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13 Abstract: Topography and vegetation are critical factors influencing catchment
14 hydrology; however, their individual contributions are often underestimated in
15  hydrological models. This limitation is particularly evident in cold, mountainous
16  regions such as the Mongolian Plateau, where observational data are sparse. To address
17  this, we employed a stepwise, top-down modelling strategy based on the FLEX
18  framework to systematically assess the influence of topography and vegetation on
19  hydrological processes in the Bogd Uliastai and Zavkhan Guulin river basins.
20  Beginning with a lumped model (FLEXY), we successively integrated snow processes
21  (FLEX-S), topographic distribution (FLEXP), and finally, a landscape-based
22  parameterization accounting for vegetation heterogeneity (FLEXT). Both FLEXP and

23 FLEXT outperformed the lumped models in simulating runoff and SWE. Interestingly,
24  FLEXT showed similar performance to FLEXP—likely due to limited vegetation
25  heterogeneity — it offers more physically realistic parameterization by explicitly

26  representing landscape units, suggesting its potential in more complex basins.

27  Snowmelt contributions to streamflow were quantified as 23.5%=+1.3% and 14.7%=+1.6%
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28  inthe Bogd Uliastai and Zavkhan Guulin river basins, respectively, with peaks in spring
29  and a clear increase with elevation. At high elevations, delayed snowmelt resulted in
30 sustained runoff, while lower elevations responded more rapidly to rainfall. The explicit
31  representation of vegetation heterogeneity further improved the model’s capacity to
32  capture landscape complexity and dominant hydrological mechanisms. This study
33  underscores the pivotal roles of topography and vegetation in runoff generation and
34  demonstrates the effectiveness of a stepwise modelling framework for improving
35  hydrological understanding in cryospheric and data-scarce regions.

36 Keywords: Mongolian Plateau, FLEX model, stepwise modelling framework,
37  snowmelt, topography, vegetation

38
39 1. Introduction

40  Understanding and accurately simulating hydrological processes are fundamental for
41  elucidating basin hydrological patterns and supporting water resource management and
42  ecological protection, especially under the context of global environmental change
43 (Gomes et al., 2023; Oki and Kanae, 2006). Topography and vegetation play essential
44  roles as drivers of hydrological processes, influencing key aspects such as precipitation,
45  interception (Dwarakish and Ganasri, 2015), snowmelt (Hammond et al., 2019),
46  evaporation (Jiao et al., 2017), and runoff generation (Qin et al., 2025). Topography
47  governs water flow paths and moisture release processes (Gao et al., 2014), while
48  vegetation affects water movement and infiltration by regulating precipitation
49  interception and soil moisture dynamics (Zhu et al., 2022). The complex interaction
50 between topography and vegetation not only define Hydrological Response Units
51 (HRUs) but also shape the spatial heterogeneity and dominant hydrological
52  mechanisms within a river basin (Savenije, 2010; Sivapalan, 2009). However, in cold-
53  arid regions, data scarcity often leads to oversimplified hydrological models, limiting

54  accurate simulations (Ragettli et al., 2014; Tarasova et al., 2016). Therefore, a more
55  comprehensive evaluation of topography — vegetation interactions is essential for

56  improving model fidelity and supporting effective water resource management and
2
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57  ecological conservation.

58

59  Topography plays a fundamental role in shaping hydrological processes by influencing
60 the spatial distribution of soil moisture, regulating precipitation patterns, modulating
61  evaporation dynamics, and driving runoff generation, thereby governing the movement
62  and storage of water across the landscape (Wicki et al., 2023). In mountainous basins,
63  variations in topographic relief introduce substantial uncertainty into hydrological
64  modeling (Seibert and McDonnell, 2002). Steeper slopes typically lead to more rapid
65 runoff, while gentler slopes promote greater infiltration and moisture retention, thus
66  affecting the spatial and temporal distribution of water resources (Ye et al., 2023).
67  Moreover, topography critically influences snow distribution and snowmelt dynamics.
68  Terrain features such as slope, aspect, and elevation induce spatial heterogeneity in
69  snow accumulation and melting processes, resulting in diverse hydrological responses
70  across the basin (Broxton et al., 2020).

71

72 Vegetation plays a crucial role in regulating hydrological processes, particularly
73 through interception and root zone water storage. First, vegetation canopies intercept
74 rainfall, reducing the amount of effective precipitation reaching the soil, while also
75  mitigating surface erosion and slowing runoff (Cheng et al., 2020). Second, root zone
76  storage capacity and plant transpiration regulate soil moisture, enhance evaporation and
77  facilitating water redistribution (Luo et al., 2022; Volpe et al., 2013). These effects vary
78 by vegetation type, as different structural forms (e.g., forests vs. grasslands) exhibit
79  distinct hydrological behaviors (Chen et al., 2023). In cold mountainous regions,
80  vegetation also affects snow processes by affecting snow distribution and retention. For
81  example, forest canopies can shield snow accumulation, delay snowmelt, and reduce
82  wind-driven redistribution, thereby significantly altering the spatiotemporal dynamics
83  of meltwater runoff (Sun et al., 2022).

84

85  Although the regulatory role of topography and vegetation in basin hydrology are
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86  widely acknowledged,, their synergistic interactions remain insufficiently understood,
87  particularly in cold high-altitude mountainous regions characterized by complex terrain,
88  harsh climatic conditions, and limited observational data (Stephens et al., 2021).
89  Cryospheric regions serve as critical freshwater resources for downstream areas and are
90  especially sensitive to changes in the hydrological cycle and climate (Immerzeel et al.,
91  2010). In these regions, snowfall and snowmelt processes often dominate runoff
92  generation, with topography and vegetation jointly modulating hydrological responses
93 by influencing snow distribution, accumulation, and melt rates (Dharmadasa et al.,
94  2023; Zhong et al., 2021). Therefore, quantifying the individual and combined effects
95 of topography and vegetation, and effectively integrating them into hydrological
96  models, is essential for advancing cold-region hydrology.
97
98  Existing hydrological models often struggle to adequately capture the complexities
99 introduced by topography and vegetation. Early lumped models typically used basin-
100  averaged precipitation and temperature to simulate runoff, thereby oversimplifying
101  spatial heterogeneity within catchments (Beven, 2012). While computationally efficient,
102 lumped models fail to accurately represent the spatial variability of terrain and land
103 cover, especially in mountainous regions. The advent of distributed hydrological
104  models has allowed more spatially explicit simulations by incorporating topographic
105  and land cover data (Fenicia et al., 2016). However, the performance of these models
106  is highly dependent on data quality, which remains a significant limitation in cold, high-
107  mountain regions where traditional observations are sparse or unavailable.
108
109  Remote sensing has become an invaluable tool for providing high-resolution data on
110  topography, vegetation, and snow in hydrological studies of cold regions. Digital
111 elevation models (DEMs) offer critical topographic information such as slope, aspect,
112 and elevation, while vegetation indices derived from remote sensing (e.g., NDVI and
113 EVI) effectively characterize vegetation cover (Xiong et al., 2023). In addition, remote

