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Abstract. Over the last years, significant progress has been made in the development of convection-permitting climate mod-

els (CPCMs), especially for improving precipitation modeling in regions with complex terrain. Recently, the South American

Affinity Group (SAAG) developed a novel high-resolution dataset — hereafter referred to as the WRF-SAAG dataset — by dy-

namically downscaling the ERA5 reanalysis using the Weather Research and Forecasting (WRF) model over South America for5

the period 2000–2021. In this paper, we evaluate the quality of WRF-SAAG daily precipitation and temperature simulations

using observations from meteorological stations over continental Chile for the period 2001–2018, and present comparisons

against two gridded meteorological products – CR2MET and RF-MEP – which are based on in-situ meteorological station

measurements and have been widely used for hydrometeorological applications in this region. We found that, although the

precipitation products correctly replicated the percentage correct (PC) of observed events and non-events (PC ≥ 0.64), detec-10

tion accuracy varied within each Chilean macrozone –defined by latitudinal bands – with worse performance in the Far North

(between 17.5 – 26°S) and Patagonia (between 43.7 – 56°S) — median Critical Success Index (CSI) < 0.49 for events > 5

mm/d— compared to the central region (CSI ≥ 0.44 for events > 5 mm/d). The evaluation of daily precipitation and extreme

temperatures against station observations using Tang’s Kling-Gupta efficiency (KGET ) and its components reveals that all

datasets performed better in reproducing precipitation in rainy regions (median KGET ≥ 0.65 in the Southern macrozone),15

while in arid areas such as the Near North during summer, the median KGET was negative. The CR2MET product consistently

provided the best performance metrics for extreme precipitation and temperature, partly because it includes information from

the stations used for evaluation. Finally, the application of the TUW hydrological model shows that WRF-SAAG simulations

achieved runoff estimations comparable to the best observation-based products, with the best metrics obtained in the Southern

macrozone, where the median objective function (OF ) —defined as the average of KGE′ and KGE′(1/q) — remains above20

0.87 (0.67) during the calibration (evaluation) period. More broadly, the results presented here show that – despite some re-

maining challenges in arid climate regions – kilometer-scale climate models can deliver information of a quality comparable

to that of observation-based products for hydrological applications in Chile.
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1 Introduction

Spatially distributed meteorological datasets are not only essential to understand weather and climate patterns, but also to25

characterize hydrological systems in various contexts (e.g., water balances, extreme events) and make predictions for water

resources management and planning. Hence, the evaluation (e.g., Rasmussen et al., 2011; Mendoza et al., 2015) and inter-

comparison (e.g., Zambrano-Bigiarini et al., 2017; Henn et al., 2018; Newman et al., 2019) of such datasets is critical for

understanding their potential for different applications, especially in areas with complex topography where the scarcity of

observations (e.g., Viviroli et al., 2011; Muñoz et al., 2024), the lack of long-term records (e.g., Barrios et al., 2018; Serrano-30

Notivoli and Tejedor, 2021), and precipitation undercatch (e.g., Rasmussen et al., 2012; Prein and Gobiet, 2017) introduce

large uncertainties in the estimation of hydrometeorological variables.

In recent decades, several gridded meteorological datasets have been produced worldwide for catchment-scale, regional,

and global-scale applications. Although spatial interpolation schemes based on in-situ measurements and topographic de-

scriptors have been the standard approach (Daly et al., 1994, 2008; Clark and Slater, 2006; Isotta et al., 2014; Newman et al.,35

2015, 2020), their accuracy heavily depends on the spatial density of stations, which is typically higher in valleys and populated

areas. Hence, satellite-based products have become an attractive alternative in sparse data regions, especially for rainfall (e.g.,

Kidd and Huffman, 2011; Lockhoff et al., 2014; Funk et al., 2015), though they tend to underestimate precipitation intensities,

overestimate their frequency (Scheel et al., 2011; Katiraie-Boroujerdy et al., 2013), and depend on the retrieval algorithm (Bart-

sotas et al., 2018). Further, satellite-based precipitation estimates have particularly large uncertainties and biases in mountain40

regions (Derin and Yilmaz, 2014). Dynamical climate simulations have also been useful in producing global-coverage histor-

ical time series at moderate (∼0.25-0.75°) resolutions, contributing to an improved understanding of mesoscale meteorology

(e.g., Torma et al., 2015; Rummukainen, 2016; Vautard et al., 2021). In particular, atmospheric reanalysis products are gen-

erated with numerical weather prediction (NWP) models that assimilate a variety of observations, resulting in historical time

series that contain a full set of meteorological variables (e.g., Saha et al., 2010; Rienecker et al., 2011; Hersbach et al., 2020),45

which can be used for detailed hydrological modeling analyses. However, these products still feature large biases, especially in

mountainous regions, because of the inherent simplification of mesoscale processes in a smoothed topography. Finally, several

gridded meteorological products have been developed by blending different data sources of meteorological variables, includ-

ing in situ measurements, radar data, satellite products, reanalysis products and NWP model output. For example, Verdin et al.

(2015) developed a product by combining satellite estimates with rain gauge observations using a Bayesian kriging approach;50

Beck et al. (2017) produced the global Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset by merging gauge,

satellite, and reanalysis data; and Yin et al. (2021) proposed a three-stage blending approach integrating multiple satellite and

reanalysis products with gauge data.

Numerous studies have assessed the suitability of gridded precipitation and temperature datasets to provide reliable hydro-

logical model simulations (e.g., Kouakou et al., 2023; Evin et al., 2024; Gebrechorkos et al., 2024; Jahanshahi et al., 2024).55

Overall, previous work suggests that observation-based meteorological products generally outperform other datasets in runoff

estimation, and that bias correction using observational data improves the accuracy of runoff simulations (e.g., Kouakou et al.,
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2023; Jahanshahi et al., 2024). However, the reliability of observation-based products is inherently constrained by the spa-

tial density of meteorological stations (Terink et al., 2018; Herrera et al., 2019). Lundquist et al. (2019) concluded that, in

mountainous regions, the low density of meteorological stations relative to the spatial variability of precipitation —particularly60

snowfall —, combined with the systematic undercatch of rain gauges, limits the representativeness of gridded observational

products. As a result, high-resolution atmospheric models can outperform gridded observational products in capturing total pre-

cipitation over complex terrain. Additionally, these models offer a physically consistent and spatially continuous representation

of precipitation, making them a viable alternative for hydrological modeling applications.

Because of its complex topography and large hydroclimatic diversity (Sarricolea et al., 2017; Aceituno et al., 2021) continen-65

tal Chile (∼17° - 57°S) is an interesting domain for the development and evaluation of gridded meteorological products for hy-

drometeorological applications. For example, Boisier et al. (2018) created the gridded meteorological product CR2MET based

on the combination of in-situ observations and ERA5 (Hersbach et al., 2020) reanalysis outputs, whereas Baez-Villanueva et al.

