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Abstract. Windblown dust emissions are governed by near-surface wind speed and soil erodibility, the latter modulated by

hydroclimate and land use conditions. Accurate model representations of these drivers are essential for reproducing histori-

cal dust variability and projecting future dust changes. Recognizing the unobservable, model-specific nature of dust emission

fluxes, this study evaluates the discrepancies among 21 Earth system models in representing the relative influences of wind

speed versus hydroclimate drivers on the interannual variability of dust emissions. In the hyperarid climate zone, the models5

show poor agreement in simulated dust variability, with only 10% out of 210 pairwise comparisons showing significant posi-

tive correlations. In arid and semiarid zones, the models display a dual pattern driven by a "double-edged sword" effect of land

surface memory: models with coherent hydroclimate variability show improved agreement, whereas those with divergent hy-

droclimate representations show larger disagreement. The models mostly capture the dominant wind control over the hyperarid

zone, but show great discrepancies in the relative importance of wind versus hydroclimate drivers over arid and semiarid zones.10

GFDL-ESM4 and CESM2-CAM-Kok overestimate the hydroclimate influence in the hyperarid zone. Implementing the Kok

et al. (2014) dust scheme in CESM and E3SM generally reduces wind contributions to dust variability, e.g., from 56% to 44%

in CESM and from 86% to 74% in E3SM within the arid zone. These findings underscore the need to improve near-surface

wind simulations in hyperarid areas and land surface process representations in arid and semiarid areas to reduce uncertainties

in dust emission simulations.15

1 Introduction

Windblown dust aerosol is an essential element of the Earth’s biogeochemical cycle and has become a global concern due to its

wide-ranging impacts on the climate, ecosystems, agriculture, and society. Dust emission is modulated by near-surface wind

speed and the abundance and availability of fine soils, which collectively determine the timing, location, duration, and intensity

of dust events (Xi, 2023). The most abundant fine sediments are typically found in low-relief areas with thick accumulations of20

unconsolidated materials produced by weathering, fluvial, and/or aeolian processes (Bryant, 2013). The sediment availability

for dust production is influenced by environmental conditions such as surface soil moisture and armoring (e.g., vegetation, soil
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crust) which determine the minimum or threshold wind velocity that must be reached to mobilize soil particles (Bullard et al.,

2011). The environmental controls of dust emissions have been incorporated in Earth system models (ESMs) to project dust

aerosol responses to climate variability and change. Specifically, the horizontal saltation flux is parameterized as the third or25

fourth power of wind speed, reflecting the dominant role of infrequent, high-wind events. Many ESMs use prescribed, time-

invariant dust source functions to represent spatially varying sediment abundance, with high values assigned to low-relief areas

which experience frequent dust activity as observed by satellites (Ginoux et al., 2001; Prospero et al., 2002; Zender et al.,

2003). The sediment abundance is typically assumed to be unlimited without accounting for depletion or replenishment over

time (Zhang et al., 2016). In ESMs, sediment availability is closely coupled with hydroclimate and land surface processes.30

Surface soil moisture, as simulated by land surface schemes, is directly used to determine the threshold wind velocity for

saltation (e.g., Fécan et al., 1999). The bare soil fraction is used to exclude non-erodible surfaces covered by snow, ice, water

bodies, or vegetation. Vegetation also increases the surface roughness and reduces the wind shear stress exerted on exposed

soils (Marticorena and Bergametti, 1995; Shao et al., 2011). This effect can be represented using drag partitioning schemes but

is currently not considered in most ESMs.35

Numerous studies have evaluated the consistency and performance of current ESMs in simulating the global dust cycle

under the Aerosol Comparisons between Observations and Models (AeroCom) initiative and Coupled Model Intercomparison

Project (CMIP) (Textor et al., 2006; Huneeus et al., 2011; Kim et al., 2014; Wu et al., 2020; Gliß et al., 2021; Zhao et al., 2022;

Kim et al., 2024). Overall, modern-day dust aerosol column burden is reasonably constrained by ground- and satellite-based

aerosol optical depth (AOD) observations, leading to better model agreement than that in dust emission and deposition esti-40

mates. Knippertz and Todd (2012) suggested that model tuning to match satellite observations, e.g., via the use of prescribed

dust source functions, induces a compensational effect between dust emission and deposition, both of which lack robust obser-

vational constraints at the global scale. Indeed, past studies have reported persistent, substantial model discrepancies in global

dust emission estimates and difficulties in reproducing the historical dust variability and its dependence on wind speed and bare

soil fraction (Huneeus et al., 2011; Evan et al., 2014; Evan, 2018; Pu and Ginoux, 2018; Wu et al., 2020; Gliß et al., 2021; Zhao45

et al., 2022). More recently, Kok et al. (2023) suggested that current ESMs failed to capture the large increase of global dust

burden since preindustrial times, likely due to inaccurate representations of the climate and land-use drivers of dust emissions,

and/or the dust sensitivity to these drivers in these models.

The model discrepancies can be explained, at least in part, by the choice of dust emission schemes. Earlier schemes rely on

prescribed, time-invariant dust source functions to shift emissions towards satellite-observed hotspot regions (Ginoux et al.,50

2001; Zender et al., 2003), whereas newer schemes adopt more mechanistic approaches that represent sediment availability

as a function of land surface conditions, thereby eliminating the need for prescribed source functions (Kok et al., 2014b).

With improved model physics, however, newer schemes require a larger set of input parameters that may introduce additional

uncertainties. In addition, some schemes explicitly represent sandblasting efficiency to describe the momentum transfer from

salting soil grains to dust entrainment into the atmosphere (e.g., Zender et al., 2003; Kok et al., 2014b), while simplified55

approaches assume a linear scaling between the vertical and saltation dust fluxes (e.g., Ginoux et al., 2001; Volodin and

Kostrykin, 2016). The choice of wind speed also varies: some schemes use 10-m winds for simplicity, while others use friction
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velocity, which more accurately captures the wind stress acting on soil surfaces but requires information on surface roughness.

Because surface roughness length is poorly constrained by observations, models rely on varying assumptions and tunings to

account for its effects on dust emissions (e.g., Peng et al., 2012; Albani et al., 2015; Tegen et al., 2019).60

Even when using the same dust scheme, ESMs can diverge substantially in dust emission simulations because of differences

in model configurations (e.g., horizontal resolution, vertical levels), parameter tunings, and coupled physical parameterizations.

