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Abstract. Windblown dust emissions are governed by near-surface wind speed and soil erodibility, the latter influenced by

hydroclimate conditions and land use. Accurate representations of the influence of these drivers in Earth system models is

critical for reproducing historical dust variability and projecting dust responses to future climate and land-use changes. Here

we evaluate the model consistency in simulating the interannual variability of dust emissions and quantify the variance ex-

plained by wind speed and hydroclimate drivers within 21 Earth system models and three climate zones (hyperarid, arid and5

semiarid). In the hyperarid zone, the models exhibit poor agreement in dust variability, with only 10% out of 210 pairwise

comparisons showing significant positive correlations. In arid and semiarid zones, the models display a dipole pattern driven

by a "double-edged sword" effect of land surface memory: models with coherent hydroclimate variability show improved

agreement, whereas those with divergent hydroclimate representations show increased disagreement. Most models capture the

dominant influence of wind speed on dust emissions in hyperarid areas except GFDL-ESM4 and CESM2-CAM-Kok, which10

display large spatial variability and anomalously high sensitivity to soil moisture and precipitation, respectively. Incorporating

the Kok et al. (2014) scheme in CESM and E3SM generally amplifies the dust sensitivity to hydroclimate drivers and reduces

the wind contribution to explained variance, e.g., from 56% to 46% for CESM and from 86% to 75% for E3SM in the arid zone.

These findings underscore the need to improve the representations of near-surface winds in hyperarid areas and hydroclimate

and land surface processes in arid and semiarid areas to reduce model uncertainties in dust emission estimates.15

1 Introduction

Windblown dust aerosol is an essential element of the Earth’s biogeochemical cycle, but has become a global concern due

to its wide-ranging impacts on the climate, ecosystems, agriculture, and society. Dust emission is modulated by a number of

atmospheric and land surface variables which can be grouped into three broad drivers: sediment supply, sediment availability,

and wind erosivity, which collectively determine the timing, location, duration, intensity, and impacts of dust events (Xi,20

2023). The most abundant sediment supply is typically found in low relief areas with thick layers of fine, unconsolidated

materials generated via weathering, fluvial, and/or aeolian processes (Bryant, 2013). The sediment availability for airborne

dust production is strongly affected by soil moisture and surface armoring (e.g., vegetation, soil crust, non-erodible coarse

particles) which determine the minimum or threshold wind velocity required to initiate dust mobilization (Bullard et al., 2011).
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To initiate dust emission, near-surface winds must be strong enough to exceed the threshold wind velocity. As a result, the wind25

erosivity is dominated by infrequent, high wind events which generate sufficient drag to mobilize soil particles via saltation and

sandblasting mechanisms. Depending on the relative importance of the three drivers, dust emission may fall into one of three

distinct regimes: supply-limited, where a lack of suitable-sized sediments restricts dust emission; availability-limited, where

fine sediments are present but protected against erosion; and transport capacity-limited, where sediments are dry and exposed

but near-surface winds are too weak to mobilize the particles.30

The three dust emission drivers have been incorporated in global aerosol-climate models and Earth system models (ESMs)

to capture the environmental controls on the dust cycle. Dust emission schemes in many ESMs use a time-invariant dust source

function to represent the spatially varying sediment supply, with high values generally associated with topographic depressions

containing abundant alluvial or lacustrine deposits (Ginoux et al., 2001; Prospero et al., 2002; Zender et al., 2003). These areas

are generally assumed to have an unlimited sediment supply, without accounting for depletion or replenishment over time35

(Zhang et al., 2016a). The sediment availability is strongly coupled with the hydroclimate variability in ESMs. Specifically, a

bare soil fraction scaling factor is often used to exclude non-erodible surfaces covered by snow or vegetation. Vegetation also

increases surface roughness and reduces the wind stress acting on erodible surfaces, which can be represented by a drag parti-

tioning scheme (Marticorena and Bergametti, 1995; Shao et al., 2011). In addition, ESMs incorporate the role of soil moisture

in enhancing the threshold wind velocity or suppressing dust emissions if the soil water content exceeds a given threshold (e.g.,40

Fécan et al., 1999). Finally, ESMs parameterize the horizontal dust flux as the third or fourth power of wind speed once the

threshold wind velocity is reached. This nonlinear relationship, combined with the skewed distribution of wind speeds, reflect

the dominant contributions of rare, high-wind events to global dust emissions (Cowie et al., 2015; Bergametti et al., 2017).

