

1 **Revealing the Influence of Topography and Vegetation on**
2 **Hydrological Processes Using a Stepwise Modelling Approach in Cold**
3 **Alpine Basins of the Mongolian Plateau**

4 Leilei Yong ¹, Yahui Wang ¹, Batsuren Dorjsuren ², Zheng Duan ³, Hongkai Gao ^{1*}

5 ¹Key Laboratory of Geographic Information Science (Ministry of Education of China),

6 School of Geographical Sciences, East China Normal University, Shanghai, China

7 ²Department of Environment and Forest Engineering, National University of Mongolia,

8 Ulaanbaatar 210646, Mongolia

9 ³Department of Physical Geography and Ecosystem Science, Lund University,

10 Sölvegatan 12, SE-223 62, Lund, Sweden

11 * Correspondence: Hongkai Gao, hkgao@geo.ecnu.edu.cn

12

13 **Abstract:** Topography and vegetation are critical factors influencing catchment
14 hydrology; however, their individual contributions are often underestimated in
15 hydrological models. This limitation is particularly evident in cold, mountainous
16 regions such as the Mongolian Plateau, where observational data are sparse. To address
17 this, we employed a stepwise, top-down modelling strategy based on the FLEX
18 framework to systematically assess the influence of topography and vegetation on
19 hydrological processes in the Bogd Uliastai and Zavkhan Guulin river basins.
20 Beginning with a lumped model (FLEX^L), we successively integrated snow processes
21 (FLEX^{L-S}), topographic distribution (FLEX^D), and finally, a landscape-based
22 parameterization accounting for vegetation heterogeneity (FLEX^T). Both FLEX^D and
23 FLEX^T outperformed the lumped models in simulating runoff and SWE. Interestingly,
24 FLEX^T showed similar performance to FLEX^D—likely due to limited vegetation
25 heterogeneity—it offers more physically realistic parameterization by explicitly
26 representing landscape units, suggesting its potential in more complex basins.
27 Snowmelt contributions to streamflow were quantified as 23.5%±1.3% and 14.7%±1.6%

28 in the Bogd Uliastai and Zavkhan Guulin river basins, respectively, with peaks in spring
29 and a clear increase with elevation. At high elevations, delayed snowmelt resulted in
30 sustained runoff, while lower elevations responded more rapidly to rainfall. The explicit
31 representation of vegetation heterogeneity further improved the model's capacity to
32 capture landscape complexity and dominant hydrological mechanisms. This study
33 underscores the pivotal roles of topography and vegetation in runoff generation and
34 demonstrates the effectiveness of a stepwise modelling framework for improving
35 hydrological understanding in cryospheric and data-scarce regions.

36 **Keywords:** Mongolian Plateau, FLEX model, stepwise modelling framework,
37 snowmelt, topography, vegetation

38

39 1. Introduction

40 Understanding and accurately simulating hydrological processes are fundamental for
41 elucidating basin hydrological patterns and supporting water resource management and
42 ecological protection, especially under the context of global environmental change
43 (Gomes et al., 2023; Oki and Kanae, 2006). Topography and vegetation play essential
44 roles as drivers of hydrological processes, influencing key aspects such as precipitation,
45 interception (Dwarakish and Ganasri, 2015), snowmelt (Hammond et al., 2019),
46 evaporation (Jiao et al., 2017), and runoff generation (Qin et al., 2025). Topography
47 governs water flow paths and moisture release processes (Gao et al., 2014), while
48 vegetation affects water movement and infiltration by regulating precipitation
49 interception and soil moisture dynamics (Zhu et al., 2022). The complex interaction
50 between topography and vegetation not only define Hydrological Response Units
51 (HRUs) but also shape the spatial heterogeneity and dominant hydrological
52 mechanisms within a river basin (Savenije, 2010; Sivapalan, 2009). However, in cold-
53 arid regions, data scarcity often leads to oversimplified hydrological models, limiting
54 accurate simulations (Ragettli et al., 2014; Tarasova et al., 2016). Therefore, a more
55 comprehensive evaluation of topography – vegetation interactions is essential for
56 improving model fidelity and supporting effective water resource management and

57 ecological conservation.

58

59 Topography plays a fundamental role in shaping hydrological processes by influencing
60 the spatial distribution of soil moisture, regulating precipitation patterns, modulating
61 evaporation dynamics, and driving runoff generation, thereby governing the movement
62 and storage of water across the landscape (Wicki et al., 2023). In mountainous basins,
63 variations in topographic relief introduce substantial uncertainty into hydrological
64 modeling (Seibert and McDonnell, 2002). Steeper slopes typically lead to more rapid
65 runoff, while gentler slopes promote greater infiltration and moisture retention, thus
66 affecting the spatial and temporal distribution of water resources (Ye et al., 2023).
67 Moreover, topography critically influences snow distribution and snowmelt dynamics.
68 Terrain features such as slope, aspect, and elevation induce spatial heterogeneity in
69 snow accumulation and melting processes, resulting in diverse hydrological responses
70 across the basin (Broxton et al., 2020).

71

72 Vegetation plays a crucial role in regulating hydrological processes, particularly
73 through interception and root zone water storage. First, vegetation canopies intercept
74 rainfall, reducing the amount of effective precipitation reaching the soil, while also
75 mitigating surface erosion and slowing runoff (Cheng et al., 2020). Second, root zone
76 storage capacity and plant transpiration regulate soil moisture, enhance evaporation and
77 facilitating water redistribution (Luo et al., 2022; Volpe et al., 2013). These effects vary
78 by vegetation type, as different structural forms (e.g., forests vs. grasslands) exhibit
79 distinct hydrological behaviors (Chen et al., 2023). In cold mountainous regions,
80 vegetation also affects snow processes by affecting snow distribution and retention. For
81 example, forest canopies can shield snow accumulation, delay snowmelt, and reduce
82 wind-driven redistribution, thereby significantly altering the spatiotemporal dynamics
83 of meltwater runoff (Sun et al., 2022).

84

85 Although the regulatory role of topography and vegetation in basin hydrology are

86 widely acknowledged, their synergistic interactions remain insufficiently understood,
87 particularly in cold high-altitude mountainous regions characterized by complex terrain,
88 harsh climatic conditions, and limited observational data (Stephens et al., 2021).
89 Cryospheric regions serve as critical freshwater resources for downstream areas and are
90 especially sensitive to changes in the hydrological cycle and climate (Immerzeel et al.,
91 2010). In these regions, snowfall and snowmelt processes often dominate runoff
92 generation, with topography and vegetation jointly modulating hydrological responses
93 by influencing snow distribution, accumulation, and melt rates (Dharmadasa et al.,
94 2023; Zhong et al., 2021). Therefore, quantifying the individual and combined effects
95 of topography and vegetation, and effectively integrating them into hydrological
96 models, is essential for advancing cold-region hydrology.

97

98 Existing hydrological models often struggle to adequately capture the complexities
99 introduced by topography and vegetation. Early lumped models typically used basin-
100 averaged precipitation and temperature to simulate runoff, thereby oversimplifying
101 spatial heterogeneity within catchments (Beven, 2012). While computationally efficient,
102 lumped models fail to accurately represent the spatial variability of terrain and land
103 cover, especially in mountainous regions. The advent of distributed hydrological
104 models has allowed more spatially explicit simulations by incorporating topographic
105 and land cover data (Fenia et al., 2016). However, the performance of these models
106 is highly dependent on data quality, which remains a significant limitation in cold, high-
107 mountain regions where traditional observations are sparse or unavailable.

108

109 Remote sensing has become an invaluable tool for providing high-resolution data on
110 topography, vegetation, and snow in hydrological studies of cold regions. Digital
111 elevation models (DEMs) offer critical topographic information such as slope, aspect,
112 and elevation, while vegetation indices derived from remote sensing (e.g., NDVI and
113 EVI) effectively characterize vegetation cover (Xiong et al., 2023). In addition, remote
114 sensing techniques enable spatial monitoring of snow water equivalent and snowmelt

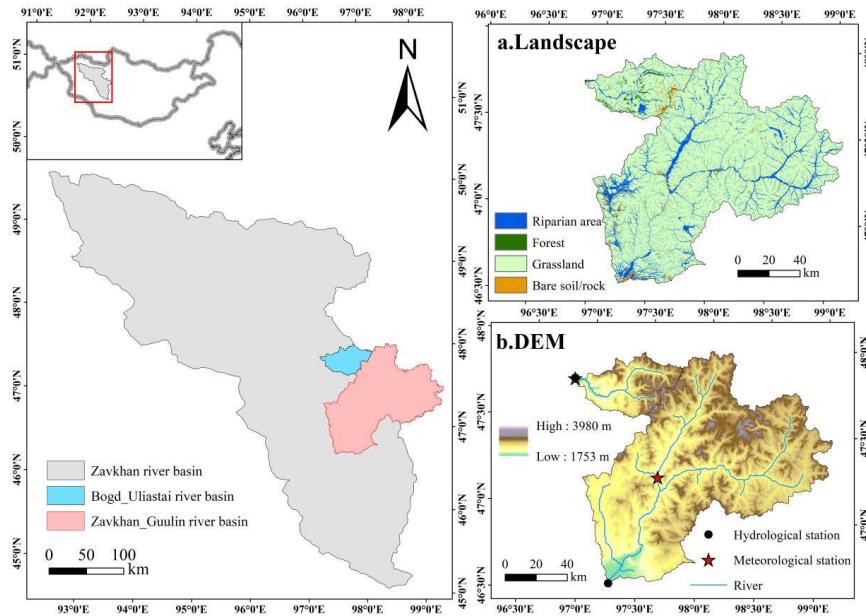
115 processes (Duethmann et al., 2014). Integrating remote sensing data with distributed
116 hydrological models helps to overcome the limitations of traditional in-situ
117 observations, offering a more comprehensive understanding of the roles that
118 topography and vegetation play in shaping hydrological processes (Gao et al., 2014).

119

120 In the absence of direct measurements of individual hydrological processes, the top-
121 down modelling approach offers a powerful means of exploring the internal dynamics
122 of basin behavior (Fenia et al., 2008b). Originally proposed by Klemes (Klemeš, 1983)
123 and later reformulated by Sivapalan et al. (Sivapalan et al., 2003), the top-down
124 approach is rooted in a deductive philosophy that infers the underlying ‘causes’ from
125 the overall observed ‘effect’ of a system. In hydrological modeling, this method begins
126 with a simple structure that is progressively refined to address limitations in
127 reproducing observed catchment behavior (Fenia et al., 2008a). In cold mountainous
128 regions, the top-down approach holds significant potential for improving model realism
129 by systematically incorporating key variables such as snow processes, topography, and
130 vegetation.

131

132 This study focuses on the Bogd Uliastai and Zavkhan Guulin river basins on the
133 Mongolian Plateau, aiming to investigate the roles of topography and vegetation in
134 shaping hydrological processes in cold mountainous regions. Due to the scarcity of
135 observational data, traditional hydrological models face significant challenges in these
136 areas. To address this, we employ a top-down modelling approach, beginning with a
137 lumped model to assess runoff dynamics and progressively advancing toward a
138 distributed framework. This model explicitly incorporates key components—including
139 snowmelt, topography, and vegetation—to better capture the hydrological responses of
140 different landscape units. The study seeks to address three key research questions: (1)
141 How can runoff be effectively simulated in data-scarce, cold mountainous regions using
142 a top-down modelling approach? (2) How can the contribution of snowmelt to
143 streamflow be quantified through a landscape-based hydrological model? (3) How do



144 topography and vegetation influence runoff generation processes?

145 **2. Study site**

146 **2.1 Bogd Uliastai river basin**

147 The Bogd Uliastai river basin (47°30'N-48°10'N, 96°45'E-97°45'E) is located in the
148 northern part of the Zavkhan river headwaters, along the southern foothills of the central
149 Khangaï Mountains in Mongolia (Fig.1). The basin spans an area of 1610 km² and is
150 predominantly mountainous, with elevations ranging from 1753 m a.s.l to 3972 m a.s.l.
151 The region receives an average annual precipitation of approximately 200 mm, with
152 more than 80% of rainfall occurring between June and September. The average annual
153 temperature is -1°C, while winter temperatures frequently fall below -30°C, reflecting
154 a typical alpine climate. Runoff displays strong seasonal variability, with distinct peaks
155 during the spring and summer and almost no flow in winter, resulting in extreme
156 hydrological conditions (Dorjsuren et al., 2024). The vegetation exhibits clear
157 altitudinal zonation: alpine meadows and tundra, dominated by mosses and lichens,
158 prevail at higher elevations, whereas needlegrass steppe and low shrublands are
159 common in mid- and low-elevation zones (Baasanmunkh et al., 2019).

