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Abstract. Hydrological data sets have vast potential for water resource management applications; however, they are subject 

to uncertainties. In this paper, we develop and apply a monthly probabilistic water balance data fusion approach for automatic 

bias correction and noise filtering of multi-scale hydrological data. The approach first calibrates the independent data sets by 

linking them through the water balance, resulting in hydrologically consistent estimates of precipitation (P), evaporation (E), 

storage (S), irrigation canal water imports (C), and river discharge (Q) that jointly close the basin-scale water balance. Next, 15 

the basin-scale results are downscaled to the pixel-scale, to generate calibrated ensembles of gridded Precipitation (P) and 

Evaporation (E) that reflect the basin-wide water balance closure constraints. An application to the irrigated Hindon River 

basin in India illustrates that the approach generates physically reasonable estimates of all basin-scale variables, with average 

standard errors decreasing in the following order: 21 mm month-1 for storage, 10 mm month-1 for evaporation, 7 mm month-1 

for precipitation, 4 mm month-1 for irrigation canal water imports, and 2 mm month-1 for river discharge. Results show that 20 

updating the original independent data with water balance constraint information reduces uncertainties by inducing cross-

correlations between all independent variables linked through the water balance. In addition, the introduced approach yields 

(i) hydrologically consistent gridded P and E estimates that fuse information from prior (original) data across different land 

use elements and (ii) statistically consistent random errors that reflect the model’s confidence about P and E estimates at each 

grid cell. The analysis also shows a long-term decreasing trend in groundwater, which is better captured by the more severe 25 

decline from GRACE JPL mascon than GRACE Spherical Harmonic data. This finding points towards the possible 

sustainability issues for irrigation in the basin and requires further validation using piezometer groundwater-level 

measurements. Future opportunities exist to further constrain the generated water balance variables and their associated errors 

within process-based models and with additional data.  

1 Introduction  30 

Under a changing climate and anthropogenic activities (Wada et al., 2010), it becomes urgent to accurately estimate the water 

balance components. Although distant from the Earth’s surface, remote sensing (RS) satellites can uniquely provide 
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information that translates into such estimates. For example, microwave and infrared techniques are used to estimate 

precipitation (Sun et al., 2018), evaporation can be computed using optical and thermal imagery (Zhang et al., 2016a), while 

changes in total water storage are obtained from the Gravity Recovery and Climate Experiment (GRACE) satellites (Wahr et 35 

al., 2004; Rodell et al., 2009). These advancements have emerged as powerful decision-support tools, pushing hydrology in 

new directions by providing valuable information on the spatial distribution of water availability, use, and consumption 

(Hessels et al., 2022; Sheffield et al., 2018; Karimi et al., 2013). Such information is often challenging to obtain through 

traditional in situ data collection. With the rapid increase in RS data availability, it is now theoretically possible to close the 

water balance. However, two challenges prevent this from being achieved, including the inconsistencies among various RS 40 

products for the same variable and the imbalances resulting from integrating the unique combinations of different water balance 

variables. These incoherences arise from the inherent data errors. Discrepancies in RS data, for example, come from different 

sources, such as errors in the retrieval algorithms (Maggioni et al., 2022), input data and parameters (Crosetto et al., 2001), or 

scale mismatch (Foken, 2008). While in situ data are known for their greatest reliability, they also come with their own errors. 

Uncertainties in river discharge, for example, could be related to flow conditions (Mcmillan et al., 2012), velocity sensors 45 

(e.g., calibration) (Horner et al., 2018), or estimation methods such as the rating curve (Kuczera, 1996). Benefiting from the 

complementary strengths of in situ and RS data and embracing their errors requires a three-pronged methodology. This 

methodology should maximize the prior information content of the data available from multiple RS sources for the same 

variable, quantify both systematic and random errors in each water balance term, and reduce these errors by exploiting all 

available information to generate calibrated estimates of spatially distributed water balance data. The following paragraphs 50 

review existing approaches in the literature used to handle these aspects. 

Studies addressing the uncertainties in RS water balance data often rely on in situ data (treated as “ground-truth”) to evaluate 

and converge on the different data products. However, in situ data (e.g., evaporation) is sparsely measured, and even when 

these data exist, accessibility may be challenging. Under such conditions, alternative indirect approaches such as triple 

collocation (Tian and Peters‐Lidard, 2010; Long et al., 2014; Massari et al., 2017; Yin and Park, 2021), uncertainty propagation 55 

(Hong et al., 2006; Cawse-Nicholson et al., 2020), and sensitivity analyses (Sobol, 2001) can be utilized. Other methods 

involve using the deviation from the ensemble mean, and the variability between the data sets as a proxy for uncertainty (Tian 

and Peters‐Lidard, 2010; Sahoo et al., 2011; Munier et al., 2014; Zhang et al., 2018). Each of the previously summarized error 

estimation techniques has its inherent merits and shortcomings. In an attempt to capitalize on these strengths, Mourad et al. 

(2024) recently integrated limited in situ data and multiple error metrics, along with expert judgment, to quantify and partially 60 

reduce water balance data errors. However, the resulting water balance estimates require further conditioning on in situ data 

using additional constraining steps, which is a subject of the methodology section of the current study. 

Several other studies went beyond quantifying uncertainties in RS data and sought to fully reduce them using the water balance 

as a constraint (Aires, 2014; Hobeichi et al., 2020; Luo et al., 2023; Munier et al., 2014; Pan et al., 2012; Pan and Wood, 2006; 

Rodell et al., 2015; Sahoo et al., 2011; Zhang et al., 2018; Zhang et al., 2016b). The core idea of the existing closure methods 65 

is to either select a preferred single data set of each water balance variable based on prior knowledge about their quality, or 
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merge multiple data for each water balance variable using fixed pre-quantified error estimates. This step is followed by a water 

balance correction method such as variational data assimilation (L'ecuyer and Stephens, 2002), constrained Kalman filter (Pan 

and Wood, 2006), or proportional redistribution (Abolafia-Rosenzweig et al., 2021). In this process, the values of the 

(un)merged water balance estimates are adjusted proportionally to their relative uncertainties or magnitudes, depending on the 70 

correction method used. Contrary to the previously summarized water balance closure approaches, which fixed data errors a 

priori, Schoups and Nasseri (2021) proposed improving data error estimation by treating them along with the water balance 

variables as unknown random variables. Instead of enforcing the closure sequentially, the authors demonstrate that the water 

balance variables can be calibrated simultaneously in a single probabilistic data fusion methodology. The underlying premise 

is that all variables are interconnected through the water balance. For instance, to calibrate precipitation data, the proposed 75 

approach uses statistical inference techniques to automatically fuse and adjust two information sources available on this 

variable, one coming from multiple estimates of precipitation RS data (original prior data), and the other sourced from other 

water balance data (predicted from the water balance). These techniques include an iterative smoother that involves multiple 

forward-backward passes over the timeseries. In the forward pass, the estimated precipitation carries information from previous 

and current months, while in the backward pass it holds information from the future months. A similar process happens when 80 

estimating the other water balance variables, yielding refined posterior estimates that combine information from all other 

months. 

Further to the above literature, previous attempts have been made to extend the basin-wide water balance closure constraints 

to a finer scale of up to 0.25° pixel resolution (Barkhordari et al., 2025; Heberger et al., 2023; Pellet et al., 2019; Munier et al., 

2014). Building on these previous efforts, our emphasis here is on generating detailed calibrated precipitation (0.05° resolution) 85 

and evaporation (250 meters resolution) estimates that align with the basin-scale closure constraints. To that end, we intend to 

contribute to the literature by extending the existing basin-scale water balance data fusion method first introduced by Schoups 

and Nasseri (2021). The extended methodology presented here retains the original model’s key advantages, namely: the ability 

to simultaneously calibrate the basin-wide water balance variables by exploiting data from the entire timeseries. An integral 

part of this new version is using the basin-wide posteriors to generate calibrated ensembles of spatially distributed precipitation 90 

and evaporation. This is achieved in a stepwise procedure, with the first step involving the formulation of ensemble-driven 

grid-scale error models, contrary to the models in Schoups and Nasseri (2021), which were formulated at the basin-scale and 

relied on an ensemble of two data sets. The second step is a constraint step carried out by the water balance data fusion at the 

basin scale, yielding basin-scale posteriors for all water balance variables, and a Kalman smoothing algorithm, yielding grid-

scale posteriors for precipitation and evaporation. This approach ensures consistency across the two scales: when back-95 

calculating the basin-scale estimates from the grid-scale posteriors via spatial averaging, we recover the inferred basin-scale 

posteriors from the water balance data fusion. Lastly, the new version of the methodology incorporates the following additional 

features: (i) accounting for surface water imports from irrigation canals, which might significantly affect the overall water 

budget in irrigated basins, and (ii) quantifying posterior cross-correlations between water balance variables, which is important 
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for generating joint posterior samples. We apply the extended approach to an irrigated monsoon-influenced Hindon Basin, 100 

which suffers from unsustainable water use. 

The remainder of this paper is structured as follows: section 2 introduces the case study and describes the data sets used as 

input for the probabilistic water balance model presented in Sect. 3. Section 4 details how all unknowns in the water balance 

model are solved at the basin scale, yielding a closed water balance, and how these water balance constraints are transferred 

to the grid scale. The basin and grid-scale results are then presented in Sect. 5. The sensitivity of the water balance data fusion 105 

approach to the modeling decisions is then discussed in Sect. 6. Throughout the paper, we use the terms “priors” and 

“posteriors” to refer to the variables (i.e., water balance terms and error parameters) before and after calibration, respectively 

(i.e., before and after introducing the monthly water balance constraints). 

2 Case Study: Hindon Basin in Northern India 

The study focuses on the Hindon Basin in the northwestern Uttar Pradesh State of India (see Fig. 1). The Hindon basin covers 110 

a total area of about 4780 km2 and drains to the Galeta outlet, where a river discharge station is located. The rainfed Hindon 

River originates from the Shivalik Hills at the foothills of the Himalayas. It flows towards the south on the flat and alluvial 

surfaces of the basin. The river eventually drains into the Yamuna River (near Noida, downstream of Delhi), which, in turn, 

joins the Ganga River before it reaches the Bay of Bengal. The basin features a large-scale supply-based irrigation system with 

two major irrigation canals: the Eastern Yamuna Canal (EYC) and the Upper Ganga Canal (UGC). These canals are fed by 115 

two external reservoirs located outside the basin, namely the Bhimgoda Barrage constructed on the Ganga River and Hathni 

Kund Headwork on the Yamuna River. The share of the external canal water imports in the water balance is significant for 

this heavily irrigated basin, representing about 30-40% of the annual precipitation (Fig. A1). In addition to supplying surface 

irrigation water to the study area, the canals contribute to groundwater recharge through seepage, forming several groundwater 

mounds near their vicinity. Hence, the canals approximately coincide with groundwater divides, limiting lateral groundwater 120 

flow across the eastern and western boundaries of the Hindon basin (Umar et al., 2008). 

The canal system is operated in two irrigation seasons: the Kharif and Rabi seasons. Kharif season extends from March to 

September, in which the main irrigated crops are sugarcane and rice, and the Rabi season spans from October to March of the 

following year, where the principal crops are wheat and mustard. The irrigated croplands represent more than 85% of the basin, 

while only about 10% of the basin’s area is covered by non-croplands (Fig. A2). Irrigation water is diverted from the canals to 125 

supply the basin through off-takes that serve fixed command areas with crops rotated between Rabi and Kharif crops (Fig. 1).  
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Figure 1: Location of the Hindon basin in the Uttar Pradesh state of India (inset map); with a detailed view of the basin featuring 
its boundaries, topographic profile, location of the Galeta outlet, where a river discharge station that belongs to the Central Water 
Commission (CWC) network of India is located. The main map shows the irrigation scheme with reservoirs and canal system. 130 
Topographic basemap sources: Esri, USGS, FAO, NPS, GIS user community, and others. 