For instance, the bare soil fraction is determined from land type, vegetation fraction, and snow area extent, all of which may

differ across ESMs. In particular, vegetation cover may be prescribed from satellite climatology or simulated interactively

within the model. Dust emission discrepancies may also result from differences in soil properties (e.g., hydraulic conductivity),65

soil column structure (e.g., number and thickness of layers), and hydrologic processes (e.g., precipitation, runoff, evaporation),

which ultimately determine the surface soil moisture and erodibility. The soil moisture effect on threshold wind velocity is also

treated in different ways, for example, in how models define the residue moisture level below which soil wetness is assumed to

have no effect (e.g., Fécan et al., 1999; Ginoux et al., 2001; Evans et al., 2016; Volodin and Kostrykin, 2016). Moreover, ESMs

differ in the parameterizations for convection and atmospheric boundary layer processes, both of which strongly influence the70

generation of peak low-level winds. Therefore, it is not surprising that dust emission estimates are strongly model-dependent,

considering the tight coupling between dust emission and the broader model physics and configurations.

While model discrepancies in global dust emission estimates are well documented in past studies, a key question remains

as to how consistently and accurately current ESMs capture the interannual variability of dust emissions and their sensitivity

to physical drivers. Addressing this question is essential for understanding and reducing model uncertainties in projecting75

dust responses to future climate and land-use changes. In this study, we evaluate the interannual variability of dust emission

fluxes and quantify the relative influence of near-surface wind and hydroclimate drivers simulated by a suite of state-of-the-

art ESMs. Compared with previous work, our analysis shifts the focus from climatological means to temporal variability and

moves beyond documenting uncertainties to diagnosing their physical origins, thereby providing new insights for improving

dust emission representations in ESMs.80

A major challenge in evaluating dust models is the lack of direct observational constraints on dust emission fluxes. While

satellite-based dust AOD and in-situ dust concentration measurements provide valuable insights into dust variability (e.g.,

Prospero and Lamb, 2003; Zender and Kwon, 2005; Ginoux et al., 2012), they integrate the effects of emission, transport,

and deposition, making it difficult to isolate the emission process (the focus of this study). Thus, rather than validating model

performance against observations, we focus on diagnosing the inter-model consistency in dust emission variability across85

different climate zones (i.e., hyperarid, arid and semiarid). In contrast to previous studies, we treat dust emission flux as an

unobservable, model-specific quantity in our study, similar to Koster et al. (2009)’s view of root-zone soil moisture. This

perspective recognizes the fact that simulated dust emission fluxes cannot be directly validated with field observations, and are

characterized by a dynamic range defined by each model’s physical parameterizations, parameter uncertainties, and structural

configurations. The true information content of model-simulated dust emission fluxes therefore lies not necessarily in their90

absolute magnitudes, but in their spatiotemporal variability and sensitivities to physical drivers.
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Table 1. Summary of the Earth system models and aerosol reanalysis datasets considered in this study. Dust source function (DSF) column

indicates whether a prescribed dust source function is used. Leaf area index (LAI) column indicates whether LAI is treated as a prognostic

variable. Dm, dust particle diameter upper limit.

Model Resolution Dm Wind DSF LAI Dust Scheme Reference

CESM2-WACCM-Zender 0.9°×1.25° 10 u3
∗ Y Y Zender et al. (2003) Gettelman et al. (2019)

CESM2-CAM-Zender 0.9°×1.25° 10 u3
∗ Y Y Zender et al. (2003) Albani et al. (2015)

CESM2-CAM-Kok 0.9°×1.25° 10 u3
∗ N Y Kok et al. (2014b) Li et al. (2022)

E3SM2-Zender 1°×1° 10 u3
∗ Y N Zender et al. (2003) Feng et al. (2022)

E3SM3-Kok 1°×1° 10 u3
∗ Y Y Kok et al. (2014b) Xie et al. (2025)

CanESM5-1 2.8°×2.8° Bulk u3
∗ Y Y Peng et al. (2012) Sigmond et al. (2023)

CNRM-ESM2.1 1.4°×1.4° 20 u3
∗ N Y Tegen et al. (2002) Séférian et al. (2019)

EC-Earth3-AerChem 2°×3° 20 u3
∗ Y N Tegen et al. (2002) Van Noije et al. (2021)

GISS-E2.1-OMA 2°×2.5° 32 u3
10 Y N Miller et al. (2006) Miller et al. (2021)

GISS-E2.1-MATRIX 2°×2.5° 32 u3
10 Y N Miller et al. (2006) Miller et al. (2021)

GISS-E2.2-OMA 2°×2.5° 32 u3
10 Y N Miller et al. (2006) Rind et al. (2020)

GFDL-ESM4 1°×1.25° 20 u3
∗ Y Y Ginoux et al. (2001) Shevliakova et al. (2024)

HadGEM3-GC31 0.6°×0.8° 63 u3
∗ Y N Woodward (2011) Roberts et al. (2019)

UKESM1.0 1.25°×1.9° 63 u3
∗ N Y Woodward (2001) Woodward et al. (2022)

INM-CM5.0 1.5°×2° Bulk u4
∗ N N Volodin and Kostrykin (2016) Volodin (2022)

IPSL-CM6A-LR 1.26°×2.5° Bulk u3
10 Y Y Balkanski et al. (2004) Lurton et al. (2020)

MRI-ESM2.0 1.9°×1.9° 20 u3
∗ N N Shao et al. (1996) Yukimoto et al. (2019)

MIROC6 1.4°×1.4° 10 u3
10 N Y Takemura et al. (2009) Tatebe et al. (2019)

MIROC-ES2L 2.8°×2.8° 10 u3
10 N Y Takemura et al. (2009) Hajima et al. (2020)

MPI-ESM-1.2 1.9°×1.9° Bulk u3
∗ Y Y Cheng et al. (2008) Mauritsen et al. (2019)

NorESM2 0.9°×1.25° 10 u3
∗ Y N Zender et al. (2003) Seland et al. (2020)

MERRA2 0.5°×0.63° 20 u3
10 Y N Ginoux et al. (2001) Randles et al. (2017)

JRAero 1.1°×1.1° 20 u3
∗ N N Shao et al. (1996) Yumimoto et al. (2017)

The remainder of this paper is organized as follows. Section 2 describes the ESMs and reanalysis datasets considered in this

study, and the dominance analysis technique used to quantify the joint and relative influences of dust emission drivers. Section