160

161 **Fig.1** Location, landscape (a) and topography (b) of the Bogd Uliastai and Zavkhan Guulin river
162 basins on the Mongolian Plateau.

163

164 **2.2 Zavkhan Guulin river basin**

165 The Zavkhan Guulin river basin ($46^{\circ}30'N$ - $47^{\circ}50'N$, $96^{\circ}45'E$ - $97^{\circ}00'E$), located in the
166 central and southern parts of Zavkhan Province, lies within the transitional zone of the
167 southern Khangai Mountains (Fig.1). The basin covers an area of approximately 12258
168 km² and is predominantly composed of low mountains and hills, with elevations
169 ranging from 1785 m a.s.l. to 3980 m a.s.l. The basin's annual average precipitation is
170 about 160 mm, with most precipitation concentrated in the summer, primarily in the form
171 of heavy rain, which serves as the main source of runoff. The annual average temperature
172 is approximately -3°C, with summer temperatures exceeding 20°C and winter
173 temperatures dropping as low as -50°C, characteristic of a temperate continental climate
174 (Dorjsuren et al., 2023). Vegetation in the region is sparse, primarily dominated by
175 drought-tolerant *Artemisia* species, with scattered distributions of grass and shrubs. At
176 higher elevations, the landscape is characterized by alpine meadows, exposed rock
177 surfaces, and cold desert environments. Soils are nutrient-poor, and the ecological

178 environment is fragile, facing severe challenges such as soil erosion (Baasanmunkh et
179 al., 2019).

180

181 **3. Data**

182 **3.1 Data set**

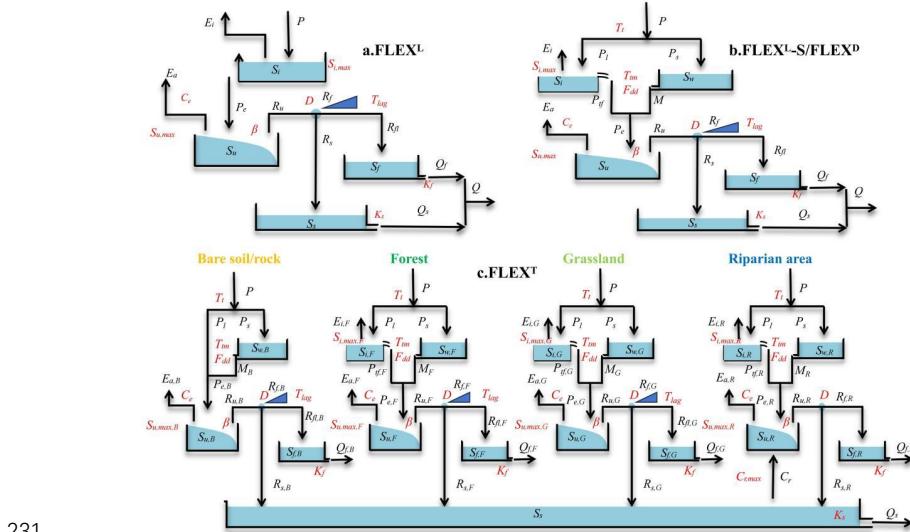
183 **Hydrometeorological data:** Daily precipitation, runoff, and temperature data for the
184 Bogd Uliastai river basin (2007–2015) and the Zavkhan Guulin river basin (2000–2020)
185 were obtained from the Information and Research Institute of Meteorology, Hydrology,
186 and Environment (IRIMHE) via its official website (<http://irimhe.namem.gov.mn>). For
187 each basin, one meteorological station and one hydrological station served as the
188 primary sources of observational data. The Arctic Snow Water Equivalent (SWE) Grid
189 Dataset (2003–2016) was obtained from National Tibetan Plateau/Third Pole
190 Environment Data Center (<https://cstr.cn/18406.11.Snow.tpdc.271556>). The SWE
191 product has a daily temporal resolution and a spatial resolution of 10 km, covering
192 latitudes from 45°N to 90°N and longitudes from 180°W to 180°E.

193 **Topographic data:** The Shuttle Radar Topography Mission Digital Elevation Model
194 (SRTM-DEM), with a spatial resolution of 30 m, was acquired from the official website
195 of the International Center for Tropical Agriculture (<http://srtm.csi.cgiar.org>).

196 **Land cover data:** The Sentinel-2 10-Meter Land Use/Land Cover was accessed via
197 ESRI's official platform (<https://livingatlas.arcgis.com/landcover/>).

198 **NDVI data:** The normalized difference vegetation index (NDVI) data (2013–2020)
199 were derived from the Landsat 8 Operational Land Imager (OLI) Level-2 surface
200 reflectance products. NDVI was calculated as $(\text{NIR} - \text{Red}) / (\text{NIR} + \text{Red})$ using bands
201 5 (NIR) and 4 (Red). The dataset has a spatial resolution of 30 m and a temporal
202 resolution of 16 days. Landsat data were obtained from the United States Geological
203 Survey (USGS) EarthExplorer platform (<https://earthexplorer.usgs.gov/>).

204 **3.2 Distribution of forcing data**


205 Mountainous terrain is complex, and meteorological stations are typically located at
206 lower elevations. Directly using point-based measurement in basin-scale simulations
207 without accounting for elevation effects can introduce biases (Klemes, 1989). In cold
208 mountainous regions, higher elevations typically experience lower temperatures and
209 greater precipitation, often in the form of snow (Lundquist et al., 2010; Stahl et al.,
210 2006). In the study, the FLEX model divides catchment into elevation bands and adjusts
211 temperature and precipitation for each band using a precipitation increase rate and
212 temperature lapse rate. This distributed input approach effectively mitigates simulation
213 bias by better capturing altitudinal variability in meteorological conditions. In this study,
214 due to the remoteness of the region and the sparse distribution of meteorological
215 stations, available ground observations were limited. Satellite and reanalysis products
216 (e.g., ERA5) exhibit notable biases over complex terrain and fail to capture local
217 climatic variability. We therefore relied on the best available in-situ data, which were
218 subjected to rigorous quality control and spatial interpolation, and supplemented by
219 topographic context and previous studies. While uncertainties remain, this approach
220 provides the most reliable climate forcing achievable under current observational
221 constraints. The model employed a precipitation increase rate of 4.2% per 100 m and a
222 temperature lapse rate of 0.6°C per 100 m (Gao et al., 2014).

223

224 **4. Modelling approach**

225 **4.1 Model description**

226 To assess the impact of topography and vegetation on hydrological processes, this study
227 designed and tested four conceptual models with increasing complexity: FLEX^L,
228 FLEX^L-S, FLEX^D, and FLEX^T (Fig.2). The model structure and variables are shown in
229 Fig. 2 and Table 1, and the water balance, isotope mass balance and constitutive
230 equations are shown in Table 2.

232 **Fig.2** Stepwise modelling and the model structure of four models. (a) FLEX^L is a lumped model
233 without snow module; (b) FLEX^{L-S} is a lumped model with snow module, and FLEX^D is a semi-
234 distributed model with the same structure as FLEX^{L-S}. (c) FLEX^T is a landscape-driven semi-
235 distributed model.

236 **Table1.** The variables of four models. In FLEX^T model, variables associated with various landscape
 237 categories are differentiated using specific suffixes, e.g., $E_{i,F}$, represent the interception from forest.

Variables	Meaning	Variables	Meaning
P (mm/d)	Precipitation	E_i (mm/d)	Interception
S_i (mm)	Interception reservoir	P_s (mm/d)	Snowfall
P_l (mm/d)	Rainfall	P_{if} (mm/d)	Effective rainfall after interception
M (mm/d)	Snowmelt	P_e (mm/d)	Effective precipitation
S_u (mm)	Unsaturated reservoir	E_a (mm/d)	Actual evaporation
R_u (mm/d)	Generated runoff from the unsaturated reservoir	R_f (mm/d)	Generated fast runoff in the unsaturated zone
R_{fl} (mm/d)	Discharge into the fast response reservoir after the convolution	R_s (mm/d)	Generated slow runoff in the unsaturated zone
S_f (mm)	Fast response reservoir	S_s (mm)	Slow response reservoir
C_r (mm/d)	Capillary rise from groundwater into unsaturated reservoir on riparian area	Q_f (mm/d)	Subsurface storm flow
Q_s (mm/d)	Groundwater flow	Q (mm/d)	Total runoff

239 **Table 2.** The water balance and constitutive equations used in four models. Note: FLEX^L model lacks the snow module, resulting in different water balance and
 240 structural equations compared to other models. For FLEX^T model, in Eqs.(4), (6), and (7), the S_i and $S_{i,max}$ represent interception reservoir and their interception
 241 capacities in different landscapes, including forest ($S_{i,max,F}$), grassland ($S_{i,max,G}$) and riparian area ($S_{i,max,R}$) (There is no interception store in bare soil/rock area.). Similarly,
 242 in Eqs. (8), (10), (11), and (12), the S_u and $S_{u,max}$ represent root zone reservoirs and their storage capacities in different landscapes, including bare soil/rock ($S_{u,max,B}$),
 243 forest ($S_{u,max,F}$), grassland ($S_{u,max,G}$) and riparian area ($S_{u,max,R}$).

Reservoirs	Water balance equations	Constitutive equations
Interception reservoir (FLEX ^L)	$\frac{dS_i}{dt} = P - E_i - P_e \quad (1)$	$E_i = \min(P_p, \min(P, S_{i,max})) \quad (2)$ $P_e = \max(P - E_i, 0) \quad (3)$
Snow reservoir (FLEX ^L -S/FLEX ^D /FLEX ^T)	$\frac{dS_w}{dt} = P_s - M \quad (4)$	$P_s = \begin{cases} P; & T < T_t \\ 0; & T \geq T_t \end{cases} \quad (5)$ $M = \begin{cases} F_{dd}(T - T_{tm}); & T > T_{tm} \\ 0; & T \leq T_{tm} \end{cases} \quad (6)$
Interception reservoir (FLEX ^L -S/FLEX ^D /FLEX ^T)	$\frac{dS_i}{dt} = P_l - E_i - P_{tf} \quad (7)$	$P_l = \begin{cases} P; & T \geq T_t \\ 0; & T < T_t \end{cases} \quad (8)$ $E_i = \min(P_p, \min(P_l, S_{i,max})) \quad (9)$ $P_{tf} = \max(P_l - E_i, 0) \quad (10)$
		$P_e = P_{tf} + M \quad (11)$

$$\frac{dS_u}{dt} = P_e - E_a - R_u \quad (12)$$

$$E_a = (E_p - E_i) \min\left(\frac{S_u}{C_e S_{u,max}}, 1\right) \quad (13)$$

Unsaturated root zone reservoir (All)

$$R_u = \begin{cases} P_e - S_{u,max} + S_u + S_{u,max} \left(1 - \frac{P_e + AU}{(1+\beta)S_{u,max}}\right)^{(1+\beta)} & ; (1+\beta)S_{u,max} > P_e + AU \\ P_e - S_{u,max} + S_u; & (1+\beta)S_{u,max} \leq P_e + AU \end{cases} \quad (14)$$

$$AU = (1 + \beta)S_{u,max} \left(1 - \left(1 - \frac{S_u}{S_{u,max}}\right)^{\frac{1}{1+\beta}}\right) \quad (15)$$

$$R_f = R_u D \quad (16)$$

$$R_S = R_u (1 - D) \quad (17)$$

Splitter and lag function (All)

$$R_{fl} = \sum_{i=1}^{T_{lag}} c(i) \cdot R_f(t - i + 1) \quad (18)$$

$$c(i) = i / \sum_{u=1}^{T_{lag}} u \quad (19)$$

Fast reservoir (All)	$\frac{dS_f}{dt} = R_f - Q_f$ (20)	$Q_f = S_f / K_f$ (21)
Slow reservoir (All)	$\frac{dS_s}{dt} = R_s - Q_s$ (22)	$Q_s = S_s / K_s$ (23)

245 **4.1.1 FLEX^L**

246 FLEX^L is a lumped conceptual hydrological model composed of four reservoirs
247 (Fig.2a): an interception reservoir (S_i), an unsaturated reservoir (S_u), a fast response
248 reservoir (S_f), and a slow response reservoir (S_s). A lag function is used to represent the
249 lag time from storm to peak flow (T_{lag}). FLEX^L includes a total of 8 free calibration
250 parameters (Table 3).