3 Probabilistic water balance model 

Our goal is to estimate each term in the monthly water balance, written as: 
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𝑆! = 𝑆!"# +	𝑃&! 	−	𝐸&! − 𝑄! +	𝐶!  (1) 

Equation (1) combines the different water balance terms together, where 𝑆!"# and 𝑆$ are the total water storage in the basin at 

the start and end of month t (including surface storage, soil moisture, and groundwater), 𝑃&!  and 𝐸&!  are the basin-average 135 

precipitation and evaporation (including transpiration), 𝑄! is the river discharge at the basin outlet for month t, and 𝐶! is the 

total canal water import into the basin (sum of all intakes, see Fig. 1) for month t. The net lateral groundwater flows into or 

out of this basin are assumed to be negligible due to their small magnitude relative to the other water balance variables (Alam 

and Umar, 2013). All terms in Eq. (1) are expressed in units of mm of equivalent water depth. The following paragraphs 

describe the water balance data for the case study. 140 

Each water balance component in Eq. (1) is independently derived, gathered, or measured either from satellite data, ground-

based measurements, or both (Table 1). In the prior selection of the most reliable precipitation and evaporation ensembles (see: 

Mourad et al. (2024)), we followed other water balance closure studies that emphasize the use of earth observations over model 

outputs to minimize the effect of their related assumptions, except for the Multi-source Weighted-Ensemble Precipitation 

(MSWEP v2.8) product (Beck et al., 2019). MSWEP is an “optimal merging” of gauge observations, satellite observations, 145 

and reanalysis model output. Along with MSWEP, we use two other monthly gridded precipitation ensemble members: the 

Tropical Rainfall Measuring Mission (TRMM) (Huffman et al., 2007) and the NASA/JAXA Global Precipitation Measurement 

(GPM-IMERG) (Huffman et al., 2019). By combining precipitation radar, passive microwave, and infrared satellites with 

ground-based observations from the Global Precipitation Climatology Centre (GPCC), TRMM and GPM-IMERG provide a 

comprehensive precipitation estimate over a given area. Compared to single-band radar on TRMM, GPM dual-frequency 150 

precipitation radar provides a broader range of measurable precipitation rates and a better estimate of precipitation particle size 

(Hou et al., 2014). Spatially interpolated rain-gauge for the basin from Indian Meteorological Department (IMD) data set (Pai 

et al., 2014) is included in this analysis for comparison but not used in the model. 

For gridded evaporation ensembles, we incorporate five members with diverse methodological approaches for estimating 

evaporation from remote sensing. One ET data set based on two-parallel Penman-Monteith (PM) models for both canopy and 155 

soil: the pyWaPOR-ET v2.6 (Bastiaanssen et al., 2012), two ET data sets that estimate ET from a single-source surface energy 

balance (SEB) model representing vegetation and soil in a combined energy balance, namely the Landsat Collection 2 

Provisional Actual Evapotranspiration Science Product (Landsat-based SSEBop ET) (Senay, 2018; Senay et al., 2023) and the 

Surface Energy Balance Algorithm for Land (eeSEBAL product) (Bastiaanssen et al., 1993), in addition to a two-source SEB 

ALEXI-ET data set from the Atmosphere-Land Exchange Inverse model (Anderson et al., 2007; Anderson et al., 2015). We 160 

also incorporate the CMRSET ET product based on the CSIRO MODIS Reflectance-based Scaling ET model (Guerschman et 

al., 2009) that uses vegetation indices and meteorological data for scaling the ET. All data sets are resampled to the same 

spatial resolution using bilinear interpolation. More details on the theoretical background and processing steps for the P and E 

data sets can be found in the companion paper (Mourad et al., 2024).  

The total water storage variable data were obtained from the recent release of the monthly Jet Propulsion Laboratory (JPL-165 

RL06) mascon solution. Each monthly total water storage estimate represents the surface mass anomaly relative to the baseline 
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average over 2004-2009. This version relies on prior geophysical information to constrain the solution, eliminating the need 

for empirical de-striping filtering commonly used for post-processing traditional spherical harmonic gravity solutions. 

However, intrinsic to this product are biases, that is, leakage errors, and spatial smoothing that damps the “true” signal, 

especially in small-sized basins. A Coastline Resolution Improvement (CRI) filter has been applied in this version to reduce 170 

signal leakage errors across coastlines (Wiese et al., 2016). This data is also accompanied by scaling factors for optionally 

restoring the damped signal. However, these were not applied to the data used herein; instead, bias along with noise variance 

are modeled using all water balance data incorporated in this study (see Sect. 3.3). Another storage input data set is also 

included: GRACE Spherical Harmonic (CSR) solution (Sect. 6.1) (Swenson and Wahr, 2006; Landerer and Swenson, 2012). 

The in situ data used in this analysis are obtained from governmental agencies, including the Central Water Commission 175 

(CWC) of India for streamflow data and the irrigation department of Uttar Pradesh for external canal water imports data. While 

river discharge data has no gaps, canal delivery data are constrained by their spatial and temporal coverage. The latter comes 

in two forms: irrigation schedules and actual flow measurements. We apply an extrapolation approach that combines both data 

sources to generate complete monthly estimates for all intakes (for more details on the adopted gap-filling technique, refer to 

Appendix A2). 180 

As can be seen in Table 1, the native resolution of the individual data sets and between the water balance variables varies 

widely, posing a challenge in their merging process. In principle, the probabilistic water balance data model can be performed 

at any spatial resolution; however, for this study design, we try to preserve the native information as much as possible by 

choosing to resample all precipitation data sets to a common resolution of 0.05° and all evaporation data sets to a common 

resolution of 250m. An alternative design would be to resample all water balance variables to the same resolution (e.g., 250m), 185 

but this might introduce artefacts, for example, when up-sampling from coarse to high resolution. 
Table 1: Monthly Water Balance Data. The data type column distinguishes between Remote Sensing (RS) and ground-based 
Measurements (GBM). 

Variable Data Type Data Source Original 

(Resampled) 

resolution 

Study 

period 

Precipitation  RS and GBM TRMM TMBA (TRMM3B43 v7) 0.25° (0.05°) 2003-2019 

(𝑃%&') RS and GBM GPM (IMERG) 3IMERGDF (v06) 0.1° (0.05°) 2003-2022 

 Merged MSWEP v2.8 0.1° (0.05°) 2003-2022 

Evaporation  RS pyWaPOR v2.6  250m (250m) 2003-2022 

(𝐸%&') RS Landsat C2 Provisional ET (Landsat-SSEBop)  30m (250m) 2003-2022 

 RS eeSEBAL  30m (250m) 2003-2022 

 RS CMRSET 5km (250m) 2003-2012 

 RS ALEXI  5km (250m) 2003-2015 

Storage  RS  GRACE JPL mascon (RL06 v1.0) 3° (basin-wide) 2003-2022 
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(𝑆%&') RS GRACE Spherical Harmonic (CSR) 1° (basin-wide) 2003-2022 

River discharge 

(𝑄%&') 

GBM Stream gauge (Central Water Commission, 

2024) 

point 2003-2022 

Canal Water 

Imports (𝐶%&') 

GBM Canal gauges and irrigation schedules 

(Irrigation & Water Resources Department, 

2024) 

distributary-based 2003-2022 

Despite the variety of the above-explored data sources, two barriers hinder their potential use in hydrological applications. 

One occurs when integrating the unique data combinations describing each water balance variable into the basin-scale water 190 

balance. In any particular month, we end up with significant errors, i.e., either too much or too little water, resulting in a non-

zero net balance (Fig. B1 in Appendix B). This non-closure or imbalance problem highlights the incoherences between the 

water balance data sets and the inconsistencies in the individual data sets, caused by various data errors. Another well-known 

challenge is the inconsistencies between the various data products for the same variable. For example, for the studied basin, 

grid-scale inter-product uncertainty is moderate for P, while E exhibits significant spatial variability across the whole basin 195 

(Mourad et al., 2024). These challenges motivate the distinction between the “calibrated” value of each water balance 

variable that satisfies the water balance closure at the basin scale and represents the error-corrected estimate at the grid level, 

and the “observed” values, which deviate from these values. In the probabilistic form of the water balance, each term is 

assigned a probabilistic data error model to quantify systematic and random differences between observed and modelled 

water balance variables. Parameters in these data error models are treated as unknown random variables with predefined 200 

prior distributions. In this regard, the overall probabilistic water balance takes the form of a Bayesian hierarchical model 

with two levels of uncertainty: one related to the error parameters and another linked to the water balance variables (Schoups 

and Nasseri, 2021). Figure 2 gives an overview of our approach, and the following subsections describe the parametric 

probabilistic relations used for each water balance variable (P, E, Q, C, and S). 

 205 
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Figure 2: A factor graph showing random variables in circles and constraints between variables as squares for a single month. Three 
constraints are incorporated in the water balance data fusion method, including: a prior Gaussian distribution assigned to each 
water balance variable (squares attached to each variable), the basin-scale water balance (BWB) constraint that links all water 
balance variables together, and the spatial averaging constraint that links grid-scale precipitation (P) and evaporation (E) to basin-210 
scale precipitation (𝑷,) and evaporation (𝑬,). Computation of posteriors of individual variables proceeds in two steps. The first step 
is basin-scale water balance data fusion (BWB fusion, see Sect. 4.1). This step involves multiple forward (blue arrows along the 
edges) and backward (dotted blue arrows) passes over the data using the entire timeseries to compute the posteriors of all water 
balance variables that jointly close the water balance (Schoups and Nasseri, 2021). The second step computes grid-scale posteriors 
for precipitation and evaporation from their basin-scale posteriors using a Kalman smoothing algorithm (green arrow, see Sect. 4.2). 215 

3.1 Precipitation and Evaporation error models 

Contrary to Schoups and Nasseri (2021), we define prior error models for P and E at the grid scale instead of at the basin 

scale, followed by spatial averaging to derive corresponding priors at the basin scale. The latter are then used with water 

balance data fusion for estimating basin-scale posteriors (Sect. 4.1). The resulting basin-scale posteriors are finally 

transferred back to the grid scale (Sect.  4.2). 220 

The first step in setting up a prior error model for the gridded P and E variables is to probabilistically characterize them with 

prior distributions. For these two independent spatial processes, we can write their grid-scale joint prior distribution for each 

month t as: 
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𝒩/0𝑃!𝐸!
1 | 0

𝑚(!
𝑚)!

1 , 0
𝑉(!	 0
0 𝑉)!	

	17 
(2) 

where 𝑃!	and 𝐸!	are vectors containing unknown precipitation and evaporation values for all grid cells in the corresponding 

spatial field for each month t. The Gaussian distribution (Eq. (2)) is specified with a mean vector and a block diagonal 225 

covariance matrix with zero cross-covariance to reflect that these two processes are assumed to be independent a priori. The 

mean vector consists of the prior means of P (𝑚(!) and E (𝑚)!), for all spatial locations within the corresponding spatial 

domain of each month t, while the autocovariance of each variable P (𝑉(!	) and E (𝑉)!	)  is the block-diagonal element of the 

covariance matrix. The decomposed form of the joint distribution for each individual variable is described in the following 

subsections.  230 

3.1.1 Precipitation 

For each month t, we typically have multiple gridded precipitation products, with unknown bias and random errors. We use 

the spread across different precipitation products to define a grid-scale precipitation error model for the prior means 𝑚(! 

(mean vector in Eq. 2) and the prior standard deviations 𝑠(! (vector of the square root of all diagonal entries of the 

autocovariance matrix 𝑉(!	in Eq. 2): 235 

𝑚(! = (1 − 𝑤*)𝑃!
%&',,-. +𝑤*𝑃!

%&',,/0 (3) 

𝑠(! = 𝑟(
1
4 ?𝑃!

%&',,/0 − 𝑃!
%&',,-.@ (4) 

Equation (3) models the systematic bias in grid-scale precipitation for each month t by describing the grid-scale precipitation 

prior means 𝑚(!as a weighted average of the minimum (𝑃!
%&',,-.) and maximum (𝑃!