(2020) developed a merging procedure for precipitation estimation, which consists of the combination of observational data,

meteorological products (e.g., ERA5 reanalysis) and topographic covariates. While these observation-based datasets have been70

widely used for different applications (e.g., Hernandez et al., 2022; Murillo et al., 2022 in the case of CR2MET, and Chen et al.,

2022; Al-Saeedi et al., 2024 in the case of RF-MEP) there is limited information about their performance. The far north (above

26°S) and far south (below 43.7°S) of Chile are regions of special interest, since the station density is considerably lower

and, therefore, reanalysis products become critical for the development of gridded meteorological products and, in particular,

precipitation estimates. Further, there is a high disagreement among CR2MET, RF-MEP, and ERA5 precipitation estimates75

over those areas. In the far north (above 26°S), annual differences reach up to 117 mm between products (CR2MET: 63 mm,

RF-MEP: 40 mm, ERA5: 157 mm), while in the far south (below 43.7°S), discrepancies are even larger, reaching up to 2203

mm (CR2MET: 1888 mm, RF-MEP: 815 mm, ERA5: 3018 mm) (Baez-Villanueva et al., 2021).

In the Andes, the performance of meteorological products varies considerably, with substantial differences between precipi-

tation estimates north of 24°S and south of 35°S, and among temperature estimates between 27°S and 35°S (Schumacher et al.,80

2020b). Zambrano-Bigiarini et al. (2017) assessed seven satellite-based rainfall products, finding that most of them perform

better between 32°S and 43°S at elevations below 1000 m a.s.l., while the poorest performance was obtained for elevations

above 2000 m a.s.l. On the other hand, Zambrano et al. (2017) showed that satellite products generally capture the rainiest

months more accurately than dry months, especially during the Austral winter (JJA), except north of 28°S, where rainfall is

concentrated in summer (DJF).85

During the last decade, convection-permitting climate models (CPCMs) have become increasingly popular (Lucas-Picher

et al., 2021) because they offer an enhanced representation of precipitation (e.g., Fosser et al., 2020), and do not rely on cumu-

lus parametrizations – detected as an important source of errors in regional climate modeling –, improving land-atmosphere

interactions (Prein et al., 2015). CPCMs also offer the opportunity to advance hydrometeorological understanding at kilometer-

scale resolution, and have been used for a myriad of purposes, including snowpack analysis (Ikeda et al., 2021), cloud band90

detection (Zilli et al., 2024), and flood studies (Li et al., 2022) over continental domains (e.g., Liu et al., 2025).
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Recently, the South American Affinity Group (SAAG) – supported by the National Science Foundation (NSF) National

Center for Atmospheric Research (Dominguez et al., 2024) – generated an unprecedented high-resolution gridded meteoro-

logical dataset for South America using the Weather Research and Forecasting (WRF; Skamarock et al., 2019) model. This

dataset – hereafter referred to as WRF-SAAG – offers new research opportunities for the region, characterized by scarce and95

discontinuous observational records (Condom et al., 2020). The WRF-SAAG precipitation simulations revealed high spatial

correlations with observed annual averages (0.65 -0.8), and 0.95 correlation coefficient for mean annual 2-m temperature com-

pared with observational and reanalysis products over the entire South American continent (Dominguez et al., 2024). Hourly

evaluations indicate that the WRF-SAAG simulations better reproduce the diurnal cycle and heavy hourly precipitation over

the East of Brazil (Dominguez et al., 2024). However, some regions feature annual biases up to 400 mm/year (Liu et al., 2025).100

Despite other studies having evaluated the representation of cloud bands (Zilli et al., 2024) and tracking mesoscale systems

(Núñez Ocasio and Moon, 2024; Prein et al., 2024; Rehbein et al., 2025), to the best of our knowledge, a hydrologically-

oriented long-term evaluation has not been conducted, except for an individual watershed in the arid western Andes ( ∼28°S,

Sanhueza, 2024).

In this paper, we present a regional assessment of WRF-SAAG precipitation and temperature simulations across continental105

Chile. We first evaluated the simulation’s accuracy at the station scale, and then explored its potential for broader applications.

To this end, we used in situ observations from meteorological stations as the reference dataset. Additionally, we compared

the performance of WRF-SAAG precipitation simulations against the CR2MET (Boisier et al., 2018) and RF-MEP (Baez-

Villanueva et al., 2020) gridded meteorological products, while temperature simulations were benchmarked against CR2MET

estimates. Finally, we assess the suitability of the analyzed datasets for hydrological modeling across a suite of 44 near-natural110

catchments with varying hydroclimatic regimes. We stress that the WRF-SAAG simulation was not designed to replicate indi-

vidual weather events, but rather to represent hydroclimatic features over South America, aiming to improve physical under-

standing and support decision-making in a changing climate. Additionally, CR2MET and RF-MEP are not fully independent

from the station observations used as reference in this evaluation, since both products incorporate in situ data in their construc-

tion. This study provides valuable insights into the strengths, limitations, and applicability of CPCM outputs for hydrological115

studies in regions with complex topography and limited ground-based observations.

2 Study domain

The study area is continental Chile (Fig. 1), which spans more than 4200 km from north (17°29’S) to south (55°58’S) and is

bounded by the Pacific Ocean in the west and the Andes Cordillera in the East. This domain encompasses four main geograph-

ical units from West to East: the Coastal Plains, the Coastal Range, the Intermediate Depression, and the Andes Cordillera.120

Further, the Chilean Water Directorate (DGA by its acronym in Spanish) defines five major macroclimatic zones for water

resources management and planning: Far North (17.5 – 26°S); Near North (26 – 32.18°S); Central Chile (32.18 – 36.4°S);

Southern Chile (36.40 – 43.7°S); and Austral Chile (43.7 – 56°S). These macrozones span a wide variety of climates, with very

specific features across the austral seasons: summer (DJF), autumn (MAM), winter (JJA), and spring (SON).
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Figure 1. Climatological averages based on in-situ measurements for (a) annual precipitation, (b) minimum daily temperature and (c)

maximum daily temperature. (d) Mean annual runoff ratio of the selected basins, calculated with the observed runoff and the precipitation in

the basin obtained from CR2MET (v2.5), along with the delineation of macrozones and the location of selected stations. All hydroclimatic

indices are computed for the period April/2001-March/2018, considering water years with at least 80% of daily data.