251

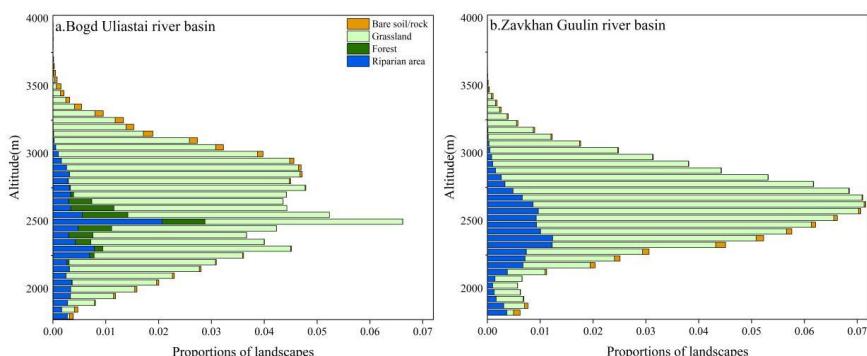
252 The interception reservoir was designed to simulate the process of precipitation
253 interception by vegetation canopies or the ground surface (Eq.1). Interception
254 evaporation (E_i) was calculated by potential evaporation (E_p) and S_i , considering the
255 interception storage capacity ($S_{i,max}$) (Eq.2). When precipitation (P) exceeds $S_{i,max}$, the
256 excess precipitation is routed as effective precipitation (P_e) into the unsaturated
257 reservoir (Eq.3).

258

259 In the unsaturated reservoir, actual evaporation (E_a) was estimated based on E_p and root
260 zone soil moisture ($S_u/S_{u,max}$) (Eq.13). The parameter C_e represents the threshold value
261 controlling evaporation from the root zone soil moisture, and $S_{u,max}$ is root zone storage
262 capacity. The water retention curve from the Xin'anjiang model was used to partition
263 P_e into stored water in S_u and runoff generated from the unsaturated root zone (R_u) (Zhao,
264 1992) (Eqs.14 and 15).

265 In the response reservoir, a splitter D was applied to divide the R_u into two fluxes (R_f
266 and R_s) (Eqs.16 and 17), and Eqs (18) and (19) were used to describe the lag time
267 between storm and peak flow. $R_f(t-i+1)$ represents the fast runoff generated in the
268 unsaturated zone at time $t-i+1$, T_{lag} represents the time lag between the storm and fast
269 runoff generation. $c(i)$ is the weight of the flow in $i-1$ days before and $R_{fl}(t)$ is the
270 discharge into the fast response reservoir after convolution. We used two linear
271 reservoirs to represent the response process of subsurface storm flow (Q_f) and
272 groundwater flow (Q_s) (Eqs.21 and 23).

273


274 **4.1.2 FLEX^L-S**

275 FLEX^L-S builds upon the FLEX^L model by incorporating a snow reservoir (S_w) to
276 simulate the snow accumulation and melt processes (Fig.2b). When the daily air
277 temperature exceeds the threshold temperature (T_t) and there is no snowpack (typically
278 in summer), the interception process governs the initial partitioning of precipitation
279 (Eq.7). In contrast, when the daily mean temperature is below T_t (normally occurs in
280 winter), precipitation is stored as snow (Eq.5). When there is snowpack and the daily
281 air temperature is above T_t (normally prevailing in early spring and early autumn),
282 effective precipitation (P_e) is equal to the sum of effective rainfall after interception (P_{if})
283 and snowmelt (M) (Eq.11). M was calculated by the snow degree day factor (F_{dd}) and
284 the threshold temperature for melting (T_{tm}) (Eq.6) (Gao et al., 2017). In this study, T_{tm}
285 was set to the same value as T_t . It is important to note that meltwater is conceptualized
286 as directly infiltrating into the soil, thereby bypassing the interception reservoir.

287

288 **4.1.3 FLEX^D**

289 FLEX^D is a semi-distributed model with the same structure and parameters as FLEX^L-
290 S (Fig.2b). Using DEM data, the Bogd Uliastai river basin was divided into 45 elevation
291 bands with 50 m interval, while the Zavkhan Guulin river basin was divided into 44
292 elevation bands as shown in Fig.3. The FLEX^D model was operated with semi-
293 distributed input data (see Sect.3.2), ensuring the integration of spatial variability into
294 the model's processes.

295

296 **Fig.3** Area of different elevation and landscape in Bogd Uliastai and Zavkhan Guulin river basins.

297 **4.1.4 FLEX^T**

298 The FLEX^T model classified the Bogd Uliastai river basin into four landscape
299 elements—bare soil/rock, forest, grassland, and riparian area—based on vegetation
300 characteristics. In contrast, the Zavkhan Guulin river basin, which has no forest, was
301 categorized into three landscape elements. By integrating both landscape types and
302 elevation bands, the Bogd Uliastai river basin was further subdivided into 132 HRUs,
303 while the Zavkhan Guulin river basin consisted of 117 HRUs (Fig.3).

304

305 The FLEX^T model's structure comprised four parallel components, representing the
306 distinct hydrological functions associated with landscape elements (Savenije, 2010;
307 Gao et al., 2014) (Fig.2c). To capture the diverse rainfall-runoff processes in different
308 landscape types and simultaneously avoid over-parameterization, we kept the same
309 model structure but gave different interception storage capacity ($S_{i,max}$) and root zone
310 storage capacity ($S_{u,max}$) for all landscape elements (Table 3).

311

312 For forest, due to their dense vegetation cover and the greater amount of water required
313 to fill the root zone to meet water deficits, larger prior ranges were assigned to $S_{i,maxF}$
314 and $S_{u,maxF}$. For bare soil/rock, due to no vegetation cover, we constrained a shallower
315 $S_{u,maxB}$ and did not incorporate an interception module. For the riparian area, which is
316 prone to saturation due to its location, we also constrained a shallower $S_{u,maxR}$, with the
317 effect of capillary rise (C_r) taken into account. C_r is represented by a parameter ($C_{r,max}$)
318 indicating a constant amount of capillary rise. Notably, the lag time from storm to peak
319 flow was not considered in riparian area. For grasslands, $S_{u,maxG}$ is lower than that of
320 forest but higher than bare soil/rock and riparian area.

321 **Table 3.** Uniform prior parameter distributions of four models. Note: $S_{i,max}$ and $S_{u,max}$ do not belong to the FLEX^T model.

Models		Parameter	Explanation	Prior range
FLEX ^L	$S_{i,max}$ (mm)	Storage capacity of interception reservoir	(0,1,2)	
	$S_{u,max}$ (mm)	Root zone storage capacity	(5,300)	
	C_e (-)	Threshold controls actual evaporation and transpiration	(0,1)	
	β (-)	Shape parameter of the tension water storage capacity curve	(0,1,5)	
	D (-)	Splitter between surface runoff and groundwater recharge	(0,1)	
	T_{ag} (-)	Time lag between storm and fast runoff generation	(0,8,3)	
	K_f (d)	Recession coefficient of fast response reservoir	(1,10)	
	K_s (d)	Recession coefficient of slow response reservoir	(10,200)	
	T_l (°C)	Threshold temperature to split snowfall and rainfall	(-2,2)	
	T_{tm} (°C)	Threshold temperature for melting	(-2,2)	
FLEX ^T	F_{dd} (mm(°Cd) ⁻¹)	Snow degree day factor	(1,6)	
	$S_{i,max}$ (mm)	Interception storage capacity of forest	(0,5,2)	
	$S_{i,max}$ (mm)	Interception storage capacity of grassland	(0,1,1)	
	$S_{i,max}$ (mm)	Interception storage capacity of riparian area	(0,1,1)	
	$S_{u,maxB}$ (mm)	Root zone storage capacity of bare soil/rock	(5,120)	
	$S_{u,maxF}$ (mm)	Root zone storage capacity of forest	(50,300)	
	$S_{u,maxG}$ (mm)	Root zone storage capacity of grassland	(10,300)	
	$S_{u,maxR}$ (mm)	Root zone storage capacity of riparian area	(5,120)	
	C_{Rmax} (mm/d)	Constant amount of capillary rise	(0,1,2)	

323 **4.2 Snow contribution to streamflow**

324 This study tracks the contribution of snowmelt to streamflow based on FLEX^T. The
325 model assumes that snowmelt and rainfall mix rapidly and completely upon entering
326 the model's conceptual reservoirs, thereby altering its internal composition ratios. The
327 composition ratio of the water exiting the reservoir is identical to that within the
328 reservoir. The contributions from snowmelt and rainfall represent portions of runoff
329 generated at each time step, with some water remaining in the reservoir to participate
330 in subsequent mixing, runoff generation, evaporation, and other hydrological processes
331 (Liu et al., 2023). The method enables the tracking of the contribution of snowmelt to
332 total runoff (C) at each time step by the following equation:

333
$$C = \frac{Q_M}{Q} = \frac{Q_{f,M} + Q_{s,M}}{Q} \quad (24)$$

334
$$Q_{f,M} = \frac{\left(\frac{M}{P_{tf} + M}\right) S_f}{K_f} \quad (25)$$

335
$$Q_{s,M} = \frac{\left(\frac{M}{P_{tf} + M}\right) S_s}{K_s} \quad (26)$$

336 where Q is total runoff in the river channel; Q_M is snowmelt runoff in the river channel;
337 $Q_{f,M}$ is subsurface storm flow generated by snowmelt; $Q_{s,M}$ is groundwater flow
338 generated by snowmelt.

339

340 **4.3 Model calibration and uncertainty estimation**

341 In the Bogd Uliastai river basin, the model was pre-warmed using data from 2007; the
342 years 2008–2011 were used for calibration, and 2012–2015 for validation. In the
343 Zavkhan Guulin river basin, 2000 was used as the warm-up year, with 2001–2010
344 selected for calibration and 2011–2020 for validation.

345

346 The MOSCEM-UA (Multi-objective Shuffled Complex Evolution Metropolis
347 Algorithm) integrates multi-objective optimization and Bayesian uncertainty analysis,
348 featuring global search capabilities that facilitate the generation of multiple Pareto

349 optimal solutions and provide an assessment of uncertainty (Vrugt et al., 2003). The
350 MOSCEM_UA was run for the optimization of parameters, with 40000 iterations for
351 four model structures. The model parameters and their prior ranges for calibration are
352 listed in Table 3.

353

354 The Kling-Gupta Efficiency (KGE) and its logarithmic form (KGL) were used as
355 objective functions to evaluate the simulation of daily discharge (Gupta et al., 2009).
356 These two metrics were chosen because each emphasizes a different portion of the
357 hydrograph: KGE is more sensitive to high-flow dynamics, while KGL better captures
358 low-flow conditions. In this study, to accommodate minimization-based optimization
359 algorithms, the runoff objective functions L_1 (Eq.27) and L_2 (Eq.28) were formulated
360 as one minus their respective efficiency metrics. The two objective functions were
361 assigned equal weights during model calibration to ensure a balanced representation of
362 both high- and low-flow regimes.

363
$$L_1 = 1 - KGE = \sqrt{(1 - \gamma)^2 + (1 - \alpha)^2 + (1 - \beta)^2} \quad (27)$$

364
$$L_2 = 1 - KGL = \sqrt{(1 - \gamma_{log})^2 + (1 - \alpha_{log})^2 + (1 - \beta_{log})^2} \quad (28)$$

365 where, γ is the correlation coefficient between simulated and observed flows, and γ_{log} is
366 the correlation coefficient between their logarithmic values; α is the ratio of the standard
367 deviations of the simulated and observed flows, and α_{log} is the ratio of the standard
368 deviations of their logarithmic transformations; β is the ratio of the mean values of the
369 simulated and observed flows, and β_{log} is the ratio of the mean values of their
370 logarithmic transformations.

371 **5. Results and discussion**

372 **5.1 Model calibration and validation**

373 Fig.4 shows the performance of the four models during the calibration period. The
374 Pareto-optimal front shifts progressively toward the origin, indicating that model
375 structural modifications enhance the model's ability to capture basin runoff dynamics.
376 The FLEX^L-S model (KGE: 0.65 and 0.65, with the former representing the Bogd

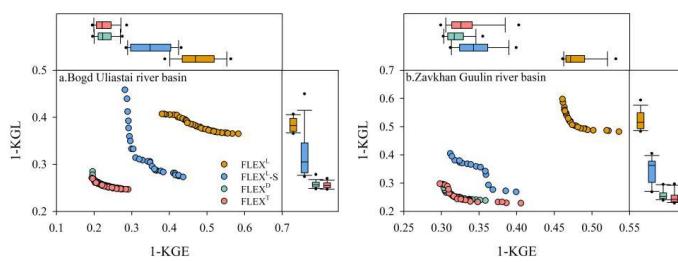
377 Uliastai river basin and the latter representing the Zavkhan Guulin river basin,
378 hereinafter referred to as the same; KGL: 0.68 and 0.66) (Table 4) outperforms the
379 baseline FLEX^L model (KGE: 0.53 and 0.52; KGL: 0.62 and 0.48). This improvement
380 highlights the importance of explicitly representing snow processes in cryospheric
381 regions. Without accounting for snow accumulation and ablation, the model tends to
382 overestimate minor peak flow events in winter, as shown in Fig.5, underscoring the
383 critical role of snow dynamics in shaping hydrological responses.