114  sensing techniques enable spatial monitoring of snow water equivalent and snowmelt
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115  processes (Duethmann et al., 2014). Integrating remote sensing data with distributed
116 hydrological models helps to overcome the limitations of traditional in-situ
117  observations, offering a more comprehensive understanding of the roles that
118  topography and vegetation play in shaping hydrological processes (Gao et al., 2014).
119

120  In the absence of direct measurements of individual hydrological processes, the top-
121 down modelling approach offers a powerful means of exploring the internal dynamics
122 ofbasin behavior (Fenicia et al., 2008b). Originally proposed by Klemes (Klemes, 1983)
123 and later reformulated by Sivapalan et al. (Sivapalan et al., 2003), the top-down
124  approach is rooted in a deductive philosophy that infers the underlying ‘causes’ from
125  the overall observed ‘effect’ of a system. In hydrological modeling, this method begins
126 with a simple structure that is progressively refined to address limitations in
127 reproducing observed catchment behavior (Fenicia et al., 2008a). In cold mountainous
128  regions, the top-down approach holds significant potential for improving model realism
129 by systematically incorporating key variables such as snow processes, topography, and
130  vegetation.

131

132 This study focuses on the Bogd Uliastai and Zavkhan Guulin river basins on the
133 Mongolian Plateau, aiming to investigate the roles of topography and vegetation in
134  shaping hydrological processes in cold mountainous regions. Due to the scarcity of
135  observational data, traditional hydrological models face significant challenges in these
136  areas. To address this, we employ a top-down modelling approach, beginning with a

137  lumped model to assess runoff dynamics and progressively advancing toward a

138 distributed framework. This model explicitly incorporates key components—including

139  snowmelt, topography, and vegetation—to better capture the hydrological responses of

140  different landscape units. The study seeks to address three key research questions: (1)
141 How can runoff be effectively simulated in data-scarce, cold mountainous regions using
142 a top-down modelling approach? (2) How can the contribution of snowmelt to

143  streamflow be quantified through a landscape-based hydrological model? (3) How do
5
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144 topography and vegetation influence runoff generation processes?

145 2. Study site
146 2.1 Bogd Uliastai river basin

147  The Bogd Uliastai river basin (47°30'N-48°10'N, 96°45'E-97°45'E) is located in the

148  northern part of the Zavkhan river headwaters, along the southern foothills of the central
149  Khangai Mountains in Mongolia (Fig.1). The basin spans an area of 1610 km? and is
150  predominantly mountainous, with elevations ranging from 1753 ma.s.1 to 3972 m a.s.1.
151  The region receives an average annual precipitation of approximately 200 mm, with
152  more than 80% of rainfall occurring between June and September. The average annual
153 temperature is -1°C, while winter temperatures frequently fall below -30°C, reflecting
154  atypical alpine climate. Runoff displays strong seasonal variability, with distinct peaks
155  during the spring and summer and almost no flow in winter, resulting in extreme
156  hydrological conditions (Dorjsuren et al., 2024). The vegetation exhibits clear
157  altitudinal zonation: alpine meadows and tundra, dominated by mosses and lichens,
158  prevail at higher elevations, whereas needlegrass steppe and low shrublands are

159  common in mid- and low-elevation zones (Baasanmunkh et al., 2019).
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Fig.1 Location, landscape (a) and topography (b) of the Bogd Uliastai and Zavkhan Guulin river
basins on the Mongolian Plateau.

2.2 Zavkhan Guulin river basin

The Zavkhan Guulin river basin (46°30'N-47°50'N, 96°45'E-97°00'E), located in the
central and southern parts of Zavkhan Province, lies within the transitional zone of the
southern Khangai Mountains (Fig.1). The basin covers an area of approximately 12258
km? and is predominantly composed of low mountains and hills, with elevations
ranging from 1785 m a.s.l. to 3980 m a.s.l. The basin’s annual average precipitation is
about 160 mm, with most precipitation concentrated in the summer, primaril in the form
of heavy rain, which serves the main source of runoff. The annual average temperature
is approximately -3°C, with summer temperatures exceeding 20°C and winter
temperatures dropping as low as -50°C, characteristic of a temperate continental climate
(Dorjsuren et al., 2023). Vegetation in the region is sparse, primarily dominated by
drought-tolerant Artemisia species, with scattered distributions of grass and shrubs. At
higher elevations, the landscape is characterized by alpine meadows, exposed rock

surfaces, and cold desert environments. Soils are nutrient-poor, and the ecological
7
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178  environment is fragile, facing severe challenges such as soil erosion (Baasanmunkh et
179 al,, 2019).

180

181 3. Data

182 3.1 Data set
183  Hydrometeorological data: Daily precipitation, runoff, and temperature data for the
184  Bogd Uliastai river basin (2007-2015) and the Zavkhan Guulin river basin (2000-2020)

185  were obtained from the Information and Research Institute of Meteorology, Hydrology,
186  and Environment (IRIMHE) via its official website (http://irimhe.namem.gov.mn). For
187  each basin, one meteorological station and one hydrological station served as the
188  primary sources of observational data. The Arctic Snow Water Equivalent (SWE) Grid
189  Dataset (2003-2016) was obtained from National Tibetan Plateau/Third Pole
190  Environment Data Center (https://cstr.cn/18406.11.Snow.tpdc.271556). The SWE
191  product has a daily temporal resolution and a spatial resolution of 10 km, covering
192 latitudes from 45°N to 90°N and longitudes from 180°W to 180°E.

193  Topographic data: The Shuttle Radar Topography Mission Digital Elevation Model
194  (SRTM-DEM), with a spatial resolution of 30 m, was acquired from the official website
195  of the International Center for Tropical Agriculture (http://srtm.csi.cgiar.org).

