
Reviewer #1: 
 
“This manuscript presents a novel probabilistic water balance data fusion approach for calibrating multi-
scale hydrological datasets. The methodology is innovative, addressing the challenge of reducing 
uncertainties in datasets by integrating them through water balance constraints. The approach provides a 
framework for both basin-scale and pixel-scale applications. The application to the Hindon River Basin 
demonstrates practical utility, with reasonable error estimates and clear improvements in data 
consistency. The paper is well-written, structured, and accessible, making a substantial contribution to 
water resource management and hydrological modeling. However, some areas, such as the clarity of 
methodological details and validation against independent data, could be strengthened to enhance the 
robustness and reproducibility of the findings. Suggestions are as follows:” 
 
We would like to thank the referee for the time and eHort reviewing our manuscript, and for the valuable 
feedback received. We are pleased that the reviewer found the paper well written and appreciate the 
recognition of the novelty of the presented methods. In the following, we address the reviewer’s detailed 
comments. 
 
Reviewer comment 1: 
“In Section 2, beginning on line 117, you describe the Hindon Basin and the separation of two irrigation 
seasons (Kharif and Rabi), yet it is unclear if the rotated crops use the same land or if they are in adjacent 
regions. It would be helpful to add a sentence or two clarifying this.” 
 
Reply on comment 1: 
We have added a sentence (line 121 in the clean revised version) to mention that the distributaries take 
oH from main canals to serve fixed command areas irrigated year-round, with crops rotated between 
Kharif and Rabi crops. 
 
Reviewer comment 2: 
In your results, the validation could be strengthened. Are you able to compare your estimates against any 
in-situ records? Reported standard errors are useful, but which component dominates the uncertainty 
(precip, evaporation, storage, discharge, canal imports)?  Standard errors are provided but there is no 
discussion of comparisons with independent ground-truth data or other datasets not used in calibration. 
Including such validation would enhance confidence in the results. 
 
Reviewer comment 3: 
Discussion would benefit from a short explanation on generalization. For example, can this approach 
work in snow dominated or urban catchments or is it basin specific? 
 
Reply on comments 2 and 3: 
Indeed, it will be useful to report the order of the standard errors of the diHerent water balance variables, 
and it might be more interesting to highlight this at the start of the paper. Therefore, we edited the abstract 
to reflect the order. We also agree that it’s good to reflect on model generalizability and validation; 
therefore, we added a separate section 6.4. We have also looked into additional data, such as weather 
and crop variables, to further validate our results. We added figure C4, comparing the trend in our 
estimated evaporation with independent crop yield data, and we discussed these results in section 3.5 
(lines 431-444 in the clean revised version). 
 
Reviewer comment 4: 
“Figures with more than one panel (starting with Figure 2) need tags (a, b, c, etc) and the caption should 
refer to each panel specifically for clarity (like you did for Figure 4). In Table 2, indicate the meaning of the 
underlined values. Table 3, Table 4, again indicate the bold and underline importance.” 
 
Reply on comment 4: 
Thank you for the suggestions regarding figures and tables. We have added the alphabetic labels for the 
subplots of Figures 2 and 3 and edited their captions. We have also edited the captions of tables 2, 3, and 
4.  
 



Reviewer #2: 
 
This work proposes a two-step method, i.e., from basin scale to grid scale, to produce a water budget 
closed datasets by introducing the Bayesian model with predefined prior distribution and posterior 
parameter estimation, considering the covariance between water components and the entire time series, 
under a specific case study in the severely irrigated Hindon River Basin, India. This work tried to introduce 
an innovative theoretical basis and apply it to a basin with abundant discharge records. Although the 
logical structure of the work is clear, the theoretical introduction and the equations are hard to follow 
since there is no deductive process of the equations provided and the code and data are not accessible 
with the provided links. This makes it hard for the readers to follow the work and estimate the robustness 
of the work. 
 
We would like to thank the referee for the time and eHort reviewing our manuscript, and for the valuable 
feedback received. We understand that the theoretical introduction of the methods and equations might 
be hard to follow. We have improved the flow of equations by adding intermediate steps in the equations 
that more clearly show how one equation leads to the next (see details below). Also, we have updated the 
link to the data and software, as follows: 
 
“Code and data availability: 
All software used to collect the data is available at https://doi.org/10.5281/zenodo.11148992 . The source 
code developed for this research is available via https://zenodo.org/records/17348274.”  
 