%&',,/0) precipitation for each grid cell. 

The weight or bias parameter 𝑤( takes on an unknown value between 0 and 1, and is estimated from the data (see section 4.1).  

Random errors in grid-scale precipitation are modeled using Eq. (4). This model expresses the grid-scale prior standard 

deviations 𝑠(! for each month t as a function of the difference between the maximum and minimum precipitation in each grid 240 

cell. A noise parameter (𝑟(), taking a value between 0 and 1, is used to scale the standard deviations. This parameter is also 

estimated from the data. 

To account for the effect of spatial correlation of the random error component (Eq. (4)), we write the precipitation prior 

covariance matrix 𝑉(!	in terms of the grid-scale standard deviations and a grid-scale auto-correlation matrix: 

𝑉(!	 = 𝑆(!𝑅(𝑆(! (5) 

where 𝑆(!is a diagonal matrix containing the grid-scale 𝑠(! values for all locations of the spatial field (Eq. (4)), and 𝑅( is the 245 

correlation matrix that captures the spatial dependence structure.	𝑅( ∈ ℝ.#×.#, where 𝑛( × 𝑛( is the matrix dimension, and 

𝑛( equals 176, representing the total number of grid cell locations of the precipitation spatial domain. 𝑅( is jointly estimated 
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from all precipitation data using an isotropic parametric correlation function with the following form (Handcock and Stein, 

1993):  

𝐶ℳ(𝑑|𝑙', 𝑣) =
1

23"#𝛤(𝑣)	/
𝑑
𝑙'
7
3

𝐾3 /
𝑑
𝑙'
7 

(6) 

where 𝐶ℳ  is the Matérn correlation function for variables separated by distance 𝑑. This correlation model is flexible and 250 

widely used, with two functions: gamma function 𝛤(. )  and the modified Bessel function 𝐾3(. ) (Abramowitz and Stegun, 

1968). 𝐶ℳ also consists of two unknown nonnegative parameters, namely the spatial correlation length scale 𝑙' and a spatial 

smoothness parameter 𝜈. A value of 𝜈 approaching 0 indicates a rough spatial process, while the process is smoother when 𝜈 

approaches infinity. Since the smoothness parameter is usually small in many applications (Chen et al., 2022), while it increases 

as the aggregation time increases (Sun et al., 2015), we choose a balanced value between a rough and smooth random field, 255 

i.e., 𝜈 , fixed at 1.5. On the other hand, the correlation length scale (𝑙' ) defines an average length scale on which grid cells are 

correlated with each other. In principle, 𝑙'  ranges from 0 (the case of uncorrelated grid cells) and extends to a scale larger than 

the spatial domain length (the case of maximally correlated pixels). With no prior information on the 𝑙' parameter, we fix it at 

50 km (~1/2 the basin’s length from North to South). The sensitivity of the results to the fixed 𝑙' will be evaluated in section 

6.2. 260 

Since water balance data fusion (Schoups and Nasseri, 2021) uses basin-scale error models, we derive these from the above-

described grid-scale models by spatial averaging. Specifically, the basin-scale prior mean 𝑚(4! and variance 𝑣(4! in month t 

follow from Eqs. 3, 4, and 5: 

𝑚(4! = 𝜙(5𝑚(! = 𝜙(5 Q(1 − 𝑤*)𝑃!
%&',,-. +𝑤*𝑃!

%&',,/0R (7) 

𝑣(4! = 𝜙(5 𝑉(!𝜙( = 𝜙(5 𝑆(!𝑅(𝑆(!𝜙( = 𝜙(5 (𝑟(𝐷(!)𝑅((𝑟(𝐷(!)𝜙( (8) 

𝑃!, 	~	𝒩	(𝑚(4! , 𝑣(4!) (9) 

𝑃!, 	≥ 0 (10) 

where 𝜙( is the spatial averaging operator used to derive basin-scale mean and variance from grid-scale means and variances 

(i.e., 𝑛( × 1 vector with each element equal to 1/𝑛*	, where 𝑛( is the number of spatial locations in the precipitation spatial 265 

field).	𝜙(5  is the transpose of 𝜙( . We also used 𝑆(! = 𝑟(𝐷(! , where 𝐷(  is a diagonal matrix containing the #
6
?𝑃!

%&',,/0 −

𝑃!
%&',,-.@ values (from Eq. 4) for all grid cells within the precipitation spatial field. All basin-averaged input quantities to Eqs. 

(7-8) are precomputed from the precipitation data sets, and the constant but unknown parameters 𝑤* and 𝑟( are estimated as 

part of the water balance data fusion (see Sect.  4.1). 

Finally, the last two equations in the precipitation error model treat the basin-scale calibrated precipitation 𝑃!,  for each month t 270 

as a random draw from a truncated normal distribution. The truncation at zero ensures physical consistency (nonnegative 

precipitation).  
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3.1.2 Evaporation 

As with precipitation, an evaporation error model with the following form is adopted: 
𝑚)! = ƒ𝑬	[(1 − 𝑤))𝐸!

%&',,-. +𝑤)𝐸!
%&',,/0] (11) 

𝑠)! = 𝑟)
1
4 ?𝐸!

%&',,/0 − 𝐸!
%&',,-.@ (12) 

The systematic bias in grid-scale evaporation is modeled with two spatial and time-invariant calibration parameters, namely: 275 

𝑤)  and ƒ𝑬 . The parameter 𝑤)  is a bias parameter or weight that interpolates between the monthly grid-scale evaporation 

extrema 𝐸!
"#$,&'(and 𝐸!

"#$,&)* 	. 𝑤) takes on a value between 0 and 1, and is estimated from the data (see section 4.1). An 

additional scaling factor ( ƒ𝑬) is incorporated to account for potential bias outside the observed grid-scale evaporation range, 

and is given a lognormal prior with mode at 1 (no bias) and a coefficient of variation CV of 50%.  

On the other hand, Eq. (12) quantifies the random errors in grid-scale evaporation, as the difference between the maximum 280 

and minimum evaporation in each grid cell. A noise parameter (𝑟)), taking a value between 0 and 1, is used to scale the random 

errors. All parameters are solved as part of the water balance data fusion (Sect.  4). 

 

The basin-scale error models are derived from the grid-based models defined above, using the same spatial averaging process 

applied to precipitation (Eqs. (7-8)). The averaging formulas are then obtained as follows: 285 

𝑚)4! = 𝜙)5𝑚)! = ƒ𝑬	𝜙)5 Q(1 − 𝑤))𝐸!
%&',,-. +𝑤)𝐸!

%&',,/0R (13) 

𝑣)4! = 𝜙)5 𝑉)!𝜙) = 𝜙)5 𝑆)!𝑅)𝑆)!𝜙) = 𝜙)5 (𝑟)𝐷)!)𝑅)(𝑟)𝐷𝐸!)𝜙) (14) 

𝐸!, 	~	𝒩	(𝑚)4! , 𝑣)4!) (15) 

𝐸!, 	≥ 0 (16) 

where 𝐷) is a diagonal matrix whose diagonal entries contain the  #
6
?𝐸!

%&',,/0 − 𝐸!
%&',,-.@ values for all grid cells within the 

evaporation spatial domain. All inputs of Eqs. (13-14) are precomputed from the evaporation data sets. 𝜙)  is the spatial 

averaging operator, and the 𝑅) term stands for the correlation matrix, which captures the spatial dependencies between the 

evaporation grid cells. 𝑅) ∈ ℝ.$×	.$ , where 𝑛) × 𝑛)  is the matrix dimension, and 𝑛)  equals 71059, representing the total 

number of grid cell locations of the evaporation spatial domain. For the large-sized evaporation data sets considered here, we 290 

parameterize the evaporation correlation matrix using a Matérn Gaussian Process kernel (Hensman et al., 2015) with fixed 

parameters 𝑙' at 50 km and 𝜈 at 1.5. 

Similar to precipitation, the basin-scale calibrated evaporation 𝐸!,  for month t is treated as a random draw from a truncated 

normal distribution Eqs. (15-16). The truncation at zero ensures physical consistency (nonnegative evaporation). 
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3.2 River discharge and canal water import error models 295 

We assume that data on river discharge (𝑄%&') and canal water imports (𝐶%&') are both unbiased with proportional random 

errors (Eq. (18)). Both variables are modelled as truncated Gaussian variables (non-negative), with mean 𝑚𝓍! , standard 

deviation 𝑠𝓍!, and variance 𝑣𝓍! in month t given by: 

𝑚𝓍! =	𝓍!
%&' (17) 

𝑠𝓍! = 𝑎0𝓍!%&' (18) 

𝑣𝓍! = 𝑠𝓍!
:  (19) 

𝓍!~	𝒩	(𝑚𝓍! , 𝑣𝓍!) (20) 

𝓍! ≥ 0 (21) 

where 𝓍!%&' represents the observed value for each month t (𝑄!%&' for discharge and 𝐶!%&' for canal water imports). 𝑠𝓍!quantifies 

the random errors in 𝑄%&' or 𝐶%&', and is assumed proportional to the observed value, with a proportionality constant (or 300 

relative error) 𝑎𝓍. We assume a 10% relative error for monthly river discharge, i.e., 𝑎; = 0.1, and a 25% relative error for 

canal water imports, i.e., 𝑎< = 0.25.   

3.3 Water Storage Error Model 

The water storage error model relates the storage observations from the GRACE satellite (𝑆!%&')  to the modeled storage (𝑆!). 

Due to the coarse resolution of GRACE data, the monthly basin-scale total water storage derived from these observations can 305 

be polluted by the water storage dynamics occurring outside the basin, that is, “leakage”. To account for the temporal and 

spatial mismatch between GRACE basin-scale water storage and the modeled storage caused by leakage errors, we employ 

the following noisy sine wave error model (Schoups and Nasseri, 2021): 

𝑚=! = 𝑆! + 𝐴	𝑠𝑖𝑛 ]𝜔 /
𝑡
12 − 𝛿7a 

(22) 

𝑣=! = 𝜎=: (23) 

𝑆!%&'~	𝒩(𝑚=! , 𝑣=!) (24) 

The first equation models the systematic errors associated with GRACE observations. It captures cyclic patterns and 

seasonality in the data within the basin via time-invariant error parameters. These parameters describe the magnitude and the 310 

timing of the seasonal error: the amplitude 𝐴 (mm) and phase 𝛿 (years), respectively.  

The magnitude of random errors is modeled as an unknown time-invariant parameter (𝜎=), which reflects errors that can arise 

from (a) any limitations caused by the sine wave models in capturing the calibrated water storage dynamics within the basin 
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and (b) noise in GRACE solutions. In the above equations, 𝜔 is fixed at 2𝜋 radians per year, yielding a one-year sine wave 

and thus capturing the annual seasonal cycle. Other parameters are assigned vague prior distributions, where 𝐴 follows a 315 

lognormal prior with mode at 30 mm and a CV of 200%, 𝜎=	a lognormal prior with mode equal to 10 mm and a CV of 200%, 

and 𝛿 follows a flat logit-normal prior between 0 and 1 year with a location parameter 𝜇 = 0 and scale parameter 𝜎 = 1.4. 

While the above prior error model relies on a single storage data set, we assess a posteriori (Sect. 6.1) the sensitivity of the P 

and E posterior distributions to the use of different storage inputs, including Mascon (JPL) and Spherical Harmonic (CSR) 

GRACE solutions, which for the basin studied here, exhibit different long-term trends. 320 

4 Inference methods 

The following subsections detail the two-step statistical inference framework used to solve the basin-scale probabilistic water 

balance model (Sect. 4.1) and then propagate the resulting basin-wide constraints to the grid level (Sect. 4.2). 