Representing dust-producing wind events in ESMs remains a major challenge, since peak-wind generation mechanisms (such

as convective downdrafts) often occur at spatial scales smaller than the typical grid spacing of ESMs (Cakmur et al., 2004;45

Grini et al., 2005; Ridley et al., 2013; Zhang et al., 2016b).

The Aerosol Comparisons between Observations and Models (AeroCom) initiative and Coupled Model Intercomparison

Project (CMIP) have facilitated the intercomparison of ESMs in simulating the global dust cycle (Textor et al., 2006; Huneeus

et al., 2011; Kim et al., 2014; Wu et al., 2020; Gliß et al., 2021; Zhao et al., 2022; Kim et al., 2024). Generally, the modern-day

dust aerosol column burden is reasonably constrained by ground- and satellite-based aerosol optical depth (AOD) observations50

over continental outflow areas, resulting in better model agreement compared to dust emission and deposition estimates. Knip-

pertz and Todd (2012) suggested that model tunings to match satellite observations, e.g., via the use of dust source functions,

induce a compensational effect between dust emission and deposition, both of which lack observational constraints at global

scales. Indeed, previous AeroCom and CMIP model intercomparisons consistently show large discrepancies in the global total

and regional distribution of dust emissions (Huneeus et al., 2011; Wu et al., 2020; Gliß et al., 2021; Zhao et al., 2022). While55

most ESMs roughly capture the annual cycle of dust over major source regions, they struggle in reproducing the dust inter-

annual variability and relationships with wind speed and soil bareness (Pu and Ginoux, 2018; Evan et al., 2014; Evan, 2018;

Wu et al., 2018). Recent studies suggested that all CMIP models failed to capture the large increase of global dust burden

since preindustrial times, likely due to inaccurate model representations of historical climate and land-use changes and/or the
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dust sensitivity to these changes Kok et al. (2023); Leung et al. (2025). Together, these studies underscore the persistent un-60

certainties and limited predictive capability of ESMs in simulating the response of windblown dust emissions to hydroclimate

variability and land surface changes.

The model discrepancies can be explained, at least in part, by the choice of dust emission schemes. Earlier-generation

schemes relied on empirical, temporally-invariant dust source functions to shift emissions towards satellite-observed hotspot

regions (Ginoux et al., 2001; Zender et al., 2003), whereas newer schemes adopt more mechanistic approaches that account for65

sediment availability as a function of land surface conditions, thereby eliminating the need for dust source functions (Kok et al.,

2014b). These process-based schemes also introduce more realistic parameterizations of sandblasting efficiency to represent

the momentum transfer from salting soil grains to the entrainment of fine particles into the atmosphere (Zender et al., 2003;

Kok et al., 2014b). With improved model physics, process-based schemes usually involve more extensive input parameters

with greater uncertainties. The choice of wind speed also varies: some schemes use 10-m wind speeds for simplicity, while70

others use friction velocity, which better captures the wind stress acting on soil surfaces but requires information on surface

roughness. Because surface roughness length is poorly constrained by observations, models employ varying assumptions and

tunings to account for its effects on dust emission (e.g., Peng et al., 2012; Albani et al., 2015; Tegen et al., 2019).