196  Land cover data: The Sentinel-2 10-Meter Land Use/Land Cover was accessed via

197  ESRI’s official platform (https://livingatlas.arcgis.com/landcover/).

198  NDVI data: The normalized difference vegetation index (NDVI) data (2013-2020)
199  were derived from the Landsat 8 Operational Land Imager (OLI) Level-2 surface
200  reflectance products. NDVI was calculated as (NIR — Red)/(NIR + Red) using bands

201 5 (NIR) and 4 (Red). The dataset has a spatial resolution of 30 m and a temporal
202  resolution of 16 days. Landsat data were obtained from the United States Geological

203 Survey (USGS) EarthExplorer platform (https://earthexplorer.usgs.gov/).

204 3.2 Distribution of forcing data
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205  Mountainous terrain is complex, and meteorological stations are typically located at
206  lower elevations. Directly using point-based measurement in basin-scale simulations
207  without accounting for elevation effects can introduce biases (Klemes, 1989). In cold
208  mountainous regions, higher elevations typically experience lower temperatures and
209  greater precipitation, often in the form of snow (Lundquist et al., 2010; Stahl et al.,
210  2006). In the study, the FLEX model divides catchment into elevation bands and adjusts
211  temperature and precipitation for each band using a precipitation increase rate and
212 temperature lapse rate. This distributed input approach effectively mitigates simulation
213  bias by better capturing altitudinal variability in meteorological conditions. In this study,
214  due to the remoteness of the region and the sparse distribution of meteorological
215  stations, available ground observations were limited. Satellite and reanalysis products
216  (e.g., ERAS) exhibit notable biases over complex terrain and fail to capture local
217  climatic variability. We therefore relied on the best available in-situ data, which were
218  subjected to rigorous quality control and spatial interpolation, and supplemented by
219  topographic context and previous studies. While uncertainties remain, this approach
220  provides the most reliable climate forcing achievable under current observational

221  constraints. The model employed a precipitation increase rate of 4.2% per 100 m and a
222 temperature lapse rate of 0.6°C per 100 m (Gao et al., 2014).
223

224 4. Modelling approach

225 4.1 Model description

226  To assess the impact of topography and vegetation on hydrological processes, this study
227  designed and tested four conceptual models with increasing complexity: FLEXY,
228 FLEX'-S, FLEXP, and FLEX" (Fig.2). The model structure and variables are shown in
229  Fig. 2 and Table 1, and the water balance, isotope mass balance and constitutive

230  equations are shown in Table 2.
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232 Fig.2 Stepwise modelling and the model structure of four models. (a) FLEX" is a lumped model
233 without snow module; (b) FLEX"-S is a lumped model with snow module, and FLEXP is a semi-
234  distributed model with the same structure as FLEX"-S. (¢) FLEX" is a landscape-driven semi-
235  distributed model.

236  Tablel. The variables of four models. In FLEXT model, variables associated with various landscape

237  categories are differentiated using specific suffixes, e.g., E; r, represent the interception from forest.

Variables Meaning Variables Meaning
P (mm/d) Precipitation E;i (mm/d) Interception
Si (mm) Interception reservoir P; (mm/d) Snowfall
. Effective rainfall after
P; (mm/d) Rainfall Py (mm/d) ) )
nterception
M (mm/d) Snowmelt P, (mm/d) Effective precipitation
Sy (mm) Unsaturated reservoir E, (mm/d) Actual evaporation
Generated runoff from the unsaturated Generated fast runoff in
R, (mm/d) ) Ry (mm/d)
reservoir the unsaturated zone
Discharge into the fast response Generated slow runoff in
Ry (mm/d) ] ) R (mm/d)
reservoir after the convolution the unsaturated zone
Sr(mm) Fast response reservoir Sy (mm) Slow response reservoir
Capillary rise from groundwater into
C, (mm/d) : o Or(mm/d) Subsurface storm flow
unsaturated reservoir on riparian area
Qs (mm/d) Groundwater flow O (mm/d) Total runoff

238
10
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245 4,1.1 FLEX"

246  FLEX' is a lumped conceptual hydrological model composed of four reservoirs
247  (Fig.2a): an interception reservoir (S;), an unsaturated reservoir (S.), a fast response
248  reservoir (Sy), and a slow response reservoir (Sy). A lag function is used to represent the
249  lag time from storm to peak flow (Tg). FLEX" includes a total of 8 free calibration
250  parameters (Table 3).

251

252  The interception reservoir was designed to simulate the process of precipitation
253  interception by vegetation canopies or the ground surface (Eq.l1). Interception
254  evaporation (E;) was calculated by potential evaporation (£,) and S;, considering the
255  interception storage capacity (Simar) (Eq.2). When precipitation (P) exceeds Simax, the
256  excess precipitation is routed as effective precipitation (P.) into the unsaturated
257  reservoir (Eq.3).

258

259  Inthe unsaturated reservoir, actual evaporation (£,) was estimated based on E, and root
260  zone soil moisture (Su/Sumax) (Eq.13). The parameter C. represents the threshold value
261  controlling evaporation from the root zone soil moisture, and Sy, max is r00t Zone storage
262  capacity. The water retention curve from the Xin’anjiang model was used to partition
263  P.into stored water in S, and runoff generated from the unsaturated root zone (R.) (Zhao,
264  1992) (Egs.14 and 15).

265 In the response reservoir, a splitter D was applied to divide the R, into two fluxes (R
266  and R;) (Eqs.16 and 17), and Eqs (18) and (19) were used to describe the lag time
267  between storm and peak flow. R{z-i+1) represents the fast runoff generated in the
268  unsaturated zone at time #-i+1, i represents the time lag between the storm and fast
269  runoff generation. c(i) is the weight of the flow in i-/ days before and Rp(f) is the
270  discharge into the fast response reservoir after convolution. We used two linear
271  reservoirs to represent the response process of subsurface storm flow (Qy and
272 groundwater flow (Qs) (Egs.21 and 23).

273

13
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274 4.1.2 FLEX"-S

275  FLEX'-S builds upon the FLEX" model by incorporating a snow reservoir (S) to
276  simulate the snow accumulation and melt processes (Fig.2b). When the daily air
277  temperature exceeds the threshold temperature (77) and there is no snowpack (typically
278  in summer), the interception process governs the initial partitioning of precipitation
279 (Eq.7). In contrast, when the daily mean temperature is below 7; (normally occurs in
280  winter), precipitation is stored as snow (Eq.5). When there is snowpack and the daily
281  air temperature is above T: (normally prevailing in early spring and early autumn),
282  effective precipitation (P.) is equal to the sum of effective rainfall after interception (Py)
283  and snowmelt (M) (Eq.11). M was calculated by the snow degree day factor (Fu) and
284  the threshold temperature for melting (7:) (Eq.6) (Gao et al., 2017). In this study, 7im
285  was set to the same value as 7. It is important to note that meltwater is conceptualized
286  as directly infiltrating into the soil, thereby bypassing the interception reservoir.