Reviewer  major comment 1: 
“the spatial scale problem is not thoroughly discussed. How were the diHerent scales between water 
components in the budget closure equation handled? Is the resolution 50 km really feasible in such a 
small basin that is only one pixel wide and two pixel height?” 
 
Reply on major comment 1: 
 
We agree this point deserves more attention, and we added lines 176-181 (in the clean revised version of 
the paper) to reflect on the challenge of the scale difference between the water balance variables. 
 
As for the 50 km, this refers to the spatial correlation length (ls) that we specify a priori to generate the 
covariance matrices of precipitation and evaporation. The basic assumption here is that the values of the 
grid cells in the spatial domains of precipitation and evaporation are spatially correlated, i.e., the 
correlation between the grid values depends on the distance between the grid locations. Grid cells that 
are close to each other tend to have high correlation. As the spatial separation between grid cells 
increases, the correlation decreases. Often, information on the correlation length parameter is not 
available. In such a case and given the diHerences in scales between the data sets, we rely on specifying 
a mid-range value of the prior correlation length, which is about half the basin’s length from North to 
South. Finally, we assess the sensitivity of the results to the chosen correlation length in sect 6.2. 
 
Reviewer  major comment 2: 
“L173/L884-885. About the gap-filling method, the authors made the assumption that the canal 
operations do not vary widely between years in which the conditions are similar. Is it possible to use the 
existing data to validate the assumption? I mean compare the data in the years with similar conditions to 
check whether that assumption is tenable.” 
 
Reply on major comment 2: 
Unfortunately, we are constrained by the amount of data available, making cross-validation diHicult. 
Specifically, we at most have five years of data, and these years can be distributed between wet, dry, and 
normal years, leaving us with no out-of-sample data for cross-validation. E.g., if among these 5 years, 2 
years are dry, we simply took the average of these two years to fill all other missing dry years. In cases 
where we know that a distributary might significantly contribute to the overall imports to the basin, e.g., 
the Deoband branch, we follow a diHerent approach that avoids any average-based related biases and 
relies on using the design discharge and operation time to estimate the canal water imports for the 
missing years. In this vein, using the canal design capacities for gap-filling results in conservative (upper 

https://doi.org/10.5281/zenodo.11148992


bound) estimates of the irrigation water imports, which can also be seen as acceptable approximate 
initial values for the Bayesian methods used in the study. Additionally, in sect 6, we include scenario 2, 
where, instead of filling the missing years with the data average of years with similar conditions, we use 
the upper bound estimates (design capacities multiplied by the operation time). The results show 
insensitivity to the canal water estimates used, as these are much smaller than the surface exchanges 
(e.g., precipitation and evaporation). To account for potential uncertainties around all assumptions we 
make to generate the corresponding full timeseries, we attach a large prior uncertainty (25%) to these 
gap-filled estimates, i.e., a wide confidence interval around their values. 
 
Reviewer  major comment 3: 
“It will be much clearer and easier to follow if a framework diagram is provided in the method section.” 
 
Reply on major comment 3: 
Good suggestion, a flow diagram can aid the reader in grasping the overall flow of the methods section. 
We added figure 2. 
 
Reviewer  major comment 4: 
“About the matrix variables mentioned in all equations, for example, in Eq. 5, it is better to provide the size 
parameters of each matrix.” 
 
Reviewer  major comment 5: 
“For me, the relationships between equations are quite independent and the connections are weak. For 
example, Eq. 3-8, the input and output of each equation are vague thus hard to understand the method 
itself as a whole. The same issue exists for the entire theoretical part.” 

Reply on major comments 4 and 5: 
We added the information about the size of the evaporation and precipitation correlation matrices. These 
are now mentioned in the following subsections, which have been edited to show additional intermediate 
steps when going from one equation to the next. These subsections now read as follows: 

3.1.1 Precipitation 

For each month t, we typically have multiple gridded precipitation products, with unknown bias and 
random errors. We use the spread across diHerent precipitation products to define a grid-scale 
precipitation error model for the prior means 𝑚!"  (mean vector in Eq. 2) and the prior standard deviations 
𝑠!"  (vector of the square root of all diagonal entries of the autocovariance matrix 𝑉!!	in Eq. 2): 
𝑚!" = (1 − 𝑤#)𝑃"
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Equation (3) models the systematic bias in grid-scale precipitation for each month t by describing the 
grid-scale precipitation prior means 𝑚!"as a weighted average of the minimum (𝑃"

