
Reviewer #2: 
 
This work proposes a two-step method, i.e., from basin scale to grid scale, to produce a water 
budget closed datasets by introducing the Bayesian model with predefined prior distribution 
and posterior parameter estimation, considering the covariance between water components 
and the entire time series, under a specific case study in the severely irrigated Hindon River 
Basin, India. This work tried to introduce an innovative theoretical basis and apply it to a basin 
with abundant discharge records. Although the logical structure of the work is clear, the 
theoretical introduction and the equations are hard to follow since there is no deductive 
process of the equations provided and the code and data are not accessible with the provided 
links. This makes it hard for the readers to follow the work and estimate the robustness of the 
work. 
 
We would like to thank the referee for the time and eGort reviewing our manuscript, and for the 
valuable feedback received. We understand that the theoretical introduction of the methods 
and equations might be hard to follow. We will improve the flow of equations by adding 
intermediate steps in the equations that more clearly show how one equation leads to the next. 
Also, we will update the link to the data and software, as follows: 
 
“Code and data availability: 
The software used to collect the data is available at https://doi.org/10.5281/zenodo.11148992, 
and the source code developed for this research is available at 
http://doi.org/10.5281/zenodo.4116451.” 
 
Reviewer  major comment 1: 
“the spatial scale problem is not thoroughly discussed. How were the diGerent scales between 
water components in the budget closure equation handled? Is the resolution 50 km really 
feasible in such a small basin that is only one pixel wide and two pixel height?” 
 
Reply on major comment 1: 
 
We agree this point deserves more attention, and we will add the following paragraph before 
Table 1 to reflect on the challenge of the scale difference between the water balance variables: 
 
“As can be seen in Table 1, the native resolution of the different individual data sets and 
between the water balance variables varies widely, posing a challenge in their merging process. 
In principle, the water balance data fusion can be performed at any spatial resolution; however, 
for this study design, we try to preserve the native information as much as possible by choosing 
to resample all precipitation data sets to a common resolution of 0.05° and all evaporation data 
sets to a common resolution of 250m. An alternative design would be to resample all water 
balance variables to the same resolution (e.g., 250m), but this might introduce artefacts, for 
example, when up-sampling from coarse to high resolution.” 
 
As for the 50 km, this refers to the spatial correlation length (ls) that we specify a priori to 
generate the covariance matrices of precipitation (Eqs.  5-6) and evaporation. The basic 
assumption here is that the values of the grid cells in the spatial domains of precipitation and 
evaporation are spatially correlated, i.e., the correlation between the grid values depends on the 
distance between the grid locations. Grid cells that are close to each other tend to have high 
correlation. As the spatial separation between grid cells increases, the correlation decreases. 
Often, information on the correlation length parameter is not available. In such a case, and 
given the diGerences in scales between the data sets, we rely on specifying a mid-range value of 



the prior correlation length, which is about half the basin’s length from North to South (line 238). 
Finally, we assess the sensitivity of the results to the chosen correlation length in sect 6.2. 
 
Reviewer  major comment 2: 
“L173/L884-885. About the gap-filling method, the authors made the assumption that the canal 
operations do not vary widely between years in which the conditions are similar. Is it possible to 
use the existing data to validate the assumption? I mean compare the data in the years with 
similar conditions to check whether that assumption is tenable.” 
 
Reply on major comment 2: 
Unfortunately, we are constrained by the amount of data available, making cross-validation 
diGicult. Specifically, we at most have five years of data, and these years can be distributed 
between wet, dry, and normal years, leaving us with no out-of-sample data for cross-validation. 
E.g., if among these 5 years, 2 years are dry, we simply took the average of these two years to fill 
all other missing dry years. In cases where we know that a distributary might significantly 
contribute to the overall imports to the basin, e.g., the Deoband branch, we follow a diGerent 
approach that avoids any average-based related biases and relies on using the design discharge 
and operation time to estimate the canal water imports for the missing years. In this vein, using 
the canal design capacities for gap-filling results in conservative (upper bound) estimates of the 
irrigation water imports, which can also be seen as acceptable approximate initial values for the 
Bayesian methods used in the study. Additionally, in sect 6, we include scenario 2, where, 
instead of filling the missing years with the data average of years with similar conditions, we use 
the upper bound estimates (design capacities multiplied by the operation time). The results 
show insensitivity to the canal water estimates used, as these are much smaller than the 
surface exchanges (e.g., precipitation and evaporation). To account for potential uncertainties 
around all assumptions we make to generate the corresponding full timeseries, we attach a 
large prior uncertainty (25%) to these gap-filled estimates, i.e., a wide confidence interval 
around their values. 
 
