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Abstract.

Transport processes are of great importance in geophysical applications, including atmospheric, oceanic, or ice flow dy-

namics. An Eulerian view is commonly adopted in models dealing with the mathematical representation of fluid dynamics. In

such a framework, transport processes are accounted for by prescribing advection terms within the partial differential equations

(PDEs) of the model. Yet, advection terms are prone to cause instabilities in the numerical solution of these equations, notably5

when using the Finite Element Method with a standard Galerkin approach. Various methods have been developed to overcome

these instabilities, but often at the price of spurious artificial diffusion. To avoid such unwanted numerical smoothing, a com-

monly used technique is the Discontinuous Galerkin method, which allows for discontinuous solutions; hence, a better tracking

of fine features with steep gradients without relying on artificial diffusion. In this study, we explore an alternative approach

which lies in Semi-Lagrangian methods, combining elements of both Eulerian and Lagrangian approaches by updating particle10

positions based on the Eulerian velocity field from the previous time step. The method does not rely on any artificial diffusion

and can accurately capture advection. Here, we present a computationally efficient Semi-Lagrangian algorithm to track the

motion of particles in complex 3D geometries that is suitable for highly parallel computing. We illustrate the accuracy and

power of the Semi-Lagrangian (SL) algorithm by comparing it to a Discontinuous Galerkin (DG) method developed within the

open-source multi-physics code Elmer. We show that both the DG and SL methods provide accurate transport solutions with15

a different sensitivity to resolution. We conclude that, for practical use, the choice between the SL and the DG methods will

depend on specific simulation requirements and the trade-off between acceptable diffusion and computational efficiency.

1 Introduction

Transport processes play a key role in the field of geoscience fluid dynamics, with applications in various fields such as

atmospheric, oceanic, and ice flow modeling. In glaciology and ice sheet modelling, pure transport problems are of major20

importance when it comes to simulating ice age (e.g. Jouvet et al., 2020; Liefferinge and Pattyn, 2013), rock and sediment

transport (e.g. Wirbel et al., 2018), snow densification (e.g. Gilbert et al., 2014; Gagliardini and Meyssonnier, 1997), anisotropy

(e.g. Gillet-Chaulet et al., 2006) or ice damage evolution (e.g Sun et al., 2017; Krug et al., 2014; Ranganathan et al., 2025).
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In numerical models, the transport and evolution of quantities can be solved using different approaches: Eulerian, Lagrangian,

and Semi-Lagrangian.25

The Eulerian framework is often used to resolve the motion of the fluid that transports these quantities and is particularly suit-

able for complex and dynamic flows. It allows for efficient computation of flow properties in domains with varying boundaries

and complex geometries. A common approach is therefore to solve transport equations directly within this Eulerian framework.

In this case, the transport equations are expressed in terms of partial differential equations (PDEs) that describe the spatial and

temporal variations of the transported quantities, accounting for the motion of the fluid. Assuming no physical diffusion, the30

resulting PDE writes:

∂q

∂t
+ u∇q = S, (1)

with q the transported quantity, u the flow velocity, and S a source or sink term.

The numerical discretization and resolution of this equation, such as the Galerkin method widely used in Finite Element

Models (FEMs), often presents stability issues (e.g. Ouardghi et al., 2022). In the context of FEMs, a common solution is35

to rely on the Streamline Upwind Pretov-Galerkin (SUPG) method (e.g. Hughes, 1987) that modifies the usual Galerkin test

function in the finite element formulation to introduce a diffusion term, which reduces the oscillations of the solution and

improves stability. The diffusion term is defined anisotropic, such that most of the diffusion occurs in the flow direction only.

However, the method introduces significant numerical diffusion, which reduces the accuracy of the solution, although adaptive

mesh refinement along the evolution of the solution has been shown to mitigate this by better capturing fine-scale features (e.g.40

Wirbel et al., 2018).

An alternative approach to improving stability while addressing the limitations of SUPG is the Discontinuous Galerkin

method (e.g. Reed and Hill, 1973; Zienkiewicz et al., 2003), which is increasingly used within FEMs (e.g. Brezzi et al., 2004;

Kuzmin, 2006, 2010). Unlike the standard Galerkin method, which requires the test functions to be smooth and continuous

across element boundaries, this method allows the test functions to be discontinuous at those boundaries. Instead, it uses special45

conditions, called numerical fluxes, to handle how information passes between elements. These fluxes account for information

exchange between elements, maintaining stability and accuracy while the discontinuous nature of the test functions allow

for sharper resolution of solution features across interfaces. Treating these discontinuities requires to use "halo" or "ghost"

elements surrounding native elements to receive the solution from one partition to the other or on domain boundaries, which

results in additional computation and communication volume (Brus et al., 2017). Although the method generally improves50

the solution compared to continuous Galerkin methods, it still experiences inherent numerical diffusion that arises from the

numerical flux formulations used to ensure stability at element interfaces.

The Lagrangian approach takes a different perspective. Rather than solving equations on a fixed grid or mesh, it directly

tracks the motion of individual particles throughout their trajectories defined by a flow field (e.g. Samelson and Wiggins,

2006). It follows that the physical quantities transported with the flow are directly assigned to the well-identified particles,55

eliminating any need to resort to the problematic advection term. However, the Lagrangian approach may face challenges

when dealing with large-scale simulations due to the large number of particles that need to be tracked.
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The Semi-Lagrangian scheme stands in between, using the Eulerian framework to compute velocities but with a Lagrangian

discretization of transport equations. More precisely, it uses fluid particles to explicitly carry the fields that need to be advected.