$%&,()*) and maximum 
(𝑃"

$%&,(+,) precipitation for each grid cell. The weight or bias parameter 𝑤! takes on an unknown value 
between 0 and 1, and is estimated from the data (see section 4.1).  
Random errors in grid-scale precipitation are modeled using Eq. (4). This model expresses the grid-scale 
prior standard deviations 𝑠!"  for each month t as a function of the diHerence between the maximum and 
minimum precipitation in each grid cell. A noise parameter (𝑟!), taking a value between 0 and 1, is used to 
scale the standard deviations. This parameter is also estimated from the data. 
To account for the eHect of spatial correlation of the random error component (Eq. (4)), we write the 
precipitation prior covariance matrix 𝑉!!	in terms of the grid-scale standard deviations and a grid-scale 
auto-correlation matrix: 
𝑉!!	 = 𝑆!!𝑅!𝑆!!  (5) 

where 𝑆!!  is a diagonal matrix containing the grid-scale 𝑠!"  values for all locations of the spatial field (Eq. 
(4)), and 𝑅! is the correlation matrix that captures the spatial dependence structure. 𝑅! ∈ ℝ*#×*#, where 
𝑛! × 𝑛! is the matrix dimension, and 𝑛! equals 176, representing the total number of grid cell locations of 



the precipitation spatial domain. 𝑅! is jointly estimated from all precipitation data using an isotropic 
parametric correlation function with the following form (Handcock and Stein, 1993):  

𝐶ℳ(𝑑|𝑙&, 𝑣) =
1

2/01𝛤(𝑣)	?
𝑑
𝑙&
@
/

𝐾/ ?
𝑑
𝑙&
@ 

(6) 

where 𝐶ℳ  is the Matérn correlation function for variables separated by distance 𝑑. This correlation model 
is flexible and widely used, with two functions: gamma function 𝛤(. )  and the modified Bessel function 
𝐾/(. ) (Abramowitz and Stegun, 1968). 𝐶ℳ  also consists of two unknown nonnegative parameters, namely 
the spatial correlation length scale 𝑙& and a spatial smoothness parameter 𝜈. A value of 𝜈 approaching 0 
indicates a rough spatial process, while the process is smoother when 𝜈 approaches infinity. Since the 
smoothness parameter is usually small in many applications (Chen et al., 2022), while it increases as the 
aggregation time increases (Sun et al., 2015), we choose a balanced value between a rough and smooth 
random field, i.e., 𝜈 , fixed at 1.5. On the other hand, the correlation length scale (𝑙& ) defines an average 
length scale on which grid cells are correlated with each other. In principle, 𝑙&  ranges from 0 (the case of 
uncorrelated grid cells) and extends to a scale larger than the spatial domain length (the case of 
maximally correlated pixels). With no prior information on the 𝑙& parameter, we fix it at 50 km (~1/2 the 
basin’s length from North to South). The sensitivity of the results to the fixed 𝑙& will be evaluated in section 
6.2. 
Since water balance data fusion (Schoups and Nasseri, 2021) uses basin-scale error models, we derive 
these from the above-described grid-scale models by spatial averaging. Specifically, the basin-scale prior 
mean 𝑚!2"  and variance 𝑣!2"  in month t follow from Eqs. 3, 4, and 5: 
 
𝑚!2" = 𝜙!3𝑚!" = 𝜙!3 G(1 − 𝑤#)𝑃"

$%&,()* +𝑤#𝑃"
$%&,(+,H (7) 

𝑣!2" = 𝜙!3 𝑉!!𝜙! = 𝜙!3 𝑆!!𝑅!𝑆!!𝜙! = 𝜙!3 (𝑟!𝐷!!)𝑅!(𝑟!𝐷!!)𝜙! (8) 

𝑃"J 	~	𝒩	(𝑚!2" , 𝑣!2") (9) 

𝑃"J 	≥ 0 (10) 

where 𝜙! is the spatial averaging operator used to derive basin-scale mean and variance from grid-scale 
means and variances (i.e., 𝑛! × 1 vector with each element equal to 1/𝑛#	, where 𝑛! is the number of 
spatial locations in the precipitation spatial field). 𝜙!3  is the transpose of 𝜙!. We also used 𝑆!! = 𝑟!𝐷!!, 
where 𝐷! is a diagonal matrix containing the 1

4
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within the precipitation spatial field. All basin-averaged input quantities to Eqs. (7-8) are precomputed 
from the precipitation data sets, and the constant but unknown parameters 𝑤# and 𝑟! are estimated as 
part of the water balance data fusion (see Sect.  4.1). 
Finally, the last two equations in the precipitation error model treat the basin-scale calibrated 
precipitation 𝑃"J  for each month t as a random draw from a truncated normal distribution. The truncation 
at zero ensures physical consistency (nonnegative precipitation).  