3 presents the model comparison of dust interannual variability and relative influence of wind and hydroclimate drivers. Section

4 summarizes the main conclusions.95
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2 Data and Approach

2.1 ESMs and aerosol reanalysis

We consider a total of 21 ESMs, summarized in Table 1. These include 18 models from the CMIP6 fully coupled historical

experiment (1980–2014). For each model, we use the first ensemble member (r1i1p1f1) unless otherwise stated. Two CESM

variants employ the dust emission parameterization of Zender et al. (2003) (hereafter the Zender scheme) but use different100

atmospheric schemes: the Community Atmosphere Model (CESM2-CAM-Zender) versus the Whole Atmosphere Commu-

nity Climate Model (CESM2-WACCM-Zender). We also performed a separate CESM simulation (2004–2013) coupled with

the dust scheme of Kok et al. (2014b) (hereafter the Kok scheme; CESM2-CAM-Kok) (Li et al., 2022). In addition, we con-

ducted two experiments using the DOE E3SM model (1980–2014), which are coupled with the Zender (E3SM2-Zender) and

Kok schemes (E3SM3-Kok), respectively (Feng et al., 2022; Xie et al., 2025). A key difference between the Zender and Kok105

schemes is that, the Zender scheme relies on a prescribed, time-invariant dust source function to shift emissions towards con-

temporary dust source areas, whereas the Kok scheme applies more physically based parameterizations of the dust sensitivity

to soil erosion thresholds, thereby improving dust simulations without the use of prescribed source functions (Kok et al.,

2014a). These paired CESM and E3SM experiments allow us to evaluate how the choice of dust emission schemes and host

models affect the simulated dust sensitivities to physical drivers. However, it is worth noting that CESM2-CAM-Zender does110

not account for dust mineralogy, whereas CESM2-CAM-Kok simulates dust as mineral components with observationally con-

strained mineral optical properties (Li et al., 2024). This may lead to different radiative feedback on meteorology and contribute

to model disparity in dust emissions. Similarly, E3SM3 incorporates extensive model updates relative to E3SM2, which may

affect simulations of near-surface meteorological and land surface conditions relevant to dust emissions (Xie et al., 2025).

Several other model families share common heritage but differ in physics options and configurations. For example, three115

GISS-E2 models use the same dust scheme of Miller et al. (2006) but differ in model version (2.1 vs. 2.2) and aerosol mi-

crophysics scheme: One-Moment Aerosol (OMA; ensemble member r1i1p3f1) versus Multiconfiguration Aerosol TRacker of

mIXing state (MATRIX; ensemble member r1i1p5f1) (Miller et al., 2021; Rind et al., 2020). UKESM1.0 is developed based on

the HadGEM3-GC3.1 general circulation model. They use the same dust scheme of Woodward (2001) but differ in parameter

tunings and dust source representations (Woodward et al., 2022). Both MIROC-ES2L and MIROC6 use the dust scheme from120

the SPRINTARS aerosol module (Takemura et al., 2009). MIROC-ES2L builds upon the MIROC general circulation model

version 5.2 (MIROC5) (Hajima et al., 2020), while MIROC6 incorporates updated physics that improved the mean climate

state and internal variability compared to MIROC5 (Tatebe et al., 2019).

We further compare the ESM simulations with two aerosol reanalysis products: Modern-Era Retrospective Analysis for Re-

search and Applications version 2 (MERRA2, 1980–2014) (Gelaro et al., 2017), and Japanese Reanalysis for Aerosol (JRAero,125

2011–2017) (Yumimoto et al., 2017). Dust emission in MERRA2 is simulated using the Ginoux et al. (2001) parameterization

within the GOCART aerosol module of the GEOS-5 model. In JRAero, dust emissions are simulated using the Shao et al.

(1996) energy-based scheme (same as in MRI-ESM2.0) within the Japan Meteorological Agency MASINGAR mk-2 global

aerosol transport model (Yumimoto et al., 2017; Yukimoto et al., 2019). In both MERRA2 and JRAero, the meteorological
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Figure 1. Definitions of hyperarid, arid, and semiarid climate zones.

inputs for dust emission calculations are generated via data assimilation of diverse in situ and remote sensing observations130

(including surface and upper-air wind measurements), which improves the accuracy of near-surface winds compared to free-

running models (Gelaro et al., 2017; Yumimoto et al., 2017). The surface soil moisture in MERRA2 also benefits from the

assimilation of observation-corrected precipitation. Although both reanalyses assimilate bias-corrected total AOD, it is ex-

pected to have limited effect on dust emission simulations.

We evaluate the consistency among the ESMs and reanalysis products in simulating the interannual variability of dust135

emission fluxes. To facilitate regionally consistent comparisons, global dryland areas are categorized into three climate zones—

hyperarid, arid, and semiarid—based on aridity index (AI), defined as the ratio of climatological mean precipitation to potential

evapotranspiration for 1970–2000 following (Zomer et al., 2022). The hyperarid zone is defined as AI≤0.05, arid zone as

0.05<AI≤0.2, and semiarid zone as 0.2<AI≤0.5. As shown in Figure 1, hyperarid areas primarily cover North Africa, Arabian

Peninsula, Iranian Plateau, and Tarim Basin. Arid and semiarid areas cover other major dust sources, including the Sahel140

(North Africa), Turan Depression (Central Asia), Gobi Desert (East Asia), Thar Desert (South Asia), Kalahari Desert (Southern

Africa), Chihuahua Desert (North America), Patagonia steppe (South America), and the Great Sandy and Simpson Deserts

(Australia). The rationale for climate zone analysis is that the relative importance of wind versus hydroclimate controls on

dust emission is expected to vary with climate aridity. Hyperarid areas are dominated by permanently dry, barren surfaces with

minimal hydroclimate variability, so dust emission is primarily controlled by wind speed. In contrast, arid and semiarid zones145

experience greater precipitation and hydroclimate fluctuations, which exert stronger influences on soil erodibility.