4.1 Basin-scale 

Following the description of the prior probabilistic relations (Sect. 3), the posteriors of water balance variables and error 325 

parameters are computed using a basin-scale inference technique. This technique consists of a double-loop method that 

combines two algorithms: a single-chain differential evolution variant of Markov Chain Monte Carlo (DE-MCMC) for 

computing the unknown parameters and Expectation Propagation (EP) for solving the unknown water balance variables. A 

brief overview of these algorithms is described in Appendix B, while a detailed explanation can be found in the original paper 

(Schoups and Nasseri, 2021). The computed posteriors provide hydrologically consistent water balance variables that jointly 330 

close the water balance. In the water balance data fusion process, the independent prior data (Sect. 3) are updated with the 

monthly water balance constraints. These constraints link all independent variables through the water balance, thereby inducing 

cross-correlation between them. For example, the term S in the water balance constraint (dropping the time index t for 

simplicity: 𝑆 = 𝑆> 	+	𝑃& 	−	𝐸& − 𝑄 + 	𝐶) linearly links all other terms. To maintain the water balance closure, the terms with 

opposite signs must covary together, and vice versa. In this paper, an additional post-processing step is applied to represent 335 

this interdependence structure between the water balance variables, i.e., compute their covariances. For a vector of posterior 

variables 𝑥 (including the initial storage state 𝑆>	or 𝑆!"#,𝑃&, 𝐸&, 𝑄, and 𝐶), a joint distribution can be written for each month t 

as: 𝑝(𝑥!)~	𝒩?𝑚𝓍,!
∗ , 𝑉!∗@ with a mean vector (𝑚𝓍,!

∗ ) holding the marginal posterior means of each variable (Eq. (B2)) and a 

5 × 	5 covariance matrix 𝑉!∗ that encodes the relation between these variables. The diagonal element of this matrix contains 

each variable's marginal posterior variance, while the unknown covariances between each variable pair are the off-diagonal 340 

entries. To quantify these covariances, a message-passing algorithm that combines the water balance constraint and the 

probabilistic constraints in the form of marginal Gaussian distributions is applied (see Text B2 in Appendix B). 
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4.2 Grid-scale 

Having computed the joint basin-scale 𝑃 and 𝐸 posteriors (Sect. 4.1), the goal is to translate these posteriors back to the grid-

scale. When spatially averaged, the generated grid-scale posteriors (𝑃 and 𝐸) should recover the basin-scale posteriors. Such 345 

a relation between the two scales can be established for each month t as follows (Eq. (25)):  

0𝑃
&!
𝐸&!
1 = 𝐴 0𝑃!𝐸!

1 
(25) 

where 𝐴 = 0𝜙(′ 0
0 𝜙)′

1 represents the spatial averaging operator mapping the grid-scale to the basin-scale P and E variables, 

𝜙(′	and	𝜙)′	  are defined earlier in Eqs. (7 and 13).  

For the above relation to hold (Eq. (25)), we implement a Kalman smoothing algorithm. A key aspect of this algorithm is that 

it ties together all sources of information on P and E variables, detailed in previous sections, including: the basin and grid-350 

scale joint priors (Sect. 3), along with basin-scale joint posteriors (Sect. 4.1), to generate their corresponding spatially 

distributed joint posteriors. Distinctly, the grid-scale prior moments (Eq. (2)) are updated to reflect the difference between the 

basin-scale joint posterior and prior moments via the Kalman gain. In what follows, we start by describing the basin-scale joint 

prior and posterior distributions and then show how the grid-scale joint distributions are computed. 

Before constraining the basin-scale spatially averaged 𝑃!,  and 𝐸&! priors, their joint distribution for each month t can be written 355 

with zero-cross covariances to reflect the independent structure between both variables: 

𝒩]0𝑃!
,
𝐸&!
1 | 0

𝑚(4!
𝑚)4!

1 , 0
𝑣(4! 0
0 𝑣)4!

	1a 
(26) 

where 𝑚(4! and 𝑚)4!	are prior means, 𝑣(4! and 𝑣)4! are prior variances of 𝑃!,  and 𝐸&!, respectively. 

Once the water balance constraint is imposed within the basin-scale data fusion: 𝑃& − 𝐸& − 𝑄 + 𝐶 + 𝑆> − 𝑆 = 0 (omitting t for 

simplicity), positive correlations between 𝑃& and 𝐸& posteriors emerge. This occurs because the water balance acts as a constraint 

on the priors (independent 𝑃& and 𝐸&) linearly linking them in their posteriors (correlated 𝑃& and 𝐸&). To maintain this linear 360 

constraint, that is, 𝑃& − 𝐸&  remains equal to 𝑄 − 𝐶 − 𝑆> + 𝑆 , an adjustment that increases 𝑃&  should be balanced by an 

adjustment that increases 𝐸& , and vice versa. This yields a basin-scale joint posterior distribution on the posterior variables 𝑃!,  

and 𝐸&!, with induced correlations, that is, non-zero cross covariances: 

𝒩]0𝑃!
,
𝐸&!
1 | k

𝑚(4!
∗

𝑚)4!
∗	l , k

𝑣(4!
∗ 𝑣()4444!

∗

𝑣()4444!
∗ 𝑣)4!

∗ 	la 
(27) 

where 𝑚(4!
∗  and 𝑚)4!

∗  are the marginal posterior means, 𝑣(4!
∗ and 𝑚)4!

∗  are the marginal posterior variances of 𝑃!,  and 𝐸&! , 

respectively, and 𝑣()4444!
∗ is the posterior cross-covariance between 𝑃!,  and 𝐸&!. 365 

Kalman smoothing can then be used to calculate the joint posterior moments Eqs. (28-29) at the grid-scale from the above 

basin-scale prior moments Eqs. (26-27) and grid-scale prior moments (Eq. (2)). These posterior moments are thus rendered as 

a weighted combination of grid and basin-scale moments: 
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k
𝑚(!

∗

𝑚)!
∗l = 0

𝑚(!	
𝑚)!	

1 + 𝐾 ]k
𝑚(4
∗
!

𝑚)4
∗
!
l − 0

𝑚(4!
𝑚)4!

1a 
(28) 

 

k
𝑉(!

∗ 𝑉()!
∗

𝑉()!
∗5 𝑉)!

∗ 	l = 0
𝑉(!	 0
0 𝑉)!	

1 + 𝐾 ]k
𝑣(4!

∗ 𝑣()4444!
∗

𝑣()4444!
∗ 𝑣)4!

∗ 	l − 0
𝑣(4! 0
0 𝑣)4!

	1a𝐾5 
(29) 

where 𝑚(!
∗  and 𝑚)!

∗  are the grid-scale means, while 𝑉(!
∗  and 𝑉)!

∗  are autocovariances of 𝑃!  and 𝐸$  posteriors, respectively. 370 

𝑉()!
∗ and 𝑉()!

∗5stand for the posterior cross-covariance between both variables and its transpose, respectively. 

A noteworthy feature of the Kalman smoothing gain (𝐾) in the above equations is that it acts as a weighting matrix propagating 

basin-scale information to each individual P and E grid cell. It is computed using the following equation composed of three 

components:    

𝐾 = 0
𝑉(!	 0
0 𝑉)!	

1 𝐴5 0
𝑣(4! 0
0 𝑣)4!

	1
"#

 
(30) 

The first component depicts the block diagonal covariance matrix of the grid-scale 𝑃! and 𝐸$ priors, the second is the transpose 375 

of the spatial averaging operator 𝐴, whereas the inverse of the diagonal matrix consisting of the basin-wide variances of 𝑃!,  

and 𝐸&! priors is the third component.  

5 Results 

Here, we present the results of the two-step inference framework described in section 4, starting with the basin-scale posteriors 

of all water balance variables (Sect.  5.1) and followed by the grid-scale posteriors of P and E (Sect. 5.2). These represent the 380 

baseline results that are based on specific choices of GRACE data (i.e., JPL mascon data) and spatial correlation lengths. The 

sensitivity of the results to these choices will be addressed in Sect. 6.  

5.1 Basin-scale posteriors 

Basin-scale posteriors for P (precipitation), E (evaporation), and C (canal water imports) are shown in Fig. 3 and discussed 

first. The data shows significant prior uncertainty with a wide range of precipitation and evaporation estimates. This is 385 

especially evident in the monsoon (June to September) for precipitation and across the whole seasonal cycle for evaporation 

(Fig. 3). Along with the prior observations, Fig. 3 also depicts the basin-scale posteriors for each water balance term, while 

Fig. 4 shows the corresponding error parameter posteriors. The results for 𝑄 are not included in Fig. 3 since the posterior for 

𝑄 closely follows the river discharge data, and this data is tied to a non-disclosure agreement with the CWC of India.  

The results in Fig. 3 show that the precipitation posterior mean lies between the 𝑃&!
%&',,-. and 𝑃&!

%&',,/0 data bounds. This 390 

balanced position within the precipitation space is also translated into the inferred parameter 𝑤*, with a posterior distribution 

around values of ~0.5 (Fig. 4). The noise parameter 𝑟( has a posterior distribution around 1, suggesting a minimal reduction 
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in the prior uncertainty range for precipitation. An independent evaluation of these posterior estimates can be done by 

comparing them to the Indian Meteorological Department (IMD) data set (Pai et al., 2014), which is routinely used to evaluate 

precipitation products in India. Despite being treated as the “ground truth” in literature, the rain-gauge interpolated IMD 395 

product is not error-free, and therefore, a perfect match between the IMD data and the generated posterior mean is not 

anticipated. Figure C1 in Appendix C compares the seasonal and annual timeseries of the IMD to the posterior precipitation 

mean. Unlike the precipitation posterior mean, which tends to sit between observed data bounds, the IMD data set closely 

follows the baseline precipitation estimate (TRMM). The larger posterior estimates for P found here align with a recent study 

(Goteti and Famiglietti, 2024) that found systematic underestimation of precipitation by the IMD data product. 400 

Moving to evaporation, the computed posteriors in Fig. 3 only slightly differ from the priors, with posterior values of noise 

parameter 𝑟) centered at ~0.95 (Fig. 3), implying that the modeled random error in this variable is as large as one-fourth of 

the absolute difference between 𝐸&!
%&',,-. and 𝐸&!

%&',,/0. This posterior uncertainty, however, reduces with a tighter data range 

corresponding to prior ensembles generated from only three data sets: eeSEBAL, pyWaPOR, and Landsat-SSEBop 

(specifically, from 2015 onwards). As for the estimated evaporation, it takes more or less a balanced weight between 𝐸&!
%&',,-. 405 

and 𝐸&!
%&',,/0, with an estimated 𝑤) posterior of  ~0.48 and a scaling parameter ƒ𝑬 around 1	(no additional bias). While no 

direct evaporation measurements are available, the posterior estimates can be evaluated by comparing them with reference 

evapotranspiration and expected seasonal dynamics based on known cropping and irrigation practices. For example, the 

evaporation is expected to be lower than 𝐸𝑇&&&&>  but equal to or higher than the 𝐸𝑇&&&&> for only a short period, either in June-July or 

August-October, when the (dominant) sugarcane crop coefficient (Kc) exceeds 1. In Fig. 3, the inferred posterior evaporation 410 

(green band) aligns with this expectation where it is consistently below 𝐸𝑇&&&&> , but is also around 𝐸𝑇&&&&>  for the previously 

mentioned period (e.g., in 2006, 2012, 2019, and 2022). Besides sugarcane, rice is the second most important crop, commonly 

transplanted at the end of April or mid-May (Joseph and Ghosh, 2023). For this shallow-rooted crop, more frequent irrigation 

is required during its early stages (the first 30 days), coinciding with the period when the canal water supplies form a peak (at 

the onset of the monsoon) (Fig. C3 in Appendix C). The evaporation timeseries of rice is, thus, expected to form a peak, most 415 

likely in June, when its Kc value is higher than 1. Considering these two elements, the evaporation is expected to peak in June, 

as captured by the posterior evaporation mean (Fig. C2 in Appendix C). 