Arid and semi-arid conditions prevail in the Far and Near North macrozones, with average annual precipitation of 129.1125

mm and 135.2 mm (Fig. 1), respectively. In the Far North, precipitation is concentrated in the austral summer (DJF) due to the

Altiplano rainy season (Garreaud et al., 2003) whereas, in the Near North, winter precipitation is driven by Cut-Off Low events

that produce snow accumulation at high altitudes (Rondanelli, 2025). The Near North macrozone also exhibits the highest daily

minimum (maximum) temperature values, averaging 9.1°C (24.5°C). In Central Chile, temperate climates dominate, with an

average annual precipitation of 591 mm, primarily concentrated in winter. The Southern macrozone is the wettest region,130

receiving an average of ∼1690 mm/yr (Fig 1), with persistent winter precipitation events and moderate summer precipitation

(Aceituno et al., 2021). Finally, precipitation is relatively uniform throughout the year in the Austral macrozone, with seasonal

totals ranging 200-365 mm, and the lowest daily minimum (maximum) temperature values averaging 2.8°C (11.3°C).

For hydrological analyses, we selected 44 catchments from the 2022 version of the Catchment Attributes and Meteorology

for Large Sample Studies, Chile dataset (CAMELS-CL; Alvarez-Garreton et al., 2018). The selected catchments fulfill the135

following criteria: (i) at least 80% coverage of daily observations during the period April/2001 – March/2018; (ii) location in
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the headwaters of the main river basins of the country; (iii) less than 2% of glacierized area; (iv) absence of reservoirs; (v) area

larger than 300 km2; and (vi) a low degree of human intervention (< 0.05), quantified as the ratio between the mean annual

flow of surface water rights (permanent continuous consumptive) and the mean annual streamflow measured in the basin outlet

(Alvarez-Garreton et al., 2018). In the Far and Near North macrozones, the mean annual runoff ratio, calculated from annual140

runoff and annual precipitation over the basin area (Q̄/P̄ ) is below 0.27; in the Central and Southern macrozones, Q̄/P̄ ranges

0.09–1.12; and in the Austral macrozone, the Q̄/P̄ lies between 0.18 and 0.83.

3 Hydrometeorological datasets

3.1 Ground-based observations

In-situ measurements of precipitation and extreme temperatures were obtained from stations maintained by the DGA and145

the Chilean National Weather Service (DMC by its acronym in Spanish). We selected stations with at least 80% of daily

records (period April/2001 – March/2018) that passed the quality control process followed by Lagos-Zúñiga et al. (2024),

which includes: (i) the Buishand (1984) U Homogeneity Test for annually-averaged time series, (ii) exclusion of stations with

more than two years of missing data, (iii) removal of records with minimum temperature higher than maximum temperature,

and (iv) application of a quantile mapping procedure to fill missing data, selecting the best neighboring station to complete150

missing records following Tang et al. (2020). Besides, daily precipitation values exceeding the mean plus 2.3 times the standard

deviation were removed. For daily extreme temperatures, values above the mean plus three standard deviations or below the

mean minus three standard deviations were also removed (Newman et al., 2015). Hence, we considered 494 stations with

precipitation records, and 97 (95) stations with minimum (maximum) temperature records for subsequent analyses.

Streamflow records were retrieved from stations maintained by the DGA, publicly available from the Center for Climate and155

Resilience Research (CR2) Climate Explorer (https://www.cr2.cl/datos-de-caudales/).

3.2 WRF-SAAG Simulations

The convection-permitting WRF-SAAG dataset (Dominguez et al., 2024) was produced by forcing the Weather Research

and Forecasting Model (WRFv4.1.5, Skamarock and Klemp, 2008) with fifth-generation reanalysis (ERA5; Hersbach et al.,

2020) produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), using a 4-km grid spacing and 61160

vertical levels over the period January/2000-December/2021. The model physics options include the Thompson microphysics

scheme (Thompson et al., 2008); the Rapid Radiative Transfer Model (RRTM, Iacono et al., 2008); the Yosei University

(YSU) boundary layer (Hong et al., 2006); the Noah land surface model with Multiple Parameterization Options (Noah-MP;

Niu et al., 2011); and the Miguel-Macho and Fan (MMF) groundwater scheme (Miguez-Macho et al., 2007). For more details

on the methodology and outcomes of these simulations, readers are referred to Dominguez et al. (2024).165
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3.3 CR2MET

The CR2MET gridded meteorological product (DGA, 2017, Boisier et al., 2018) includes daily time series with precipitation

and near-surface maximum/minimum temperatures over a regular 0.05°x0.05° horizontal grid across continental Chile, for

the period 1960-2021 in its latest version (v2.5). In CR2MET daily precipitation estimates were obtained through a statistical

postprocessing technique that uses topographic descriptors and large-scale climatic variables (water vapor and moisture fluxes)170

from the ERA5 reanalysis (Hersbach et al., 2020). The postprocessing includes (i) a logistic regression model to estimate

the probability of precipitation, and (ii) multiple linear regression models to compute precipitation amounts. Maximum and

minimum daily temperature were also estimated through multiple linear regression models, including variables from MODIS

land surface products as additional predictors. For the first version of CR2MET, more than 800 precipitation stations were

considered (DGA, 2017). However, the number of temperature stations used in that version was not specified. Moreover,175

subsequent versions of the precipitation and temperature products do not provide detailed information on the number of stations

used.

The CR2MET dataset has been used as an observational reference for many purposes, including the evaluation of other

meteorological products (e.g., Bozkurt et al., 2019; Fernández et al., 2021; Torrez-Rodriguez et al., 2023); hydroclimatic

characterizations (e.g., Vásquez et al., 2021; Hernandez et al., 2022); the assessment of hydrological modeling decisions (e.g.,180

Sepúlveda et al., 2022; Murillo et al., 2022; Cortés-Salazar et al., 2023); drought propagation studies (e.g., Alvarez-Garreton

et al., 2021; Lema et al., 2025); streamflow forecasting (e.g., Araya et al., 2023); and climate change impact assessments

(Vicuña et al., 2021; Gateño et al., 2024; Vásquez et al., 2024, 2025).

3.4 RF-MEP

The Random Forest based MErging Procedure (RF-MEP, Baez-Villanueva et al., 2020), uses the Random Forest algorithm to185

characterize the spatial distribution of precipitation by merging information from different gridded products and ground-based

observations for a given temporal scale. In this study, we used daily gridded precipitation generated by Baez-Villanueva et al.

(2021) for a 0.05°x0.05° horizontal grid that covers continental Chile over the period April/2001 -March/2018. The RF-MEP

product used here integrates 334 rain gauges, the SRTM-v4 digital elevation model (Rabus et al., 2003), and the atmospheric

reanalysis ERA5.190

The RF-MEP methodology has been replicated and evaluated for precipitation estimation in other regions of the world.