This is done by recovering the former position (i.e. the positions at the previous time step) of particles through backward60

integration of the Eulerian velocity field (e.g. Côté and Staniforth, 1988; Mortezazadeh et al., 2024). The particles are initialized

at each node, element barycenter or integration point of the Eulerian mesh at the current time step. Field values are then

interpolated from the Eulerian mesh to the former position of the particles and transported to their position at the current time

step.

In this study, we present a Semi-Lagrangian (SL) method developed in the Elmer Finite Element Model mainly developed65

by CSC in Finland (http://www.csc.fi/elmer/). This open-source, multiphysical simulation software can solve a large number of

partial differential equations including models for fluid dynamics. We test the SL method in two synthetic cases, and compare

it with a Discontinuous Galerkin (DG) method already implemented in Elmer. The comparison highlights the benefits and

drawbacks of the SL method with respect to another method also designed to reduce numerical diffusion. Finally, using the

glaciological extension of Elmer, Elmer/Ice, which can be used to simulate complex ice flows (Gagliardini et al., 2013),70

we demonstrate the ability of the SL method to simulate the transport of ice damage (representations of sub-mesh-scale ice

crevasses) in a realistic scenario for which numerical diffusion has often been a limiting factor.

2 Methods

In this section, we provide a detailed overview of the SL method, starting with its theoretical foundations, followed by the

specific implementation of the particle tracking within Elmer. Additionally, we briefly introduce the DG method, which we use75

for comparison with the SL method in two synthetic experiments.

2.1 Semi-Lagrangian advection

By definition, a Lagrangian description of a system consists in following individual particles along their trajectories as opposed

to the classical Eulerian description usually used in Elmer, which focuses on the variation of system variables at fixed locations

(the grid points). The SL method is based on a Lagrangian discretization of the transport equation, but uses the Eulerian velocity80

field to determine the particle velocities, and therefore their trajectories. In the absence of source/sink, particles are then simply

used as vectors to carry the advected field from their previous to their current locations. To this end, particles are initialized

at the mesh nodes (they can also be initialized at the center of the elements or at integration points) and tracked backward in

time following the velocity field u. When their previous position is recovered, the value of the advected field at this position

is interpolated from the Eulerian mesh and is communicated to their assigned nodes as the value of the advected field at the85

current time step (the principle of the method is illustrated in Fig. 1). This is done by evaluating the following integral:

rt−∆t = rt +

t−∆t∫

t

udt (2)
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Figure 1. Schematics of a finite element mesh and a particle (here a nodal particle in green) that is back-tracked in time until reaching the

position it was at previous time step (grey particle with a value interpolated from the finite element). (a) The back-tracking is divided in a

series of internal time steps δti that can be adjusted for accuracy. (b) The source integral is then evaluated forward in time, over the same

number of time steps δti.

where r is the position vector, t is the current time step at which we want to evaluate the new value and new position of the

transported variable q, and t−∆t is the previous time step. In order to account for the spatial variability of the velocity field in

the reconstruction of the particle trajectory, the integral of Eq. (2) is evaluated by dividing the main time step of the simulation90

∆t into a discrete number N of internal time steps δt so that:

t−∆t∫

t

udt =
N∑

i=1

ri. (3)

with ri the position vector at internal time step i (the red dots in Fig. 1). Note that the value of N is a trade-off between an

increasing computation time for large N and inaccuracies in the path description, leading to an inaccurate evaluation of the

position rt−∆t
and therefore the particle value q(rt, t), for small N . The integral may be evaluated using a first-order explicit95

scheme or a second-order Runge-Kutta scheme. In the first-order scheme, a quadratic correction of the velocity u accounts for

the variation of the velocity field across a particle’s path, improving the tracking:

u = u(t,ri) +
1
2
∇u(t,ri) ·u(t,ri)δti (4)

with u(t,ri) and ∇u(t,ri) the velocity and velocity gradient at the current time step t and evaluated in ri, respectively.

This evaluation is conducted by determining the location of the particle in the element, solving for the local coordinates, and100

interpolating from nodal values through shape functions. When using a second-order Runge-Kutta temporal discretization, the
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method already has inherent quadratic terms and the correction is not applied. However, the correction of Eq. (4) is quadratic

in the velocity field and can lead to oscillations in the computed field, hence leading to non-physical particle positions. When

the particles have been advected, the field is evaluated from:

q = q(rt, t) = q(r, t−∆t) (5)105

where the variable q in each node depends on the interpolated value of q at the initial position and the earlier time step.

A source term χ that depends on the evolution of the particle along the path integral, following a function χ(q, t), can be

evaluated over time. This corresponds to solving:

It(χ) =

t∫

t−∆t

χ(q, t)dt (6)

The new value of q is then reevaluated as the combination of Eqs. (5) and (6) :110

q = q(rt−∆t
, t) + It(χ) (7)

Back-tracked particles have to be localized within the mesh at each internal time step δi to capture the velocity of the

particle. The simplest way to find this position is to localize the particle’s new location using traditional cell search, i.e., using

the coordinate of the particle to retrieve its position into the mesh. The method is accurate but very inefficient for unstructured

meshes, making it very greedy in terms of computation time and memory access. In-cell test algorithms have been developed115

to overcome this issue (e.g. Macpherson et al., 2009; Haselbacher et al., 2007; Ketefian et al., 2016). The in-cell test allows to

back-track the mesh cell where the particle resides, without the need for additional searches over the entire mesh. The shape

functions associated with the nodes within the element are then evaluated, and the interpolation is performed using the nodal

values.