384

385 The FLEX^D model (KGE: 0.77 and 0.68; KGL: 0.74 and 0.74) outperforms the FLEX^L-
386 S, with the distributed precipitation and temperature inputs significantly improving the
387 simulation of peak flow. Notably, FLEX^D does not require a more complex model
388 structure or additional parameters compared to FLEX^L-S. However, it allows each
389 hydrological response unit to maintain distinct storage states in the interception, snow,
390 and unsaturated reservoirs on any given day. This capability effectively overcomes a
391 key limitation of lumped models, which are unable to represent the spatial variability
392 of hydrological responses across heterogeneous landscapes.

393 For hydrograph simulation, FLEX^T (KGE: 0.77 and 0.67; KGL: 0.74 and 0.75)
394 performs comparably to FLEX^D. This similarity in performance—despite FLEX^T's
395 increased model complexity and more physically interpretable parameters—may be
396 attributed to two main factors. First, both basins are dominated by grasslands, which
397 cover more than 80% of the area, resulting in low vegetation heterogeneity (Fig.3).
398 Second, vegetation characteristics—such as rooting depth and interception capacity—
399 may already be implicitly represented by hydroclimatic and topographic variables
400 (Antonelli et al., 2018; Roebroek et al., 2020), thereby diminishing the added value of
401 explicitly incorporating vegetation information in this case.

402


403 As shown in Fig.6, the lumped model employs a spatially uniform NDVI value, which
404 cannot reflect intra-basin vegetation variability. Nevertheless, a strong correspondence

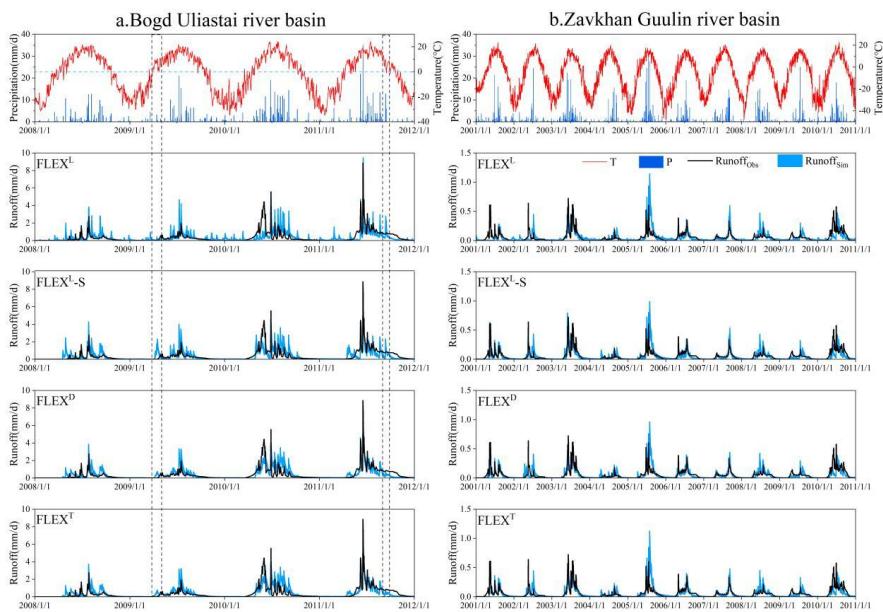
405 is observed between elevation and NDVI, particularly in grassland-dominated regions.
406 NDVI values across elevation bands closely match those of the corresponding grassland
407 zones, suggesting that vegetation distribution is strongly aligned with topographic
408 gradients. Although NDVI differs significantly between forested and bare land areas,
409 these land cover types occupy only a small fraction of the basin and contribute
410 negligibly to runoff generation. In this context, elevation can serve as a reliable proxy
411 for vegetation structure, effectively embedding vegetation-related hydrological
412 influence within the topographic representation. These findings support the notion that
413 hydroclimatic and terrain-based variables may indirectly encode essential vegetation
414 processes in distributed or semi-distributed models.

415

416 Together, these results suggest that the limited vegetation heterogeneity in the study
417 basins may constrain the potential performance gains of FLEX^T over the simpler
418 FLEX^D model. Nonetheless, the strength of FLEX^T lies in its explicit representation of
419 distinct landscape units, enabling a more physically grounded simulation of
420 hydrological processes and underlying mechanisms. Further research is warranted to
421 evaluate the benefits of the landscape-based modeling approach in catchments with
422 greater ecological and topographic complexity.

423

424 **Fig.4** Performance of the FLEX^L, FLEX^{L-S}, FLEX^D, and FLEX^T models in calibration mode.



425 **Table 4** Comparison of simulation performance among different hydrological models in the study catchments.

Basins	Evaluation indicators	Calibration				Validation	
		FLEX ^L	FLEX ^{L-S}	FLEX ^D	FLEX ^T	FLEX ^L	FLEX ^{L-S}
Bogd Uliastai river basin	Max	0.62	0.72	0.80	0.81	0.58	0.63
	Median	0.53	0.65	0.77	0.77	0.39	0.47
	Min	0.42	0.56	0.73	0.71	0.16	0.29
	Max	0.63	0.73	0.75	0.75	0.67	0.76
	Median	0.62	0.68	0.74	0.74	0.64	0.71
	Min	0.59	0.54	0.72	0.73	0.61	0.61
Zavkhan Gulin river basin	Max	0.54	0.69	0.70	0.70	0.41	0.59
	Median	0.52	0.65	0.68	0.67	0.31	0.47
	Min	0.46	0.60	0.64	0.59	0.13	0.28
	Max	0.52	0.73	0.76	0.77	0.60	0.73
	Median	0.48	0.66	0.74	0.75	0.56	0.66
	Min	0.40	0.60	0.70	0.70	0.47	0.61

427 Some interesting rain/snowmelt-runoff events also suggest that distributed models
428 (FLEX^D and FLEX^T) better capture basin hydrological processes. Two such events in
429 the Bogd Uliastai river basin in April 2009 and September 2011 provide compelling
430 evidence (Fig.5). In April 2009, despite minimal precipitation, temperatures exceeded
431 the melting threshold, producing only a relatively insignificant peak flow. In September
432 2011, despite a higher daily precipitation of 12.7 mm, no runoff peak was observed
433 within the basin. Lumped models failed to reproduce these dynamics accurately, instead
434 simulating much larger peak flows. This limitation arises because lumped models do
435 not account for elevation-dependent variations in temperature and precipitation type.
436 When the average daily temperature exceeds the rain-snow separation (snowmelt)
437 threshold, lumped models treat all precipitation as rain (snowmelt is assumed to occur
438 uniformly across the entire basin). However, snowfall may still occur at higher
439 elevations, where temperatures are below the threshold, resulting in limited snowmelt.
440 Similarly, rainfall (and corresponding snowmelt) may occur in lower elevations even
441 when the basin-average temperature falls below the threshold.

442
443 **Fig.5** The daily observed and simulated hydrographs of the FLEX^L , $\text{FLEX}^L\text{-S}$, FLEX^D , and FLEX^T
444 models in the calibration period. The dashed boxes represent the rainfall/snowfall/runoff events in

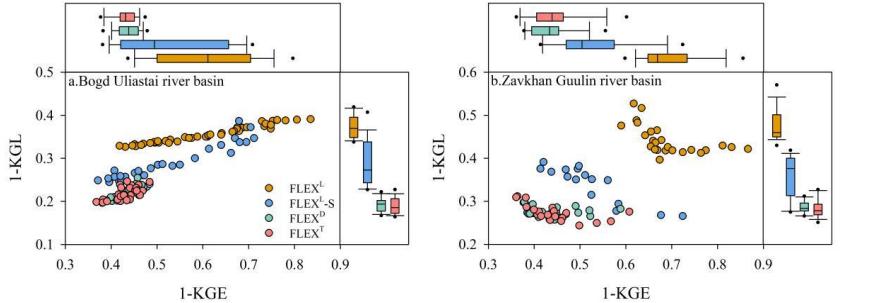
445 April 2009 and September 2011 in the Bogd Uliastai river basin.

446

447 **Fig.6** Multi-year average NDVI variation across landscapes and its relationship with elevation in
448 two study basins.

449

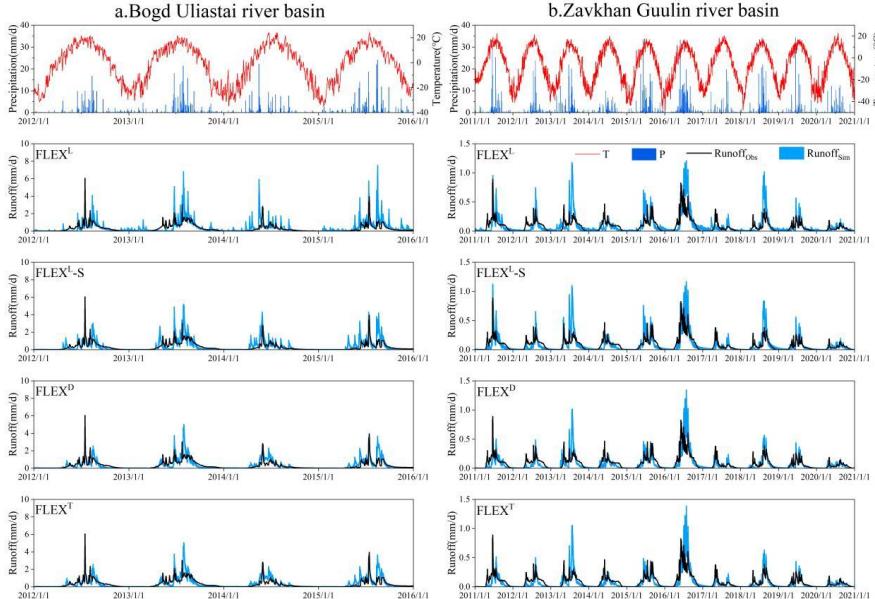
450 The performance and results of the four models during the validation period are shown
451 in Figs.7 and 8. The results confirm the stepwise improvement in model performance,
452 as evidenced by the points corresponding to different model structures progressively
453 shifting toward the origin. With the gradual optimization of model structure, the
454 model's fitness has significantly improved. Unlike during calibration, the points in the
455 validation period do not maintain the arc shape (Fig.4). This discrepancy is attributed
456 to errors present in both the model and the data, the estimation of which remains a
457 challenging task (Fenicia et al., 2008b).


458

459 In summary, a model's ability to reproduce basin-scale hydrological responses is
460 governed not by the complexity of its structure or the sheer number of parameters, but
461 by the relevance and accuracy of the hydrological processes it represents, and their
462 influence on catchment-scale dynamics.

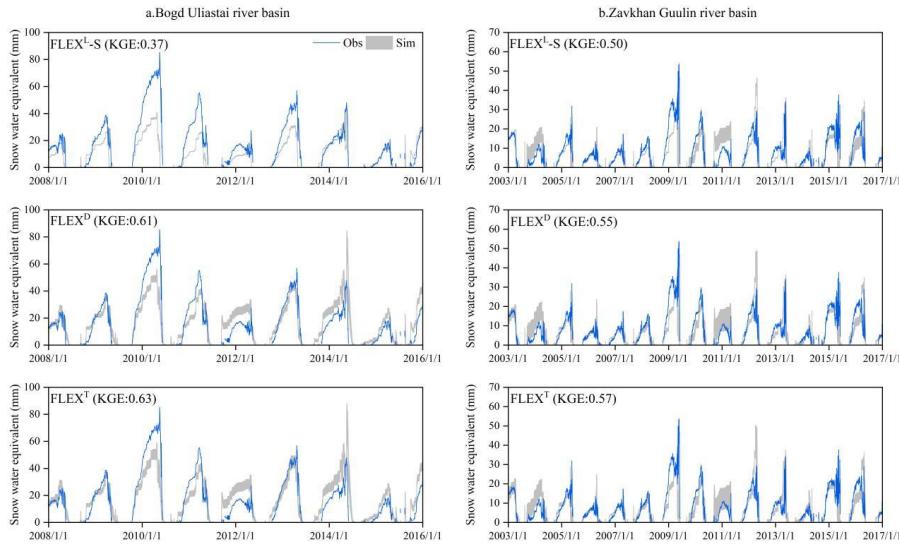
463

464 **Fig.7** Performance of the FLEX^L, FLEX^{L-S}, FLEX^D, and FLEX^T models in validation mode.


465

466 **Fig.8** The daily observed and simulated hydrographs of the FLEX^L, FLEX^{L-S}, FLEX^D, and FLEX^T models in the validation period.