287

288 4.1.3 FLEX"

289  FLEXP is a semi-distributed model with the same structure and parameters as FLEX"-
290 S (Fig.2b). Using DEM data, the Bogd Uliastai river basin was divided into 45 elevation
291  bands with 50 m interval, while the Zavkhan Guulin river basin was divided into 44
292  elevation bands as shown in Fig.3. The FLEXP model was operated with semi-
293  distributed input data (see Sect.3.2), ensuring the integration of spatial variability into

294  the model’s processes.
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296  Fig.3 Area of different elevation and landscape in Bogd Uliastai and Zavkhan Guulin river basins.

297  4.1.4 FLEX"

298  The FLEXT model classified the Bogd Uliastai river basin into four landscape
299  elements—bare soil/rock, forest, grassland, and riparian area—based on vegetation
300 characteristics. In contrast, the Zavkhan Guulin river basin, which has no forest, was
301  categorized into three landscape elements. By integrating both landscape types and
302 elevation bands, the Bogd Uliastai river basin was further subdivided into 132 HRUs,
303  while the Zavkhan Guulin river basin consisted of 117 HRUs (Fig.3).

304

305 The FLEXT model’s structure comprised four parallel components, representing the
306  distinct hydrological functions associated with landscape elements (Savenije, 2010;
307  Gao et al.,, 2014) (Fig.2c). To capture the diverse rainfall-runoff processes in different
308 landscape types and simultaneously avoid over-parameterization, we kept the same
309  model structure but gave different interception storage capacity (Simax) and root zone
310  storage capacity (Sumax) for all landscape elements (Table 3).

311

312  For forest, due to their dense vegetation cover and the greater amount of water required
313  to fill the root zone to meet water deficits, larger prior ranges were assigned to S mar
314  and Sumar. For bare soil/rock, due to no vegetation cover, we constrained a shallower
315  Sumaxs and did not incorporate an interception module. For the riparian area, which is
316  prone to saturation due to its location, we also constrained a shallower Sy maxr, With the
317  effect of capillary rise (C;) taken into account. C, is represented by a parameter (Cymax)
318 indicating a constant amount of capillary rise. Notably, the lag time from storm to peak
319  flow was not considered in riparian area. For grasslands, S, maG is lower than that of

320  forest but higher than bare soil/rock and riparian area.
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323 4.2 Snow contribution to streamflow

324  This study tracks the contribution of snowmelt to streamflow based on FLEX". The
325 model assumes that snowmelt and rainfall mix rapidly and completely upon entering
326  the model’s conceptual reservoirs, thereby altering its internal composition ratios. The
327  composition ratio of the water exiting the reservoir is identical to that within the
328  reservoir. The contributions from snowmelt and rainfall represent portions of runoff
329  generated at each time step, with some water remaining in the reservoir to participate
330 in subsequent mixing, runoff generation, evaporation, and other hydrological processes
331 (Liu et al.,, 2023). The method enables the tracking of the contribution of snowmelt to

332  total runoff (C) at each time step by the following equation:

_ Qum — Qr.m+Qsm
333 €= Qo 24)
M
Sr
334 Qu= <P’f;f> 25)
M
_ Ptf+M>S5
335 Qom =" (26)

336  where Qis total runoff in the river channel; Qu is snowmelt runoff in the river channel;
337  Orm is subsurface storm flow generated by snowmelt; Qs is groundwater flow
338  generated by snowmelt.

339
340 4.3 Model calibration and uncertainty estimation

341  In the Bogd Uliastai river basin, the model was pre-warmed using data from 2007; the
342  years 2008-2011 were used for calibration, and 2012-2015 for validation. In the
343  Zavkhan Guulin river basin, 2000 was used as the warm-up year, with 2001-2010
344  selected for calibration and 2011-2020 for validation.

345

346 The MOSCEM-UA (Multi-objective Shuffled Complex Evolution Metropolis
347  Algorithm) integrates multi-objective optimization and Bayesian uncertainty analysis,

348  featuring global search capabilities that facilitate the generation of multiple Pareto
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349  optimal solutions and provide an assessment of uncertainty (Vrugt et al., 2003). The
350 MOSCEM_UA was run for the optimization of parameters, with 40000 iterations for
351  four model structures. The model parameters and their prior ranges for calibration are
352  listed in Table 3.

353

354  The Kling-Gupta Efficiency (KGE) and its logarithmic form (KGL) were used as
355  objective functions to evaluate the simulation of daily discharge (Gupta et al., 2009).
356  These two metrics were chosen because each emphasizes a different portion of the
357  hydrograph: KGE is more sensitive to high-flow dynamics, while KGL better captures
358  low-flow conditions. In this study, to accommodate minimization-based optimization
359  algorithms, the runoff objective functions L1 (Eq.27) and L» (Eq.28) were formulated
360 as one minus their respective efficiency metrics. The two objective functions were
361  assigned equal weights during model calibration to ensure a balanced representation of

362  both high- and low-flow regimes.

363 Ly =1-KGE=/(1-y)?+(1-a)?+(1-B)? (27)

364 L,=1-KGL= J(l ~Yiog)” + (1= a109) +(1 = Biog)” (28)
365  where, y is the correlation coefficient between simulated and observed flows, and yig is
366 the correlation coefficient between their logarithmic values; a is the ratio of the standard
367  deviations of the simulated and observed flows, and au is the ratio of the standard
368  deviations of their logarithmic transformations; f is the ratio of the mean values of the
369 simulated and observed flows, and Sy is the ratio of the mean values of their

370  logarithmic transformations.

371 5. Results and discussion

372 5.1 Model calibration and validation

373  Fig.4 shows the performance of the four models during the calibration period. The
374  Pareto-optimal front shifts progressively toward the origin, indicating that model
375  structural modifications enhance the model’s ability to capture basin runoft dynamics.