Our particle-tracking algorithm is based on the method developed by Macpherson et al. (2009). It involves tracking the120

motion of particles from element to element by checking whether or not an element face is crossed over an internal time

step. Similarly to Macpherson et al. (2009), let’s define a particle with an initial position r(t) corresponding to a node. For

each internal time step δi of the back-tracking procedure, a check is performed to evaluate whether or not one of the faces

of the element has been crossed. This is done through geometrical considerations via the calculation of determinants between

the vectors formed by the initial and final locations of the particle over the internal time step on the one hand, and the vectors125

formed by the positions of the nodes of the considered element face on the other hand. If it turns out that a face has been crossed,

the face index is used to determine which element, if any, is on the other side of the face. Then, the algorithm is continued

from this new element for each remaining internal time step δi until the end of the main simulation time step ∆t. While the

method requires some complex geometrical tests, it is shown that computational time roughly scales linearly (O(Np) = Np)

with the number of particles (Np), as only local operations are performed. This makes the method faster than most tree-based130
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localizations that are shown to scale logarithmically (O(Np logNp) = Np). More detail on the particle location and element

crossing, as well as the interaction with boundary interfaces can be found in the Appendix A.

2.2 Discontinuous Galerkin advection

In Elmer/Ice, the advection equation Eq. (1) can be solved by applying a Discontinuous Galerkin method (DG). The imple-

mentation of the method mostly relies on the work of Brezzi et al. (2004) for solving first-order linear hyperbolic equations. In135

this method, the stability of the numerical scheme (i.e. the stabilization of the oscillations near the discontinuities) is ensured

by adding a jump-penalty term to the discretized Eq. (1) without requiring upwind stabilization or other terms. Only a short

summary is presented here.

To apply the DG method with jump-penalty stabilization to the advection equation, we begin by rewriting Eq. (1 in its weak

form by multiplying it by a discontinuous test function vh and integrating over each element T :140

∫

T

∂qh

∂t
vh dx +

∫

T

u · ∇qh vh dx =
∫

T

Svh dx. (8)

Integrating the advection term by parts, we obtain:

∫

T

u · ∇qh vh dx =−
∫

T

qh u · ∇vh dx +
∫

∂T

u ·nqh vh ds, (9)

where n is the outward normal on ∂T .

The DG formulation can then be expressed as:145

∑

T∈Th

∫

T

∂qh

∂t
vh dx−

∑

T∈Th

∫

T

qh u · ∇vh dx +
∑

e∈Eh

∫

e

{u ·nqh}[[vh]]ds +
∑

e∈Eh

∫

e

αe[[qh]][[vh]]ds =
∑

T∈Th

∫

T

Svh dx. (10)

where the third term
∫

e
{u ·nqh}[[vh]]ds captures the advection across the element interface e using the average flux, with

[[vh]] being the jump operator representing the difference in vh between the two sides of e, and {u ·nqh} represents the mean

flux across e. The fourth term ensures stability by penalizing large jumps in qh across element edges, where αe is a penalty

parameter, often set as αe = |u·n|
2 . This penalization helps prevent spurious oscillations and improves the convergence of the150

solution.

3 Synthetical experiments

To illustrate the performance of our SL model, we have conducted two numerical experiments that solve simple transport

problems. The first experiment, using the Zelsak disc (Zalesak, 1979), allows us to evaluate the ability of our model to transport

sharp shapes while guaranteeing their conservation in a simple 2D framework. The second test allows us to evaluate the155
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performance of the transport in a 3D framework. In both of these simple cases, the SL framework is evaluated against the

Eulerian advection model usually used in Elmer with a discontinuous-Galerkin (DG) method.

Besides comparing the general patterns, the accuracy of the two methods will be evaluated using two metrics. The first metric

is used to assess the spatial distribution of the advected field, and consists of the Root Mean Square (RMS) misfit between a

reference solution (qref) and the advected quantity (qi with i = SL or DG) :160

RMSE(qi) =

√√√√
∫

Ω

(qref− qi)2 dΩ. (11)

The second metric is used to assess conservation, i.e. we expect the integral of the field q over the domain Ω to remain constant

over time, and the following quantity to remain equal to 0 (for a closed system and without a source/sink term in Eq. 6):

∆[qi] =
1
Ω

∫

Ωs

qi− qref

qref
dΩ. (12)

3.1 Solid bodies in rotation165

3.1.1 Experimental setup

We define a square domain Ωsquare = [0,1]× [0,1], with linear (i.e. linear shape functions) squared finite elements. We put

2D solid bodies in rotation within a 2D circular steady velocity field with an angular velocity ω = 1s−1. The discs are hence

supposed to maintain their shape while rotating, allowing for the evaluation of the advection scheme’s ability to accurately

transport information. Simulations are performed at coarse (Rs,1 = 101× 101 nodes ) and fine resolution (Rs,2 = 201× 201170

nodes), and with different time steps, from (∆t = 2π
30 s to ∆t = 2π

1440 s), to assess the sensitivity of the solution to both spatial

and temporal resolution.

We perform three types of simulations:

1. SL transport of the discs without reinitialisation of the particles, i.e only one simulation timestep ∆t = 2π s. Given the

stationary velocity field, particles do not require to be reinitialized at each time step. In this case, there is almost no175

loss of information since only one interpolation is needed over the entire simulation–only internal time steps (δi) are

considered to improve the trajectory of the particles but the interpolation of the field to the particle position is made once

at the end of the backward trajectory. As a consequence, we consider that this simulation can be used as a reference for

the other methods.

2. SL transport with reinitialisation at each time step (∆t < 2π s). This case shows how the simulation would perform in a180

transient simulation with u = u(t).