The third row of Fig. 3 compares the prior and posterior estimates of the canal water imports (C). The prior estimates 

represented here are extrapolated from scarce data. Nevertheless, the extrapolation approach mostly relied on ground-based 

measurements whenever available. For periods with missing data, these were filled with the design discharge capacity 420 

multiplied by the operation time or the data average of years with similar conditions, depending on data availability per 

distributary. For this purpose, independent information from the Palmer Drought Severity Index (PDSI) index of the Terra 

Climate data set (Abatzoglou et al., 2018) is used as a proxy to classify the years between wet and dry, allowing for annual 

variations in the canal water supply. For example, in dry years, such as 2008, and 2016 to 2018, the surface water supplies are 

smaller in magnitude compared to all other years. Note also the increase in the water supplies from 2009 onwards, which aligns 425 
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with the construction of the Deoband Parallel Canal that connects the Upper Ganga Canal (UGC) to the Eastern Yamuna Canal 

(EYC) (Fig. 1). Using other approaches to generate and extrapolate the prior canal water estimates does not significantly affect 

the posteriors of the other terms, as explored in Sect. 6.3. The posterior results, on the other hand, reflect the wide prior 

uncertainty (relative error of 25%) we place around this extrapolated data. Generally, the posterior estimates follow both their 

priors and the seasonality of the precipitation term. Specifically, the supplies peak at the onset of the monsoon (June) due to 430 

increased water availability from precipitation, while smaller peaks are formed during the dry season (Dec and April) when 

water stored in the reservoirs is diverted for irrigation. As canal supplies are mainly driven by precipitation, it is reasonable to 

conclude that the canal water imports are smaller in magnitude compared to precipitation during the rainy months (July-Sept), 

representing about 5 to 15% of the monthly precipitation. It follows that the fixed prior uncertainty on this term is a justifiable 

approximation that does not strongly affect the other water balance estimates. 435 

Finally, we note the interplay between all variables: water balance (P, E, C, and Q), weather, and crop variables. Despite 

relying on external water supplies, the basin has been experiencing a decreasing trend in the river discharge (Dwivedi and 

Yadav, 2025), coupled with increased evaporation from 2010 to 2022 (see the annual timeseries of the posterior mean in Fig. 

C2). The increase in posterior mean evaporation mirrors the increasing trend in the sugarcane yield and the leaf area index 

from 2011 (Fig. C4). This aligns with a period of increasing temperatures (see Fig. C4) and with the period when farmers 440 

started adopting new high-yielding sugarcane varieties in the basin, as reported by Indian Council of Agricultural Research 

The accelerating rate of evaporation in our estimates follows a similar trend in the Landsat-based SSEBop evaporation data 

set (Fig. C2). This shows, on the one hand, the usefulness of the water balance constraints in evaluating the data products, and 

on the other hand, that simplified ET models like SSEBop can sufficiently reproduce the evaporation dynamics.   

The interplay is also pronounced in dry years such as 2009 and 2016, showing a decline in the posterior mean precipitation, 445 

together with the canal water imports. The limited availability of rainfall and surface water for irrigation during droughts, 

along with rising temperatures in recent years (Fig. C4), does not, however, depress the evaporation rates because crop water 

demand is met by increased groundwater pumping. The effect of unsustainable groundwater pumping is particularly notable 

in the dynamics and trend of basin water storage, which we discuss next.  
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450 
Figure 3: Monthly water balance posteriors (90% credible intervals in green) for: (a) P (precipitation), (b) E (actual 
evapotranspiration), and (c) C (canal water imports), and their corresponding observations (dots). Reference evapotranspiration 
computed here using ERA5 meteorological input variables is shown as (𝑬𝑻𝟎). The overbars of the labels in P and E plots indicate 
that these values are obtained through spatial averaging of the gridded data sets for each month t. Each year's label indicates the 
start of the year (January). 455 
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Figure 4: Prior and posterior distributions of error parameters for: (a) evaporation, (b) storage, (c) precipitation, canal water 
import, and river discharge when using different GRACE storage data sets: CSR Spherical Harmonic (SH) and JPL Mascon (MAS) 
solutions. 460 
 

Figure 5 compares prior (GRACE data) and posterior estimates of the basin’s water storage S. The prior estimates in the top 

panel are obtained by predicting water storage from the water balance using the original, uncalibrated data sets for P, E, C, 

and Q. The different permutations in which these data can be combined results in 15 predicted water storage time series in Fig. 

5a. We see that the GRACE data closely follow the seasonal dynamics of the prior predicted storages from water balance data. 465 

This conveys that both timeseries are approximately in phase but markedly different in magnitude and trend, due to bias and 

noise in each data set. As shown next, water balance data fusion combines all the data and corrects data errors to yield a closing 

water balance in each month.  

The second panel of Fig. 5 depicts the calibrated storages, i.e., posteriors shown in green, after fusing all sources of information 

available on this variable. These posteriors combine three noisy and biased sources of information for storage S in a given 470 

month: the GRACE observation (if available for that month), the water balance constraint for the current month, and the water 

balance constraint for the next month (since S is the initial storage for the next month). Fusing all information together results 

in a narrower storage posterior (with less uncertainty) compared to the individual sources.  
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In this process, the introduced water balance constraints can themselves significantly contribute to reducing the posterior 

uncertainty of the inferred storage by inducing correlations between variables. This occurs because (noisily) observing 𝑆 in 475 

this constraint linearly links all the a priori independent variables together. Such a relation is encoded in the coefficients of the 

variables in the water balance equation. For example, to maintain this physical relation, that is, 𝑆 remains equal to 𝑆> +	𝑃& 	−

	𝐸& − 𝑄 + 	𝐶, the water balance variables with opposite signs must covary together, and vice versa. Accounting for positive 

correlations between the variables of opposite signs and negative correlations between the variables with the same signs in the 

water balance can significantly reduce the variance of 𝑆. The effect of these posterior cross-correlations between water balance 480 

variables is shown in Fig. 5b. Note the smaller uncertainty in the final posterior estimates (green band), which account for 

posterior cross-correlations between the variables, compared to posterior samples (in grey) that do not account for these 

posterior cross-correlations (i.e., by independently sampling from the marginal posteriors of 𝑃&, 𝐸&, 𝑄, and 𝐶).  

 

485 
Figure 5: Monthly timeseries of GRACE-JPL Mascon observations and storage anomalies predicted from the water balance: (a) 
using 15 unique uncalibrated combinations of the input variables (S0, P, E, Q, C), and (b) using posterior (calibrated) estimates of 
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the input variables (S0, P, E, Q, C) with (green band) and without (gray lines) accounting for posterior cross-correlation between the 
input variables. 

5.2 Grid-scale posteriors 490 

While grid-scale posteriors of P and E are obtained in each month, we present here detailed results for two months, which 

were chosen based on previous analysis (Mourad et al., 2024), namely (a) May 2009, representing a dry month before the 

monsoon with the highest air temperature and with significant differences between evaporation data products, and (b) July 

2009, representing the peak rainy month with large differences between precipitation data products. To guide the interpretation 

of the spatially distributed posteriors, we appended the land use map (see fig. A1). 495 

The evaporation maps in Fig. 6 show that the posterior mean (mE*) follows the evaporation estimates available from the 

diverse range of the original gridded data products. For example, in May, the smallest spatial difference between the posterior 

evaporation mean and the observed evaporation over the irrigated croplands can be seen by SSEBop, with spatial locations for 

these land use elements having values higher or lower than the posterior mean by ± 25 mm month-1 (Fig. C5 in Appendix C). 

Over non-crop lands (urban areas and water bodies), the posterior mean has a better agreement with ALEXI and CMRSET, 500 

with differences ranging between −25 and 25 mm month-1. In July, SSEBop displayed the closest agreement with the posterior 

mean over almost all land use elements. The posterior mean also follows eeSEBAL observed evaporation estimates over 

irrigated croplands in the lower parts of the basin for this particular month. It is reassuring to see that the generated grid-scale 

posterior ensemble mean preserves the spatial patterns inherent in the data while combining evaporation information from all 

products across the different land use elements. This makes sense since the posterior mean is modeled as a weighted average 505 

of the minimum and maximum estimates at each grid cell, so that spatial patterns in the original data are maintained. In parallel, 

the Kalman gain in Eq. (30) distributes the basin-wide constraints to the individual E pixels by explicitly accounting for spatial 

autocorrelations encoded in the grid-scale covariance matrix (𝑉)!	 ). The results in Fig. 6 also indicate that the posterior 

uncertainty (sE*) is smaller in the monsoon month (July) than in the dry month (May). This is expected as the data are in better 

agreement in the peak rainy month than in the dry month. Generally, posterior uncertainty is larger in areas with higher 510 

evaporation values (irrigated crop-lands), while non-cropland has both lower evaporation and smaller posterior uncertainty. 

As such, it can be safely concluded that the spatially distributed calibrated evaporation provides reasonable estimates with 

acceptable uncertainties that vary with the evaporation magnitude estimated at each pixel. 
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Figure 6: Prior observations and estimated posteriors of grid-scale evaporation E before the monsoon (May 2009) and for a peak 515 
rainy month (July 2009); mE* and sE* denote the posterior mean and standard deviation of evaporation. 
 

In Fig. 7, we see that the precipitation posterior mean falls between the gridded precipitation data products. The spatial 

difference maps between the grid-scale observations and the posterior mean show that TRMM observes lower precipitation 

(by −60 to −35 mm month-1), while MSWEP observes higher precipitation (by 25 to 48 mm month-1) than the posterior mean. 520 

On the other hand, GPM deviates by −21 to 60 mm month-1 from the posterior mean (Fig. C6 in Appendix C). As we have 

seen with the evaporation standard errors, the grid-scale posterior standard errors of precipitation are the highest at spatial 

locations where the difference across the products is the largest (upper part of the basin), and vice versa. 

 
Figure 7: Prior observations and estimated posteriors of grid-scale precipitation P for the peak rainy month (July 2009); mP* and 525 
sP* denote the posterior mean and standard deviation of precipitation. 
 
Via Eq. (29), the posterior cross-correlation between water variables at the basin scale is propagated to the grid scale, and thus 

results in posterior cross-correlation between grid-scale P and E as well. The effect of this can be illustrated by computing 
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derived variables that involve both P and E. An example is given in Fig. 8, which shows maps of the posterior mean and 530 

standard deviation of 𝑃 − 𝐸 for July 2009, the latter with and without posterior cross-correlation between P and E. Due to 

positive posterior cross-correlation between P and E (since they have opposite signs in the water balance), the posterior 

standard deviation of 𝑃 − 𝐸 decreases when accounting for this correlation, but the effect in Fig. 8 is relatively small, and is 

observed at some localized spots with the highest reduction in errors of up to 2.5 mm month-1. These spots correspond to the 

locations at which both P and E covary the most, with the cross-covariance subtracted during the computation of the 𝑃 − 𝐸 535 

posterior variance. The reason for this relatively small effect is that the water balance constraints introduce other posterior 

cross-correlations as well, both at the basin scale (Table 2) and at the grid scale via nonlocal posterior cross-correlations 

between P and E induced by Eq. (29) (i.e., in the posterior, P in a grid cell becomes correlated with E in all other grid cells).  

To evaluate the effect of ignoring the posterior correlation between P and E, we calculated the distribution of Q from the water 

balance given the posterior of all other variables for three cases: (i) ignoring all posterior correlation, (ii) ignoring only 540 

correlation between P and E, (iii) accounting for all correlation. We compare these distributions to a fourth scenario (iv) in 

which Q is obtained from uncalibrated water balance data. Writing the water balance (Eq. (1)) in terms of Q results in 15 

uncalibrated Q estimates generated from the unique combinations of the water balance data. The distribution for this case is 

characterized in terms of mean (average across the 15 uncalibrated values) and uncertainty (set as the spread across these 

values). The results in Fig. 9 indicate that neglecting the posterior cross-correlation between P and E and between all water 545 

balance variables, can substantially lead to higher uncertainties (wider distributions), compared to when cross-correlations 

between all variables are accounted for (narrow distribution). At the extreme end, the Q predicted from the uncalibrated water 

balance data demonstrated the highest level of uncertainty compared to all other cases, with physically inconsistent values 

(negative) and a mean value greatly deviating from the observed Q value. We repeat this experiment for all months and report 

the performance of the estimated Q from the different approaches compared to the observed Q estimates. We obtain a low 550 

RMSE value of the calibrated 𝑄 posterior mean (0.7 mm month-1) compared to 𝑄@& from uncalibrated water balance data (74 

mm month-1), which underscores the importance of (i) water balance data fusion for bias-correcting the original data products 

and (ii) accounting for posterior correlation, when water balance variables (P, E, C, S) are to be used for computing Q.  