467


469 **5.2 Model test by snowpack dynamics**

470 Snow water equivalent is a crucial indicator of snowmelt dynamics and plays an
 471 essential role in hydrological modeling, serving as an additional metric for evaluating
 472 model performance and realism (Fig.9). In the Bogd Uliastai river basin, the FLEX^D
 473 and FLEX^T models achieved KGE values of 0.61 and 0.63, respectively, for SWE
 474 simulation, indicating their ability to capture seasonal patterns and interannual

475 variability, particularly peak values during winter and spring. The FLEX^T model, which
476 incorporates vegetation effects, further improved SWE simulation accuracy and
477 enhanced responsiveness to hydrological processes. In contrast, the FLEX^{L-S} model
478 yielded a KGE of only 0.37, reflecting its limitations in capturing snowpack dynamics
479 within the basin. Lumped models typically simplify the spatial heterogeneity of factors
480 such as terrain and vegetation, limiting their ability to capture local-scale features and
481 consequently reducing accuracy in complex environments (Bormann et al., 2009).

482
483 **Fig.9** The observed and simulated daily snow water equivalent of the FLEX^{L-S}, FLEX^D, and FLEX^T
484 models.

485
486 In the Zavkhan Guulin river basin, the FLEX^{L-S} model demonstrated relatively stable
487 performance, achieving a KGE of 0.50. Although lumped models struggle to capture
488 spatial heterogeneity, they effectively reflect seasonal precipitation and snowmelt
489 trends. FLEX^D and FLEX^T achieved KGE values of 0.55 and 0.57, respectively, showed
490 slight improvements. Model effectiveness remains strongly influenced by basin-
491 specific climatic and landscape features—such as steep slopes, variable precipitation
492 patterns, heterogeneous vegetation, and local climate fluctuations—all of which
493 complicate accurate simulation of local-scale hydrological responses (Greco et al., 2023;

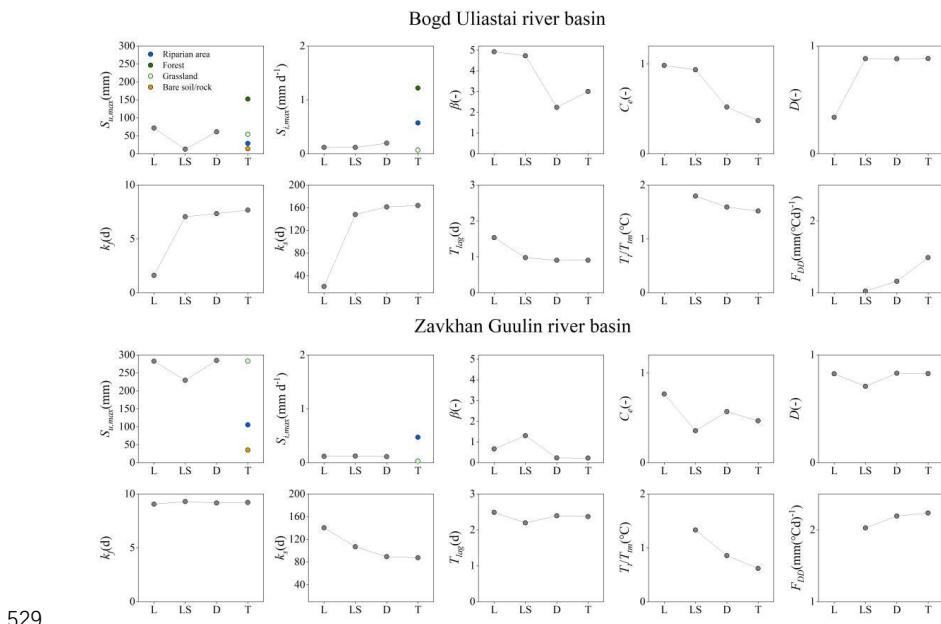
494 Nippgen et al., 2011). These challenges are further amplified in data-scarce, cold
495 regions, where disentangling the interactions among these factors is particularly
496 difficult (Chen et al., 2017). While current models provide valuable insights, further
497 refinement and validation are necessary to better capture dynamic local processes and
498 microclimatic effects.

499

500 **5.3 Model parameters composition**

501 A key feature of the stepwise modelling framework is the progressive refinement of
502 parameterization towards greater physical realism. As shown in Fig.10, model
503 parameters exhibit distinct sensitivity across different structural configurations. In
504 models that do not account for vegetation effects, single parameter values are used to
505 approximate basin-average hydrological behavior. By contrast, the FLEX^T model
506 incorporates landscape-specific hydrological response characteristics, resulting in
507 spatially differentiated parameter values that better reflect underlying process
508 heterogeneity.

509


510 Forest, characterized by dense canopies, exhibit a higher value of $S_{i,maxF}$ (1.22 mm),
511 effectively regulating water distribution during the initial stages of rainfall events
512 (Wang et al., 2021). In comparison, $S_{i,maxG}$ (0.07 mm and 0.03 mm for the Bogd Uliastai
513 and Zavkhan Guulin river basins, respectively) and $S_{i,maxR}$ (0.57 mm and 0.47 mm) are
514 lower. The riparian area, however, shows greater interception capacity than grassland,
515 likely due to denser or more abundant vegetation cover (Gao et al., 2014). Bare soil/rock
516 surfaces lack interception capacity altogether, with rainfall either infiltrating directly
517 into the ground or rapidly generating surface runoff along slopes.

518

519 For root zone storage capacity, $S_{u,maxF}$ is 150 mm, consistent with the findings of Wang-
520 Erlandsson et al. (Wang-Erlandsson et al., 2016). Notable differences are observed in
521 $S_{u,maxG}$ (54 mm and 283 mm) and $S_{u,maxR}$ (29 mm and 105 mm) under varying climatic
522 conditions. $S_{u,maxB}$ (14 mm and 33 mm) exhibits the lowest values due to the absence of

523 vegetation cover and limited soil structure development (He et al., 2024).
 524 The differences in interception and root zone storage capacity across landscapes
 525 between the two basins are primarily attributed to the more arid conditions in the
 526 Zavkhan Guulin river basin. This basin is characterized by sparse vegetation (reflected
 527 in lower $S_{i,max}$), higher evaporation losses (as suggested by greater $S_{u,max}$), and a low
 528 runoff coefficient of only 0.15.

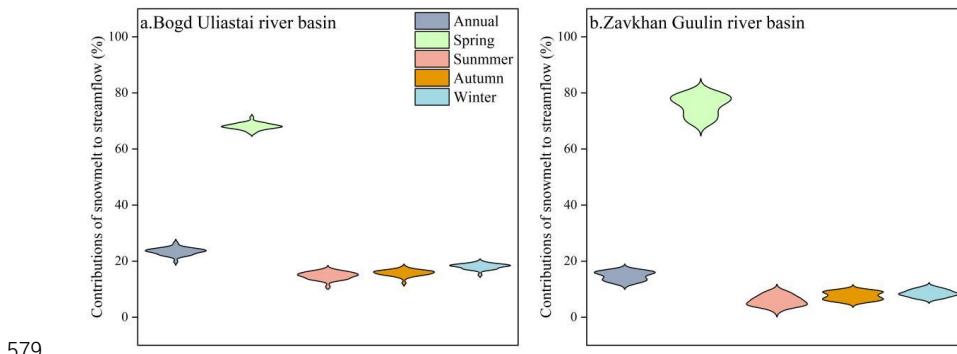
529
 530 **Fig.10** The changes of averaged behavioral parameters of the FLEX^L, FLEX^{L-S}, FLEX^D, and
 531 FLEX^T models.

532 Other parameters are also refined alongside improvements in the model structure. The
 533 parameter D , which partitions generated runoff between fast and slow response
 534 reservoirs, tends to be close to 1—indicating that most runoff is routed to the fast
 535 reservoir. This aligns with the observed runoff generation mechanisms in the study
 536 basins, which are primarily driven by intense rainfall events. Parameters related to
 537 energy processes, such as the T_{tm} and F_{dd} , exhibit a clear compensatory relationship: a
 538 higher T_{tm} is typically associated with a lower F_{dd} , and vice versa. This reflects model
 539 calibration trade-offs aimed at maintaining energy balance. Future work should

540 incorporate field observations to better quantify parameter heterogeneity across
541 different landscape units. Such efforts would enhance both the physical interpretability
542 and predictive robustness of the model.

543 **5.4 Snow contribution to streamflow**

544 Fig.11 shows the annual and seasonal contributions of snowmelt to streamflow in the
545 Bogd Uliastai and Zavkhan Guulin river basins, as determined by the FLEX^T model.
546 On an annual scale, snowmelt contributes $23.5\% \pm 1.3\%$ and $14.7\% \pm 1.6\%$ to streamflow
547 in the Bogd Uliastai and Zavkhan Guulin river basins, respectively. Seasonally,
548 snowmelt plays a dominant role in sustaining spring flows, while its contribution is
549 considerably lower in other seasons. Although direct observational data (e.g., stable
550 water isotopes) for quantifying snowmelt contributions are unavailable in this study,
551 previous research provides indirect support. For example, Wu et al. (Wu et al., 2021)
552 applied a similar snowmelt tracking method in the Altai Mountain and reported that
553 snowmelt accounted for 29.3% of annual streamflow. This result exceeds those
554 observed in our study, largely due to regional differences in snowfall. In the Kayertesi
555 river basin of the Altai Mountain, annual average precipitation for one hydrological
556 year (September to August) was 409.8 mm from 2011 to 2015 (observed at the Kuwei
557 snow station), with snowfall from November to March comprising about 31% of that
558 annual precipitation (Zhang et al., 2017). In contrast, annual precipitation in the Bogd
559 Uliastai and Zavkhan Guulin basins does not exceed 200 mm, and snowfall represents
560 less than 15% of the total observed precipitation.


561

562 This study also compared model-based snowmelt tracking with traditional indirect
563 methods, which estimate snowmelt contributions by calculating the ratio of snowfall or
564 snowmelt to runoff over a given period (Barnett et al., 2005; Immerzeel et al., 2010).
565 While computationally simple and data-efficient, these methods assume that all
566 meltwater directly contributes to runoff, neglecting interactions with rainfall and losses
567 due to infiltration, evaporation, and subsurface storage. Using the traditional indirect
568 approach, we calculated the snowmelt-to-runoff ratios to be $38.8\% \pm 2.1\%$ and

569 144.4% \pm 20.1% in the two basins, respectively. These estimates are significantly higher
570 than those obtained via model-based snowmelt tracking, with some values even
571 exceeding 100%, indicating physical implausibility. This discrepancy highlights the
572 limitations and scientific inadequacies of traditional methods. The overestimation likely
573 arises from the failure to account for spatially disconnected snowmelt—specifically,
574 snowmelt that infiltrates into the root zone and is subsequently lost through evaporation
575 (Liu et al., 2023), particularly in the arid Zavkhan Guulin river basin. These findings
576 underscore the importance of using physically based models to trace water source
577 pathways, particularly in data-scarce and hydrologically complex regions.

578

580 **Fig.11** Contributions of snowmelt to streamflow (Q_M/Q) based on the FLEX^T model.

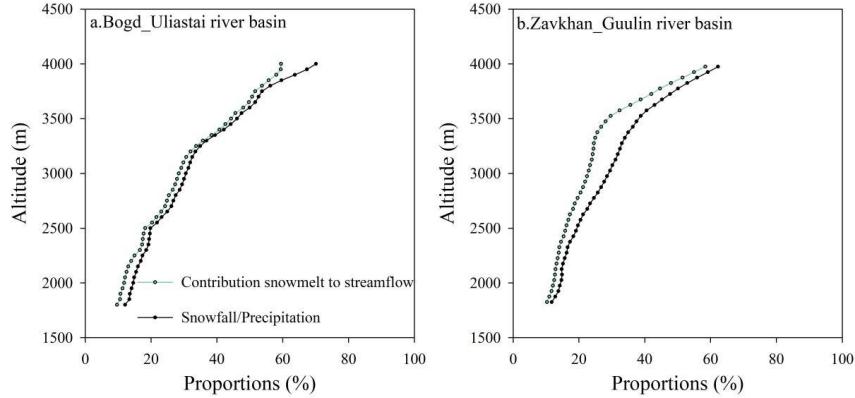
581

582 Fig.12 shows the snowmelt contribution to streamflow and the snowfall/precipitation
583 ratio (P_s/P) across different elevations. The results indicate that the P_s/P increases
584 significantly attributable to lower temperatures at higher altitudes that favor snowfall.
585 Correspondingly, the contribution of snowmelt to streamflow also increases with
586 elevation, directly linked to greater snow storage in high elevation areas, which
587 providing a sustained water source for rivers (Sprenger et al., 2024). The finding
588 underscores the decisive influence of snowmelt on streamflow in mountainous regions.
589 With rising temperatures driven by climate change, low elevation areas may see more
590 precipitation as rain, reducing snowpack, while accelerated snowmelt at higher
591 elevations could increase the variability and instability of meltwater runoff

592 (Kraaijenbrink et al., 2021; Li et al., 2017).