3. Eulerian transport with a DG method. The method is applied in the same conditions as the SL transport to compare the

results.
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3.1.2 Results

The SL and the Eulerian DG methods show an opposite sensitivity to spatial and temporal resolution (Fig. 2 and 3). With185

the SL method, the sharpness of the discs at the end of the solution increases with spatial resolution and decreases with

temporal resolution. This is directly linked to the more accurate interpolations of particle value at higher spatial resolution

and the smaller number of interpolations at lower temporal resolution. For sufficiently small ∆t (e.g. ∆t∼ 2π/200 s for

Rs1 and ∆t∼ 2π/700 s for Rs2), the decrease in accuracy tends to stabilize (Fig. 3a). This saturation can be explained by the

accumulation of interpolation errors: as ∆t decreases, particles move only slightly within the same element and are interpolated190

more frequently. While this initially increases the total error, it eventually reaches a plateau because the interpolated values

change very little between steps, and the cumulative interpolation error becomes effectively bounded. On the opposite, the

accuracy of Eulerian DG increases with temporal resolution mostly, while there is little sensitivity to the spatial resolution

(Fig. 3a).

We also observe that the SL method leads to a decrease of [qi] as ∆t increases, resulting in non-zero values of Eq. (12). This195

loss can be attributed to the non-conservative nature of the interpolation process, where the particle values are interpolated from

the nodes using FEM shape functions. In contrast, with DG, [qi] remains insensitive to changes in ∆t and is thus conservative.

We also notice that the SL method introduces isotropic diffusion, while the Eulerian DG diffusion is mainly directed along the

velocity field. (Fig. 2).

3.2 Tracer in a 3D slab flow200

3.2.1 Experimental setup

This experiment involves a 3D parallelepipedal domain with a horizontal surface Ω of 100× 50 km and a thickness of 100 m.

We impose a 1000 m a−1 unidirectional flow along x. We use linear rectangular elements and conduct the simulations at a

coarse resolution (Rm,1) with 1 × 1 km elements, i.e., 15,912 nodes, and a fine resolution (Rm,2) with 250 × 250 m elements,

i.e. 401,919 nodes. A donut-shaped tracer is initialized at the position x = 25 km and y = 25 km (center of the donut) to test the205

advection algorithms. The simulations are conducted for 50 years with a stationary flow. The horizontal velocities are set up so

that the center of the tracer flows from x = 25 km to x = 75 km over the course of the simulation.

Nowadays, because of the increasing performance and machine availability for highly parallel computing, most numerical

simulations are solved in parallel. This parallelization can be challenging for the SL algorithm when one particle moves from

one partition to the other. We therefore divide the domain into 8 partitions to analyze the sensitivity of the algorithm to the210

parallelization. In addition, we compare the computation time of the SL and the DG methods, as well as the impact of the

number N of internal time steps δi in Eq. (3).
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Figure 2. Evolution of two discs and one Zalesack disc after a complete rotation: (a) Reference solution (i.e. the SL solution after one rotation

with no reinitialisation), (b,d,f) SL solution and (c,f,g) Eulerian DG. The simulation is conducted at the resolution Rs1 with 3 different ∆t:

(first line) ∆t = 2×π/90, (second line) ∆t = 2×π/360, (third line) ∆t = 2×π/720. The grey arrows show the circular direction of the

flow.

3.2.2 Results

In this experiment, the SL method shows again a large sensitivity to the time-stepping choice. Given that the grid is regular

and the flow velocity is uniform, steady, and unidirectional, the best results are obtained when fixing ∆t = m×∆x/vx (with215

m ∈ N), which allows a perfect node-to-node displacement at each ∆t and no interpolation requirement in the absence of any

source/sink term. Once we fall in values of ∆t < ∆x/vx, we rapidly see a decrease in solution sharpness with an increasing

diffusion as ∆t decreases (Fig. 4a). Since the particles follow a straight line, there is no need for internal time steps to improve

the accuracy of the trajectory and we see little to no impact of the number of internal time steps N in Eq. (3). Contrary to
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Figure 3. Assessment of the SL and Eulerian DG methods after a full rotation of the three solid bodies: (a) Concentration RMSE (Eq. (11))

and (b) spatially-integrated relative bias in concentration (Eq. (12)). The results are shown for low (Rs1 = 101× 101 nodes) and high

(Rs2 = 201× 201 nodes) spatial resolutions.

the previous case, where the solid shapes were moving along both x and y axes, the uni-directional trajectory only leads to220

interpolation error along x, allowing to have no diffusion along y, i.e. perpendicularly to the flow.

These results stand again in opposition with the DG method which leads to better performance when using a smaller ∆t

(Fig. 4b), with little impact of the spatial resolution. Focusing on the calculation of the RMSE (Eq. (11)), SL method leads

to smaller RMSE as ∆t increases, while the DG method leads to higher RMSE (Fig. 5). In both cases, the rate of the RMSE

evolution decreases over time, which can be due to an increasing numerical accuracy as the solution gets smoother. In terms225

of concentration, the DG method leads to almost no average concentration loss (i.e. less than 1% after 50 years) while the SL

concentration oscillates up to ±4%. This shows that the interpolation of the advected field to the particle locations on which

the SL method is used is non-conservative: sometimes it leads to an artificial increase of the advected field cumulated over the

whole domain, and sometimes to an artificial decrease. This might also be due to the number of internal time steps used in the

SL algorithm and particle loss when moving from one partition to the other.230

The computation time also differs between the methods. For the same (∆t,∆x), the computing time of the SL method tends

to significantly increase when considering greater numbers of internal time steps, with a factor of 7 when passing from N = 1

to N = 5 (see Table 1). Although not properly needed in this simulation, large number of internal time steps tends to slow

down the SL method with respect to the DG method, which times in the range of the SL method for N = 3. These computation

times, however, are often small compared to the time required by the 3D flow solvers typically used in Elmer.235
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Figure 4. Donut transport with the SL method (with N = 5) (left) and (right) the DG method, at 1-km resolution. The donut advects from

left to right and is plotted on each panel at t = 0 a, t = 25 a, and t = 50 a. Flowlines are represented in grey.

.