Mohammed et al. (2023) applied the RF-MEP approach in the Upper Blue Nile River basin (Ethiopia) to merge ground-based

measurements, satellite and reanalysis precipitation products, as well as topography-related features. The resulting merged

product exhibited improved spatio-temporal representation and greater accuracy compared to individual input sources. In Chile,

Baez-Villanueva et al. (2021) applied RF-MEP and used it to evaluate its impact on the regionalisation of hydrological model195

parameters, showing that RF-MEP performed competitively compared to other used precipitation datasets. RF-MEP has also

served as a benchmark in comparisons with other precipitation estimation methodologies. For instance, Chen et al. (2022)

found that RF-MEP performed comparably to triple collocation-based fusion methods in terms of correlation and error met-
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rics, while Chen et al. (2024) reported that although RF-MEP improved precipitation estimates over raw satellite data, it was

outperformed by their proposed Spatial Random Forest Downscaling and Merging (SRF-DM) approach, particularly in captur-200

ing high-intensity rainfall and complex spatial patterns. Further, RF-MEP has been applied in climate change studies to assess

precipitation extremes and their trends (e.g., Valdivieso-García et al., 2024; Yan et al., 2024), and to characterize and optimize

ground-based precipitation monitoring networks (e.g., Sreeparvathy and Srinivas, 2022).

4 Methods

4.1 Evaluation of precipitation and extreme temperatures205

We aggregated the WRF-SAAG hourly outputs to a daily time scale in continental Chile, starting at UTC-4 (8 hours winter

local time in Santiago). Observational products are originally provided at a daily resolution within the same time range. We

extracted, at each station location in Figure 1a, the closest grid cell values of daily precipitation time series from the WRF-

SAAG, CR2MET, and RF-MEP products. Similarly, time series with maximum (minimum) daily temperatures were retrieved

from the WRF-SAAG and CR2MET grid cells containing the stations in Figure 1c (1d), following the approach proposed210

by Thiemig et al. (2012). Then, we evaluated the capability of these products to replicate the occurrence of precipitation

events with different magnitudes (section 4.1.1) at station locations and the overall skill of daily time series (section 4.1.2). It

should be noted that the assessment methods used here are very restrictive and demand that events are simulated at the exact

same time and location as observed. The WRF-SAAG simulations were designed as a climatological dataset, and might feature

spatiotemporal displacements of individual storms due to the large computational domain and chaotic nature of the atmosphere.215

On the other hand, CR2MET and RF-MEP were developed using many of the station-based observations that are used in this

work for the evaluation process.

4.1.1 Ability to simulate observed precipitation events

We used metrics formulated from contingency tables to assess the ability of the datasets to replicate historically observed daily

precipitation events exceeding 1, 5, 10, and 20 mm. Given a precipitation threshold, 2x2 contingency tables (Table 1) can220

be constructed to assess the correspondence between nonprobabilistic forecast values and the discrete observable predictand

values to which they pertain (Wilks, 2019).

We assessed the ability to replicate precipitation occurrence using the percentage correct (PC, ec. 1), the probability of

detection (POD, ec. 2), the critical success index (CSI , ec. 3), and the false alarm ratio (FAR, ec. 4) Wilks (2019). These

metrics have been widely used to assess precipitation products (e.g., Hobouchian et al., 2017; Nashwan et al., 2020; Valencia225

et al., 2023). The PC indicates how well the datasets discriminate precipitation and non-precipitation events:

PC =
H + CN

H + F + M + CN
(1)
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Table 1. Contingency table.

Event observed

Event simulated Yes No

Yes Hits (H) False Alarms (F)

No Misses (M) Correct negatives (CN)

The POD evaluates the ability to capture the occurrence of events:

POD =
H

H + M
(2)

We used the CSI to assess how well each product captures events:230

CSI =
H

H + F + M
(3)

Finally, we used the FAR to evaluate the fraction of events erroneously predicted:

FAR =
F

H + F
(4)

PC, POD, FAR and CSI values range between 0 and 1, being the optimal value equal to 1 except for FAR, whose perfect

value is 0.235

4.1.2 Accuracy of daily precipitation and extreme temperature simulations

To assess the accuracy of precipitation and temperature retrieved from the different products, we used a modification of the

Kling-Gupta efficiency (KGE; Gupta et al., 2009) proposed by Tang et al. (2021):

KGET = 1−
√

(r− 1)2 + β2
T + (αT − 1)2 (5)

βT =
µs−µo

σo
(6)240

αT =
σs

σo
(7)

where r, βT and αT are the Pearson correlation coefficient, the bias and the variability term between observations (o) and

data set (s), respectively, whereas σ and µ are the standard deviation (mm or °C) and the mean (mm or °C), respectively. Note

that KGET , r, βT and αT are dimensionless, and that the optimal value for KGET , r, and αT is 1, while the optimal value

for βT is 0. In this study, we computed the KGET for precipitation by season, whereas we used the entire time series for the245

assessment of temperature extremes.
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4.2 Hydrological modeling

To assess the potential of WRF-SAAG precipitation and temperature for hydrological modeling applications and perform a

comparative assessment against CR2MET and RF-MEP, we configured and calibrated the TUW model (Parajka et al., 2007)

in the 44 case study basins. The TUW model is a conceptual rainfall-runoff model that simulates the catchment-scale water250

balance through snow, soil moisture, response, and routing modules, requiring the specification of 15 parameters (Table 2). In

this study, we configure the TUW model using the TUWmodel package implemented in the statistical software R (Viglione

and Parajka, 2019). To account for subunit variability in precipitation and temperature due to orographic effects, we delineated

three equal-area elevation bands in catchments smaller than 600 km2 and five equal-area elevation bands in the remaining

basins. To this end, we used digital elevation models (DEMs) from the Shuttle Radar Topography Mission (SRTM; Rabus255

et al., 2003) with a 3 arc-second horizontal resolution (approximately 90 m).

The model’s required input forcing variables are precipitation, temperature, and potential evapotranspiration. Hence, we

extracted precipitation time series from the WRF-SAAG, CR2MET, and RF-MEP datasets, and temperature time series from

the WRF-SAAG and CR2MET datasets to compare different combinations of forcing datasets: (i) WRF-SAAG precipitation

and temperature; (ii) CR2MET precipitation and temperature; (iii) RF-MEP precipitation and WRF-SAAG temperature; (iv)260

RF-MEP precipitation and CR2MET temperature. We calculated potential evapotranspiration for each elevation band using the

formulation proposed by Oudin et al. (2005), available in the R package airGR (Coron et al., 2023) and considering the latitude

of the centroid of each band.