6



2.2 Dominance analysis technique

Previous studies have commonly used linear regression coefficients to quantify the dust sensitivity to physical drivers (e.g., Pu

and Ginoux, 2016; Aryal and Evans, 2021; Zhao et al., 2022). In multiple linear regression, a regression coefficient represents

the mean change in the response variable (e.g., dust emission flux or AOD) associated with a unit change in a given predictor,150

while holding all other predictors constant. This interpretation assumes mutual independence among predictors, an assumption

violated by strong correlations among hydroclimate variables. As a result, linear regression coefficients can yield misleading

inference regarding the relative importance of predictors. Moreover, regression coefficients, standardized or not, may not pro-

vide a consistent basis for comparing predictor importance across the ESMs, due to inconsistent dynamic ranges of predictors

among models.155

In this study, we apply the dominance analysis technique to quantify the relative influence of wind and hydroclimate drivers

on dust emissions. Dominance analysis quantifies the marginal contribution of each predictor to the total explained variance

(R2) in the response variable by evaluating all possible subset models (2p − 1 subsets for p predictors) in a multiple linear

regression framework (Budescu, 1993; Azen and Budescu, 2003). For each predictor, the method calculates its average incre-

mental contribution to the total R2 across all subset models of the same size (i.e., models with the same number of predictors).160

These incremental R2 values are then averaged to obtain the predictor’s overall contribution to the total R2. A key feature of

this approach is that the sum of individual predictor contributions equals the total R2 of the full model (i.e., with all predictors

included), thereby allowing the partitioning of explained variance among correlated predictors. The resulting predictor R2 val-

ues thus represent the proportions of total variance in the response variable that can be attributed to each predictor, accounting

for their multicollinearity.165

The monthly dust emission fluxes simulated by each ESM are used as the response variable. Although the models differ

in how the total emission flux is partitioned into discrete size bins—a key factor influencing dust transport and atmospheric

lifetime—the size partitioning has minor effects on diagnosing the emission process itself. In particular, the physical drivers

considered here operate upstream of the size partitioning, and thus mainly control the initiation and magnitude of total dust

emission rather than its size-resolved characteristics.170

For each ESM, we consider six predictors: 10-m wind speed, total precipitation (including liquid and solid phases), water

content in the uppermost soil layer (soil moisture), 2-m specific humidity, 2-m air temperature, and leaf area index (LAI). These

predictors are chosen because they are either directly used as input parameters in dust flux parameterizations or are closely

linked to dust emission intensity, as suggested in previous studies (e.g., Engelstaedter et al., 2003; RAVI et al., 2006; Zou and

Zhai, 2004; Sokolik et al., 2021; Cowie et al., 2015; Kim and Choi, 2015; Xi and Sokolik, 2015a, b; Xi, 2023). Among them,175

10-m wind speed represents the wind shear drag responsible for dust mobilization, while the remaining variables represent the

hydroclimate controls on sediment availability. Dominance analysis is applied to all ESMs and MERRA2 over grid cells with

nonzero emissions. Prior to analysis, the data are first deseasonalized by subtracting month-wise climatological means from

both the dust emission fluxes and predictors, and subsequently normalized to the 0–1 range via min-max scaling. The resulting

grid-level predictor R2 values are then used to assess (1) the internal spatial variability of predictor importance within each180
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Figure 2. Climatological mean dust emission fluxes from (a–u) 21 Earth system models, (v) model ensemble mean, (w) MERRA2 reanalysis,

and (x) JRAero reanalysis. Global annual total emissions are displayed on each panel.

climate zone and model, and (2) and inter-model consistency in representing the predictor relative influence on the interannual

dust emission variability. JRAero is excluded from this analysis due to missing predictor data.
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3 Results

3.1 Climatological distribution

Figure 2 displays the climatological mean annual dust emission fluxes from the 21 ESMs, their ensemble mean, and the185

MERRA2 and JRAero reanalyses for 2005–2014 (2004–2013 for CESM2-CAM-Kok and 2011–2017 for JRAero). All datasets

capture the global dust belt stretching from West Africa across the Middle East to East Asia, as well as weaker sources in the

Americas and Australia. Among the models, E3SM3-Kok and HadGEM2-GC31 simulate the most extensive dust-emitting ar-

eas, extending into high-latitude and subhumid areas. CESM2-CAM-Zender, CESM2-WACCM-Zender and NorESM2 restrict

emissions to regions where the dust source function exceeds 0.1, resulting in discrete and spatially limited emission areas.190

Conversely, E3SM2-Zender employs the original dust source function of Zender et al. (2003), producing a more spatially

continuous emission pattern (Fig. 2e).

Global annual dust emissions simulated by the ESMs vary greatly, ranging from 890 to 7727 Tg yr−1 with nearly an order

of magnitude difference (Fig. 2a–2u). The ensemble mean estimate (Fig. 2v) is 2786 Tg yr−1 with a standard deviation of 1821

Tg yr−1, corresponding to a diversity of 65% (defined as the ratio of the standard deviation to the ensemble mean). Based on195

models with an upper particle size limit of 20 µm, global emissions vary from 1062 to 6561 Tg yr−1, with a mean of 3012

Tg yr−1 and diversity of 51%. Compared to aerosol reanalysis data, the ensemble mean estimate is close to JRAero (2780

Tg yr−1, Fig. 2x), but considerably higher than MERRA2 (1605 Tg yr−1, Fig. 2w). Also, the ensemble mean exhibits a more

spatially homogeneous pattern over North Africa and the Arabian Peninsula, whereas MERRA2 and JRAero display more

heterogeneous and localized emission patterns.200

The model discrepancies in dust emission magnitude is consistent with previous assessments. For example, Huneeus et al.

(2011) compared 14 AeroCom Phase I models and reported a global dust emission range of 500–4400 Tg yr−1 (diversity=58%),

of which seven using a 20 µm upper size limit yielded 980–4300 Tg yr−1 (diversity=46%). Similarly, Gliß et al. (2021)

compared 14 AeroCom Phase III models and reported a range of 850–5650 Tg yr−1 with a diversity of 64%. Based on 15

CMIP5 models Wu et al. (2020) reported a range of 740–8200 Tg yr−1 (diversity=66%), with seven models using particle205

diameters up to 20 µm producing 740–3600 Tg yr−1 (diversity=43%). More recently, Zhao et al. (2022) examined 15 CMIP6

AMIP models and reported a range of 1400–7600 Tg yr−1 (diversity=61%). Collectively, these studies, along with our results,

demonstrate persistent large model uncertainties in global dust emission estimates, despite advances in model resolutions

parameterizations, and process understanding.

Figure 3 displays the contributions of different climate zones to global dust emissions. The hyperarid zone accounts for more210

than half of global emissions in all models except CanESM5.1 and INM-CM5.0, both of which simulate relatively uniform

emission patterns with less than 50% from hyperarid areas (Fig. 2i, 2q). This may be caused by known model deficiencies.