Method DG SL (N = 1) SL (N = 5) SL (N = 10)

Average time step time (s) 0.23 0.11 0.41 0.78

Table 1. Average time (in seconds) spent in the solver over one simulation time step (∆t) for different algorithms for the 3D-slab-flow case

of Sec. 3.2 for a 8-partition domain and a 1-km resolution.

4 Application of the Semi-Lagrangian method to damage evolution in Antarctica

The experiments conducted to assess the performance of the SL method in comparison with the DG method provide valuable

insights into the behavior of these numerical schemes under different conditions. These results demonstrate the trade-offs
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Figure 5. (a) RMSE and (b) spatially-integrated relative bias in concentration of the donut tracer over time for different time step lengths at

1 km resolution (SL: blue shades; DG: red shades)

involved in using SL and DG methods, particularly in terms of accuracy, computational efficiency, and sensitivity to spatial

and temporal resolutions.240

Hereafter, we propose to apply the SL method to a high resolution ice sheet model to simulate the evolution of ice damage in

the Amundsen Sea region, where a rapid and important ice sheet mass loss has been observed over the last decades (e.g. Smith

et al., 2020). This rapid mass loss has led to important structural changes in the ice sheet, which increased ice damage in key

areas such as the shear margins (Sun and Gudmundsson, 2023; Lhermitte et al., 2020; Alley et al., 2019). These damaged areas

consist of highly crevassed areas that often appear where the ice becomes afloat and evolve as they are advected downstream245

over the ocean.

4.1 Numerical Ice Sheet Setup and experiment

We build a 3-D model of the region and simulate the ice flow using the state-of-the-art Stokes flow model Elmer/Ice (see

Appendix B1), following the initialization procedure described in the Appendix B2. Once initialized, we use the model to

simulate the evolution of damage over 50 years. Our damage model is based on Continuous Damage Mechanics (CDM) and250

follows the same physical approach as Krug et al. (2014) and Gilbert et al. (2015): damage is created where the maximum

tensile principal stress exceeds a threshold and is advected downstream with the flow. The corresponding advection equation

with source is solved using the previously described SL solver.

To keep the case as simple as possible, we use a constant source term for damage and focus only on the creation of surface

damage (i.e., we do not include basal damage due to water pressure in Eq. (B11)). We also ignore feedbacks between damage255

and viscosity (see Eq. (B6)). Details of the damage model are presented in Appendix B3, where we can see that the model

depends on multiple parameters. A key parameter of the model is the stress threshold σth at which damage occurs. In previous
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studies, σth is often taken between 0.1 and 0.3 MPa (e.g. Krug et al., 2014; Albrecht and Levermann, 2012; Grinsted et al.,

2024). Here, we select a particularly high value of σth = 0.65 MPa to limit damage production (χ > 0) to areas that have been

clearly identified as crevasse onset regions in the observations (Lhermitte et al., 2020). Additionally, we exclude mountainous260

regions and steep slopes from the simulation as these areas are unlikely to sustain ice cover.

Our results in synthetic test cases indicate that using a longer SL advection time step (∆t) with multiple internal time

steps (δi) helps limit interpolation errors, which accumulate over repeated time steps (∆t). This issue is particularly acute in

high-resolution ice flow models (e.g. ∆x∼ 1 km) where small time steps (e.g. ∆t∼ 10−2 km) help limiting feedback effects

between large vertical surface velocities and free-surface evolution, which could otherwise cause divergence.265

To address this, we run the SL advection with a longer time step than the flow solver (∆t > ∆tflow), also limiting the

computing cost of the solver. In this study, we do not account for feedbacks between damage and viscosity (Eq. (B4)), so the

reduced update frequency of damage does not impact the flow solution. While such decoupling would introduce a trade-off in

a fully coupled setup—lowering the physical accuracy of the damage-flow interaction—it is not relevant here, as our focus is

solely on evaluating numerical diffusion in the SL scheme.270

We conduct eight simulations of damage evolution using the same steady-state geometry, ice flow, and damage model

parameters. Each simulation covers 50 years of damage evolution with SL advection time step varied from ∆t = 10−2 to 5 a.

The goal is to evaluate the sensitivity of the SL method to time stepping and to assess how interpolation errors influence the

downstream evolution of damage over multi-decadal timescales.

4.2 Damage simulation results275

In our experiments, for a 50-year simulation, a decrease in ∆t –leading to more frequent interpolations– results in increased

diffusion of the vertically integrated damage field, producing a smoother damage field (Fig. 6). This effect is particularly

noticeable over Thwaites Glacier and its ice shelf, where the margins and sharp structures become more diffuse and damage

features extend farther downstream (similarly to the upstream and downstream diffusion of the previous test cases) as ∆t

decreases.280

By definition, an advected damage quantity should never spread away from its flowline. To better visualize the spread due

to numerical diffusion, we use a logarithmic color scale to represent the integrated damage over the ice column, covering

three orders of magnitude. We also plot flowlines with spacing ranging from about one to three elements or about 500 m

to 5 km depending on the region (Fig. 6). For ∆t = 1 a (Figure 6a), we observe little lateral diffusion, i.e. damage initiated

upstream with a visual lateral diffusion (Dmean < 10−3) crossing no more than one flowline to flowline span. Smaller time steps285

of ∆t = 10−1 a (Fig. 6b) and ∆t = 10−2 a (Fig. 6c) lead to a more visible lateral diffusion with damage from different ice

streams sometimes crossing more than one flowline to flowline span and merging together as they advect downstream. This,

however, occurs only locally and it remains limited. A movie is provided in the Supplementary material (S1) to visualize the

evolution of the damage over the 50-year simulations for different ∆t.