We calibrated the parameters of the TUW model for each catchment and input forcing combination by maximizing the

composite metric proposed by Garcia et al. (2017):265

OF =
KGE′(Q) +KGE′(1/Q)

2
(8)

where KGE′ is the modified Kling-Gupta efficiency (KGE’, Kling et al., 2012):

KGE′ = 1−
√

(r− 1)2 + (β− 1)2 + (γ− 1)2 (9)

β =
µs

µo
(10)

γ =
σs/µs

σo/µo
(11)270

and r, β and γ are the Pearson correlation coefficient, the bias ratio, and the variability ratio, respectively. The values of

KGE′, r, β and γ are dimensionless, with an optimal value of 1.

The model parameters were calibrated by maximizing the objective function in Equation 8 with the Shuffled Complex

Evolution (SCE-UA, Duan et al., 1993) global optimization algorithm, using the same parameter ranges as Araya et al. (2023,

see Table 2). The calibration period was defined as April/2005 – March/2011, allowing a 4-year warm-up period, and the275

evaluation period was set as April/2011 – March/2018.
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Table 2. Description of TUW model parameters and calibration ranges.

Parameter Description Units Range

SCF Snow correction factor – 0.5 – 2

DDF Degree day factor mm/°C/day 0 – 5

Tr Threshold temperature above which precipitation is rain °C 1 – 5

Ts Threshold temperature below which precipitation is snow °C -3 – 1

Tm Threshold temperature above which melt starts °C -2 – 4

Lprat Parameter related to the limit for potential evaporation – 0 – 1

FC Field capacity mm 0 – 1000

BETA Nonlinear parameter for runoff production – 0 – 20

k0 Storage coefficient for very fast response day 0 – 2

k1 Storage coefficient for fast response day 2 – 30

k2 Storage coefficient for slow response day 30 – 500

LSuz Threshold storage state mm 1 – 100

Cperc Constant percolation rate mm/day 0 – 10

Bmax Maximum base at low flows day 0 – 30

Croute Free scaling parameter day2/mm 0 – 50

5 Results

5.1 Precipitation and temperature evaluation

5.1.1 Ability to simulate precipitation events

Figure 2 shows categorical metrics that assess the ability of WRF-SAAG, CR2MET, and RF-MEP to replicate precipitation280

events of different magnitudes across the study macrozones. In general, all datasets provide high values of percentage correct

(PC ≥ 0.64) in all stations and for all precipitation thresholds, influenced by the number of correct negatives (CN ). The results

for POD – which only considers correctly detected precipitation events (H) – show that, overall, the ability of WRF-SAAG

and CR2MET to replicate precipitation events decreases with higher precipitation thresholds. In general, RF-MEP achieves

the highest POD values, particularly in Central Chile (PODRF−MEP ≥ 0.65). For events > 1 mm/d, CR2MET achieves the285

highest POD values across all study zones, with PODCR2MET medians ≥ 0.85.

Figure 2 also shows that RF-MEP maintains the highest CSI values between the Near North and Southern macrozones. In

the Far North, all the datasets fail to replicate the fraction of observed precipitation events (i.e., CSI ≤ 0.5 in most stations),

in agreement with the high false alarm ratio (FAR) in this macrozone, especially for events exceeding 20 mm/d (median

FAR≥ 0.86). Similarly, WRF-SAAG and RF-MEP yield large FAR ranges in the Austral macrozone (IQR of FAR≥ 0.23),290
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Figure 2. Ability of WRF-SAAG, CR2MET, and RF-MEP to replicate historically observed daily precipitation events with amounts larger or

equal than 1, 5, 10, and 20 mm/d in the study macrozones (rows). The metrics displayed in each column are: (a) Percentage Correct (PC), (b)

Probability of detection (POD), (b) Critical Success Index (CSI), and (d) False Alarm Ratio (FAR). Each boxplot comprises results from

all the stations within each macrozone. The boxes correspond to the interquartile range (IQR, i.e., 25th and 75th percentiles), the horizontal

line in each box is the median, and whiskers extend to the ±1.5 · IQR of the ensemble. The red line represents the optimal values.

in contrast to CR2MET (IQR of FAR≤ 0.22). Moreover, for precipitation events above 5 mm/d, all datasets provide median

CSI values below 0.49 in the Austral macrozone. In contrast, Central Chile shows better detection performance, with a median

CSI ≥ 0.44 for events above 5 mm/d.
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5.1.2 Accuracy of daily precipitation estimates

Figure 3 shows the spatial distribution of KGET (and its components) for summer (DJF) daily precipitation estimates from295

WRF-SAAG, CR2MET, and RF-MEP. The highest KGET values in summer are obtained in the Southern macrozone, where

KGET medians ≥ 0.65 for all datasets and seasons. The second best KGET for CR2MET is obtained in the Austral region

(median KGET = 0.72), whereas the second best KGET for WRF-SAAG (RF-MEP) is achieved in Central Chile, with

a median of 0.59 (0.57). However, there are also negative KGET values within this macrozone, near its upper boundary

(∼ 32.18°S).300

The results in Figure 3 show that the datasets have limitations in effectively capturing daily precipitation in arid regions,

characterized by very low (or zero) precipitation amounts. In the Far North and Near North, 23 stations did not record any

precipitation events during summer, which yields undefined KGET at these sites. In spite of this, the number of precipitation

events exceeding 1 mm/d at the corresponding grid cell were 232, 484 and 18 for WRF-SAAG, CR2MET and RF-MEP,

respectively. The lowest summer KGET values are obtained in the Near North, with medians ≤−0.18 for all datasets. In this305

subdomain, a cumulative summer average of only 1 mm is recorded by the stations. Additionally, the largest differences among

datasets in terms of KGET are attained in the Far North and Austral macrozones, with CR2MET standing out in both regions,

with medians of 0.57 and 0.72, respectively.

The largest spread among the KGET components for the three datasets is obtained for the variability ratio (αT ; Figure 3f),

making it the term with the largest influence on the spatial variability of KGET throughout all the seasons (see also Figures310

4, A1, and A2). Furthermore, WRF-SAAG provides lower correlation coefficients (r) compared to CR2MET and RF-MEP in

all macrozones (Figure 3d), which is consistent with the results obtained for the remaining seasons. Figure 3e shows that RF-

MEP tends to overestimate daily precipitation amounts (median βTRF−MEP
≥ 0.03) and overestimate precipitation variability

(median αTRF−MEP
≥ 1.12), a behavior that persists throughout the rest of the year, except for autumn and winter in the Far

North (the results for the transition seasons are provided in the appendix). Additionally, CR2MET represents precipitation315

amounts between the Central and Austral macrozones better than the other datasets throughout the year (median βT difference

of 0.03 from the optimal value; Figure 3e). However, CR2MET underestimates the variability of daily precipitation during

summer in this area, with αTCR2MET
medians ≤ 0.87. This behavior is also observed in the remaining seasons.