593

594 Although the two basins share similar elevation and temperature regimes, their
595 contrasting hydrological responses primarily reflect differences in climate and
596 vegetation cover. The Bogd Uliastai river basin, dominated by mountainous grasslands,
597 exhibits higher vegetation density (basin-average NDVI: 0.31; grassland NDVI: 0.34),
598 whereas the Zavkhan Guulin river basin, situated in a semi-arid region, shows lower
599 vegetation cover (basin-average NDVI: 0.26; grassland NDVI: 0.28) (Fig.6).


600

601 These vegetation differences influence snowmelt-runoff efficiency. In Bogd Uliastai
602 river basin, the snowmelt contribution to streamflow closely matches the snowfall-to-
603 precipitation ratio, indicating limited losses and effective runoff generation. By contrast,
604 Zavkhan Guulin river basin experiences greater hydrological losses—primarily due to
605 infiltration and evaporation—which cause snowmelt contributions to fall below the
606 snowfall input, especially at higher elevations (Litaor et al., 2008).

607

608 Sparser vegetation and drier soils in Zavkhan Guulin river basin further enhance soil
609 moisture retention, delaying runoff initiation and reducing the proportion of meltwater
610 reaching the stream. This comparison highlights how subtle variations in vegetation
611 structure, captured by NDVI, modulate hydrological partitioning and runoff efficiency
612 across cold alpine landscapes (Zhong et al., 2021).

613

614

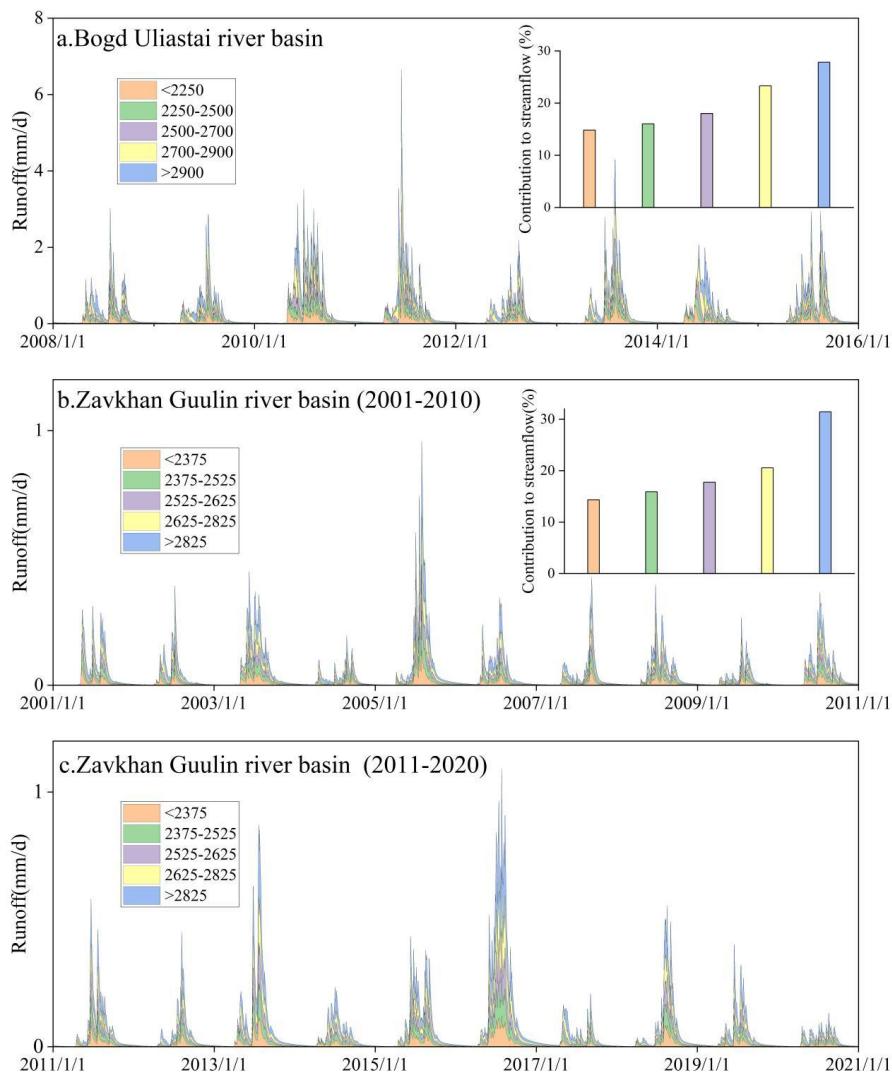
615 **Fig.12** Contributions of snowmelt to streamflow (Q_m/Q) and snowfall/precipitation ratio (P_s/P) at
616 different elevations based on FLEX^T model.

617 **5.5 Runoff generation mechanisms at different elevation zones**

618 Elevation is a key topographic factor influencing basin runoff processes and their
619 seasonal variability, as it affects precipitation patterns, snow storage, and melt rates
620 (Jenicek and Ledvinka, 2020). Fig.13 shows significant differences in runoff
621 contributions across 5 equal area elevation bands. High elevation areas (above 2900 m
622 or 2825 m) play a dominant role in runoff generation, primarily due to the orographic
623 effect, which leads to increased precipitation and a higher proportion of snowmelt
624 contributions (Ayala et al., 2023) (Fig.12). Runoff peaks in these high elevation areas
625 are especially pronounced in spring and summer, highlighting the critical role of
626 seasonal snowmelt. In contrast, low elevation areas rely primarily on rainfall-induced
627 runoff. Due to limited precipitation and higher evaporative losses, their contributions
628 to total runoff are comparatively smaller (Sprenger et al., 2022).

629

630 The lag effect in runoff is a notable characteristic of hydrological processes in
631 mountainous basins, reflecting the differential responses of various elevation areas to
632 hydrological drivers. In the Bogd Uliastai river basin, low elevation areas respond
633 rapidly to precipitation events, contributing significantly to runoff during the early
634 stages of peak flow. As the event progresses, contributions from higher elevation areas


635 gradually increase, highlighting the heterogeneous influence of elevation on runoff
636 dynamics (Hajika et al., 2024). This lag is closely associated with delayed snowmelt
637 process in high elevation areas, where lower temperatures cause precipitation to fall as
638 snow. Snowmelt in these areas typically occurs weeks or even months later than in
639 lower elevations, with the delay especially evident during the initial stages of the melt
640 season (Gillan et al., 2010). A similar pattern is observed in the Zavkhan Guulin river
641 basin, where runoff from high elevation continues to contribute significantly during the
642 latter part of the hydrograph, thereby prolonging the recession phase (Fig.13).

643

644 The lag effect of runoff across different elevation areas has important implications for
645 water resource management. In cold, high-mountain basins, the delayed hydrological
646 response of upper elevation not only sustains downstream water supply during dry
647 periods, but also significantly influences the timing and spatial extent of flood risk (Gu
648 et al., 2023). During extreme precipitation events, rapid runoff generation in low-
649 elevation areas may exacerbate short-term flood hazards, while delayed snowmelt from
650 higher elevations can prolong flood durations. Therefore, both immediate and delayed
651 hydrological responses should be holistically considered in catchment-scale
652 management strategies (Li et al., 2019)

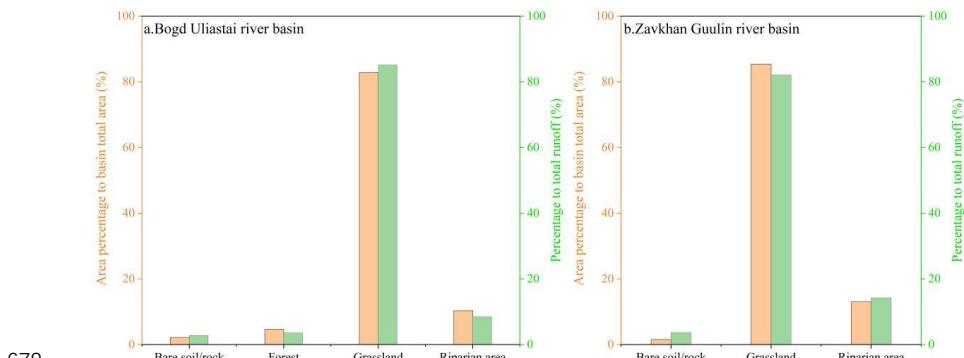
653

654 Although the lag effect is particularly evident during runoff peaks, current observational
655 and modeling data remain insufficient to accurately quantify the specific response
656 timings and processes across elevation gradients. Future research should integrate high-
657 resolution numerical simulations with field-based observations to better disentangle the
658 dynamic runoff contributions from different elevation areas, thereby enhancing the
659 predictive skill and physical realism of hydrological models.

660

661 **Fig.13** Runoff contribution from 5 equal area elevation bands (each representing 20% of the total
662 catchment area) based on FLEX^T model.

663


664 **5.6 Regulatory mechanisms of vegetation in runoff generation
665 processes**

666 Vegetation influences runoff generation not only through its direct physiological
667 properties (e.g., interception, root zone storage, and transpiration), but also through its

668 spatial interactions with topography. To examine this regulatory role, we analyzed
669 runoff responses across HRUs delineated by distinct vegetation types and elevation
670 bands, thereby isolating process-driven variability from effects primarily driven by
671 areal extent (Fig.14).

672 Despite grasslands occupying the largest portion of both basins (82.8% and 85.4%),
673 their runoff generation capacity varies markedly with elevation and climatic context. In
674 the more arid Zavkhan Guulin river basin, dry grassland soils exhibit high infiltration
675 rates under unsaturated conditions, thereby reducing surface runoff. However, during
676 peak melt or rainfall events, saturation thresholds are exceeded, triggering rapid surface
677 runoff (Assouline et al., 2024).

678
679 **Fig.14** Runoff contribution from different landscapes based on FLEX^T model.

680

681 Riparian zones, although limited in area (10.3% and 13.0%), contribute
682 disproportionately to runoff (8.5% and 14.2%) due to high soil moisture, shallow root
683 zones, and strong hydrological connectivity. This is consistent with findings that
684 riparian areas function as dynamic runoff buffers, responding rapidly to precipitation
685 and snowmelt inputs (Leibowitz et al., 2023).

686

687 Forested areas, found only in the Bogd Uliastai basin, exhibit strong regulatory
688 functions—intercepting precipitation, enhancing infiltration, and reducing quick flow
689 generation (Liu et al., 2018; Stocker et al., 2023). These effects are particularly relevant
690 under scenarios of climate-induced vegetation change.

691

692 The runoff generation capacity of bare soil/rock is high due to the lack of vegetation and
693 low soil permeability. After rainfall or snowmelt, water infiltrates poorly and rapidly
694 forms overland flow (Zeng et al., 2024). However, bare surfaces cover only a small
695 portion of the catchment (2.2% and 1.6%), so their overall contribution to streamflow
696 remains limited (2.8% and 3.7%). Despite their distinct hydrological behavior, bare
697 areas play a secondary but notable role in runoff dynamics.

698

699 Importantly, our simulations reveal that interactions between vegetation and
700 topography play a critical role in shaping runoff dynamics. At higher elevations, where
701 vegetation is sparse and terrain is steep, snowmelt is rapidly converted into surface
702 runoff due to limited soil storage capacity. In contrast, lower elevation areas dominated
703 by grasslands and wetlands benefit from gentler slopes and deeper root zones, which
704 enhance infiltration and delay runoff responses (Caviedes-Voullième et al., 2021).

705

706 These findings support the view that vegetation functions as a spatially variable
707 regulator of runoff generation, contingent on topographic context and soil–plant–
708 atmosphere interactions. This regulatory effect is particularly sensitive to future
709 changes in vegetation cover and distribution under climate and land use change
710 scenarios. For instance, overgrazing may reduce root zone storage capacity, thereby
711 increasing runoff and erosion risks (Donovan and Monaghan, 2021), while shifts in
712 vegetation type (e.g., shrub encroachment or forest decline) could alter hydrological
713 partitioning along elevation gradients (Hsu et al., 2025; Zhou et al., 2023).

714

715 **6 Conclusions**

716 Hydrological modelling in high-latitude regions poses considerable challenges due to
717 the complexity of cryospheric processes and limited observational data. To address
718 these issues, this study proposes a stepwise modelling framework that incrementally
719 refines model structures by incorporating key hydrological processes and landscape

720 characteristics, thereby enhancing both the physical realism and predictive performance
721 of the model.