3.1.2 Evaporation 

As with precipitation, an evaporation error model with the following form is adopted: 
𝑚5" = ƒ𝑬	[(1 − 𝑤5)𝐸"
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The systematic bias in grid-scale evaporation is modeled with two spatial and time-invariant calibration 
parameters, namely: 𝑤5  and ƒ𝑬. The parameter 𝑤5  is a bias parameter or weight that interpolates between 
the monthly grid-scale evaporation extrema 𝐸"

$%&,()*and 𝐸"
$%&,(+,	. 𝑤5  takes on a value between 0 and 1, 

and is estimated from the data (see section 4.1). An additional scaling factor ( ƒ𝑬) is incorporated to 
account for potential bias outside the observed grid-scale evaporation range, and is given a lognormal 
prior with mode at 1 (no bias) and a coeHicient of variation CV of 50%.  
On the other hand, Eq. (12) quantifies the random errors in grid-scale evaporation, as the diHerence  
between the maximum and minimum evaporation in each grid cell. A noise parameter (𝑟5), taking a value 



between 0 and 1, is used to scale the random errors. All parameters are solved as part of the water 
balance data fusion (Sect.  4). 
 
The basin-scale error models are derived from the grid-based models defined above, using the same 
spatial averaging process applied to precipitation (Eqs. (7-8)). The averaging formulas are then obtained 
as follows: 
𝑚52" = 𝜙53𝑚5" = ƒ𝑬	𝜙53 G(1 − 𝑤5)𝐸"

$%&,()* +𝑤5𝐸"
$%&,(+,H (13) 

𝑣52" = 𝜙53 𝑉5"𝜙5 = 𝜙53 𝑆5!𝑅5𝑆5!𝜙5 = 𝜙53 (𝑟5𝐷5!)𝑅5(𝑟5𝐷5!)𝜙5  (14) 

𝐸"J 	~	𝒩	(𝑚52" , 𝑣52") (15) 

𝐸"J 	≥ 0 (16) 

where 𝐷5  is a diagonal matrix whose diagonal entries contain the  1
4
.𝐸"
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grid cells within the evaporation spatial domain. All inputs of Eqs. (13-14) are precomputed from the 
evaporation data sets. 𝜙5  is the spatial averaging operator, and the 𝑅5  term stands for the correlation 
matrix, which captures the spatial dependencies between the evaporation grid cells. 𝑅5 ∈ ℝ*$×	*$, where 
𝑛5 × 𝑛5  is the matrix dimension, and 𝑛5  equals 71059, representing the total number of grid cell locations 
of the evaporation spatial domain. For the large-sized evaporation data sets considered here, we 
parameterize the evaporation correlation matrix using a Matérn Gaussian Process kernel (Hensman et al., 
2015) with fixed parameters 𝑙& at 50 km and 𝜈 at 1.5. 
Similar to precipitation, the basin-scale calibrated evaporation 𝐸"J  for month t is treated as a random draw 
from a truncated normal distribution Eqs. (15-16). The truncation at zero ensures physical consistency 
(nonnegative evaporation). 

3.2 River discharge and canal water import error models 

We assume that data on river discharge (𝑄$%&) and canal water imports (𝐶$%&) are both unbiased with 
proportional random errors (Eq. (18)). Both variables are modelled as truncated Gaussian variables (non-
negative), with mean 𝑚𝓍!, standard deviation 𝑠𝓍!  , and variance 𝑣𝓍!  in month t given by: 
𝑚𝓍! =	𝓍"

$%& (17) 

𝑠𝓍! = 𝑎,𝓍"$%& (18) 

𝑣𝓍! = 𝑠𝓍!
9  (19) 

𝓍"~	𝒩	(𝑚𝓍! , 𝑣𝓍!) (20) 

𝓍" ≥ 0 (21) 

where 𝓍"$%& represents the observed value for each month t (𝑄"$%& for discharge and 𝐶"$%& for canal water 
imports). 𝑠𝓍!quantifies the random errors in 𝑄$%& or 𝐶$%&, and is assumed proportional to the observed 
value, with a proportionality constant (or relative error) 𝑎𝓍. We assume a 10% relative error for monthly 
river discharge, i.e., 𝑎: = 0.1, and a 25% relative error for canal water imports, i.e. 𝑎; = 0.25.   