Reviewer  major comment 3: 
“It will be much clearer and easier to follow if a framework diagram is provided in the method 
section.” 
 
Reply on major comment 3: 
Good suggestion, a flow diagram can aid the reader in grasping the overall flow of the methods 
section. We will add the following diagram: 
 
 
 



“Figure caption: a factor graph showing the variables in circles and constraints as squares for a 
single month. Three constraints are incorporated in the water balance data fusion method, 
including: a prior Gaussian distribution assigned to each water balance variable (squares 
attached to each variable), the basin-scale water balance (BWB) constraint that links all water 
balance variables together, and the spatial averaging constraint that links grid-scale and basin-
scale variables for precipitation and evaporation. Computation of posteriors of individual 
variables proceeds in two steps. The first step is basin-scale water balance data fusion (BWB 
fusion, see section 4.1). This step involves multiple forward (blue arrows along the edges) and 
backward (dotted blue arrows) passes over the data using the entire timeseries to compute the 
posteriors of all water balance variables that jointly close the water balance (Schoups and 
Nasseri, 2021). The second step computes grid-scale posteriors for precipitation and 
evaporation from their basin-scale posteriors using a Kalman smoothing algorithm (green arrow, 
see sect. 4.2).” 
 
Reviewer  major comment 4: 
“About the matrix variables mentioned in all equations, for example, in Eq. 5, it is better to 
provide the size parameters of each matrix.” 
 
Reviewer  major comment 5: 
“For me, the relationships between equations are quite independent and the connections are 
weak. For example, Eq. 3-8, the input and output of each equation are vague thus hard to 
understand the method itself as a whole. The same issue exists for the entire theoretical part.” 

Reply on major comments 4 and 5: 
We will add the information about the size of the evaporation and precipitation correlation 
matrices. These are now mentioned in the following modified sections, which have been 
modified to show additional intermediate steps when going from one equation to the next.  
 
Sect. 3.1.1 



The independence structure between 𝑃!  and 𝐸!  shown in Eq. (2) allows us to represent the 
errors in each variable separately. For each month t, we typically have multiple gridded 
precipitation products, with unknown bias and random errors. To characterize these errors, the 
grid-scale precipitation bias and random error models for all elements in the mean vector 𝑚"!  
and the square root of all diagonal entries of the autocovariance matrix 𝑉"!	  are defined using 
Eqs. (3-4), respectively: 
𝑚"! = 𝑃!
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Equation (3) models the systematic bias in the gridded precipitation for each month t by 
describing the precipitation prior mean 𝑚"!  as a function of two parts. The first part represents 
the baseline precipitation estimated as the minimum across all the products (𝑃!

#$%,'()), while 
the second consists of a weighted deviation from this base value. Specifically, the latter 
denotes the full range of the grid-scale observed precipitation (𝑃!

#$%,'+, − 𝑃!
#$%,'()) with a 

weight parameter 𝑤*. The bias parameter 𝑤"  takes on an unknown value between 0 and 1, with 
a logit-normal prior distribution of parameter 𝜇 = 0 and scale parameter 𝜎 = 1.4 to reflect prior 
uncertainty about the bias. In other words, 𝑤"  controls the relative position of the 𝑚"!  within 
the observed precipitation space (range). As it approaches 0, more weight is given to the 
minimum across all products (𝑃!

#$%,'()), whereas approaching a value of 1 gives more weight to 
the maximum across all products (𝑃!

#$%,'+,). 
 
Random errors in the precipitation are modeled using Eq. (4). This model expresses the prior 
gridded standard deviation 𝑠"!  for each month t as a function of the maximum potential random 
error, defined as a quarter of the range: -

.
(𝑃!
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#$%,'()*. A noise parameter (𝑟") is used to 

scale this conservative quantity and is given a quasi-uniform prior distribution between 0 and 1. 
 