722

723 Our results underscore the limitations of the lumped models (FLEX^L and FLEX^{L-S}) in
724 accurately representing runoff dynamics, particularly in regions with complex
725 topography and heterogeneous vegetation cover. Although the distributed model
726 FLEX^D improved the simulation of runoff variability by incorporating spatially
727 distributed inputs, it still lacks full physical interpretability of its parameters. In contrast,
728 the landscape-based FLEX^T model explicitly integrates snowpack, topography, and
729 vegetation characteristics, thereby enhancing the physical realism of parameterization
730 and offering a more mechanistic representation of hydrological processes. While
731 FLEX^T achieved performance comparable to FLEX^D in simulating catchment runoff
732 dynamics, this outcome may be attributed to the limited vegetation heterogeneity in the
733 study basins. Nonetheless, validation using SWE confirmed FLEX^T's capability to
734 capture seasonal patterns, interannual variability, and key hydrological mechanisms in
735 cryospheric environments. These findings underscore the potential advantages of
736 FLEX^T, particularly in basins with greater ecological or topographic complexity.

737

738 Results from the FLEX^T model indicate that snowmelt contributes $23.5\% \pm 1.3\%$ and
739 $14.7\% \pm 1.6\%$ to streamflow in the Bogd Uliastai and Zavkhan Guulin river basins,
740 respectively. Temporally, snowmelt contributions peak in spring and remain minimal
741 during other seasons. Spatially, snowmelt contributions increase with elevation,
742 underscoring the critical role of topography in shaping the spatiotemporal dynamics of
743 runoff generation. In high elevation areas, the lagged snowmelt response leads to a
744 sustained and gradual release of runoff, whereas low-altitude areas respond more
745 rapidly to rainfall events. Moreover, hydrological modelling approaches based on
746 vegetation landscape classifications better capture spatial heterogeneity and
747 characterize the dominant hydrological mechanisms across different landscape units.

748 These findings offer valuable insights into hydrological response mechanisms in cold

749 alpine basins with limited observational data on the Mongolian Plateau. The stepwise
750 modeling framework developed in this study not only improves the simulation of runoff
751 dynamics in high-latitude regions but also enhances understanding of cryospheric
752 hydrological responses to global climate change. Importantly, this framework holds
753 both scientific and practical value, providing a foundation for more effective water
754 resource management, ecological conservation, and climate adaptation in cryospheric
755 and data-scarce regions.

756

757 **Code availability**

758 The code is available upon request to the contact author.

759

760 **Data availability**

761 All data presented in this manuscript are publicly available for download from:
762 Hydrometeorological data (precipitation, runoff, temperature) from the Information and
763 Research Institute of Meteorology, Hydrology, and Environment, available at
764 <http://irimhe.namem.gov.mn>. Arctic Snow Water Equivalent Grid Dataset from the
765 National Tibetan Plateau/Third Pole Environment Data Center, available at
766 <https://cstr.cn/18406.11.Snow.tpdc.271556>. Shuttle Radar Topography Mission Digital
767 Elevation Model (SRTM-DEM), available at <http://srtm.csi.cgiar.org>. Sentinel-2 10-
768 meter Land Use/Land Cover data from the ESRI Living Atlas, available at
769 <https://livingatlas.arcgis.com/landcover/>. NDVI data were obtained from the United
770 States Geological Survey (USGS) EarthExplorer platform. available at
771 <https://earthexplorer.usgs.gov/>.

772

773 **Author contributions**

774 LY and HG designed the study. BD provided the valuable fieldwork data. LY, YW, HG,
775 and ZD conducted the analyses. LY wrote the paper. All authors discussed the results
776 and the first draft and contributed to the final paper.

777

778 **Competing interests**

779 At least one of the (co-)authors is a member of the editorial board of Hydrology and
780 Earth System Sciences.

781

782 **Acknowledgments**

783 This research is funded by National Key Research and Development Program of China
784 (2024YFE0113200), the National Natural Science Foundation of China (grant no.
785 42471040). Zheng Duan would like to acknowledge the support from the Crafoord
786 Foundation, Sweden (Grant No.20210552 and No.20240857). This work was
787 performed as part of the IAHS HELPING Working Group on "Development &
788 application of river basin simulators".

789

790 **References**

791 Antonelli, A. et al., 2018. Geological and climatic influences on mountain biodiversity. *Nature
792 Geoscience*, 11(10): 718-725. DOI:10.1038/s41561-018-0236-z

793 Assouline, S., Sela, S., Dorman, M., Svoray, T., 2024. Runoff generation in a semiarid environment: The
794 role of rainstorm intra-event temporal variability and antecedent soil moisture. *Advances in
795 Water Resources*, 188: 104715. DOI:<https://doi.org/10.1016/j.advwatres.2024.104715>

796 Ayala, Á., Schauwecker, S., MacDonell, S., 2023. Spatial distribution and controls of snowmelt runoff
797 in a sublimation-dominated environment in the semiarid Andes of Chile. *Hydrol. Earth Syst.
798 Sci.*, 27(18): 3463-3484. DOI:10.5194/hess-27-3463-2023

799 Baasanmunkh, S. et al., 2019. Contribution to the knowledge on the flora of northern Mongolia. *Journal
800 of Asia-Pacific Biodiversity*, 12(4): 643-660. DOI:<https://doi.org/10.1016/j.japb.2019.08.009>

801 Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water
802 availability in snow-dominated regions. *Nature*, 438(7066): 303-309.
803 DOI:10.1038/nature04141

804 Beven, K.J., 2012. Rainfall-runoff modeling :the primer. *Rainfall-runoff modelling: the primer*, 15(1):
805 84-96.

806 Bormann, H., Breuer, L., Giertz, S., Huisman, J.A., Viney, N.R., 2009. Spatially explicit versus lumped
807 models in catchment hydrology – experiences from two case studies. In: Baveye, P.C., Laba,
808 M., Mysiak, J. (Eds.), *Uncertainties in Environmental Modelling and Consequences for Policy
809 Making*. Springer Netherlands, Dordrecht, pp. 3-26.

810 Broxton, P.D., van Leeuwen, W.J.D., Biederman, J.A., 2020. Forest cover and topography regulate the
811 thin, ephemeral snowpacks of the semiarid Southwest United States. *Ecohydrology*, 13(4):
812 e2202. DOI:<https://doi.org/10.1002/eco.2202>

813 Caviedes-Voullième, D., Ahmadinia, E., Hinz, C., 2021. Interactions of Microtopography, Slope and
814 Infiltration Cause Complex Rainfall-Runoff Behavior at the Hillslope Scale for Single Rainfall

815 Events. *WATER RESOURCES RESEARCH*, 57(7). DOI:10.1029/2020WR028127

816 Chen, J. et al., 2023. Differences in soil water storage, consumption, and use efficiency of typical
817 vegetation types and their responses to precipitation in the Loess Plateau, China. *Science of The
818 Total Environment*, 869: 161710. DOI:<https://doi.org/10.1016/j.scitotenv.2023.161710>

819 Chen, Y., Li, W., Fang, G., Li, Z., 2017. Review article: Hydrological modeling in glacierized catchments
820 of central Asia – status and challenges. *Hydrol. Earth Syst. Sci.*, 21(2): 669-684.
821 DOI:10.5194/hess-21-669-2017

822 Cheng, X., Bai, Y., Zhu, J., Han, H., 2020. Effects of forest thinning on interception and surface runoff
823 in *Larix principis-rupprechtii* plantation during the growing season. *Journal of Arid
824 Environments*, 181: 104222. DOI:<https://doi.org/10.1016/j.jaridenv.2020.104222>

825 Dharmadasa, V., Kinnard, C., Bara  r, M., 2023. Topographic and vegetation controls of the spatial
826 distribution of snow depth in agro-forested environments by UAV lidar. *The Cryosphere*, 17(3):
827 1225-1246. DOI:10.5194/tc-17-1225-2023

828 Donovan, M., Monaghan, R., 2021. Impacts of grazing on ground cover, soil physical properties and soil
829 loss via surface erosion: A novel geospatial modelling approach. *Journal of Environmental
830 Management*, 287: 112206. DOI:<https://doi.org/10.1016/j.jenvman.2021.112206>

831 Dorjsuren, B. et al., 2024. Trend analysis of hydro-climatic variables in the Great Lakes Depression
832 region of Mongolia. *Journal of Water and Climate Change*, 15(3): 940-957.
833 DOI:10.2166/wcc.2024.379

834 Dorjsuren, B. et al., 2023. Hydro-Climatic and Vegetation Dynamics Spatial-Temporal Changes in the
835 Great Lakes Depression Region of Mongolia. *Water*. DOI:10.3390/w15213748

836 Duethmann, D., Peters, J., Blume, T., Vorogushyn, S., G  ntner, A., 2014. The value of satellite-derived
837 snow cover images for calibrating a hydrological model in snow-dominated catchments in
838 Central Asia. *Water Resources Research*, 50(3): 2002-2021.
839 DOI:<https://doi.org/10.1002/2013WR014382>

840 Dwarakish, G.S., Ganasri, B.P., 2015. Impact of land use change on hydrological systems: A review of
841 current modeling approaches. *Cogent Geoscience*, 1(1): 1115691.
842 DOI:10.1080/23312041.2015.1115691

843 Fenia, F., Kavetski, D., Savenije, H.H.G., Pfister, L., 2016. From spatially variable streamflow to
844 distributed hydrological models: Analysis of key modeling decisions. *Water Resources
845 Research*, 52(2): 954-989. DOI:<https://doi.org/10.1002/2015WR017398>

846 Fenia, F., McDonnell, J.J., Savenije, H.H.G., 2008a. Learning from model improvement: On the
847 contribution of complementary data to process understanding. *Water Resources Research*, 44(6).
848 DOI:<https://doi.org/10.1029/2007WR006386>

849 Fenia, F., Savenije, H.H.G., Matgen, P., Pfister, L., 2008b. Understanding catchment behavior through
850 stepwise model concept improvement. *Water Resources Research*, 44(1).
851 DOI:<https://doi.org/10.1029/2006WR005563>

852 Gao, H., Ding, Y., Zhao, Q., Hrachowitz, M., Savenije, H.H.G., 2017. The importance of aspect for
853 modelling the hydrological response in a glacier catchment in Central Asia. *Hydrological
854 Processes*, 31(16): 2842-2859. DOI:<https://doi.org/10.1002/hyp.11224>

855 Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., Savenije, H.H.G., 2014. Testing the realism of a
856 topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China.
857 *Hydrol. Earth Syst. Sci.*, 18(5): 1895-1915. DOI:10.5194/hess-18-1895-2014

858 Gillan, B.J., Harper, J.T., Moore, J.N., 2010. Timing of present and future snowmelt from high elevations

859 in northwest Montana. Water Resources Research, 46(1).
860 DOI:<https://doi.org/10.1029/2009WR007861>

861 Gomes, M.N. et al., 2023. HydroPol2D — Distributed hydrodynamic and water quality model:
862 Challenges and opportunities in poorly-gauged catchments. *Journal of Hydrology*, 625: 129982.
863 DOI:<https://doi.org/10.1016/j.jhydrol.2023.129982>

864 Greco, R., Marino, P., Bogaard, T.A., 2023. Recent advancements of landslide hydrology. *WILEY
865 INTERDISCIPLINARY REVIEWS-WATER*, 10(6). DOI:10.1002/wat2.1675

866 Gu, H. et al., 2023. Seasonal catchment memory of high mountain rivers in the Tibetan Plateau. *Nature
867 Communications*, 14(1): 3173. DOI:10.1038/s41467-023-38966-9

868 Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error
869 and NSE performance criteria: Implications for improving hydrological modelling. *Journal of
870 Hydrology*, 377(1): 80-91. DOI:<https://doi.org/10.1016/j.jhydrol.2009.08.003>

871 Hajika, T., Yamakawa, Y., Uchida, T., 2024. Spatial distribution of rainfall-runoff characteristics and
872 peak lag time in high-relief meso-scale mountain catchments where observations are scarce.
873 *Hydrological Processes*, 38(6): e15177. DOI:<https://doi.org/10.1002/hyp.15177>

874 Hammond, J.C., Harpold, A.A., Weiss, S., Kampf, S.K., 2019. Partitioning snowmelt and rainfall in the
875 critical zone: effects of climate type and soil properties. *Hydrol. Earth Syst. Sci.*, 23(9): 3553-
876 3570. DOI:10.5194/hess-23-3553-2019

877 He, S. et al., 2024. Impacts of re-vegetation on soil water dynamics in a semiarid region of Northwest
878 China. *Science of The Total Environment*, 911: 168496.
879 DOI:<https://doi.org/10.1016/j.scitotenv.2023.168496>

880 Hsu, J. et al., 2025. Impact of land use changes and global warming on extreme precipitation patterns in
881 the Maritime Continent. *npj Climate and Atmospheric Science*, 8(1): 5. DOI:10.1038/s41612-
882 024-00883-z

883 Immerzeel, W.W., van Beek, L.P.H., Bierkens, M.F.P., 2010. Climate Change Will Affect the Asian Water
884 Towers. *Science*, 328(5984): 1382-1385. DOI:10.1126/science.1183188

885 Jenicek, M., Ledvinka, O., 2020. Importance of snowmelt contribution to seasonal runoff and summer
886 low flows in Czechia. *Hydrol. Earth Syst. Sci.*, 24(7): 3475-3491. DOI:10.5194/hess-24-3475-
887 2020

888 Jiao, Y. et al., 2017. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by
889 using a land surface-hydrology coupled model. *Journal of Hydrology*, 551: 116-131.
890 DOI:<https://doi.org/10.1016/j.jhydrol.2017.05.060>

891 Klemeš, V., 1983. Conceptualization and scale in hydrology. *Journal of Hydrology*, 65(1): 1-23.
892 DOI:[https://doi.org/10.1016/0022-1694\(83\)90208-1](https://doi.org/10.1016/0022-1694(83)90208-1)

893 Klemeš, V., 1989. The modelling of mountain hydrology : the ultimate challenge. *IAHS-AISH
894 publication*, 190: 29-43.