Figure 4 displays performance metrics for winter (JJA) daily precipitation across the study domain. In general, both WRF-

SAAG and CR2MET show an increase in median KGET during winter compared to summer between the Near North and320

Austral macrozones. CR2MET achieves the highest median winter KGET in all macrozones, with the best performance in the

Central and Southern macrozones (median KGET ≥ 0.8). In the Near North, the three datasets shift KGET from negative

values in summer to medians above 0.61 during winter. The Far North has the lowest winter precipitation (less than 5 mm

per station) and the lowest median KGET compared to the other macrozones, with median values of -0.14, 0.47 and 0.19

for WRF-SAAG, CR2MET, and RF-MEP, respectively. The best results for WRF-SAAG (RF-MEP) are obtained in Central325

(Southern) Chile, with median KGET = 0.76 (0.77). On the other hand, RF-MEP performs better during summer than in
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Figure 3. (a)–(c) Spatial distribution of Tang’s Kling-Gupta Efficiencies (KGET) for summer (DJF) daily precipitation retrieved from WRG-

SAAG, CR2MET, and RF-MEP (period April/2001–March/2018) across continental Chile, using ground-based observations as the reference.

Red dashed lines indicate the limits of the macrozones analyzed. (d) to (f) Boxplots with the Pearson correlation coefficients (r), bias term

(βT ), and variability ratios of Tang’s Kling-Gupta Efficiency (αT ) obtained with the products examined for each macrozone, with the red

line indicating the optimal value. Each boxplot comprises results for all the stations within a specific macrozone. The boxes correspond to the

interquartile range (IQR, i.e., 25th and 75th percentiles); the vertical line in each box is the median, and the whiskers extend to the ±1.5 ·IQR

of the ensemble of stations.

winter in the Central (KGET median: 0.57 and 0.5 respectively) and Austral (KGET median: 0.46 and 0.44, respectively)

macrozones.

During winter, the three datasets yield the lowest Pearson correlation in the Far North (Figure 4d), with medians≤ 0.63, and

large ranges in the variability term αT (Figure 4f). Interestingly, CR2MET achieves a median αT equal to the optimal value,330

but with an interquartile range of 0.51.

Figure 4 shows that CR2MET excels in replicating winter precipitation volumes, with bias term medians deviating by only

0.05 from the optimal value. Further, CR2MET tends to underestimate daily precipitation variability in these regions, with αT

medians ≤ 0.92. On the other hand, RF-MEP struggles to replicate precipitation variability, overestimating the dispersion of

precipitation amounts between the Near North and Austral macrozones (i.e., αT medians spanning 1.1 - 1.47).335
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Figure 4. Same as in Figure 3, but for winter (JJA) daily precipitation.

5.1.3 Accuracy of daily temperature estimates

Figure 5 displays the spatial distribution of KGET and its components for WRF-SAAG and CR2MET minimum daily tem-

peratures. The results show that CR2MET outperforms WRF-SAAG, with median KGET ≥ 0.71 in the Central, Southern

and Austral macrozones, while the median values drop between 0.52 and 0.54 in the northern regions. WRF-SAAG reaches

its highest KGET values in the Austral macrozone, with a median of 0.6; on the other hand, the median KGET between the340

Far North and Central Chile macrozones is ≤0.43. Figure 5c also shows that CR2MET yields a higher Pearson correlation

in all macrozones, with median values ≥ 0.74, and a narrower interquartile range of βT and αT coefficients compared to

WRF-SAAG.

The results in Fig. 5d show that CR2MET tends to underestimate minimum temperatures (median βT < 0), with smaller

biases from the Central macrozone southward, reaching median βT values between -0.04 and -0.11. Conversely, WRF-SAAG345

overestimates minimum temperature magnitudes between the Far North and Central Chile macrozones, with median βT values

ranging from 0.2 to 0.51. WRF-SAAG underestimates temperatures in the southern regions, reaching its best result (median βT

of -0.13) in the Southern macrozone. The results show that CR2MET underestimates the variability of minimum temperature
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Figure 5. Spatial distribution of Tang’s Kling-Gupta Efficiencies (KGET ) for daily minimum temperature retrieved from (a) WRG-SAAG

and (b) CR2MET (period April/2001 – March/2018) across continental Chile, using ground-based observations as the reference. Red dashed

lines indicate the limits of the macrozones analyzed. Boxplots with (c) the Pearson correlation coefficients (r), (d) bias term (βT ), and (e)

variability ratios (αT ) obtained with the products examined for each macrozone, with the red line indicating the optimal value. Each boxplot

comprises results for all the stations within a specific macrozone. The boxes correspond to the interquartile range (IQR, i.e., 25th and 75th

percentiles); the vertical line in each box is the median, and the whiskers extend to the ±1.5 · IQR of the ensemble of stations.

(Fig. 5e), with median αT values ranging 0.88 - 0.94 across all macrozones. In contrast, WRF-SAAG achieves median αT

values closer to the optimal range (1 - 1.04), particularly in the Central and Austral macrozones.350

CR2MET provides higher KGET for maximum temperature (Figure A3), compared to minimum temperature, in all macro-

zones except the Near North. Similarly, WRF-SAAG yields higher KGET for maximum temperature in the Far North, Central

Chile and Southern macrozones. Both CR2MET and WRF-SAAG yield general improvements in Pearson correlation for max-

imum daily temperature compared to minimum temperature, with median values ≥0.84 across the study area, and a reduced

range of αT . CR2MET tends to overestimate maximum temperatures in the Far North, Central Chile, and Southern macro-355

zones, with median βT values ranging 0.01 - 0.11. In the Near North, CR2MET yields a median βT =−0.61. Conversely,

WRF-SAAG consistently underestimates maximum temperatures across the study domain (median βT ≤−0.05), with the

lowest median βT values in the Far North (-0.63) and Near North (-0.6) macrozones, respectively.
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Figure 6. (a) Location of the 44 stream gauges and five (5) selected catchment outlets (one per macrozone, red dots) used to illustrate how

the choice of forcing input combination affects runoff simulations (panels b–d). (b) Time series with observed and simulated daily runoff for

the period April/2011–March/2012, using different meteorological forcing inputs (the value in parentheses indicates the mean daily runoff

for the study period, April/2001 – March/2018); (c) annual cycles, and (d) daily flow duration curves for the evaluation period (April/2001

– March/2018). The selected catchments are: (Far North) Loa River; (Near North) Derecho Stream; (Central Chile) Claro River; (South)

Mahuidanche River; (Austral) San Juan River at the mouth.