Even with the same dust scheme, ESMs can diverge substantially due to differences in model configurations (e.g., horizontal

resolution, vertical levels), parameter tunings, and coupled parameterizations. For instance, the bare soil fraction is determined75

from land type, vegetation fraction, and snow areal extent, all of which may differ between ESMs. In particular, vegetation cover

may be prescribed from a fixed climatology or simulated interactively. Further discrepancies may result from differences in soil

properties (e.g., hydraulic conductivity), soil column structure (e.g., number and thickness of layers), and hydrologic processes

(e.g., precipitation, runoff, evaporation), which ultimately determine the water content of top soil layers and consequently the

threshold wind velocity. The soil moisture effect on threshold wind velocity is also treated inconsistently, e.g., in calculating80

the residue level below which soil moisture is assumed to have no effects on dust emission (e.g., Fécan et al., 1999; Evans

et al., 2016; Volodin and Kostrykin, 2016). Moreover, ESMs employ different parameterizations for planetary boundary layer

and subgrid processes, which affect the momentum transfer from the atmosphere to the surface. Because of the strong coupling

between dust emission and boundary layer and land surface processes, it is not surprising that dust emission estimates are

strongly model-dependent.85

While past studies have documented the large model diversity in the climatological dust cycle (e.g., Pu and Ginoux, 2018;

Wu et al., 2020; Zhao et al., 2022; Aryal and Evans, 2023), key questions remain as to whether current ESMs consistently

capture the temporal variability of historical dust emissions and their sensitivities to wind and hydroclimate drivers. Addressing

these questions is essential for understanding and reducing model uncertainties in projecting dust emission responses to future

changes in climate and land use. In this study, we provide a detailed assessment of the interannual variability and physical90

drivers of dust emissions, by quantifying the inherent relative influence of near-surface wind speed and hydroclimate conditions

in modulating the dust variability within a suite of state-of-the-art ESMs. Compared to previous studies, we shift the focus from

climatological means to temporal variability and move beyond documenting uncertainties to diagnosing their physical origins,

thereby offering critical insights for improving the dust representation in ESMs.
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A major challenge in evaluating dust models is the lack of direct, global observational constraints on dust emission fluxes.95

While satellite-derived dust optical depth and long-term surface concentration records provide valuable insights into dust

variability (e.g., Prospero and Lamb, 2003; Zender and Kwon, 2005; Ginoux et al., 2012), they integrate information from

emission, transport, and deposition, making it difficult to isolate the emission process (the focus of this work). Therefore,

rather than validating absolute model performance against observations, we focus on diagnosing the inter-model consistency

of simulated dust emission variability. Here we treat model-simulated dust emission flux as an unobservable, model-specific100

quantity, which is characterized by a dynamic range defined by the internal model variability, parameterizations, parameter

uncertainties, and model configurations. This approach is analogous to Koster et al. (2009)’s view of root-zone soil moisture

and reflects the fact that model-simulated dust emission fluxes cannot be validated with field observations. While model-

simulated dust emissions are essentially approximations of the true state they aim to reproduce, their true information content

lie not necessarily in the absolute magnitudes but in their spatiotemporal variability and sensitivities to physical drivers. By105

quantifying the relative influence of wind speed and hydroclimate conditions over different climate regimes (i.e., hyperarid,

arid and semiarid), this study provides new insights into model discrepancies and biases in dust emission representations.

The remainder of this paper is organized as follows. Section 2 describes the ESMs and reanalysis datasets considered

in this study, and the dominance analysis technique used to quantify the joint and relative influence of dust emission drivers.

Section 3 presents the intercomparison of dust interannual variability and the relative influence of wind speed and hydroclimate110

conditions. The conclusions are summarized in Section 4.

2 Data and Approach

2.1 ESMs and reanalysis products

Table 1 summarizes the ESMs and reanalysis products analyzed in this study, which differ in model resolution, vegetation

process, and dust emission parameterizations, among other aspects. Among the 21 ESMs, 18 are from the CMIP6 historical,115

fully-coupled experiments (1980–2014). We use the first ensemble member (r1i1p1f1) from each model, unless otherwise

stated. CMIP6 consists of several model families that share common heritage but differ in physics options and configurations.

For instance, two Community Earth System Model (CESM) configurations employ the dust scheme of Zender et al. (2003)

(hereafter the Zender scheme) but use different atmospheric schemes: Community Atmosphere Model (CESM2-CAM-Zender)

vs. Whole Atmosphere Community Climate Model (CESM2-WACCM-Zender), with major differences in the vertical extent120

and upper atmospheric processes. Three GISS-E2 models use the same dust scheme of Miller et al. (2006) but differ in model

version (2.1 vs. 2.2) and aerosol microphysics schemes: One-Moment Aerosol (OMA; ensemble member r1i1p3f1) vs. Multi-

configuration Aerosol TRacker of mIXing state (MATRIX; ensemble member r1i1p5f1) (Miller et al., 2021; Rind et al., 2020).