376 The FLEX"-S model (KGE: 0.65 and 0.65, with the former representing the Bogd
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377  Uliastai river basin and the latter representing the Zavkhan Guulin river basin,
378  hereinafter referred to as the same; KGL: 0.68 and 0.66) (Table 4) outperforms the
379  baseline FLEX" model (KGE: 0.53 and 0.52; KGL: 0.62 and 0.48). This improvement
380  highlights the importance of explicitly representing snow processes in cryospheric
381  regions. Without accounting for snow accumulation and ablation, the model tends to
382  overestimate minor peak flow events in winter, as shown in Fig.5, underscoring the
383  critical role of snow dynamics in shaping hydrological responses.

384

385  The FLEXP model (KGE: 0.77 and 0.68; KGL: 0.74 and 0.74) outperforms the FLEX"-
386 S, with the distributed precipitation and temperature inputs significantly improving the
387  simulation of peak flow. Notably, FLEXP does not require a more complex model
388  structure or additional parameters compared to FLEX'-S. However, it allows each
389  hydrological response unit to maintain distinct storage states in the interception, snow,
390 and unsaturated reservoirs on any given day. This capability effectively overcomes a
391  key limitation of lumped models, which are unable to represent the spatial variability
392  of hydrological responses across heterogeneous landscapes.

393  For hydrograph simulation, FLEXT (KGE: 0.77 and 0.67; KGL: 0.74 and 0.75)

394  performs comparably to FLEXP. This similarity in performance—despite FLEX™’s

395 increased model complexity and more physically interpretable parameters—may be
396  attributed to two main factors. First, both basins are dominated by grasslands, which
397  cover more than 80% of the area, resulting in low vegetation heterogeneity (Fig.3).
398  Second, vegetation characteristics—such as rooting depth and interception capacity—
399 may already be implicitly represented by hydroclimatic and topographic variables
400  (Antonelli et al., 2018; Roebroek et al., 2020), thereby diminishing the added value of
401  explicitly incorporating vegetation information in this case.

402

403  Asshown in Fig.6, the lumped model employs a spatially uniform NDVI value, which

404  cannot reflect intra-basin vegetation variability. Nevertheless, a strong correspondence
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is observed between elevation and NDVI, particularly in grassland-dominated regions.
NDVI values across elevation bands closely match those of the corresponding grassland
zones, suggesting that vegetation distribution is strongly aligned with topographic
gradients. Although NDVI differs significantly between forested and bare land areas,
these land cover types occupy only a small fraction of the basin and contribute
negligibly to runoff generation. In this context, elevation can serve as a reliable proxy
for vegetation structure, effectively embedding vegetation-related hydrological
influence within the topographic representation. These findings support the notion that
hydroclimatic and terrain-based variables may indirectly encode essential vegetation

processes in distributed or semi-distributed models.

Together, these results suggest that the limited vegetation heterogeneity in the study
basins may constrain the potential performance gains of FLEXT over the simpler
FLEXP model. Nonetheless, the strength of FLEXT lies in its explicit representation of
distinct landscape units, enabling a more physically grounded simulation of
hydrological processes and underlying mechanisms. Further research is warranted to
evaluate the benefits of the landscape-based modeling approach in catchments with

greater ecological and topographic complexity.
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Fig.4 Performance of the FLEXY, FLEX'-S, FLEXP, and FLEXT models in calibration mode.
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427  Some interesting rain/snowmelt-runoff events also suggest that distributed models
428 (FLEXP and FLEX") better capture basin hydrological processes. Two such events in
429  the Bogd Uliastai river basin in April 2009 and September 2011 provide compelling
430  evidence (Fig.5). In April 2009, despite minimal precipitation, temperatures exceeded
431  the melting threshold, producing only a relatively insignificant peak flow. In September
432 2011, despite a higher daily precipitation of 12.7 mm, no runoff peak was observed
433 within the basin. Lumped models failed to reproduce these dynamics accurately, instead
434 simulating much larger peak flows. This limitation arises because lumped models do
435  not account for elevation-dependent variations in temperature and precipitation type.
436 When the average daily temperature exceeds the rain-snow separation (snowmelt)
437  threshold, lumped models treat all precipitation as rain (snowmelt is assumed to occur
438  uniformly across the entire basin). However, snowfall may still occur at higher
439  elevations, where temperatures are below the threshold, resulting in limited snowmelt.
440  Similarly, rainfall (and corresponding snowmelt) may occur in lower elevations even

441 when the basin-average temperature falls below the threshold.
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442
443 Fig.5 The daily observed and simulated hydrographs of the FLEX", FLEX"-S, FLEXP, and FLEX"

444 models in the calibration period. The dashed boxes represent the rainfall/snowfall-runoff events in
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445 April 2009 and September 2011 in the Bogd Uliastai river basin.
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446
447  Fig.6 Multi-year average NDVI variation across landscapes and its relationship with elevation in
448  two study basins.

449

450  The performance and results of the four models during the validation period are shown
451  in Figs.7 and 8. The results confirm the stepwise improvement in model performance,
452 as evidenced by the points corresponding to different model structures progressively
453  shifting toward the origin. With the gradual optimization of model structure, the
454 model’s fitness has significantly improved. Unlike during calibration, the points in the
455  validation period do not maintain the arc shape (Fig.4). This discrepancy is attributed
456  to errors present in both the model and the data, the estimation of which remains a
457  challenging task (Fenicia et al., 2008b).

458

459  In summary, a model’s ability to reproduce basin-scale hydrological responses is
460  governed not by the complexity of its structure or the sheer number of parameters, but
461 by the relevance and accuracy of the hydrological processes it represents, and their

462  influence on catchment-scale dynamics.
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Fig.7 Performance of the FLEXY, FLEX'-S, FLEXP, and FLEXT models in validation mode.
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Fig.8 The daily observed and simulated hydrographs of the FLEX", FLEX"-S, FLEXP, and FLEXT

models in the validation period.

5.2 Model test by snowpack dynamics

Snow water equivalent is a crucial indicator of snowmelt dynamics and plays an
essential role in hydrological modeling, serving as an additional metric for evaluating
model performance and realism (Fig.9). In the Bogd Uliastai river basin, the FLEXP
and FLEXT models achieved KGE values of 0.61 and 0.63, respectively, for SWE
simulation, indicating their ability to capture seasonal patterns and interannual
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475  variability, particularly peak values during winter and spring. The FLEXT model, which
476  incorporates vegetation effects, further improved SWE simulation accuracy and
477  enhanced responsiveness to hydrological processes. In contrast, the FLEX"-S model
478  yielded a KGE of only 0.37, reflecting its limitations in capturing snowpack dynamics
479  within the basin. Lumped models typically simplify the spatial heterogeneity of factors
480  such as terrain and vegetation, limiting their ability to capture local-scale features and

481  consequently reducing accuracy in complex environments (Bormann et al., 2009).
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483  Fig.9 The observed and simulated daily snow water equivalent of the FLEX"-S, FLEXP, and FLEX"

Snow water equivalent (mm)
Snow water equivalent (mm)

484 models.