 
Figure 8: Grid-scale posterior mean 𝒎𝑷#𝑬

∗  and standard deviation 𝒔𝑷#𝑬∗  of 𝑷− 𝑬, and P and E covariance for July 2009. The 555 
posterior standard deviations are computed for the two cases: with (𝒄𝒄& ) and without ( 𝒄𝒄# ) accounting for posterior cross-
correlations (cc) between P and E, while the difference 𝒄𝒄# − 𝒄𝒄& between these two cases illustrates the impact of accounting for 
cross-correlations. 
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Table 2: Basin-scale posterior covariance matrix of all water balance variables for July 2009, the diagonal elements represent the 560 
posterior variances (mm month-1) (shown in bold), while the off-diagonal entries represent the posterior covariances between the 
variables (mm2 month-2) (underlined values). 

  𝑆!+, 𝑃% 𝐸% 𝑄 𝐶 

𝑆!+, 562 −255 62 5 −9 

𝑃% −255 499 49 4 −7 

𝐸% 62 49 158 −1 2 

𝑄 5 4 −1 14 0.1 

𝐶 −9 −7 2 0.1 23 

 

 
Figure 9: Distribution of 𝑸 in comparison to the observed 𝑸𝒐𝒃𝒔 value (July 2009), for the following cases: (i) ignoring and accounting 565 
for posterior correlations between all water balance variables, (ii) ignoring only the posterior correlation between P and E, and (iii) 
𝑸𝒘𝒃 obtained from uncalibrated water balance data. The labels and tick marks are not shown due to data sharing restrictions. 

6 Discussion 

This section evaluates some of the modeling decisions and their impact on the results, specifically the choice of GRACE data 

set and the choice of spatial correlation lengths of P and E. 570 

6.1 Water balance data fusion with different GRACE data 

The Hindon basin studied here is experiencing groundwater depletion (Alam and Umar, 2013). Storage data from GRACE 

satellite has been used to estimate human-driven water storage changes, such as those caused by intensive irrigation. This data 

is either based on spherical harmonic coefficients or mascon basis function, which entails testing the sensitivity of the water 

balance closure to the chosen GRACE input. The baseline results presented in Sect. 5 are based on GRACE-JPL Mascon 575 

(MAS) solution. Here, we compare these results to those obtained using the CSR spherical harmonic (SH) solution.  
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Figure 10 compares the posterior distributions for storage and error parameters from both data sets. The corresponding error 

parameter posteriors are compared in Fig. 4. The two products show negative depleting trends with widely varying magnitudes 

of −43.3	mm year-1 from the SH and −88.7	mm year-1 from MAS. Looking at their corresponding posterior distributions, we 

can see that they both largely follow the GRACE data, but with an increase in the seasonal amplitude compared to the data. 580 

This is reflected in the inferred 𝐴 parameter (row 2 in Fig. 4), with an estimated value of 90-100 mm for both cases. The 

storage posteriors, thus, restore the seasonal signal amplitude, which tends to be more severely attenuated in small-sized basins 

like the Hindon basin. Additionally, the other storage error parameters (phase 𝛿 and noise 𝜎=) distributions are well constrained 

compared to their vague prior distributions. A relatively small phase error (time lag) is obtained using the two data sets. 

However, the JPL-MAS data yields a smaller noise (53 mm) than the CSR-SH (60 mm) data. The fact that these error 585 

parameters are time-invariant and that the posteriors are computed using data from all months via iterative smoothing allows 

the probabilistic water balance model to fill in the data gaps present in GRACE data sets from 2011 onwards. 

Figure 4 also depicts the posterior distribution of the precipitation and evaporation error parameters for the two scenarios. The 

water balance data fusion run with the CSR spherical harmonic (SH) solution gives more weight to the lower precipitation and 

evaporation estimates. This is translated into the 𝑤* value of 0.15. Despite that, the posterior evaporation mean lay between 590 

the data limits (𝑤)=0.5) for this case, the bias scaling factor ( ƒ𝑬 ) masked out its effect (with estimated values smaller than 1), 

pushing the E posterior towards the lower evaporation end (i.e., the baseline evaporation limit). Figure C7 in Appendix C 

contains the detailed posterior plots for the water balance variables using the GRACE-SH data sets. Apparently, the GRACE-

SH data set’s storage dynamics don’t match the other water balance variables in terms of water balance closure, at least with 

the applied P and E error models. Due to the smaller decreasing trend in the GRACE-SH storage data, the inferred evaporation 595 

estimates are, on average, about 15% lower than the estimates obtained with the GRACE-MAS data. To consistently compare 

the data fit from both solutions, we normalize the likelihood by the number of observations in each data set. Consequently, the 

water balance model with GRACE-MAS data has a slightly larger likelihood (−5.76) than that with GRACE-SH (likelihood 

−6.0).  

This analysis suggests that long-term groundwater depletion in the basin is possibly better captured by the (more severely 600 

declining) mascon data, which has important ramifications for the sustainability of irrigation practices in the basin. This 

conclusion, however, requires further verification with groundwater level trends from piezometer data.  
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Figure 10: Storage posteriors for two different GRACE data sets:  GRACE-JPL Mascon (MAS) and CSR spherical harmonic (SH) 
solution.  605 

6.2 Sensitivity to the assumed spatial correlation length-scale parameters 

The posterior results in the preceding section are obtained by running the water balance data fusion with fixed Matérn 

parameters for both the evaporation and precipitation processes. Given the differences in spatial resolution of the analyzed 

data, the smoothness and correlation length-scale 𝑙' were specified with mid-range values of 1.5 and 50 km, respectively. To 

evaluate the sensitivity of the results to the chosen value for 𝑙', we set the value of precipitation 𝑙' at 50 km and vary that of 610 

evaporation, and vice versa. Table 3 lists these prior conditions, along with the likelihood and average posterior standard 

deviation for each water balance variable. The results show stability of the posteriors and the likelihood values under all prior 

settings, except for the cases where precipitation and evaporation 𝑙' are low (e.g., 20 km). In these cases, the probabilistic 

water balance exhibits the poorest fit to the data (i.e., small likelihood values), and the basin-scale posterior uncertainty of 

either evaporation or precipitation tends to be underestimated. On the other hand, using mid-range to larger spatial correlation 615 

length scale values produces slightly different but substantively comparable posteriors and likelihood values. The relative 

insensitivity to 𝑙' suggests its value could potentially be chosen to a very large value to speed up the computations: in the limit 

of perfect spatial correlation, the formulas linking grid and basin scales simplify, which can result in much faster computations 

for large grids.  
Table 3: Average posterior standard deviation (mm month-1) for each water balance variable and likelihood values under different 620 
spatial correlation length-scale (𝒍𝒔) prior settings. The bold and underlined values represent the results of the baseline setup of the 
water balance data fusion model, with GRACE-JPL Mascon data set and fixed correlation length scale at 50 km. 

Spatial correlation length-scale (𝑙$) prior 

settings (km) 

Likelihood Average posterior standard deviation (mm 

month-1) 

𝐸 𝑃 𝑆 𝑃 𝐸 𝑄 𝐶 
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6.3 Sensitivity of the posteriors to the prior canal water import estimates 

The baseline results presented in Sect. 5.1 are based on the canal water import data generated using a combination of canal 

design capacities multiplied by their operational time, and the data average of years with similar conditions (Appendix A, Sect. 625 

A2). Here, we evaluate the sensitivity of the probabilistic water balance model to the different approaches used to generate 

canal water estimates from little available data, compared to the one adopted in the baseline run (we refer to it here as scenario 

1). To do so, we include two additional scenarios, one in which the prior canal estimates are computed using only the canal 

design capacities multiplied by their operational time obtained from irrigation schedules (scenario 2), and the other is based 

on the assumption that the total flows into the basin are 20% of the monthly flows in the UGC main canal (scenario 3). For 630 

this evaluation, we assess the model fit given the data (likelihood value) and the average posterior standard deviation (mm 

month-1) for each water balance variable. The resulting water balance variables posteriors showed minimal variations with the 

different water supplies prior estimates (Table 4). Although the fit is better with scenarios 2 and 3, the posterior error for this 

term is the lowest for scenario 1. Generally, this analysis shows an insensitivity of water balance posteriors to the canal water 

data used, and indicates that the prior estimates presented in Sect. 5.1 are sufficient for the goal of constraining the other water 635 

balance variables. 
Table 4: Average posterior standard deviation (mm month-1) for each water balance variable and likelihood values with different 
canal water import prior estimates. The bold and underlined values represent the results of the baseline setup of the water balance 
data fusion model, with GRACE-JPL Mascon data set and fixed correlation length scale at 50 km. 

20 50 −1207.58 20.1 6.7 6.7 1.8 4.4 

30 50 −1198.62 20.5 6.7 8.4 1.8 4.5 

40 50 −1193.68 20.8 6.7 9.4 1.8 4.5 

50 50 −1191.66 21.3 6.8 10.2 1.8 4.4 

60 50 −1245.32 24.8 6.4 10.6 1.8 4.5 

70 50 −1188.22 21.3 6.5 10.7 1.8 4.5 

80 50 −1190.69 21.1 5.8 11.1 1.8 4.5 

90 50 −1190.37 21.6 6.0 11.5 1.8 4.5 

scenario 

 

Likelihood Average posterior standard deviation (mm month-1) 

𝑆 𝑃 𝐸 𝑄 𝐶 

1 −1191.66 21.3 6.8 10.2 1.8 4.4 

2 −1174.55 20.7 6.4 9.8 1.8 5.3 

3 −1171.91 21.0 6.6 10.0 1.8 5.2 
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6.4 Extensions 640 

The presented methodology is motivated by the availability of diverse water balance remote sensing data, with very few in 

situ data available for the Hindon basin, making independent validation of our estimates challenging. For this reason, we 

evaluated our results using soft validation techniques. For example, for evaporation, in the absence of in situ data, we compared 

the trend in our estimated evaporation with independent crop yield data, and the seasonal dynamics with known cropping and 

irrigation patterns (see Sect. 5.1). As for the precipitation posterior estimates, in Sect. 5.1 and Appendix C, these were 645 

compared to the spatially interpolated rain gauge dataset for the basin from the Indian Meteorological Department (IMD), 

keeping in mind the potential underestimation of precipitation by this dataset (Goteti and Famiglietti, 2024). Evaluating the 

total water storage estimates with independent data is more challenging. In a follow-up study, we will introduce separate 

rootzone and groundwater balance constraints, with the aim of estimating their contributions to the total water balance. At that 

point, it will become possible to use available remote sensing soil moisture data, as well as in-situ groundwater level data, for 650 

evaluation. Furthermore, adding these additional constraints and data will allow for updating the posterior estimates in this 

paper.   