As noted in Sigmond et al. (2023), improper parameter tunings related to the hybridization of dust tracers caused spurious

dust events and inaccurate dust distributions in CanESM5.1. An interpolation error in the bare soil fraction also distorted the

model’s dust source characterization, resulting in poor agreement with satellite observations. In INM-CM5.0, the vertical dust215

flux is calculated as a function of wind velocity only, without accounting for land surface controls on the erosion threshold
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Figure 3. Contributions of different climate zones to global annual dust emissions. Numbers indicate percentages above 5%.

(Volodin and Kostrykin, 2016; Volodin, 2022). While this simplification may be appropriate for hyperarid climate zone, it can

overestimate dust emissions over arid and semiarid zones where increased soil wetness and armoring suppress dust mobiliza-

tion.

The contribution of the arid climate zone ranges from 8% (CESM2-CAM-Kok) to 37% (UKESM-1.0), indicating substantial220

model discrepancies compared to the hyperarid zone. The discrepancies become even larger over the semiarid zone, where the

emission fraction ranges from less than 1% to 18%. Particularly, three models allocate more than 10% to the semiarid zone:

CanESM5.1 (18%), INM-CM5.0 (15%), and UKESM1.0 (12%). Overall, as the climate regime transitions from hyperarid

to semiarid, model-estimated dust source strengths become less consistent, revealing increasing uncertainty in how ESMs

represent dust sensitivity to hydroclimate conditions.225

Among the ESMs, CESM2-CAM-Zender and CESM2-WACCM-Zender produce nearly identical total emissions and spatial

distributions, suggesting that the choice between CAM and WACCM atmospheric components has minimal effect. The paired

CESM and E3SM experiments, however, show opposite tendencies: the hyperarid-zone contribution increases from 61% in

CESM2-CAM-Zender to 88% in CESM2-CAM-Kok, but slightly decreases from 63% in E3SM2-Zender to 58% in E3SM3-

Kok. The three GISS-E2 models produce consistent distributions across climate zones, although total emissions are about 40%230
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Figure 4. Percentage of statistically significant (p≤0.1), positive correlations out of every possible pairwise comparisons of deseasonalized

monthly dust emission fluxes from 21 Earth system models. Black contours indicate the model ensemble mean emission flux of 10 and 100

Tg yr−1.

lower when using the MATRIX aerosol scheme, possibly due to parameter tunings or underrepresentation of coarse dust (>5

µm diameter) in the MATRIX modal size distribution (Bauer et al., 2022).

UKESM1.0 emits nearly twice as much dust as HadGEM3-GC3.1, and exhibits slightly more uniform spatial distributions.

As described in Woodward et al. (2022), UKESM1.0 is built upon HadGEM3-GC3.1 but applies parameter tunings that en-

hance friction velocity and suppress soil moisture, effectively increasing the wind gustiness and soil aridity leading to more235

emissions in UKESM1.0. The three Japanese models (MRI-ESM2.0, MIROC-ES2L, and MIROC6) also differ markedly in

total emissions and, to a lesser extent, spatial distributions. MRI-ESM2.0 produces similar regional fractions to JRAero but

nearly doubles the total emission magnitude. Despite using the same dust parameterization, MIROC-ES2L emits roughly five

times more dust than MIROC6. This discrepancy can be largely explained by stronger winds in MIROC-ES2L, which pro-

duces 50% higher global mean wind speed than MIROC6. Moreover, MIROC6 prescribes non-zero LAI even in hyperarid240

areas, likely further suppressing dust generation relative to MIROC-ES2L (Hiroaki Tatebe, personal communications).

Based on the model ensemble mean, global dust emissions are partitioned as 61% from hyperarid, 27% from arid, and 5%

from semiarid zones. In comparison, MERRA2 and JRAero allocate the vast majority of dust emissions to hyperarid and arid

zones, with negligible contributions from the semiarid zone.
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Figure 5. Spearman’s rank correlation coefficients between dust emission flux anomalies averaged over hyperarid, arid, and semiarid climate

zones. Dots indicate statistically significant correlations (p≤0.1). Summary tables are based on Earth system models only (MERRA2 and

JRAero not included).

3.2 Interannual variability245

This section evaluates the consistency among the ESMs in simulating the interannual variability of dust emissions. Monthly

dust emission fluxes from all ESMs are first regridded to a common resolution of 0.9°×1.25° (the native grid of CESM2).

To remove the influence of annual cycles, month-wise climatological means are subtracted from each grid cell, yielding de-

seasonalized dust emission flux anomalies. Spearman’s rank correlation coefficients are then calculated between the monthly

anomalies for every possible model pair. With 21 ESMs, this results in 210 pairwise comparisons. To quantify inter-model250

agreement, we calculate the percentage of model pairs exhibiting statistically significant (p≤0.1), positive correlations. A

higher percentage indicates stronger inter-model agreement in simulating the dust variability, and vice versa. The results are

displayed in Fig. 4.

Despite the dominant contributions to global dust emissions, the hyperarid climate zone exhibits generally poor inter-model

agreement, with less than 10% of pairwise comparisons showing statistically significant positive correlations. Because dust255

emissions from hyperarid areas are predominantly controlled by near-surface wind speed, this poor agreement reflects incon-

sistencies in wind simulations among the ESMs. Indeed, we find that only 10% of model pairs produce positively correlated

wind variability. Evan (2018) reported that dust-producing winds over the Sahara Desert are mainly driven by large-scale me-

teorological processes and that most CMIP5 models failed to capture the near-surface wind variability. These results indicate

that improving the representation of near-surface winds is critical for reducing inter-model discrepancies in dust variability260

over hyperarid regions.