We can also observe numerical diffusion by analyzing three vertical damage profiles in various locations (see locations on290

Fig. 6 and profiles on Fig. 7). On Profile 1, located in one of the shear margins of Pine Island and downstream of a damage
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Figure 6. Semi-Lagrangian vertically integrated damage after 50 years of simulation in the Amundsen Sea Sector for different time steps: (a)

∆t = 1 a, (b) ∆t = 10−1 a, and (c) ∆t = 10−2a. All the simulations were conducted with a σth = 0.65 MPa, and no damage retro-action

neither on the viscosity neither on the damage source term, i.e., D = 0 in Eqs. (B6) and (B11). The grounding line is represented with a thick

black line, the flowlines with thin grey lines, and the sources for damage are represented in cyan. The Landsat Image Mosaic of Antarctica

(LIMA) for the region is plotted in background. The location of Pine Island and Thwaites glacier is indicated for reference

.

source, we can see that the damage is relatively similar for all ∆t, with a small tendency of the maximal damage (located at the

surface) to decrease but get deeper with decreasing ∆t (Fig. 7a). One exception can be made for very long ∆t (e.g. ∆t = 5 a)

that produce lower damage over the first 100 m below the surface, which could be due to a lower diffusion of damage initiated

over adjacent flowlines. We also note that the solutions tend to converge to the same vertical distribution of damage as ∆t295

decreases, which shows a tendency of the diffusion to plateau when reaching small values of ∆t. Profile 2, located downstream

of a damage source of Thwaites Glacier, exhibits a similar pattern (Fig. 7b). Conversely, Profile 3 which is situated between

two damage sources and is not downstream of any specific source, exhibits low to no damage for ∆t = 5 a. In the absence of

numerical diffusion, the ice should remain undamaged at this location. However, due to numerical diffusion, damage appears

and increases rapidly as ∆t decreases, before stabilizing once the particle displacement per time step becomes small enough300

that further interpolations have a lesser impact on the results. (Fig. 7c)
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Figure 7. Semi-Lagrangian damage over three vertical profiles (see location on Fig. 6) after a 50-year simulation for different time steps: ice

(a) profile 1, (b) profile 2, (c) profile 3. The dashed line shows the case ∆t = 5 a

.

5 Discussion and future adaptations

The current application of the SL method to damage evolution in the Amundsen Sea sector of Antarctica provides a practical

demonstration of both challenges and benefits of the method in glaciological simulations. The SL method sensitivity to time

step length directly impacts the diffusion of the damage field: longer time steps reduce numerical diffusion. The observed305

lateral diffusion of damage along flowlines, especially in regions like Thwaites Glacier, underscores the importance of carefully

selecting time step parameters to minimize unwanted diffusion while ensuring computational feasibility. While small time steps

are typically required for solving ice flow (i.e., Stokes flow in our case) and free-surface evolution (usually about ∆t = 10−2 a),

we have proposed to address the issue by decoupling the time stepping of damage evolution from the rest of the simulation.

However, this approach may compromise the accuracy of the coupling between ice flow and damage evolution, which could310

pose challenges in capturing short timescale dynamics, such as sub-annual variations in ice flow and damage.

We outline four strategies to further improve the accuracy of the SL method in Elmer and potentially increase the coupling

frequency between Stokes flow and SL damage advection, without introducing additional numerical diffusion:

– Since the additional computing cost of the SL method is usually relatively cheap to run with respect to the Stokes flow

(or any flow) simulation, one possible improvement would be to run the SL method on a higher-resolution mesh that the315

rest of the simulation. In this approach, the Stokes flow would be computed on a coarser base mesh, and the resulting

velocity field and SL source term would be interpolated onto the finer mesh for the advection step. At each time step,
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the advected field—such as damage—would be updated on the fine mesh and then reinterpolated back onto the coarse

mesh to compute a new viscosity and solve the Stokes problem again. The velocity field will remain unchanged across

both meshes but the finer resolution and the increased amount of particles will improve the interpolation of the advected320

fields.

– Another solution would consist in performing dynamic adjustments of the mesh during the simulation, enabling the

user to refine the mesh in specific regions, hence reducing interpolation errors. Such remeshing tools like Dapogny et al.

(2014) are already linked to Elmer but still need to be tested in such configuration to quantify the additional accuracy they

will bring in regard to the additional computing cost and potential other interpolation errors arising from the re-meshing325

process itself.

– Instead of increasing the resolution, the SL particles could be initialised at Gauss points used for the integration of the

flow problem, which number can be larger than the number of nodes (Ouardghi et al., 2022, e.g.). For example, in Elmer,

we usually use 44 integration points for solving the Stokes equation on triangular wedge elements. However, this solution

requires additional development to our current implementation of the SL problem in Elmer.330

– Increasing the spatial resolution of the model can reduce spatially-integrated bias in the concentration of the solution, as

demonstrated in our first experiment. However, a more robust solution would be to develop a conservative formulation for

the particle interpolation, which is not currently implemented in Elmer. Conservative SL methods enforce conservation

during advection by redistributing mass across the computational mesh. However, while this approach would ensure

global conservation, it could lead to shape distortions in the transported quantity due to the challenges inherent in335

conservative interpolation schemes (e.g. Priestley, 1993).

6 Conclusions

We have implemented a Semi-Lagrangian (SL) method for the Finite Element software Elmer, offering a novel approach to

solve advection problems. The SL method shows strong potential in effectively transporting information over a finite element

mesh and ensuring the stability of the advection with respect to Eulerian FEM implementations of SUPG methods. Like the340

DG method, under certain conditions, it can lead to minimal diffusion, which is particularly relevant for the advection of sharp

structures. However, the SL method’s sensitivity to spatial and temporal resolution is distinct from that of the DG method,

making the choice between these methods dependent on specific user needs and model requirements.