485

486  In the Zavkhan Guulin river basin, the FLEX"-S model demonstrated relatively stable
487  performance, achieving a KGE of 0.50. Although lumped models struggle to capture
488  spatial heterogeneity, they effectively reflect seasonal precipitation and snowmelt
489  trends. FLEXP and FLEX" achieved KGE values of 0.55 and 0.57, respectively, showed

490  slight improvements. Model effectiveness remains strongly influenced by basin-
491  specific climatic and landscape features—such as steep slopes, variable precipitation
492  patterns, heterogeneous vegetation, and local climate fluctuations—all of which

493  complicate accurate simulation of local-scale hydrological responses (Greco et al., 2023;
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494  Nippgen et al., 2011). These challenges are further amplified in data-scarce, cold
495  regions, where disentangling the interactions among these factors is particularly
496  difficult (Chen et al., 2017). While current models provide valuable insights, further
497  refinement and validation are necessary to better capture dynamic local processes and
498  microclimatic effects.

499
500 5.3 Model parameters composition

501 A key feature of the stepwise modelling framework is the progressive refinement of
502  parameterization towards greater physical realism. As shown in Fig.10, model
503  parameters exhibit distinct sensitivity across different structural configurations. In
504  models that do not account for vegetation effects, single parameter values are used to
505 approximate basin-average hydrological behavior. By contrast, the FLEX" model
506  incorporates landscape-specific hydrological response characteristics, resulting in
507  spatially differentiated parameter values that better reflect underlying process
508  heterogeneity.

509

510  Forest, characterized by dense canopies, exhibit a higher value of S maxr (1.22 mm),
511  effectively regulating water distribution during the initial stages of rainfall events
512 (Wangetal., 2021). In comparison, S;mac (0.07 mm and 0.03 mm for the Bogd Uliastai
513  and Zavkhan Guulin river basins, respectively) and S;maxz (0.57 mm and 0.47 mm) are
514  lower. The riparian area, however, shows greater interception capacity than grassland,
515  likely due to denser or more abundant vegetation cover (Gao et al., 2014). Bare soil/rock
516  surfaces lack interception capacity altogether, with rainfall either infiltrating directly
517  into the ground or rapidly generating surface runoff along slopes.

518

519  For root zone storage capacity, Su,mar is 150 mm, consistent with the findings of Wang-
520  Erlandsson et al. (Wang-Erlandsson et al., 2016). Notable differences are observed in
521  Sumaxc (54 mm and 283 mm) and Sy maxz (29 mm and 105 mm) under varying climatic

522  conditions. Sy mas (14 mm and 33 mm) exhibits the lowest values due to the absence of
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523  vegetation cover and limited soil structure development (He et al., 2024).

524  The differences in interception and root zone storage capacity across landscapes
525  between the two basins are primarily attributed to the more arid conditions in the
526  Zavkhan Guulin river basin. This basin is characterized by sparse vegetation (reflected
527  in lower Simax), higher evaporation losses (as suggested by greater Simax), and a low
528  runoff coefficient of only 0.15.
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530  Fig.10 The changes of averaged behavioral parameters of the FLEX", FLEX"-S, FLEXP, and
531  FLEX" models.
532  Other parameters are also refined alongside improvements in the model structure. The

533  parameter D, which partitions generated runoff between fast and slow response
534  reservoirs, tends to be close to 1—indicating that most runoff is routed to the fast
535  reservoir. This aligns with the observed runoff generation mechanisms in the study
536  basins, which are primarily driven by intense rainfall events. Parameters related to
537  energy processes, such as the 7;, and Fuq, exhibit a clear compensatory relationship: a

538  higher T is typically associated with a lower Fuq, and vice versa. This reflects model

539  calibration trade-offs aimed at maintaining energy balance. Future work should
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540 incorporate field observations to better quantify parameter heterogeneity across
541  different landscape units. Such efforts would enhance both the physical interpretability

542  and predictive robustness of the model.

543 5.4 Snow contribution to streamflow

544  Fig.11 shows the annual and seasonal contributions of snowmelt to streamflow in the
545  Bogd Uliastai and Zavkhan Guulin river basins, as determined by the FLEXT model.
546  On an annual scale, snowmelt contributes 23.5%+1.3% and 14.7%+1.6% to streamflow
547  in the Bogd Uliastai and Zavkhan Guulin river basins, respectively. Seasonally,
548  snowmelt plays a dominant role in sustaining spring flows, while its contribution is
549  considerably lower in other seasons. Although direct observational data (e.g., stable
550  water isotopes) for quantifying snowmelt contributions are unavailable in this study,
551  previous research provides indirect support. For example, Wu et al. (Wu et al., 2021)
552  applied a similar snowmelt tracking method in the Altai Mountain and reported that
553  snowmelt accounted for 29.3% of annual streamflow. This result exceeds those
554  observed in our study, largely due to regional differences in snowfall. In the Kayiertesi
555  river basin of the Altai Mountain, annual average precipitation for one hydrological
556  year (September to August) was 409.8 mm from 2011 to 2015 (observed at the Kuwei
557  snow station), with snowfall from November to March comprising about 31% of that
558  annual precipitation (Zhang et al., 2017). In contrast, annual precipitation in the Bogd
559  Uliastai and Zavkhan Guulin basins does not exceed 200 mm, and snowfall represents
560 less than 15% of the total observed precipitation.