To account for the eGect of spatial correlation of the random error component (Eq. (4)), we write 
the precipitation prior covariance matrix 𝑉"!	  in terms of the grid-scale standard deviations and a 
grid-scale auto-correlation matrix: 
𝑉"!	 = 𝑆"𝑅"𝑆"  (5) 

where 𝑆"  is a diagonal matrix containing the grid-scale 𝑠"!  values for all locations of the spatial 
field (Eq. (4)), and 𝑅"  is the correlation matrix that captures the spatial dependence structure. 
𝑅" ∈ ℝ)#×)#, where 𝑛" × 𝑛"  is the matrix dimension, and 𝑛"  equals 176, representing the total 
number of grid cell locations of the precipitation spatial domain. 𝑅"  is jointly estimated from all 
precipitation data using an isotropic parametric correlation function with the following form 
(Handcock and Stein, 1993):  
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where 𝐶ℳ  is the Matérn correlation function for variables separated by distance 𝑑. This 
correlation model is flexible and widely used, with two functions: gamma function 𝛤(. )  and the 
modified Bessel function 𝐾1(. ) (Abramowitz and Stegun, 1968). 𝐶ℳ  also consists of two 
unknown nonnegative parameters, namely the spatial correlation length scale 𝑙% and a spatial 
smoothness parameter 𝜈. A value of 𝜈 approaching 0 indicates a rough spatial process, while 
the process is smoother when 𝜈 approaches infinity. Since the smoothness parameter is usually 
small in many applications (Chen et al., 2022), while it increases as the aggregation time 
increases (Sun et al., 2015), we choose a balanced value between a rough and smooth random 
field, i.e., 𝜈 , fixed at 1.5. On the other hand, the correlation length scale (𝑙% ) defines an average 
length scale on which grid cells are correlated with each other. In principle, 𝑙%  ranges from 0 
(the case of uncorrelated grid cells) and extends to a scale larger than the spatial domain length 



(the case of maximally correlated pixels). With no prior information on the 𝑙% parameter, we fix it 
at 50 km (~1/2 the basin’s length from North to South). The sensitivity of the results to the fixed 
𝑙% will be evaluated in section 6.2. 
Since water balance data fusion (Schoups and Nasseri, 2021) uses basin-scale error models, 
we derive these from the above-described grid-scale models by spatial averaging. Specifically, 
the basin-scale prior mean 𝑚"3!, variance 𝑣"3!, and standard deviation 𝑠"3!  in month t follow from 
Eqs. 3, 4 and 5: 
𝑚"3! = 𝜙"4𝑚"! = 𝜙"4 K𝑃!
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where 𝜙"  is the spatial averaging operator used to derive basin-scale moments from grid-scale 
moments (i.e., 𝑛" × 1 vector with each element equal to 1/𝑛"	, where 𝑛"  is the number of 
spatial locations in the precipitation spatial field). 𝜙"4  is the transpose of 𝜙". We also used 𝑆" =
𝑟"𝐷", where 𝐷"  is a diagonal matrix containing the -

.
(𝑃!

#$%,'+, − 𝑃!
#$%,'()* values (from Eq. 4) for 

all grid cells within the precipitation spatial domain. All basin-averaged input quantities to Eqs. 
(7-8) are precomputed from the precipitation data sets, and the constant but unknown 
parameters 𝑤* and 𝑟"  are estimated as part of the water balance data fusion (see Sect.  4.1). 
Finally, the last two equations in the precipitation error model treat the basin-scale calibrated 
precipitation 𝑃!O  for each month t as a random draw from a truncated normal distribution. The 
truncation at zero ensures physical consistency (nonnegative precipitation).  

 
Sect. 3.1.2 
As with precipitation, an evaporation error model with the following range-based form is 
adopted: 
𝑚6! = ƒ𝑬	[𝐸!

#$%,'() +𝑤6(𝐸!
#$%,'+, − 𝐸!

#$%,'()*] (12) 

𝑠6! = 𝑟6
1
4
(𝐸!

#$%,'+, − 𝐸!
#$%,'()* (13) 

The bias in evaporation is modeled with two spatial and time-invariant calibration parameters, 
namely: 𝑤6  and ƒ𝑬. The parameter 𝑤6  is the weight that interpolates between the monthly 
gridded evaporation extrema 𝐸!