The DG method is particularly effective in scenarios requiring high temporal precision, as it shows significant accuracy

improvements with smaller time steps. This makes DG suitable for rapidly evolving flows. On the other hand, the SL method345

benefits from increasing time steps and increasing spatial resolution, performing best when the time step allows particles to

move precisely from node to node. This characteristic makes the SL method advantageous in relatively steady flows where

the time step at which the transport equation is solved can be decoupled from the time step at which the velocity field is

recomputed.

16

https://doi.org/10.5194/egusphere-2025-3039
Preprint. Discussion started: 20 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Another practical advantage of SL over DG is its ability to transport multiple fields within a single solver execution. This350

makes it particularly well-suited for problems involving several passively advected quantities like tracers, since each field does

not require a separate advection solve. Of course, in cases where source or sink terms are present, these must still be treated

individually for each field. Nonetheless, this feature can significantly reduce the computational cost compared to Eulerian

methods, which typically require solving the full advection equation independently for each field.

In recent years, research on ice sheet and glacier evolution has highlighted the importance of damage processes, but without355

thoroughly addressing the limitations of current advection methods regarding numerical stability, potential artifacts, or exces-

sive diffusion (e.g. Sun et al., 2017; Lhermitte et al., 2020; Ranganathan et al., 2024; Li et al., 2024) . The application of the

SL method to ice damage evolution in the Amundsen Sea sector yields promising results, suggesting that Elmer/Ice simula-

tions could effectively incorporate ice damage—a critical factor for accurate predictions of ice sheet and glacier evolution.

While our test case remains steady to facilitate the characterisation of SL method’s time-stepping impact, we do not anticipate360

convergence or stability issues when extending the method to non-steady simulations.

Looking ahead, the SL method’s potential is likely to grow with advancements in computing power, which will enable finer

spatial resolutions but also longer stable time steps of the free-surface problem in ice-flow and ice-sheet simulations (e.g.

Löfgren et al., 2022). For now, Elmer allows the SL method to be run at a lower frequency than the flow model itself, reducing

diffusion at the expense of physical precision. As computing capabilities advance, we expect the SL method to become an even365

more powerful tool in glaciological simulations.

Code and data availability. The Elmer/Ice code is publicly available through GitHub (https://github.com/ElmerCSC/elmerfem (Ruokolainen

et al. (2025); last access: 24 December 2024) and Zenodo (Ruokolainen et al., 2023). All simulations were performed with Elmer/Ice

(v9.0) based on commit 97773a1f2. We encourage users to use the latest version available on the Elmer/Ice GitHub repository and to

refer to the documentation for recent updates. All the material necessary to reproduce the simulations is available through CM GitHub370

(https://github.com/cmosbeux/SEMI-LAGRANGIAN-PUBLICATION.git; Mosbeux (2025b)) and on Zenodo at https://zenodo.org/records/15741827

(Mosbeux, 2025a), along with post-processing python scripts and detailed explanations.

Video supplement. A video supplement for the ice damage application (Sec. 4) is available in the video section of the zenodo repository:

https://zenodo.org/records/15741827 (Mosbeux, 2025a).

Appendix A: Semi-Lagrangian Model375

A1 Particle location and element crossing

The first part of the motion (in the starting element and until reaching the element face at a location p) can be found using:

p = r(t) +λ(r(t− δt)− r(t)) (A1)
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where λ is the fraction along the line r(t− δt)− r(t) where the interaction occurs with the element face.

In the case of a 2D plan tracking, we can define I as the point corresponding to the initial position (i.e., at t) of the particle,380

F as the point corresponding to the final position (i.e., at t− δt) of the particle, and A and B as the positions of the two nodes

forming the tested face (or segment in this 2D case; Fig. A1).

Let’s define two vectors, IF and AB. If IF ×AB = 0, this indicates that IF and AB are parallel, and therefore, no

intersection exists between the lines they define.

Next, we compute
IF × IA

IF ×AB
. If this ratio is negative or greater than 1, it indicates that the line defined by IF intersects385

the line defined by AB outside the segment AB. As a result, there is no intersection between the particle path and the segment

AB.

Finally, we calculate λ following

λ =
IA×AB

IF ×AB
. (A2)

If λ > 1, the segment IF is too short to intersect AB. If λ < 0, there is also no intersection (point I is on the opposite side390

of AB). If λ < 1, an intersection occurs, where

λ =
IP

IF
, (A3)

with P representing the intersection point of lines IF and AB.

Figure A1. Representation of a trajectory (IF ) from an initial point (I , here at a node of a triangular element) to a final point F in another

element. (a) The segment IF intersects the face segment AB at point P . (b) The segment IF is too short to intersect the face segment AB.
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A2 Boundary interactions and parallelization

At every face crossing, a check is performed to determine whether the face corresponds to a domain boundary or is an interface395

between two elements of the mesh. In case of parallel computing, the element face crossed can also stand at the interface

between two mesh partitions. Specific actions can be undertaken depending on the type of boundary encountered:

– partition boundary: the particle position is moved to the other partition and the tracking continues in this partition.

– physical boundary: the particle is back-tracked outside the mesh. This can happen when the velocity vector points

outward across the domain boundary, i.e. is not tangent to the boundary. In such case, two options are possible: (1) the400

particle tracking can be stopped at the boundary, effectively treating it as a solid wall; or (2) the particle can be allowed

to continue its trajectory along a path tangent to the boundary surface. The same occurs for the forward tracking of the

source term.