In contrast to the hyperarid zone, the arid and semiarid zones (such as the Sahel, South Asia, East Asia and Australia)

exhibit significantly better agreement. To further assess how model consistency varies across climate regimes, Fig. 5 presents

pairwise correlation matrices based on dust emission flux anomalies averaged over hyperarid, arid, and semiarid zones. The
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Figure 6. Statistical associations between pairwise model correlation coefficients (p≤0.1 shown in red) in dust emission fluxes and hydro-

climate variability over (a) hyperarid, (b) arid, and (c) semiarid climate zones.

percentage of statistically significant, positively correlated model pairs increases from 10% in the hyperarid zone to 14% in265

the arid zone and 17% in the semiarid zone, indicating progressively better agreement where dust emissions are increasingly

influenced by hydroclimate and land surface conditions. Meanwhile, the semiarid zone shows a larger percentage of negatively

correlated model pairs (15%) than the hyperarid (5%) and arid (6%) zones. This dual pattern suggests that as the climate regime

transitions from hyperarid to semiarid, the ESMs exhibit both stronger agreement and heightened disagreement in simulating

the interannual variability of dust emissions.270

This behavior can be explained by the strong influence of antecedent land surface conditions on soil erodibility in semiarid

environments such as temperate grasslands and steppes (Shinoda et al., 2011; Nandintsetseg and Shinoda, 2015). In these re-

gions, factors such as precipitation, soil moisture, and vegetation growth–decay cycles have lagged and long-lasting impacts

on the availability of erodible sediments. For example, dry anomalies during the wet season such as reduced rainfall or earlier

snowmelt can decrease soil cohesion and suppress vegetation growth, thereby prolonging bare soil exposure and enhancing275

the risk of wind erosion. This delayed response exemplifies the land surface memory effect, in which the slow adjustment of

soil and vegetation conditions over weeks to months influences subsequent dust emissions long after the initial hydroclimate

forcing (e.g., drought). We therefore hypothesize that the simultaneous increase in both model agreement and disagreement

from hyperarid to semiarid zones reflects a “double-edged sword” effect of land surface memory: models with coherent repre-

sentations of hydroclimate variability tend to converge in simulated dust variability (i.e., more positive correlations), whereas280

those with divergent hydroclimate representations diverge in the dust variability (i.e., more negative correlations).

To verify this hypothesis, we examine the statistical association between pairwise model correlations in dust emissions and

those in hydroclimate variability. Specifically, we perform a principle component analysis (PCA) of the five hydroclimate

variables (i.e., precipitation, soil moisture, specific humidity, air temperature, LAI) separately for the hyperarid, arid, and

semiarid zones. The leading principle component (PC1), which explains at least 40% of the total variance in all zones, is285
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used as a proxy for the dominant hydroclimate variability. Spearman’s rank correlation coefficients are then computed for all

pairwise comparisons of deseasonalized monthly PC1 values, following the same approach as in Fig. 5.

Figure 6 compares the correlation coefficients for model pairs with the same sign (i.e., both positive or both negative) in

dust emission fluxes and hydroclimate PC1. The regression slope and coefficient of determination (r2) quantify the degree of

statistical association between inter-model correlations in dust emission and hydroclimate variability. The positive relationships290

across all climate zones suggests that ESMs with stronger consensus in hydroclimate variability also tend to produce more

consistent dust variability, and vice versa. More importantly, both the number of significantly correlated model pairs (N)

and correlation strength (slope and r2) show significant increases from hyperarid to semiarid zones. This result supports our

speculation regarding the dual role of land surface memory: it enhances agreement among ESMs with coherent hydroclimate

representations, while simultaneously amplifying disagreement among those with divergent hydroclimate variability.295

3.3 Relative importance of wind and hydroclimate drivers

In this section, we present dominance analysis results on the collective and relative influence of wind and hydroclimate drivers

on the simulated dust variability within each model. Figure 7 shows the total variance explained (R2) by wind speed and five

hydroclimate drivers (precipitation, soil moisture, specific humidity, air temperature, and LAI) in the ESMs and MERRA2.

Results for CESM2-WACCM-Zender and NorESM2 are very similar to those of CESM2-CAM-Zender and thus not shown.300

The ESMs show large discrepancies in the total R2, reflecting inherent differences in the coupling strength between dust

emission and physical drivers. When ranked by the global mean R2, CanESM5.1 shows the lowest explanatory power of the

predictors, followed by MPI-ESM1.2, MIROC6, and EC-Earth3-AerChem. The weak predictor–response relationship can be

explained by several factors. Model deficiencies or errors (e.g., in CanESM5.1, Section 3.1) can weaken or distort the simulated

relationships between dust emission and physical drivers. Simplified parameterizations and/or static land surface input can305

reduce the dust sensitivity to hydroclimate conditions. In addition, because dust emission is governed by highly nonlinear

threshold processes, its dependence on the predictors may deviate from the linear assumptions underlying dominance analysis.

As shown in Fig. 7, total R2 values are generally lower in arid and semiarid areas than in hyperarid areas, likely due to increased

nonlinearity in the dust-hydroclimate relationships that diminishes the explanatory power of multilinear regression models.

Despite these limitations, most ESMs produce significant total R2 values over major dust sources, especially in hyperarid310

areas with R2 above 0.5. Switching from the Zender to Kok dust scheme generally reduces R2 in both CESM and E3SM

(Fig. 7a–d). The GISS-E2 models show little differences between the OMA and MATRIX aerosol schemes, with a modest

increase from version 2.1 to 2.2. UKESM1.0 and HadGEM3-GC3.1 show minimal differences, both showing high R2 values

globally. MIROC6 yields lower R2 than MIROC-ES2L, particularly over hyperarid areas. MERRA2 produces higher R2 than

most ESMs, especially within arid and semiarid zones, indicating a stronger overall coupling between dust emissions and the315

selected predictors.

To assess the relative importance of wind and hydroclimate drivers, Fig. 8 presents the ratio of the wind speed-associated R2

to the combined R2 of the five hydroclimate variables. In all ESMs except GFDL-ESM4, this wind-to-hydroclimate R2 ratio is

well above 1 over hyperarid areas, consistent with the dominant control of wind speed on dust emission from persistently dry,
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Figure 7. Total explained variance (R2) in dust emission fluxes by six near-surface variables (wind speed, precipitation, soil moisture, specific

humidity, air temperature and LAI) in Earth system models and MERRA2. Global mean R2 values are shown on each panel.
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Figure 8. The ratio of wind speed-associated R2 to the combined R2 of five hydroclimate drivers (precipitation, soil moisture, specific

humidity, air temperature and LAI) in Earth system models and MERRA2.
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Figure 9. Fractional contributions of wind-dominated, equally-important, and hydroclimate-dominated regimes to global dust emissions in

Earth system models and MERRA2.

barren surfaces. In contrast, arid and semiarid areas exhibit greater inter-model discrepancies, with ratios either above or below320

1 depending on the model. This reflects substantial uncertainty in how models represent the relative influence of wind versus

hydroclimate drivers in regions where hydroclimate and land surface conditions exert strong effects on sediment availability.