5.2 Hydrological model performance

Figure 6 illustrates hydrological modeling results for five (5) selected river basins (one for each macrozone). In general, we360

obtained that the parameter estimation process has a greater capability to compensate for differences in input forcings over

domains with temperate climates (i.e., Central and Southern Chile). Figures 6b and 6c show that all input forcing combinations

fail in simulating annual runoff cycles at the Loa River basin (Far North) and the Estero Derecho (Near North). In the Loa River

basin, none of the configurations is able to capture the flood events observed in February 2012. All the forcing combinations

fail to reproduce the winter runoff increase (JJA) and low flow volumes in the Estero Derecho basin; further, a flashier response365

(i.e., steeper slope of the mid-segment of flow duration curve) is obtained with all forcing datasets.
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Between the Central Chile and Austral macrozones, the mean daily runoff across stations ranges from 0.2 to 9.5 mm/d. In the

Claro River (Figure 6, Central Chile macrozone), all the forcing combinations episodically overestimate runoff volumes during

the peak runoff season (July–September), with differences between simulated and observed mean monthly runoff ranging from

4.2 to 47.4 mm/month, and slight overestimations of low flows (lower percentiles in the flow duration curve, Figure 6c). In370

the Mahuidanche River basin (Southern macrozone), all the forcing combinations capture annual cycles and flow duration

curves, but RF-MEP-based datasets tend to overestimate daily runoff. In the San Juan River basin (Austral macrozone), RF-

MEP configurations yield considerably larger runoff volumes, with differences in mean monthly runoff between simulated

and observed values exceeding 120 mm/month between November and December, and consistent overestimations in the flow

duration curve.375

Figure 7 compares hydrologic model calibration and evaluation results obtained with different forcing combinations. Over-

all, the results reveal comparable performance metrics between WRF-SAAG and CR2MET. In the Far North, OF ≤ 0.61 for

all model configurations over the calibration period, and OF ≤ 0.44 during the evaluation period, where the models also under-

estimated the variability of observed runoff (γ ≤ 0.69). In this macrozone, the Pearson correlation coefficient (r) ranged 0.33 -

0.76 during the calibration period, whereas in the evaluation period, r ≤ 0.47 in 7 out of 8 cases (4 model combinations for both380

basins). In the Near North, the OF ranged 0.48 - 0.87 during calibration for all forcing combinations, while in the evaluation

period OF ≤ 0.45; calibration β and γ values varied between 0.91 and 1.05 (i.e., little spread among catchments) whereas,

in the evaluation period, the range of β (i.e., difference between βmax and βmin among five basins within the macrozone)

increased to values ≥ 0.96, and the range of γ also expanded to ≥ 0.75.

In Central Chile, the median OF ≥ 0.83 and median r ranged 0.84 – 0.86 during the calibration period for all forcing com-385

binations, decreasing to OF ≥ 0.58 and r values of 0.71 - 0.74 in the evaluation period. Further, an increase in the interquartile

range (IQR) of β (γ) was obtained, with values of IQR≤ 0.03 (IQR≤ 0.07) during calibration, expanding to IQR≥ 0.23

(IQR≥ 0.28) during the evaluation period.

In the Southern macrozone and for all model configurations, no significant differences were found between calibration and

evaluation periods (p > 0.05 obtained from a Student’s t-test) for r, β, and γ, except for β in configurations including RF-390

MEP. The runoff simulations with the RF-MEP precipitation product struggle to represent runoff volumes (IQR≥ 0.25 for

β). Regarding the OF , the median remains above 0.87 (0.67) during calibration (evaluation), with WRF-SAAG and CR2MET

products providing greater consistency (IQR≤ 0.31) during both periods. In the Austral macrozone, the simulations with

RF-MEP precipitation data yield an overestimation of runoff volumes during the evaluation period (median β ≥ 1.12).
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Figure 7. Hydrologic model calibration and evaluation results for the 44 case study basins using different forcing input combinations: WRF-

SAAG (precipitation and temperature); CR2MET (precipitation and temperature); RF-MEP (precipitation) and WRF-SAAG (temperature);

RF-MEP (precipitation) and CR2MET (temperature). The columns indicate the following metrics: (a) objective function (OF) used for

calibration, (b) Pearson correlation coefficient (r), (c) bias ratio (β), and (d) variability ratio (γ). Each boxplot comprises results for all the

stations within a specific macrozone (displayed in different rows). The boxes correspond to the interquartile range (IQR, i.e., 25th and 75th

percentiles); the vertical line in each box is the median, and the whiskers extend to the ±1.5 · IQR of the ensemble of stations. Points are

used instead of boxplots for the Far North macrozone (first row) because only two basins were evaluated. The red line represents the optimal

value.
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6 Discussion395

WRF-SAAG simulations struggled to replicate observed daily precipitation events of different magnitudes, compared to

CR2MET and RF-MEP, which integrate ground observations in their development. This result is somewhat expected, since

the evaluation dataset is fully independent of WRF-SAAG, as opposed to CR2MET and RF-MEP. Additionally, this result

aligns well with Zambrano-Bigiarini et al. (2017), who showed that station-corrected datasets performed considerably better

in estimating daily precipitation events in Chile. The largest discrepancies among the datasets were observed in the Far North400

macrozone, where convective precipitation – characterized by intense and localized rainfall in the Altiplano region (Garreaud,

2000) – poses a considerable challenge for replicating such events. However, it is important to note that WRF-SAAG is a

free-running climate simulation that was not designed to reproduce specific events, but rather to capture long-term statistical

characteristics of hydroclimatic variables, such as mean values or variability across South America. As such, the evaluation

conducted here—based on event-scale comparisons at point locations—represents a particularly stringent benchmark. Given405

these constraints, the ability of WRF-SAAG to approximate observed precipitation patterns across diverse climatic regions is

noteworthy, and highlights its potential value for long-term climate change studies in Chile. On the other hand, RF-MEP stood

out for its ability to replicate historically observed precipitation events > 5 mm between the Near North and Southern macro-

zones, with comparatively higher POD and CSI values than the other two datasets. This is consistent with the well-known

ability of the RF technique to enhance precision in detecting daily precipitation by incorporating topographic information,410

particularly in regions with complex terrain (Mohammed et al., 2023).

Daily precipitation amounts are generally better simulated by the three datasets during winter in Central and Southern

macrozones mainly due to the stronger influence of synoptic scale forcing and the associated more frequent and larger scale

precipitation events. However, large discrepancies arise in the northernmost and southernmost regions. Modeling daily precip-

itation in Northern Chile during summer is particularly challenging due to the difficulty of representing precipitation in arid415

and semi-arid zones (Cattani et al., 2016; Dinku et al., 2011). Previous studies have reported similar problems with reanalysis

and satellite-based gridded products over this region, regardless of the station corrections (e.g., Schumacher et al., 2020b).