Appendix B: Mechanical Models

B1 Ice flow model405

For continuously deforming fluids, the equation of state can be written as:

∇ ·σ + ρig = 0, (B1)

where ∇· is the divergence operator, g is gravity, and σ = τ − pI is the Cauchy stress tensor, which links the deviatoric stress

tensor τ and the isotropic pressure p, where I is the identity matrix. Stress can then be linked to strain rate with an isotropic

power law known as Glen’s flow law (Glen, 1955), written as410

τ = 2ηε̇, (B2)

where η is the effective viscosity, and ε̇ is the strain-rate tensor, defined as

ε̇ij ≡
1
2
(
∂ui

∂xj
+

∂uj

∂xi
). (B3)

with ui the components of the velocity vector u. The effective viscosity, η, in Eq. (B2) is given by:

η =
1
2
(EDA)−1/nIε̇

(1−n)/n
2 , (B4)415

where ED is an enhancement factor, Iε̇2 =
√

ε̇ij ε̇ij/2 is the second invariant of the strain-rate tensor and n is the Glen

exponent, with an empirically determined value between 1 and 5 (Weertman, 1983; Gillet-Chaulet et al., 2011). An average

value of n = 3 is usually used in ice-sheet models and is also used in this study. A is the fluidity, which depends on the

temperature following Arrhenius’ law:

A = A0e
−Q/(RT ), (B5)420
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with A0 a reference fluidity or prefactor, Q the activation energy, R the gas constant, and T the temperature (units of K).

Following Cuffey and Paterson (2010), we set the reference fluidity to A0 = 1.258×1013 MPa−3a−1 and the activation energy

to Q = 60 kJ mol−1 for T < 263 (K− 10◦C), and A0 = 6.046× 1028 MPa−3a−1 and Q = 139 kJ mol−1 for T > 263 K.

The code is based on a 3-D Finite Element Method (FEM) for numerically solving the Stokes equations, computing ice flow

by solving Eq. (B1) subject to the principle of mass conservation, ∇ ·u = 0.425

In the context of continuum mechanics, fractures and crevasses that weaken the ice can be represented by reducing the

enhancement factor ED following:

ED =
1

(1−D)n
(B6)

with D ∈ [0,1[ (see Sec. B3). In our application of Sec. 4, we keep ED = 1, i.e. we do not account for the retroaction of the

evolving damage on the ED.430

For transient simulations, the advection equation of the surface can be solved (Gagliardini et al., 2013). We apply a Dirichlet

boundary condition on the velocity at the inflow boundary:

u.n = 0, (B7)

where n is the normal to the surface. At the ocean-ice interface, we apply a sea pressure:

pw = ρwgz(t) (B8)435

where ρw is the seawater density and z(t) is the depth, resulting in the following Neumann condition applied on the ice-ocean

interface:

σ.n =−pwn. (B9)

B2 Ice flow model initialization

The 3D model is initialized by calculating the fluidity of the ice as a function of the temperature following an Arrhenius’440

law (e.g. Gillet-Chaulet et al., 2012; Mosbeux et al., 2020) and by reconstructing a poorly known parameter in ice sheet

models, the basal drag at the interface between the ice and the bedrock (that can vary depending on the basal condition and the

presence of water at the interface). The reconstruction consists in finding the parameter values that minimize the discrepancy

between observed and model surface velocities (for a given geometry), following the approach presented in Macayeal (1993)

and commonly used in ice sheet modeling and in Elmer/Ice in particular (e.g. Mosbeux et al., 2023; Hill et al., 2023; Klein445

et al., 2020; Brondex et al., 2019; Mosbeux et al., 2016). This inversion often leads to unrealistic ice flux divergence (Seroussi

et al., 2011), caused by remaining uncertainties in model initial conditions, that we mitigate by running the model forward over

20 years, damping the divergences to acceptable values (e.g. Gillet-Chaulet et al., 2012).

The 3-D Finite Element mesh is built in two steps. First, we build a 2D-plan mesh preferentially refined along directions

of highest second-derivative of observed ice velocity and ice thickness with a resolution varying from 1 to 25 km (e.g (Hill450
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et al., 2023)). The 2-D mesh is then vertically extruded over 11 layers, for a layer resolution roughly varying from 10 to 300 m

locally depending on the ice thickness (e.g. Gillet-Chaulet et al., 2012). This results in a 3-D mesh of 651,690 linear wedge

elements and 316,310 nodes. Due to the large number of elements and nodes, the simulations are conducted in parallel with 32

partitions, giving roughly 10,000 nodes per partition.

B3 Damage Mechanics455

The increase of damage in the media depends on the stress field and occurs when the maximum tensile stress exceeds a

threshold σth (between 0.01 and 0.20 MPa in Krug et al., 2014). To account for ice heterogeneity, some noise can be introduced

on σth: σth = (σ̄th)+δσ, where δσ/(σ̄th) follows a standard normal distribution with an arbitrary standard deviation. For a better

assessment of the impact of the SL time stepping choice, we keep δσ = 0 in all our simulations. As stated in Sec. 4, all our

simulations are conducted with σth = 0.65 MPa for the purpose of the experiment. However, for an accurate representation of460

damage and a better alignment with current observations, this threshold should be carefully considered in relation to the tensile

strength of ice and the selected damage criterion (Mercenier et al., 2018, 2019).

The source term can be described as follows:

f(χ) =





B ·χ(σI ,σth,D) if χ≥ 0

0 if χ < 0
, (B10)

where B is a damage enhancement factor that needs to be calibrated and that we take equal to 1 in our experiment. The variable465

χ is called the damage criterion and writes:

χ(σI ,σth,D) =
σI

1−D
−σth + pw, (B11)

where σI is the maximal tensile principal stress, and pw is the eventual water pressure in the crevasse (e.g., sea pressure in

basal crevasses). In our application of Sec. 4, we keep pw = 0, hence preventing damage creation close to the bed. We can see

χ increases as D increases, simulating the fact that internal forces acting on any damaged section of material are the same as470

the ones before damage but on a reduced surface (Lemaitre and Chaboche, 1978).
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