜖 =

√ln (1 + 𝐶𝑉2) (≈0.29 for 30 % and ≈0.47 for 50 %), and 𝜇 = −
1

2
𝜎𝜖

2,  the effect in log-space is: 

𝑙𝑛𝑁𝑑,𝑜𝑏𝑠 = 𝑙𝑛𝑁𝑑,𝑡𝑟𝑢𝑒 + 𝜂,   𝜂 ∼ 𝑁(𝜇, 𝜎𝜖). 

Hence, the OLS with noise in the predictor 𝑙𝑛𝑁𝑑 would experience the regression-dilution effect 

and the expected slope would be attenuated as: 

𝔼[ℒ0] ≈ ℒ0 ∗
𝑉𝑎𝑟(𝑙𝑛𝑁𝑑)

𝑉𝑎𝑟(𝑙𝑛𝑁𝑑)+𝑉𝑎𝑟(𝜂)
, 

which implies ~10–30 % potential slope damping. Consistent with this expectation, a Monte-Carlo 

sensitivity test, multiplying the satellite Nd with lognormal noise (coefficient of variation ~30-50%) 

and refitting for 1000 times, attenuated the bulk satellite slope from −0.192 (baseline) to a median 

of −0.157 (~18 % attenuation), with a 95 % sensitivity band of [−0.170, −0.143]. However, this 



does not alter the sign or the comparative result we report, but it does indicate that observed 

magnitudes should be interpreted with caution. 

For E3SMv2 Nd there is no instrument error, its uncertainty manifests as model bias and state-

dependent spread. We therefore treat model Nd as as-simulated and discuss the biases in the results, 

rather than inserting an additional error term into slope SEs. 

 

We have added the above discussion in the revised Section 3: 

‘To gauge how satellite retrieval uncertainty affects the LWP versus Nd relationship, we note that 

satellite Nd studies report normalized root-mean-square differences of about 30 to 50% relative to 

aircraft data as in Gryspeerdt et al. (2022). In log space a multiplicative Nd error is additive in lnNd, 

implying an expected slope damping of roughly 10 to 30%. Consistent with this expectation, a 

Monte Carlo test that multiplied satellite Nd by lognormal noise with coefficient of variation ~30-

50% and refit the slope 1000 times reduced the bulk satellite slope from -0.192 to a median of -

0.157, an attenuation of about 18%, with a 95 percent sensitivity band of -0.170 to -0.143. However, 

this does not alter the sign or the comparative result reported here, but it does indicate that observed 

magnitudes should be interpreted with caution.’ 

 

Specific comments: 

 

L185: What ERA5 outputs are used for nudging the model, specifically? What is the relaxation 

time? More information as to how the model has been nudged is necessary. 

We have added the nudging detail as below: 

‘In this study, EAMv2 was run at standard resolution (~110 km) with the meteorology nudged to 

ERA5. The model was nudged toward the ERA5 zonal (U) and meridional (V) wind and 

temperature fields using a relaxation time of 6 h. This nudging reduces errors in the simulated 

meteorology, facilitating the examination of aerosol and cloud properties.’ 

 



L189: You define σEXT already on L129 

Thanks, it has been corrected now. 

 

References: Mechem et al., 2018, is cited throughout the paper, but seems to be absent from your 

list of references. 

This reference is corrected listed now. 

 

Table S1: I found myself frequently referencing Table S1 during my review of this paper and feel 

that it would be a useful inclusion in the main manuscript. 

We have moved the Table S1 to main text. 

 