Additionally, the presented methodology is general and can be applied to other gauged river basins. For example, an application 

to multiple semi-arid basins was reported in Schoups and Nasseri (2021). The method has several advantages that allow this, 

including the straightforward and flexible implementation, as it consists of two separate parts: error models specification for 655 

each water balance variable that can be customized to fit specific settings, and the model solver that automatically computes 

the posterior distributions. In addition, the method is set up to rely on in situ and satellite data that inherently capture the 

hydrological processes. For example, the precipitation data sets estimate the precipitation phase (snow and rain), while 

evaporation data sets can be used to differentiate between the different land use classes. However, in snow-dominant basins 

where precipitation data sets might underrepresent this process, or in urban-dominant settings where coarse-resolution 660 

evaporation data products might overestimate evaporation, it may be valuable to tailor the error models to local conditions in 

order to improve the results. Perhaps, this could be achieved by complementing the precipitation error models with other 

satellite data sets, like the snow cover, snow depth, or temperature products, for better snow detection and mapping. Moreover, 

evaporation error models can be complemented with land use maps while also considering the use of high-resolution 

evaporation products or other data sets with improved evaporation estimates of heterogeneous urban surfaces. The major 665 

assumption here is that formulating the error models by exploiting ancillary information would allow it to solve for error 

parameters and water balance variables under varying climatic zones and settings. Alternatively, for this purpose, we could 

combine the data error models with hydrological models that explicitly account for detailed processes and differentiate between 

the different hydrological responses. 

 670 
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7 Conclusions 

This paper presents a multi-scale monthly probabilistic water balance data fusion model for calibrating estimates of each 

component of the water balance. A key contribution of this paper is the calibration of gridded precipitation and evaporation 

estimates in an ensemble approach that fully exploits the prior information content of the data. To achieve this, the introduced 

methodology is applied at two scales: the basin scale and the grid scale. First, we formulate prior grid-scale and ensemble-675 

based error models for precipitation and evaporation with unknown error parameters that describe the bias and random errors 

in their spatial fields. The spatially averaged inputs to the precipitation and evaporation error models, along with in situ data 

(river discharge and canal imports) and storage data from GRACE, then drive a basin-scale probabilistic water balance closure 

approach. In this approach, the water balance is treated as a Bayesian model by assigning prior distributions with unknown 

bias and noise parameters to each water balance variable. Combining these prior distributions with monthly water balance 680 

constraints results in posterior estimates of all parameters and variables that jointly close the water balance at the basin scale. 

The resulting basin-scale precipitation and evaporation posteriors and their cross-correlations are then used to update the prior 

grid-scale data from the first step. This is attained using a Kalman smoothing algorithm that ensures consistency between the 

grid-scale and the basin-scale estimates; that is, spatially averaging the calibrated gridded estimates yields monthly 

precipitation and evaporation values that jointly satisfy the water balance at the basin scale together with the other variables 685 

(C, Q, S).  

We apply the introduced methodology to the Hindon Basin, a tributary of the Yamuna River that suffers from unsustainable 

irrigation practices relying on the local groundwater and imported surface water. The basin-scale results demonstrate that 

introducing an independent set of in situ data on surface water imports and river discharge, along with monthly water balance 

constraints, updates the prior information with new information, automatically adjusts different information sources for each 690 

water balance variable, while maintaining a closed water balance. The output of this study highlights the potential of the 

monthly water balance constraints in substantially reducing uncertainties by accounting for cross-correlations between all 

water balance variables. In addition, the model yields basin-wide posterior estimates of: (a) error parameters that are well 

constrained by all water balance data, and (b) consistent basin-scale water balance variables that jointly close the water balance. 

Transferring these basin-scale constraints to the grid scale results in: (a) posterior ensemble mean of precipitation and 695 

evaporation that fuses the pixel-wise information from extreme prior data bounds (min-max) and finds a balance between the 

two according to their relative errors, and (b) posterior random errors that reflect the model confidence about the location of 

the posterior mean at each grid cell.  

Explicit to the introduced approach are the assumptions made about the data to characterize their associated errors in a 

parametric form. For instance, a range-based error model is used to quantify errors in the gridded precipitation and evaporation 700 

data. Here, the bias error is described as a weighted average of the minimum and maximum estimates at each spatial location. 

Whereas, the random error is quantified by scaling the maximum potential error (i.e., scaling one-quarter of the grid-scale full 

range). As an extension to this analysis, alternative data error models might be worth considering. E.g., a possible alternative 
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is to use Gaussian mixture models that calibrate each data set individually, while still exploiting the water balance as a 

constraint.  705 

As for the errors in a single GRACE data set, these are modeled using a noisy sine wave error model with unknown phase and 

amplitude error parameters that are used to correct for the dominant biases in the GRACE data (i.e., leakages). The sensitivity 

of the model results to the input data is assessed using two GRACE data sets: spherical harmonic (GRACE-CSR) and mascon 

solution (GRACE-JPL). This is done quantitatively by comparing the values of the inferred noise parameters (a smaller value 

is preferred) and that of the likelihood, as a larger likelihood corresponds to a better fit. While the GRACE-JPL demonstrated 710 

a better performance than GRACE-CSR based on these evaluation criteria, this could also be influenced by the assumptions 

surrounding the precipitation and evaporation error models. Ground-based piezometer data may also help resolve the difference 

between the downward trends in the two GRACE data sets for the studied basin, which is important for evaluating the 

sustainability of irrigation practices in the basin. 

Finally, the random errors in the monthly river discharge and canal water import data are more or less fixed to relative errors. 715 

A larger prior uncertainty is assigned to the gap-filled canal import data (25%) than to the river discharge (10%). Regardless 

of the approach used to generate prior canal water import estimates from little available data, these were sufficient to constrain 

the other water balance terms. Additionally, the generated water balance estimates are not strongly affected by the assumed 

errors for the canal water and river discharge data, as these two variables are relatively small compared to the other monthly 

water balance variables (especially during rainy months when the two processes are driven by precipitation). We also examined 720 

the impact of fixing the spatial correlation length scale parameter on model fit and the posterior standard errors. The posterior 

results showed robustness and model fit improvement across mid-to-large values of prior parameter sets. This suggests that 

this parameter does not influence the model results in a large way. 

A key aspect of the proposed methodology is that it is data-driven, exploiting the water balance constraint as an independent 

source of information. Therefore, the resulting calibrated data generated here can be used as baseline data sets for multiple 725 

applications, such as the validation or calibration of hydrological models, climate studies, and water accounting assessments. 

Nonetheless, updating the calibrated and spatially distributed estimates of precipitation and evaporation, and storage data 

generated herein with constraints describing the physical relations between detailed water balance variables (e.g., vertical and 

horizontal flows), along with additional in situ data (e.g., groundwater storage observations from piezometers), hold a great 

premise for synergetic and complementary use of all information sources. This will be the scope of a follow-up study for the 730 

investigated basin that aims to constrain water balance stocks and flows and their errors using grid-scale water balance 

constraints.  
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Appendix A  

The following subsections summarize the available information on the Hindon basin land use elements (Fig. A1), share of 

canal water imports in the water balance (Fig. A2), canal network (Figs. A3 and A4), its operation, irrigation canal delivery 935 

data, and processing steps.  
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Fig A1: Share of the canal water imports in the water balance, expressed as the percentage of the minimum and maximum remote 
sensing-based precipitation observations. 
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 940 
Fig A2: Land use elements distribution in the Hindon basin from Gumma et al. (2022). 

 

A1. Description of the canal irrigation system and its operation 

Figs A3 and A4 provide an overview of the canal network’s spatial distribution and design capacities. While these main canals 

run continuously, their distributaries are operated in rotation (Ahmad, 1991; Chaube et al., 2023). The canal distributaries in 945 

the Hindon basin are operated on an ‘on-off’ basis as shown in Table A1. The irrigation schedules (also known as the rosters) 

are prepared for two irrigational seasons:  

(1) Kharif season in which the main irrigated crops are sugarcane, rice, cotton, maize, vegetables, and fodder crops 
(2) Rabi season in which the principal crops are wheat, barley, mustard, and peas.  

 950 

Table A1: Example of seasonal operational schedule (the ON-OFF basis) for Eastern Yamuna Canal (EYC) and Upper Ganga Canal 
(UGC) distributaries. Kharif spans from March to September 2021, while Rabi covers Oct 2021 to March 2022. 

Main 

Canal 

Intake 

 

3 weeks ON- 1 

week OFF 

4 weeks ON 

 

2 weeks ON- 2 weeks 

OFF 

1 week ON- 3 weeks 

OFF 

UGC 

(Kharif) 

Deoband Branch April,May,July June,Aug,Sept 
  

Tanshipur July,Aug June,Sept April May 

Mohammadpur July, Aug June,Sept April,May 
 

Mansurpur July,Aug June,Sept April,May   
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UGC 

(Rabi) 

Deoband Branch Feb 
 

Nov,Dec,Jan Oct 

Tanshipur 
  

Nov,Dec,Jan Feb,Oct 

Mohammadpur 
  

Dec,Jan Feb,Oct,Nov 

Mansurpur Dec   Nov, Jan,Feb Oct 

EYC 

(Kharif) 

Nagla Aug 
 

July Apr,May,June 

Babail  Aug 
 

July Apr,May,June 

Sarakadi  Aug 
 

July Apr,May,June,Sep 

Megh Chappar 
  

June,July,Aug Apr,Sep 

Chidbana 
  

June,July,Aug Apr,Sep 

Nalhera Aug 
 

June Apr,July,Sep 

Redi  Aug 
 

June Apr,July,Sep 

Rampuri Aug  June Apr,May,July,Sep 

Kallarpur     July,Aug Apr,May,June,Sep 

EYC 

(Rabi) 

Nagla 
   

Oct,Nov,Dec,Jan,Feb 

Babail  
   

Oct,Nov,Dec,Feb 

Sarakadi  
   

Oct,Nov,Dec,Mar 

Megh Chappar 
   

Oct,Nov,Jan,Mar 

Chidbana 
   

Oct,Nov,Jan,Mar 

Nalhera 
   

Oct,Nov,Jan,Mar 

Redi  
   

Oct,Nov,Jan,Mar 

Rampuri    Oct,Dec,Jan,Mar 

Kallarpur       Oct,Dec,Feb 

 

 

 955 
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 Fig A3: A schematic of the UGC main canal and its distributaries with their respective discharge capacities (m3 s-1). 
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Fig A4: A schematic of the EYC main canal and its distributaries with their respective discharge capacities (m3 s-1). 
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A2. Description of irrigation canal delivery data and processing steps 960 

Constrained by the limited availability of data on water deliveries, we use an extrapolation approach to fill in the data gaps. 

The approach integrates two data sources, the irrigation schedules and the actual flow measurements from in-situ data, to 

produce a complete monthly timeseries. Explicit in this method is the assumption that the canal operations do not vary widely 

between years in which the conditions are similar. For instance, if years “A”, “B,” and “C” are classified as “dry years,” the 

canal operations don’t differ much across these years. In other words, if year “A” has unknown estimates, these can be 965 

estimated from year “B” or the mean of the three years, depending on the number of years with canal data. Therefore, each 

group of distributaries is filled out based on two criteria: the data source and the number of years with available data. For the 

canals, such as the Deoband parallel, with actual flow measurements and ≥ 5 years of data availability, we solely rely on these 

data for extrapolation. To this end, we distinguish the years into three conditions (wet, dry, and normal years) using the Palmer 

Drought Severity Index (PDSI) Terra climate data set as a proxy. Then, every unknown year is filled with the long-term 970 

average of the years falling under the same category. For example, when a year such as 2015 is identified as “normal”, this 

year is filled with the mean of the canal delivery observed across all other “normal” years. A similar procedure was applied to 

the EYC lower intakes with actual flows from 2018 to 2022 to fill in missing data for similar years outside this period. For the 

other intakes with only a few years of data, however, we filled them differently. For instance, the lower intake points of the 

UGC with flow measurements for only two years, 2021 (dry) and 2022 (wet), we use these years as benchmarks for filling 975 

similar wet or dry years. For “normal” years on these intakes, we use the irrigation schedules instead. Explicitly, in cases with 

only a single-year irrigation schedule, the flows are obtained by multiplying the full design capacity by the operational time. 

This step produces conservative and monthly variable flow estimates due to the operational time variation of each distributary. 