WRF-SAAG simulations showed limitations in replicating daily precipitation amounts, which could be improved through the

application of statistical post-processing techniques (e.g., Mendoza et al., 2015; Meech et al., 2020). However, recent work by

Liu et al. (2025) demonstrated the robust performance of convection-permitting WRF model simulations in replicating observed420

climatic patterns across South America, including the spatial distribution of annual, seasonal, and sub-seasonal precipitation

amounts. They also showed the ability of WRF-SAAG to capture sharp near-surface temperature gradients over steep and

narrow mountains, along with the probability distributions of daily and hourly temperatures, highlighting the capability in

resolving fine-scale climatic variability. One considerable advantage of WRF-SAAG is that it reproduces all atmospheric and

land surface variables with physical consistency, making it a powerful resource for complex process-based hydrological models,425

which require not only precipitation and temperature but also wind speed, humidity, air pressure, and radiative fluxes.

The results presented here show that CR2MET yields better performance than WRF-SAAG at the station level, which is an

expected result since CR2MET combines reanalysis and ground-based observations. In areas with lower station density, ERA5

20

https://doi.org/10.5194/egusphere-2025-3061
Preprint. Discussion started: 6 August 2025
c© Author(s) 2025. CC BY 4.0 License.



gains greater relevance in the generation of the CR2MET and RF-MEP products. Schumacher et al. (2020a) compared high-

resolution WRF precipitation simulations against ERA-Interim (ERA-I; Dee et al., 2011) reanalysis estimates in the Andean430

sector of central Chile. They found that WRF outputs outperform ERA-I in representing precipitation, latitudinal gradients,

seasonal variability, and extreme events in the central Andes due to its higher horizontal resolution, which enables capturing

orographic effects, particularly at elevations above 1300 m a.s.l.

The evaluation of daily extreme temperature estimates revealed that meteorological products generally exhibit better per-

formance for maximum temperature than for minimum, in agreement with previous studies (e.g., Schubert and Henderson-435

Sellers, 1997; Kostopoulou et al., 2007). This is primarily because minimum temperature typically occurs at dawn, when the

atmosphere is most vertically stratified. When synoptic-scale atmospheric mixing is weak, minimum temperature tends to be

spatially heterogeneous. Moreover, a point measurement may not be locally representative in regions with complex topography

(Thorne et al., 2016).

The hydrological modeling results showed that WRF-SAAG produced similar streamflow performance metrics compared to440

CR2MET, which was originally conceived for water balance calculations under historical and future climate scenarios (e.g.,

DGA, 2017, 2018, 2019) and has been subsequently used in several studies involving hydrological modeling (e.g., Vásquez

et al., 2021; Murillo et al., 2022; Sepúlveda et al., 2022; Araya et al., 2023; Cortés-Salazar et al., 2023; Muñoz-Castro et al.,

2023; Lema et al., 2025). Further, RF-MEP precipitation time series provided generally worse performance metrics. The Far

and Near North macrozones remain a challenge for hydrological modeling due to low observed precipitation amounts and445

low runoff. It is also worth noting that the use of a simple bucket-style rainfall–runoff model, while advantageous for broad-

scale application across many basins, may overlook key hydrological processes (Minville et al., 2014). The simplifications

involved may particularly affect regions like the Far North, where subsurface and groundwater flows dominate (Magaritz et al.,

1990), and Near North and Central regions, where snow accumulation and melt play a critical role (Stehr and Aguayo, 2017).

Therefore, the reduced model performance obtained in some catchments cannot be solely attributed to meteorological inputs,450

and additional work is required to examine other sources of uncertainty.

Although this study provides a comprehensive evaluation of WRF-SAAG precipitation and temperature fields over conti-

nental Chile, several limitations and opportunities for future work remain. First, the calibration and evaluation of hydrological

simulations could benefit from incorporating a broader range of water years, especially given the influence of the persistent

Mega-drought in Chile from 2010 to 2018 (Garreaud et al., 2020). This is particularly important considering that the transfer455

of hydrological model parameters between calibration and evaluation periods with contrasting climatic conditions can lead to

performance losses (Coron et al., 2012). Second, the scope of evaluation can be expanded beyond streamflow, incorporating

other hydrological variables such as evapotranspiration, soil moisture, or snow water equivalent (SWE), derived from simu-

lated outputs from the Noah-MP land surface model included in the WRF-SAAG experiments. Finally, although beyond the

scope of the current work, the WRF-SAAG dataset could also serve as a baseline for future climate change impact studies. For460

instance, bias correction using high-resolution datasets like CR2MET would enable the evaluation of pseudo-global warming

(PGW) experiments to assess future hydrological conditions under climate change scenarios.
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7 Conclusions

We evaluated the performance of two widely used gridded meteorological datasets in Chile - CR2MET and RF-MEP -, along-

side the recently released high-resolution convection-permitting regional simulations from the Weather Research and Forecast-465

ing for South America (WRF-SAAG). First, we assessed daily precipitation and extreme temperature estimates from the three

datasets against ground-based observations, with particular attention to their ability to replicate historically observed precipi-

tation events. We also quantified their accuracy with a modified version of the Kling-Gupta Efficiency. Secondly, we assessed

the suitability of these products for hydrological modeling by calibrating the parameters of a conceptual, bucket-style rainfall

runoff model in a suite of 44 hydroclimatically diverse catchments.470

The main outcome of this work is that, despite not being designed to replicate individual precipitation events in space

and time, WRF-SAAG delivered comparable performance to observation-based products, especially in hydrological model

simulations. Further, WRF-SAAG provides a vast number of physically-consistent atmospheric and surface variables, making

it a promising resource for hydrological studies in regions with complex topography and sparse ground observations. Future

research may benefit from exploring post-processing techniques to further enhance the representation of precipitation and475

temperature of km-scale convection permitting models. Additionally, the results obtained here demonstrate the superiority of

observation-based products - especially CR2MET - if the end goal is to examine precipitation extremes and temperature at point

locations. Finally, the relatively poorer performance of the three datasets in arid domains and data scarce regions highlights

areas of action for further research to improve gridded meteorological products.

Data availability. The CR2METv2.5 dataset is available at https://www.cr2.cl/datos-productos-grillados/ (Boisier et al., 2018). The RF-480

MEP dataset used in this study was developed by Baez-Villanueva et al. (2021) and is described in detail in their publication. It was generated

using the RFmerge R package by combining daily records from 334 rain gauges (available at http://www.cr2.cl/datos-de-precipitacion/,
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Figure A1. Same as in Figure 3, but for autumn (MAM) daily precipitation.
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Figure A2. Same as in Figure 3, but for spring (SON) daily precipitation.

32

https://doi.org/10.5194/egusphere-2025-3061
Preprint. Discussion started: 6 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure A3. Same as in Figure 5, but for maximum temperature.
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