Based on the wind-to-hydroclimate R2 ratios, we classify global dust-emitting areas into three regimes: wind-dominated

(ratio>1.2), hydroclimate-dominated (ratio<0.8), and equally-important (0.8–1.2). Then we calculate the fractions of dust

emitted from these regimes within each model. The results are displayed in Fig. 9. The ESMs show general agreement in the325

“equally-important” regime, with most models simulating less than 10% from regions where wind and hydroclimate drivers

have nearly equal influence. GFDL-ESM4 produces the highest contribution (12%) in this regime.

The wind-dominated regime accounts for the majority of dust emissions (>80%) in most ESMs, consistent with the dominant

contribution from hyperarid areas (Fig. 3). However, three models yield anomalously low estimates: GFDL-ESM4 (36%), INM-

CM5.0 (43%) and CanESM5.1 (75%). These deviations can be explained by different reasons. As shown in Fig. 3, INM-CM5.0330

and CanESM5.1 produce relatively homogeneous emission patterns, which reduce the fractional contribution from hyperarid
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Figure 10. Ridgeline plots of the fractional contributions of wind speed to the total R2 over (a) hyperarid, (b) arid, and (c) semiarid climate

zones. Black vertical lines indicate median values. Color shading represent the mean total R2 values.

or wind-dominated regions. In contrast, the low estimate in GFDL-ESM4 results from its anomalously strong hydroclimate

influence over hyperarid areas. As shown in Fig. 8i, GFDL-ESM4 yields markedly low wind-to-hydroclimate ratios (<1) over

North Africa, Arabian Peninsula, and Iranian Plateau, leading to the misclassification of these inherently wind-dominated

regions as hydroclimate-dominated. Given the extremely scare precipitation and low hydroclimate variability in these regions,335

such strong hydroclimate influence is likely unrealistic and points to possible deficiencies in the model.

For CESM and E3SM, switching from the Zender to Kok dust scheme slightly reduces the wind-dominated dust fraction:

from 85% to 79% in CESM, and from 99% to 96% in E3SM. The GISS-E2 models yield similar results regardless of model

version or aerosol scheme, with 87–90% dust from the wind-dominated regime. Likewise, UKESM1.0 and HadGEM3-GC3.1

yield nearly identical estimates, with 90% of dust from wind-dominated regions. MERRA2 simulates 98% emissions from340

wind-dominated areas, higher than most ESMs.

The above analysis not only confirms the anomalous dust emission patterns in CanESM5.1 and INM-CM5.0 (shown in

Fig. 3), but also identifies GFDL-ESM4 as an outlier due to its misrepresentation of the relative importance of wind and

hydroclimate drivers. Here we further examine the wind speed fractional contributions to the total R2 across different climate

zones. For each zone, we use ridgeline plots to illustrate the statistical distributions of grid-level wind-associated R2 fractions.345

The results are displayed in Fig. 10. In these plots, the black vertical lines indicate the median values. When the median wind-
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associated R2 fraction is above 50%, more than half of the grid cells within the climate zone are dominated by near-surface

winds in the dust variability. Conversely, when the median falls below 50%, hydroclimate drivers exert dominant control over

the majority of the climate zone.

In the hyperarid zone (Fig. 10a), most ESMs capture the dominant control of wind speed, with median wind-associated350

R2 fractions exceeding 80%. The three GISS-E2 models display similar spatial variability, albeit with slightly lower wind

contributions (67–74%). Two models stand out as outliers: GFDL-ESM4 and CESM2-CAM-Kok, both exhibiting great spatial

variability and anomalously low wind influence, indicating an overestimation of hydroclimate influence over permanently dry,

barren regions. Specifically, GFDL-ESM4 yields a median wind-associated R2 fraction of 42%, due to excessively strong

hydroclimate influence across North Africa, Arabian Peninsula, and Iranian Plateau (see Fig. 8i). Similarly, CESM2-CAM-355

Kok yields a median of 64%, due to dominant hydroclimate influence over West Africa and the Tarim Basin (see Fig. 8b). In

contrast, CESM2-CAM-Zender captures the expected wind dominance with a median of 87%. The overestimated hydroclimate

influence in CESM2-CAM-Kok relative to CESM2-CAM-Zender persists even when compared over common dust-emitting

areas in the models.

In the arid zone (Fig. 10b), the total R2 values are generally lower, reflecting reduced explanatory power of the selected pre-360

dictors. The ESMs also exhibit greater discrepancies in the relative importance of wind and hydroclimate drivers. Although the

wind influence is reduced and more variable than in the hyperarid zone, it remains dominant in most ESMs. The GISS-E2 mod-

els simulate nearly equal wind and hydroclimate influences. Four models—GFDL-ESM4, INM-CM5.0, MIROC-ES2L and

MIROC6—exhibit median wind-associated R2 fractions well below 50%, signifying a transition from wind- to hydroclimate-

dominated regimes. CESM2-CAM-Kok also reflects this transition, although to a small extent with a median of 46%. In both365

CESM and E3SM, replacing the Zender with Kok dust scheme weakens the wind influence while strengthening the hydrocli-

mate influence, with the median wind-associated R2 fraction declining from 56% to 44% in CESM and from 86% to 74%.

This is consistent with previous findings that physically based soil erodibility formulations in the Kok scheme enhance the dust

sensitivity to climate variability Kok et al. (2014a).

Results for the semiarid zone (Fig. 10c) are less robust due to significantly smaller dust-emitting areas or grid cells (see Fig.370

1). Overall, the influence of wind speed further weakens, while hydroclimate drivers become more important. The magnitude of

this shift, however, varies considerably among ESMs. Specifically, only three models (E3SM3-Kok, EC-Earth3-AerChem and

MPI-ESM1.2) retain the wind dominance, albeit with greater spatial variability. Hydroclimate dominance persists in CESM2-

CAM-Kok, GFDL-ESM4, INM-CM5.0, MIROC-ES2L and MIROC6, consistent with their behaviors in the arid climate zone.

In contrast, multiple models display a transition from wind- to hydroclimate-dominated regimes: E3SM2-Zender, CNRM-375

ESM2.1, CanESM5.1, HadGEM3-GC3.1, and UKESM1.0. The GISS-E2 models and IPSL-CM6A exhibit moderate increases

of hydroclimate influence, resulting in roughly equal importance of wind and hydroclimate drivers. Compared to the ESMs,

MERRA2 generally produces dominant wind influence across all three climate zones.