561

562  This study also compared model-based snowmelt tracking with traditional indirect
563  methods, which estimate snowmelt contributions by calculating the ratio of snowfall or
564  snowmelt to runoff over a given period (Barnett et al., 2005; Immerzeel et al., 2010).
565  While computationally simple and data-efficient, these methods assume that all
566  meltwater directly contributes to runoff, neglecting interactions with rainfall and losses
567  due to infiltration, evaporation, and subsurface storage. Using the traditional indirect

568  approach, we calculated the snowmelt-to-runoff ratios to be 38.8%=*2.1% and
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569  144.4%+20.1% in the two basins, respectively. These estimates are significantly higher
570 than those obtained via model-based snowmelt tracking, with some values even
571  exceeding 100%, indicating physical implausibility. This discrepancy highlights the

572  limitations and scientific inadequacies of traditional methods. The overestimation likely
573  arises from the failure to account for spatially disconnected snowmelt—specifically,
574  snowmelt that infiltrates into the root zone and is subsequently lost through evaporation
575  (Liu et al., 2023), particularly in the arid Zavkhan Guulin river basin. These findings

576  underscore the importance of using physically based models to trace water source

577  pathways, particularly in data-scarce and hydrologically complex regions.

578
a.Bogd Uliastai river basin [ Annual b.Zavkhan Guulin river basin
& 100 [__|Spring S 100
= Sunmmer ;
= |:| Autumn 2
£ 80 [ Winter E 801 <>
g 8
z o £
= 60 = 60
© ©
£ £
Z g
£ 404 7 404
& P
=] =]
2 2
5 & =} 7
=== -
s : Ph == <
S (S
579

580  Fig.11 Contributions of snowmelt to streamflow (Qu/Q) based on the FLEXT model.

581

582  Fig.12 shows the snowmelt contribution to streamflow and the snowfall/precipitation
583  ratio (Ps/P) across different elevations. The results indicate that the Py/P increases
584  significantly attributable to lower temperatures at higher altitudes that favor snowfall.
585  Correspondingly, the contribution of snowmelt to streamflow also increases with
586  elevation, directly linked to greater snow storage in high elevation areas, which
587  providing a sustained water source for rivers (Sprenger et al., 2024). The finding
588  underscores the decisive influence of snowmelt on streamflow in mountainous regions.
589  With rising temperatures driven by climate change, low elevation areas may see more
590  precipitation as rain, reducing snowpack, while accelerated snowmelt at higher

591 elevations could increase the wvariability and instability of meltwater runoff
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592  (Kraaijenbrink et al., 2021; Li et al., 2017).

593

594  Although the two basins share similar elevation and temperature regimes, their
595  contrasting hydrological responses primarily reflect differences in climate and
596  vegetation cover. The Bogd Uliastai river basin, dominated by mountainous grasslands,
597  exhibits higher vegetation density (basin-average NDVI: 0.31; grassland NDVI: 0.34),
598  whereas the Zavkhan Guulin river basin, situated in a semi-arid region, shows lower
599  vegetation cover (basin-average NDVI: 0.26; grassland NDVI: 0.28) (Fig.6).

600

601  These vegetation differences influence snowmelt-runoff efficiency. In Bogd Uliastai
602  river basin, the snowmelt contribution to streamflow closely matches the snowfall-to-

603  precipitation ratio, indicating limited losses and effective runoff generation. By contrast,

604  Zavkhan Guulin river basin experiences greater hydrological losses—primarily due to

605 infiltration and evaporation—which cause snowmelt contributions to fall below the

606  snowfall input, especially at higher elevations (Litaor et al., 2008).

607

608  Sparser vegetation and drier soils in Zavkhan Guulin river basin further enhance soil
609  moisture retention, delaying runoff initiation and reducing the proportion of meltwater
610  reaching the stream. This comparison highlights how subtle variations in vegetation
611  structure, captured by NDVI, modulate hydrological partitioning and runoff efficiency
612  across cold alpine landscapes (Zhong et al., 2021).

613
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614

615  Fig.12 Contributions of snowmelt to streamflow (Qw/Q) and snowfall/precipitation ratio (Py/P) at

616 different elevations based on FLEXT model.

617 5.5 Runoff generation mechanisms at different elevation zones

618  Elevation is a key topographic factor influencing basin runoff processes and their
619  seasonal variability, as it affects precipitation patterns, snow storage, and melt rates
620  (Jenicek and Ledvinka, 2020). Fig.13 shows significant differences in runoff
621  contributions across 5 equal area elevation bands. High elevation areas (above 2900 m
622  or 2825 m) play a dominant role in runoff generation, primarily due to the orographic
623  effect, which leads to increased precipitation and a higher proportion of snowmelt
624  contributions (Ayala et al., 2023) (Fig.12). Runoff peaks in these high elevation areas
625 are especially pronounced in spring and summer, highlighting the critical role of
626  seasonal snowmelt. In contrast, low elevation areas rely primarily on rainfall-induced
627  runoff. Due to limited precipitation and higher evaporative losses, their contributions
628  to total runoff are comparatively smaller (Sprenger et al., 2022).

629

630 The lag effect in runoff is a notable characteristic of hydrological processes in
631  mountainous basins, reflecting the differential responses of various elevation areas to
632  hydrological drivers. In the Bogd Uliastai river basin, low elevation areas respond
633  rapidly to precipitation events, contributing significantly to runoff during the early

634  stages of peak flow. As the event progresses, contributions from higher elevation areas
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635  gradually increase, highlighting the heterogeneous influence of elevation on runoff
636  dynamics (Hajika et al., 2024). This lag is closely associated with delayed snowmelt
637  process in high elevation areas. where lower temperatures cause precipitation to fall as
638  snow. Snowmelt in these areas typically occurs weeks or even months later than in
639  lower elevations, with the delay especially evident during the initial stages of the melt
640  season (Gillan et al., 2010). A similar pattern is observed in the Zavkhan Guulin river
641  basin, where runoff from high elevation continues to contribute significantly during the
642 latter part of the hydrograph, thereby prolonging the recession phase (Fig.13).

643

644  The lag effect of runoff across different elevation areas has important implications for
645  water resource management. In cold, high-mountain basins, the delayed hydrological
646  response of upper elevation not only sustains downstream water supply during dry
647  periods, but also significantly influences the timing and spatial extent of flood risk (Gu
648 et al., 2023). During extreme precipitation events, rapid runoff generation in low-
649  elevation areas may exacerbate short-term flood hazards, while delayed snowmelt from
650  higher elevations can prolong flood durations. Therefore, both immediate and delayed
651  hydrological responses should be holistically considered in catchment-scale
652  management strategies (Li et al., 2019)

653

654  Although the lag effect is particularly evident during runoff peaks, current observational
655 and modeling data remain insufficient to accurately quantify the specific response
656  timings and processes across elevation gradients. Future research should integrate high-
657  resolution numerical simulations with field-based observations to better disentangle the
658  dynamic runoff contributions from different elevation areas, thereby enhancing the

659  predictive skill and physical realism of hydrological models.
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660
661  Fig.13 Runoff contribution from 5 equal area elevation bands (each representing 20% of the total
662  catchment area) based on FLEXT model.
663
664 5.6 Regulatory mechanisms of vegetation in runoff generation
665 processes
666  Vegetation influences runoff generation not only through its direct physiological
667

properties (e.g., interception, root zone storage, and transpiration), but also through its
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668  spatial interactions with topography. To examine this regulatory role, we analyzed
669  runoff responses across HRUs delineated by distinct vegetation types and elevation
670  bands, thereby isolating process-driven variability from effects primarily driven by
671  areal extent (Fig.14).