#$%,'()and 𝐸!
#$%,'+,	in each month t. An additional scaling factor 

(ƒ𝑬) is incorporated to account for potential bias outside the observed range. On the other hand, 
Eq. (14) quantifies evaporation prior uncertainty (-
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spatially and temporally constant noise parameter (𝑟6). All parameters are treated as random 
variables with prior distributions. The 𝑤6  and 𝑟6  parameters are specified with a vague prior 
distribution bounded between 0 and 1, specifically, flat logit-normal with location parameter 
𝜇 = 0 and scale parameter 𝜎 = 1.4. Whereas, ƒ𝑬 is given a lognormal prior with mode at 1 (no 
bias) and a coeGicient of variation CV of 50%.  
The basin-scale evaporation error models are derived from the grid-based models defined 
above, using the same spatial averaging process applied to precipitation (Eqs. (7-8)). The 
averaging formulas are then obtained as follows: 
𝑚63! = 𝜙64𝑚6! = ƒ𝑬	𝜙64 K𝐸!
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where 𝐷6  is a diagonal matrix whose diagonal entries containing the  -
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values for all grid cells within the evaporation spatial domain. All inputs of Eqs. (15-16) are 
precomputed from the evaporation data sets while the unknown parameters ƒ𝑬 and 𝑟6  are 
solved as part of the water balance data fusion (Sect.  4). 𝜙6  is the spatial averaging operator, 
and the 𝑅6  term stands for the correlation matrix, which captures the spatial dependencies 
between the evaporation grid cells. 𝑅6 ∈ ℝ)$×	)$, where 𝑛6 × 𝑛6  is the matrix dimension, and 
𝑛6  equals 71235, representing the total number of grid cell locations of the evaporation spatial 
domain. For the large-sized evaporation data sets considered here, we parameterize the 
evaporation correlation matrix using a Matérn kernel implemented within a stochastic 
variational Gaussian Process (Hensman et al., 2015) with fixed parameter 𝑙% at 50 km and 𝜈 at 
1.5. 
Similar to precipitation, the basin-scale calibrated evaporation 𝐸!UUU for month t is treated as a 
random draw from a truncated normal distribution Eqs. (17-18). The truncation at zero ensures 
physical consistency (nonnegative evaporation). 
 
Reviewer  major comment 6: 
“L545. The labels and tick marks of x and y missed in Fig. 8”. 
 
Reply on major comment 6: 
Since the river discharge data are classified (can’t be made publicly available), the labels and 
tick marks of x and y are not shown in Fig. 8. We will update the caption of Fig. 8 as follows: 
 
Figure 8: Distribution of 𝑄 in comparison to the observed 𝑄#$% value (July 2009), for the following 
cases: (i) ignoring and accounting for posterior correlations between all water balance 
variables, (ii) ignoring only posterior correlation between P and E, and (iii) 𝑄9$  obtained from 
uncalibrated water balance data. The labels and the tick marks are not shown due to data 
sharing restrictions. 
 
Reviewer  minor comment 1: 
“L125 the abbreviation of Central Water Commission (CWC) should be explained near the figure 
instead later in L168”. 
 
Reply on minor comment 1: 
That’s true; we will define CWC in the Figure 1 caption as follows: 
 
“Figure 1: Location of the Hindon basin in the Uttar Pradesh state of India (inset map); with a 
detailed view of the basin featuring its boundaries, topographic profile, and the location of the 
Galeta outlet, where a river discharge station that belongs to the Central Water Commission 
(CWC) network of India is located. The main map shows the irrigation scheme with reservoirs 
and canal system. Topographic basemap sources: Esri, USGS, FAO, NPS, GIS user community, 
and others.” 

Reviewer minor comment 2: 
“L241. the symbols mpt and vpt with Eq.7-8 are diGerent.” 
 



Reply on minor comment 2: 
We have removed these notations for conciseness and to enhance clarity. 
 
Reviewer minor comment 3: 
“L255 I think “Evapotranspiration” is better than “Evaporation” throughout the paper.” 
 
Reply on minor comment 3: 
At the outset of introducing the probabilistic water balance model (line 130), we define 
evapotranspiration as evaporation (including transpiration). Later, we use the term 
“evaporation” throughout the paper for conciseness. 
 
Reviewer minor comment 4: 
“L581. There is no ground-water level data? It is weird that the discharge of the canals have 
been paid great attention while no ground-water data available in such a heavily ground-water-
based irrigated basin.” 
 
Reply on minor comment 4: 
The reviewer is right, the inclusion of groundwater level as an independent evaluation would be 
valuable; however, in this study, we only considered the total water storage. In a follow-up 
study, we plan to extend the methodology presented here to incorporate detailed information, 
such as groundwater pumping, soil moisture, and groundwater level data, where we also focus 
on separating the rootzone from the groundwater contribution. See also our response to 
Reviewer 1’s comment on validation. 
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