The above analysis indicates that GFDL-ESM4 and CESM2-CAM-Kok simulate anomalously strong hydroclimate influ-

ences within the hyperarid zone. To diagnose the sources of these anomalies, Fig. 11 presents the median fractional contribu-380

tions of five hydroclimate variables to the total R2. In the hyperarid zone, most ESMs capture the expected negligible influence
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Figure 11. Median factional contributions of hydroclimate drivers to the total explained variance (R2) in Earth system models and MERRA2

over (a) hyperarid, (b) arid, and (c) semiarid climate zones. Hydroclimate variables are precipitation (P), soil moisture (SM), specific humidity

(SH), air temperature (T), and leaf area index (LAI).

of hydroclimate drivers. GFDL-ESM4 and CESM2-CAM-Kok stand out as outliers, producing anomalously high influence

from soil moisture and precipitation, respectively. The influence attributed to specific humidity can be interpreted as a soil

moisture effect, given the close coupling between surface soil water content and near-surface humidity through evapotranspi-

ration. The GISS-E2 models also display elevated contributions from soil moisture and specific humidity, which explains their385

modest wind influence in the hyperarid zone, as shown in Fig. 10a.

The anomalous hydroclimate influence in the hyperarid zone can be explained by two possible mechanisms: (1) the model

overestimates the hydroclimate variability, leading to spurious effects on dust emissions; or (2) the model reasonably represents

the hydroclimate variability but overestimates the dust sensitivity to hydroclimate drivers. For example, Shevliakova et al.

(2024) reported that the GFDL-ESM4 land model significantly overestimates surface soil moisture over major dust source390

areas, by as much as a factor of two compared to satellite observations. This bias likely explains the unrealistically large soil

moisture influence on dust emissions in GFDL-ESM4.

The anomalous hydroclimate influence in CESM2-CAM-Kok may be partly due to dust emission parameterizations in the

Kok scheme which introduces enhanced sensitivity to soil moisture compared with the Zender scheme (Kok et al., 2014a).

Another possible reason is the short simulation period for CESM2-CAM-Kok (2004–2013), which may be insufficient to395

capture the full range of dust variability and predictor relationships relative to CESM2-CAM-Zender (1980–2014). In this

regard, the E3SM experiments provide a more robust comparison between the two dust schemes. As shown in Fig. 11a, both
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E3SM2-Zender and E3SM3-Kok exhibit negligible hydroclimate influence in the hyperarid zone. In the arid zone, however,

E3SM3-Kok exhibits stronger hydroclimate influence than E3SM2-Zender, providing new evidence that the Kok scheme am-

plifies the dust emission sensitivity to hydroclimate conditions compared to the Zender scheme, as previously suggested by400

Kok et al. (2014a).

In the arid zone (Fig. 11b), the enhanced hydroclimate influence is primarily attributed to soil moisture and specific humidity

in most ESMs, consistent with their well-established role in modulating soil erodibility (e.g., Csavina et al., 2014; RAVI et al.,

2006; Kim and Choi, 2015). Several models—including CESM, GFDL-ESM4 and INM-CM5.0—assign strong influence to

LAI. Unlike other hydroclimate variables, LAI may be either prescribed from climatology or interactively simulated in models405

coupled with dynamic vegetation components, such as CESM and GFDL-ESM4 (Table 1). Models using prescribed LAI are

likely to show limited interannual variability and minimal influence on dust emissions. For CESM and GFDL-ESM4, the LAI

influence reflects the vegetation effect on bare soil fraction, a key parameter in vertical dust flux calculations. Specifically, bare

soil fraction is calculated from LAI assuming a linear relationship in CESM and an exponential relationship in GFDL-ESM4.

4 Conclusions410

This study evaluates discrepancies among 21 ESMs in representing the interannual variability of windblown dust emissions

and the relative importance of near-surface wind speed and five hydroclimate variables (precipitation, soil moisture, specific

humidity, air temperature, and LAI) in modulating the dust variability. Treating dust emission flux as an unobservable, model-

specific quantity, we apply dominance analysis to quantify the relative influences of physical drivers within each model, and

compare the model behaviors across three climatologically-defined climate zones (hyperarid, arid, and semiarid).415

The extent of inter-model agreement in simulated dust variability exhibits a strong dependence on climate aridity. In the hy-

perarid zone, the ESMs show poor agreement, with only 10% out of 210 pairwise comparisons yielding statistically significant,

positive correlations. This poor agreement largely reflects inconsistencies in simulated near-surface winds. In arid and semiarid

zones, the ESMs exhibit a dual pattern driven by a "double-edged sword" effect of land surface memory: models with coherent

representations of hydroclimate variability tend to converge in their simulated dust variability, whereas those with divergent420

hydroclimate representations diverge in dust emission responses.

The relative importance of wind and hydroclimate drivers also varies with climate aridity. In the hyperarid zone, most

ESMs capture the expected dominant wind control and minimal hydroclimate influence, except CESM2-CAM-Kok and GFDL-

ESM4, which show unusually strong sensitivities to precipitation and soil moisture. The overestimated hydroclimate influence

in GFDL-ESM4 can be explained by the model’s overestimation of soil moisture in drylands and consequent spurious effects425

on dust emissions. The overestimated hydroclimate influence in CESM2-CAM-Kok may be partly explained by the physically

based soil erodibility formulation in the Kok et al. (2014b) dust scheme. A similar pattern is found in E3SM, where replacing

the Zender et al. (2003) scheme with the Kok et al. (2014b) scheme enhances the hydroclimate contribution to dust variability

in the arid zone. Due to compounding factors such as model physics and dust mineralogy treatments in CESM and E3SM,
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however, additional experiments are needed to disentangle the effects of dust emission parameterizations on the simulated430

sensitivities to physical drivers.

In arid and semiarid zones, the wind influence generally weakens while the hydroclimate influence strengthens in all ESMs.

But the relative importance of these drivers becomes increasingly inconsistent, with contrasting model behaviors in either

retaining wind dominance or shifting toward hydroclimate dominance or near-equal importance between the two. Compared

to the ESMs, MERRA2 generally produce stronger wind influence and weaker hydroclimate influence across all three climate435

zones.

Overall, this study provides new insights into how current ESMs represent the interannual variability and physical drivers of

windblown dust emissions. Our findings underscore that reducing model uncertainties in dust emission simulations requires (1)

improved representations of near-surface wind variability and gustiness in hyperarid regions, and (2) more accurate treatment

of hydroclimate and land-surface processes in arid and semiarid regions.440
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