895 Kraaijenbrink, P.D.A., Stigter, E.E., Yao, T., Immerzeel, W.W., 2021. Climate change decisive for Asia's
896 snow meltwater supply. *Nature Climate Change*, 11(7): 591-597. DOI:10.1038/s41558-021-
897 01074-x

898 Leibowitz, S.G. et al., 2023. National hydrologic connectivity classification links wetlands with stream
899 water quality. *Nature Water*, 1(4): 370-380. DOI:10.1038/s44221-023-00057-w

900 Li, D., Lettenmaier, D.P., Margulis, S.A., Andreadis, K., 2019. The Role of Rain-on-Snow in Flooding
901 Over the Conterminous United States. *Water Resources Research*, 55(11): 8492-8513.
902 DOI:<https://doi.org/10.1029/2019WR024950>

903 Li, D., Wrzesien, M.L., Durand, M., Adam, J., Lettenmaier, D.P., 2017. How much runoff originates as
904 snow in the western United States, and how will that change in the future? *Geophysical*
905 *Research Letters*, 44(12): 6163-6172. DOI:<https://doi.org/10.1002/2017GL073551>

906 Litaor, M.I., Williams, M., Seastedt, T.R., 2008. Topographic controls on snow distribution, soil moisture,
907 and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. *Journal of*
908 *Geophysical Research: Biogeosciences*, 113(G2). DOI:<https://doi.org/10.1029/2007JG000419>

909 Liu, J., Zhang, Z., Zhang, M., 2018. Impacts of forest structure on precipitation interception and run-off
910 generation in a semiarid region in northern China. *Hydrological Processes*, 32(15): 2362-2376.
911 DOI:<https://doi.org/10.1002/hyp.13156>

912 Liu, Z., Cuo, L., Sun, N., 2023. Tracking snowmelt during hydrological surface processes using a
913 distributed hydrological model in a mesoscale basin on the Tibetan Plateau. *Journal of*
914 *Hydrology*, 616: 128796. DOI:<https://doi.org/10.1016/j.jhydrol.2022.128796>

915 Lundquist, J.D., Minder, J.R., Neiman, P.J., Sukovich, E., 2010. Relationships between Barrier Jet
916 Heights, Orographic Precipitation Gradients, and Streamflow in the Northern Sierra Nevada.
917 *Journal of Hydrometeorology*, 11(5): 1141-1156. DOI:<https://doi.org/10.1175/2010JHM1264.1>

918 Luo, Z. et al., 2022. Widespread root-zone water bypass for various climates and species: Implications
919 for the ecohydrological separation understanding. *Agricultural and Forest Meteorology*, 324:
920 109107. DOI:<https://doi.org/10.1016/j.agrformet.2022.109107>

921 Nippgen, F., McGlynn, B.L., Marshall, L.A., Emanuel, R.E., 2011. Landscape structure and climate
922 influences on hydrologic response. *Water Resources Research*, 47(12).
923 DOI:<https://doi.org/10.1029/2011WR011161>

924 Oki, T., Kanae, S., 2006. Global Hydrological Cycles and World Water Resources. *Science*, 313(5790):
925 1068-1072. DOI:[doi:10.1126/science.1128845](https://doi.org/10.1126/science.1128845)

926 Qin, J., Yang, B., Ding, Y., Cui, J., Zhang, Y., 2025. Assessment of runoff generation capacity and total
927 runoff contribution for different landscapes in alpine and permafrost watershed. *CATENA*, 249:
928 108643. DOI:<https://doi.org/10.1016/j.catena.2024.108643>

929 Ragettli, S., Cortés, G., McPhee, J., Pellicciotti, F., 2014. An evaluation of approaches for modelling
930 hydrological processes in high-elevation, glacierized Andean watersheds. *HYDROLOGICAL*
931 *PROCESSES*, 28(23): 5674-5695. DOI:[10.1002/hyp.10055](https://doi.org/10.1002/hyp.10055)

932 Roebroek, C.T.J., Melsen, L.A., Hoek van Dijke, A.J., Fan, Y., Teuling, A.J., 2020. Global distribution
933 of hydrologic controls on forest growth. *Hydrol. Earth Syst. Sci.*, 24(9): 4625-4639.
934 DOI:[10.5194/hess-24-4625-2020](https://doi.org/10.5194/hess-24-4625-2020)

935 Savenije, H.H.G., 2010. HESS Opinions "Topography driven conceptual modelling (FLEX-Topo)".
936 *Hydrol. Earth Syst. Sci.*, 14(12): 2681-2692. DOI:[10.5194/hess-14-2681-2010](https://doi.org/10.5194/hess-14-2681-2010)

937 Seibert, J., McDonnell, J.J., 2002. On the dialog between experimentalist and modeler in catchment
938 hydrology: Use of soft data for multicriteria model calibration. *Water Resources Research*,
939 38(11): 23-1-23-14. DOI:<https://doi.org/10.1029/2001WR000978>

940 Sivapalan, M., 2009. The secret to 'doing better hydrological science': change the question!
941 *Hydrological Processes*, 23(9): 1391-1396. DOI:<https://doi.org/10.1002/hyp.7242>

942 Sivapalan, M., Zhang, L., Vertessy, R., Blöschl, G., 2003. Downward approach to hydrological prediction.
943 *Hydrological Processes*, 17(11): 2099-2099. DOI:<https://doi.org/10.1002/hyp.1426>

944 Sprenger, M. et al., 2022. Variability of Snow and Rainfall Partitioning Into Evapotranspiration and
945 Summer Runoff Across Nine Mountainous Catchments. *Geophysical Research Letters*, 49(13):
946 e2022GL099324. DOI:<https://doi.org/10.1029/2022GL099324>

947 Sprenger, M. et al., 2024. Stream water sourcing from high-elevation snowpack inferred from stable
948 isotopes of water: a novel application of d-excess values. *Hydrol. Earth Syst. Sci.*, 28(7): 1711-
949 1723. DOI:10.5194/hess-28-1711-2024

950 Stahl, K., Moore, R.D., Foyer, J.A., Asplin, M.G., McKendry, I.G., 2006. Comparison of approaches for
951 spatial interpolation of daily air temperature in a large region with complex topography and
952 highly variable station density. *Agricultural and Forest Meteorology*, 139(3): 224-236.
953 DOI:<https://doi.org/10.1016/j.agrformet.2006.07.004>

954 Stephens, C.M., Lall, U., Johnson, F.M., Marshall, L.A., 2021. Landscape changes and their hydrologic
955 effects: Interactions and feedbacks across scales. *Earth-Science Reviews*, 212: 103466.
956 DOI:<https://doi.org/10.1016/j.earscirev.2020.103466>

957 Stocker, B.D. et al., 2023. Global patterns of water storage in the rooting zones of vegetation. *Nature
958 Geoscience*, 16(3): 250-256. DOI:10.1038/s41561-023-01125-2

959 Sun, N. et al., 2022. Forest Canopy Density Effects on Snowpack Across the Climate Gradients of the
960 Western United States Mountain Ranges. *WATER RESOURCES RESEARCH*, 58(1).
961 DOI:10.1029/2020WR029194

962 Tarasova, L., Knoche, M., Dietrich, J., Merz, R., 2016. Effects of input discretization, model complexity,
963 and calibration strategy on model performance in a data-scarce glacierized catchment in Central
964 Asia. *Water Resources Research*, 52(6): 4674-4699.
965 DOI:<https://doi.org/10.1002/2015WR018551>

966 Volpe, V., Marani, M., Albertson, J.D., Katul, G., 2013. Root controls on water redistribution and carbon
967 uptake in the soil–plant system under current and future climate. *Advances in Water Resources*,
968 60: 110-120. DOI:<https://doi.org/10.1016/j.advwatres.2013.07.008>

969 Vrugt, J.A., Gupta, H.V., Bouting, W., Sorooshian, S., 2003. A Shuffled Complex Evolution Metropolis
970 algorithm for optimization and uncertainty assessment of hydrologic model parameters. *Water
971 Resources Research*, 39(8). DOI:<https://doi.org/10.1029/2002WR001642>

972 Wang-Erlandsson, L. et al., 2016. Global root zone storage capacity from satellite-based evaporation.
973 *Hydrol. Earth Syst. Sci.*, 20(4): 1459-1481. DOI:10.5194/hess-20-1459-2016

974 Wang, G.X. et al., 2021. Critical advances in understanding ecohydrological processes of terrestrial
975 vegetation: From leaf to watershed scale. *CHINESE SCIENCE BULLETIN-CHINESE*, 66(28-
976 29): 3667-3683. DOI:10.1360/TB-2020-1339

977 Wicki, A., Lehmann, P., Hauck, C., Stähli, M., 2023. Impact of topography on in situ soil wetness
978 measurements for regional landslide early warning – a case study from the Swiss Alpine
979 Foreland. *Nat. Hazards Earth Syst. Sci.*, 23(3): 1059-1077. DOI:10.5194/nhess-23-1059-2023

980 Wu, X. et al., 2021. Analysis of seasonal snowmelt contribution using a distributed energy balance model
981 for a river basin in the Altai Mountains of northwestern China. *Hydrological Processes*, 35(3):
982 e14046. DOI:<https://doi.org/10.1002/hyp.14046>

983 Xiong, C. et al., 2023. Improved global 250 m 8-day NDVI and EVI products from 2000–2021 using the
984 LSTM model. *Scientific Data*, 10(1): 800. DOI:10.1038/s41597-023-02695-x

985 Ye, S. et al., 2023. From rainfall to runoff: The role of soil moisture in a mountainous catchment. *Journal
986 of Hydrology*, 625: 130060. DOI:<https://doi.org/10.1016/j.jhydrol.2023.130060>

987 Zeng, X., Peng, X., Liu, T., Dai, Q., Chen, X., 2024. Runoff generation and erosion processes at the rock–
988 soil interface of outcrops with a concave surface in a rocky desertification area. *CATENA*, 239:
989 107920. DOI:<https://doi.org/10.1016/j.catena.2024.107920>

990 Zhang, W., Kang, S.-c., Shen, Y.-p., He, J.-q., Chen, A.-a., 2017. Response of snow hydrological

991 processes to a changing climate during 1961 to 2016 in the headwater of Irtysh River Basin,
992 Chinese Altai Mountains. *Journal of Mountain Science*, 14(11): 2295-2310.
993 DOI:10.1007/s11629-017-4556-z

994 Zhao, R., 1992. The Xinanjiang model applied in China. *Journal of Hydrology*, 135(1): 371-381.
995 DOI:[https://doi.org/10.1016/0022-1694\(92\)90096-E](https://doi.org/10.1016/0022-1694(92)90096-E)

996 Zhong, X.-Y. et al., 2021. Impacts of landscape and climatic factors on snow cover in the Altai Mountains,
997 China. *Advances in Climate Change Research*, 12(1): 95-107.
998 DOI:<https://doi.org/10.1016/j.accre.2021.01.005>

999 Zhou, S., Yu, B., Lintner, B.R., Findell, K.L., Zhang, Y., 2023. Projected increase in global runoff
1000 dominated by land surface changes. *Nature Climate Change*, 13(5): 442-449.
1001 DOI:10.1038/s41558-023-01659-8

1002 Zhu, G. et al., 2022. Evaporation, infiltration and storage of soil water in different vegetation zones in
1003 the Qilian Mountains: a stable isotope perspective. *Hydrol. Earth Syst. Sci.*, 26(14): 3771-3784.
1004 DOI:10.5194/hess-26-3771-2022

1005