Since the Deoband branch contributes a significant share of the total canal water supplies into the basin, we fill its missing 

data using the irrigation schedules to avoid the impacts of assuming no variation in operation across the years. In cases where 980 

single-year data is available for distributaries such as Bijwara and Baoli, we use the actual flows for this year (2018) as a 

reference to fill all other years. As for distributaries without data from design or actual flows, we assume these might not add 

much to the overall imports into the Hindon basin. At this stage, the canal delivery data is at the daily timestep. The last step 

is to aggregate to a monthly timescale, sum all intakes, and normalize by the basin area to obtain the gap-filled canal water 

imports expressed in water depth units (mm month-1).  985 

 

 

 

 

 990 

 

 



43 
 

Table A2: Available information on the distributaries and their coverage. The data source column distinguishes between actual 
(measured) and planned (scheduled) irrigation canal delivery data.  

Main Canal Distributaries data source data availability 

EYC Nagla weekly irrigation schedules 2021-2022 

 
Babail weekly irrigation schedules 2021-2022 

 
Sarkari weekly irrigation schedules 2021-2022 

 
Landha not available not available 

 
Meghchhapar weekly irrigation schedules 2021-2022 

 
Chhidbana weekly irrigation schedules 2021-2022 

 
Nalhera weekly irrigation schedules 2021-2022 

 
Reri weekly irrigation schedules 2021-2022 

 
Rampuri weekly irrigation schedules 2021-2022 

 
Kallarpur Daily actual flows 2018-2023 

 
Sijad not available not available 

 
Olra Escape not available not available 

 
Yarpur Daily actual flows 2018-2023 

 
Gohari Daily actual flows 2018-2023 

 
Malipur Daily actual flows 2018-2023 

 
Fazalpur Daily actual flows 2018-2023 

 
Bijwara Daily actual flows 2018 

  Baoli Daily actual flows 2018 

UGC Deoband Branch Daily actual flows 2013-2014-2016 

 
Parallel Deoband Daily actual flows 2018 to 2022 and 2013-2014-2016 

 
Tanshipur weekly irrigation schedules 2021-2022 

 
R. Mohammadpur weekly irrigation schedules 2021-2022 

 
R.Jauli Daily actual flows 2021-2022 

 
Mansurpur Daily actual flows 2021-2022 

 
Khatauli Escape Daily actual flows 2021-2022 

  R. Salawa Daily actual flows 2021-2022 
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Appendix B 995 

B1. A major challenge arising from the use of uncalibrated remote sensing water balance data 

The following figure shows that imbalance errors due to combining uncalibrated remote sensing products for each water 

balance variable can be significant (~± 200 (mm month-1)). This is related to errors associated with the data. Therefore, there 

is a need to quantify and reduce these uncertainties. 

 1000 
Fig B1: Monthly timeseries of the imbalances (water balance errors) for each of the 15 unique uncalibrated combinations of the 
variables. 

B2. Computing posteriors of individual variables, parameters, and posterior cross-correlations between water balance 
variables 

This section briefly explains how all posteriors are computed. For the probabilistic water balance model described in section 1005 

4.1 of the main text, we can represent its joint distribution as 𝑝(𝑥, 𝜃, 𝑆%&'). This distribution consists of two parts: the monthly 

water balance variables x (comprising 5N + 1 variables including 𝑆>, 𝑃&!, 𝐸&!, 𝑄!, 𝐶! and 𝑆!), where N is the number of months 

and is equal to 240 for 20 years of data considered in this paper, 𝑆> is the initial basin water storage at the start of the first 

month and 𝑆%&' is the storage timeseries, and the parameter vector θ, including 𝑤(, 𝑟(, 𝑤), 𝑓), 𝑟), 𝑎A, 𝑏A, 𝑎B, 𝑏B , σC, 𝐴, and 

𝛿. Our objective is to compute the full posterior distribution, which integrates all available information sources (Gaussian 1010 

distributions) of θ and x.  

The posterior of the parameter vector is expressed in the following form:  

𝑝(𝜃|𝑆%&') 	∝ 	𝑝(𝑆%&'|𝜃)𝑝(𝜃) (B1) 

where 𝑝(𝜃) is the prior distribution for the parameters and corresponds to the product of the individual parameter priors defined 

in the previous basin-wide error model section, while the term 𝑝(𝑆%&'|𝜃) refers to the parameter likelihood function. This 

function scores each set of bias parameters (e.g., 𝑤)  , 𝑓)) and noise parameters (e.g., 𝑟) , 𝜎= ). A large likelihood for the 1015 
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parameters is one that shifts the storage predicted from the water balance closer to the storage observations. As we show below, 

this likelihood also connects the DE-MCMC for parameter sampling and EP for posterior computations of water balance 

variables. 

In the basin-wide inference setup, an outer MCMC loop iteratively proposes sets of parameter candidates (samples) using a 

non-parametric proposal (jumping) mechanism (Ter Braak and Vrugt, 2008). For each set of sampled parameters by MCMC, 1020 

the EP (message passing) algorithm operates in an inner loop, computing the (a) unnormalized posterior density of the 

parameters proposed by MCMC (Eq. (B1)) and the conditional water balance posteriors  𝑝(𝑥	|	𝑆%&', 𝜃) =
*D𝑥, 𝑆%&'E𝜃F
*D𝑆%&'	E𝜃F

.  The 

normalizing constant of the conditional water balance posterior (𝑝(𝑆%&'	|𝜃)) is the likelihood in Eq. (B1). EP evaluates the 

posterior odds of the model outputs 𝑝(𝑥	|	𝑆%&', 𝜃)  given the sampled parameters, guiding the DE-MCMC decisions in 

accepting or rejecting new parameters. Compared to the standard single forward-backward algorithm, EP approximates the 1025 

exact posterior distributions with Gaussian distributions sharing matching moments (mean and variance). It involves multiple 

back-and-forward passes over the data using the entire timeseries until all posteriors stabilize. A key aspect of the EP algorithm 

is its ability to efficiently handle non-Gaussian posteriors, which arise from physical non-negativity constraints we force on 

water balance variables (𝑃&, 𝐸&, 𝑄, 𝐶).  Typically, a small number of iterations are sufficient to achieve convergence due to the 

mild non-Gaussianity induced by these constraints. The EP algorithm yields conditional water balance posteriors (conditioned 1030 

on the  𝑆%&' data and the parameter vector θ). Instead of the conditional posterior distribution, we are interested in the marginal 

posterior distribution 𝑝(𝑥	|	𝑆%&') over the individual water balance variables (𝑆> , 𝑃&, 𝐸& , 𝑄, and 𝐶). Such distributions are 

obtained by integrating (~averaging) 𝑝(𝑥	|	𝑆%&', 𝜃) over the parameter posterior distribution 𝑝(𝜃|𝑆%&'), effectively accounting 

for the parameter uncertainty in the final water balance estimates: 

p(𝑥	|𝑆%&') = z𝑝(𝑥	|	𝑆%&', 𝜃) 𝑝(𝜃|𝑆%&')𝑑𝜃 (B2) 

 1035 

This paragraph explains how to compute posterior cross-covariances between the different water balance variables given the 

posterior marginal distributions of each variable (as output by the water balance data fusion model). For this, we will need two 

building blocks to construct the joint precision matrix (Θ) equal to the inverse of the covariance matrix (𝑉∗), namely: the 

variables’ linear relation through the water balance coefficients 𝜑 = [1, 1, −1,−1,1]  extracted from the water balance 

constraint at each time step: 𝑆 = 𝑆> +	𝑃& 	−	𝐸& − 𝑄 + 	𝐶 and “uncorrelated priors” of each variable. The term “priors” reflects 1040 

uncertainty before considering the relation of each variable with other variables. With the marginal distributions available at 

this point, we can back-calculate these priors such that they satisfy the marginals through a message-passing algorithm. This 

algorithm relies on decomposing the marginal precisions ( 𝜏 ) for each variable into: (a) prior precisions (messages) for each 

variable and (b) precisions (messages) sent to each variable from all other variables via the water balance. Specifically, in each 

month, we have two conditions: the water balance constraint and the probabilistic constraints in the form of marginal Gaussian 1045 

distributions written separately for individual variables 𝑥 as 𝑝(𝑥)~	𝒩(𝑚0
∗ , 𝑣0∗), with posterior mean and variance obtained 
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from Eq. (27) in the main text. Expressed in terms of precisions, we can write the decomposed posterior precision of S (𝜏=), 

for example, as: 𝜏= = 𝜏=→ + 𝜏→= where 𝜏=→ is the prior precision from S, and 𝜏→= is the precision to S from the water balance. 

The latter can be obtained from all other variables by propagating uncertainty through the linear water balance equation. As 

such, the relationship between the posterior and prior variances of S that fulfill the two defined conditions becomes: 1050 

  #
3%
∗ 	=

#
3%→

	+ #
3%(→H3#	) →H3$)→H3*→H3+→

 (B3) 

We can repeat the above step for all other variables to create a linear system of six equations with six unknowns (prior 

variances) that we need to solve for: 
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(B4) 

Where 𝑣=∗, 𝑣=(
∗ , 𝑣(4

∗ , 𝑣)4
∗ , 𝑣A∗ , 𝑣B∗  are the posterior marginal variances of the variables: Storage 𝑆, initial storage state for the first 

month 𝑆>	,𝑃&, 𝐸&, 𝑄, and 𝐶, respectively. While, 𝑣=→, 𝑣=(→ , 𝑣(	I →, 𝑣)4→, 𝑣A→, and 𝑣B→ are their corresponding prior variances.  

The resulting priors are used to generate the joint precision matrix Θ of S0, P, E, Q, and C, which combines two terms: 1055 

Θ = 𝜑𝜑5𝜏=→ 	+ 𝑑𝑖𝑎𝑔(Q𝜏=(	𝑜𝑟	𝜏=!,-→	, 𝜏(4→, 𝜏)4→, 𝜏A→, 𝜏B→R) (B7) 

The first term represents a matrix that encodes how each variable varies with every other variable in the water balance. This 

term is scaled by the prior precision from S ( 𝜏=→), whereas the second term is a diagonal matrix of the other individual water 

balance variables prior precisions. The inverse of the joint precision matrix gives the posterior covariance matrix between all 

variables (in a given month), which contains all posterior cross-correlations. 

Appendix C 1060 

C1. Water balance priors and posteriors 

This section displays the results of the seasonal and annual posterior means of the water balance variables compared to their 

corresponding prior data. 
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Fig C1: Comparison of posterior mean (mP*) to the prior data sets describing the precipitation (P) variable in the Hindon basin, the 1065 
top panel depicts (a) monthly mean P, and the bottom panel (b) shows the annual P time series. 
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Fig C2: Comparison of the posterior mean (mE*) to the prior data sets describing the evaporation (E) variable in the Hindon basin, 
the top panel depicts (a) monthly mean E, and the bottom panel (b) shows the annual E time series. 1070 
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Fig C3: Comparison of the monthly mean posterior mean (mC*) to the prior data describing the surface water imports (C) variable 1075 
in the Hindon basin. 
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Fig C4: Interplay between the annual: evaporation posterior mean (𝒎𝑬∗), air temperature variable from GLDAS Noah Land 
Surface Model v2.1 (Rodell et al., 2004), MODIS 15 Leaf Area Index (LAI) (Myneni et al., 2021), and district-wise sugarcane crop 1080 
yield from International Crops Research Institute for the Semi-Arid Tropics database. 
 

C2. Comparison of individual gridded products to the posterior means 

This section presents the spatial maps of the deviation of the individual precipitation and evaporation products from their 

posterior mean. 1085 

 
Fig C5: Spatial deviation of the evaporation (E) observations from the posterior mean (𝑬𝒐𝒃𝒔 	− 	𝒎𝑬∗) for May and July of 2009. 
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Fig C6: Spatial deviation of the precipitation (P) observations from the posterior mean (𝑷𝒐𝒃𝒔 	− 	𝒎𝑷∗) for May and July of 2009. 
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C3. The sensitivity of the posterior results to the GRACE input data 1090 

 

Fig C7: Posterior and prior water balance plots correspond to the case using the GRACE CSR spherical harmonic (SH) solution as 
an input to the probabilistic water balance model. 
 

 1095 