3.3 Water Storage Error Model 

The water storage error model relates the storage observations from the GRACE satellite (𝑆"$%&)  to the 
modeled storage (𝑆"). Due to the coarse resolution of GRACE data, the monthly basin-scale total water 
storage derived from these observations can be polluted by the water storage dynamics occurring outside 
the basin, that is, “leakage”. To account for the temporal and spatial mismatch between GRACE basin-
scale water storage and the modeled storage caused by leakage errors, we employ the following noisy 
sine wave error model (Schoups and Nasseri, 2021): 
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(22) 

𝑣<" = 𝜎<9 (23) 

𝑆"$%&~	𝒩(𝑚<" , 𝑣<") (24) 

The first equation models the systematic errors associated with GRACE observations. It captures cyclic 
patterns and seasonality in the data within the basin via time-invariant error parameters. These 
parameters describe the magnitude and the timing of the seasonal error: the amplitude 𝐴 (mm) and 
phase 𝛿 (years), respectively.  
The magnitude of random errors as an unknown time-invariant parameter (𝜎<), which reflects errors that 
can arise from (a) any limitations caused by the sine wave models in capturing the calibrated water 
storage dynamics within the basin and (b) noise in GRACE solutions. In the above equations, 𝜔 is fixed at 
2𝜋 radians per year, yielding a one-year sine wave and thus capturing the annual seasonal cycle. Other 
parameters are assigned vague prior distributions where 𝐴 follows a lognormal prior with mode at 30 mm 
and a CV of 200%, 𝜎<	a lognormal prior with mode equal to 10 mm and a CV of 200%, and 𝛿 follows a flat 
logit-normal prior between 0 and 1 year with a location parameter 𝜇 = 0 and scale parameter 𝜎 = 1.4. 
While the above prior error model relies on a single storage data set, we assess a posteriori (Sect. 6.1) the 
sensitivity of the P and E posterior distributions to the use of diHerent storage inputs, including Mascon 
(JPL) and Spherical Harmonic (CSR) GRACE solutions, which for the basin studied here, exhibit diHerent 
long-term trends. 
 
 
Reviewer  major comment 6: 
“L545. The labels and tick marks of x and y missed in Fig. 8”. 
 
Reply on major comment 6: 
Since the river discharge data are classified (can’t be made publicly available), the labels and tick marks 
of x and y are not shown in Fig. 8. We have updated the caption of Fig. 8 to mention this. 
 
Reviewer  minor comment 1: 
“L125 the abbreviation of Central Water Commission (CWC) should be explained near the figure instead 
later in L168”. 
 
Reply on minor comment 1: 
That’s true; we have defined CWC in the Figure 1 caption. 
 
Reviewer minor comment 2: 
“L241. the symbols mpt and vpt with Eq.7-8 are diHerent.” 
 
Reply on minor comment 2: 
We have removed these notations for conciseness and to enhance clarity. 
 
Reviewer minor comment 3: 
“L255 I think “Evapotranspiration” is better than “Evaporation” throughout the paper.” 
 
Reply on minor comment 3: 
At the outset of introducing the probabilistic water balance model (line 131 in the revised version of the 
manuscript), we define evapotranspiration as evaporation (including transpiration). Later, we use the term 
“evaporation” throughout the paper for conciseness. 
 
Reviewer minor comment 4: 
“L581. There is no ground-water level data? It is weird that the discharge of the canals have been paid 
great attention while no ground-water data available in such a heavily ground-water-based irrigated 
basin.” 
 



Reply on minor comment 4: 
The reviewer is right, the inclusion of groundwater level as an independent evaluation would be valuable; 
however, in this study, we only considered the total water storage. In a follow-up study, we plan to extend 
the methodology presented here to incorporate detailed information, such as groundwater pumping, soil 
moisture, and groundwater level data, where we also focus on separating the rootzone from the 
groundwater contribution. See also our response to Reviewer 1’s comment on validation, and the newly 
added section 6.4, reflecting on this. 
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