672  Despite grasslands occupying the largest portion of both basins (82.8% and 85.4%),
673 their runoff generation capacity varies markedly with elevation and climatic context. In
674  the more arid Zavkhan Guulin river basin, dry grassland soils exhibit high infiltration
675  rates under unsaturated conditions, thereby reducing surface runoff. However, during
676  peak melt or rainfall events, saturation thresholds are exceeded, triggering rapid surface

677  runoff (Assouline et al., 2024).

)
a.Bogd Uliastai river basin b.Zavkhan Guulin river basin

unoff (%

total runof
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678 Bare soil/rock Forest Grassland Riparian area Bare soil/rock Grassland Rxpzlm‘m area
679  Fig.14 Runoff contribution from different landscapes based on FLEX" model.
680

681  Riparian zones, although limited in area (10.3% and 13.0%), contribute
682  disproportionately to runoff (8.5% and 14.2%) due to high soil moisture, shallow root
683  zones, and strong hydrological connectivity. This is consistent with findings that
684  riparian areas function as dynamic runoff buffers, responding rapidly to precipitation
685  and snowmelt inputs (Leibowitz et al., 2023).

686

687  Forested areas, found only in the Bogd Uliastai basin, exhibit strong regulatory
688  functions—intercepting precipitation, enhancing infiltration, and reducing quick flow
689  generation (Liu et al., 2018; Stocker et al., 2023). These effects are particularly relevant

690  under scenarios of climate-induced vegetation change.
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691

692  The runoff generation capacity of bare soi/rock is high due to the lack of vegetation and
693  low soil permeability. After rainfall or snowmelt, water infiltrates poorly and rapidly
694  forms overland flow (Zeng et al., 2024). However, bare surfaces cover only a small
695  portion of the catchment (2.2% and 1.6%), so their overall contribution to streamflow
696  remains limited (2.8% and 3.7%). Despite their distinct hydrological behavior, bare
697  areas play a secondary but notable role in runoff dynamics.

698

699  Importantly, our simulations reveal that interactions between vegetation and
700  topography play a critical role in shaping runoff dynamics. At higher elevations, where
701  vegetation is sparse and terrain is steep, snowmelt is rapidly converted into surface
702 runoff due to limited soil storage capacity. In contrast, lower elevation areas dominated
703 by grasslands and wetlands benefit from gentler slopes and deeper root zones, which
704  enhance infiltration and delay runoff responses (Caviedes-Voulliéme et al., 2021).

705

706  These findings support the view that vegetation functions as a spatially variable
707  regulator of runoff generation, contingent on topographic context and soil—plant—

708  atmosphere interactions. This regulatory effect is particularly sensitive to future
709  changes in vegetation cover and distribution under climate and land use change
710  scenarios. For instance, overgrazing may reduce root zone storage capacity, thereby
711  increasing runoff and erosion risks (Donovan and Monaghan, 2021). while shifts in
712 vegetation type (e.g., shrub encroachment or forest decline) could alter hydrological
713 partitioning along elevation gradients (Hsu et al., 2025; Zhou et al., 2023).

714
715 6 Conclusions

716  Hydrological modelling in high-latitude regions poses considerable challenges due to
717  the complexity of cryospheric processes and limited observational data. To address
718  these issues, this study proposes a stepwise modelling framework that incrementally

719  refines model structures by incorporating key hydrological processes and landscape
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720  characteristics, thereby enhancing both the physical realism and predictive performance
721 of the model.

722

723 Our results underscore the limitations of the lumped models (FLEX" and FLEX"-S) in
724  accurately representing runoff dynamics, particularly in regions with complex
725  topography and heterogeneous vegetation cover. Although the distributed model
726  FLEXP improved the simulation of runoff variability by incorporating spatially
727  distributed inputs, it still lacks full physical interpretability of its parameters. In contrast,
728  the landscape-based FLEXT model explicitly integrates snowpack, topography, and
729  vegetation characteristics, thereby enhancing the physical realism of parameterization
730 and offering a more mechanistic representation of hydrological processes. While
731 FLEXT achieved performance comparable to FLEXP in simulating catchment runoff
732 dynamics, this outcome may be attributed to the limited vegetation heterogeneity in the
733 study basins. Nonetheless, validation using SWE confirmed FLEX™’s capability to
734  capture seasonal patterns, interannual variability, and key hydrological mechanisms in
735  cryospheric environments. These findings underscore the potential advantages of
736 FLEXT, particularly in basins with greater ecological or topographic complexity.

737

738 Results from the FLEXT model indicate that snowmelt contributes 23.5%%1.3% and
739 14.7%+*1.6% to streamflow in the Bogd Uliastai and Zavkhan Guulin river basins,
740  respectively. Temporally, snowmelt contributions peak in spring and remain minimal
741 during other seasons. Spatially, snowmelt contributions increase with elevation,
742  underscoring the critical role of topography in shaping the spatiotemporal dynamics of
743  runoff generation. In high elevation areas, the lagged snowmelt response leads to a
744  sustained and gradual release of runoff, whereas low-altitude areas respond more
745  rapidly to rainfall events. Moreover, hydrological modelling approaches based on
746  vegetation landscape classifications better capture spatial heterogeneity and
747  characterize the dominant hydrological mechanisms across different landscape units.

748  These findings offer valuable insights into hydrological response mechanisms in cold
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749  alpine basins with limited observational data on the Mongolian Plateau. The stepwise
750  modeling framework developed in this study not only improves the simulation of runoff
751  dynamics in high-latitude regions but also enhances understanding of cryospheric
752  hydrological responses to global climate change. Importantly, this framework holds
753  both scientific and practical value, providing a foundation for more effective water
754  resource management, ecological conservation, and climate adaptation in cryospheric
755  and data-scarce regions.

756
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