UKESM1.0 is built upon the HadGEM3-GC3.1 general circulation model, which use the same dust scheme of Woodward

(2001) but differ in parameter tunings and dust source representations (Woodward et al., 2022). Similarly, MIROC-ES2L is125

based on the MIROC general circulation model version 5.2 (MIROC5) (Hajima et al., 2020), while MIROC6 incorporates
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Table 1. Summary of the Earth system models and aerosol reanalysis datasets considered in this study. Dust source function (DSF) column

indicates whether an empirical dust source function is used. Leaf area index (LAI) column indicates whether LAI is a prognostic variable.

Dm, dust particle diameter upper limit.

Model Resolution Dm Wind DSF LAI Dust Scheme Reference

CESM2-CAM-Zender 0.9°×1.25° 10 u3
∗ Y Y Zender et al. (2003) Albani et al. (2015)

CESM2-WACCM-Zender 0.9°×1.25° 10 u3
∗ Y Y Zender et al. (2003) Gettelman et al. (2019)

CESM2-CAM-Kok 0.9°×1.25° 10 u3
∗ N Y Kok et al. (2014b) Li et al. (2022)

E3SM2-Zender 1°×1° 10 u3
∗ Y Y Zender et al. (2003) Feng et al. (2022)

E3SM3-Kok 1°×1° 10 u3
∗ Y Y Zender et al. (2003) Xie et al. (2025)

CanESM5-1 2.8°×2.8° Bulk u3
∗ Y Y Peng et al. (2012) Sigmond et al. (2023)

CNRM-ESM2.1 1.4°×1.4° 20 u3
∗ N Y Tegen et al. (2002) Séférian et al. (2019)

EC-Earth3-AerChem 2°×3° 20 u3
∗ Y N Tegen et al. (2002) Van Noije et al. (2021)

GISS-E2.1-OMA 2°×2.5° 32 u3
10 Y N Miller et al. (2006) Miller et al. (2021)

GISS-E2.1-MATRIX 2°×2.5° 32 u3
10 Y N Miller et al. (2006) Miller et al. (2021)

GISS-E2.2-OMA 2°×2.5° 32 u3
10 Y N Miller et al. (2006) Rind et al. (2020)

GFDL-ESM4 1°×1.25° 20 u3
∗ Y Y Ginoux et al. (2001) Shevliakova et al. (2024)

HadGEM3-GC31 0.6°×0.8° 63 u3
∗ Y N Woodward (2011) Roberts et al. (2019)

UKESM1.0 1.25°×1.9° 63 u3
∗ N Y Woodward (2001) Woodward et al. (2022)

INM-CM5.0 1.5°×2° Bulk u4
∗ N N Volodin and Kostrykin (2016) Volodin (2022)

IPSL-CM6A-LR 1.26°×2.5° Bulk u3
10 Y Y Balkanski et al. (2004) Lurton et al. (2020)

MRI-ESM2.0 1.9°×1.9° 20 u3
∗ N N Shao et al. (1996) Yukimoto et al. (2019)

MIROC6 1.4°×1.4° 10 u3
10 N Y Takemura et al. (2009) Tatebe et al. (2019)

MIROC-ES2L 2.8°×2.8° 10 u3
10 N Y Takemura et al. (2009) Hajima et al. (2020)

MPI-ESM-1.2 1.9°×1.9° Bulk u3
∗ Y Y Cheng et al. (2008) Mauritsen et al. (2019)

NorESM2 0.9°×1.25° 10 u3
∗ Y N Zender et al. (2003) Seland et al. (2020)

MERRA2 0.5°×0.63° 20 u3
10 Y N Ginoux et al. (2001) Randles et al. (2017)

JRAero 1.1°×1.1° 20 u3
∗ N N Shao et al. (1996) Yumimoto et al. (2017)
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updated physics which improved the mean climate state and internal variability relative to MIROC5 (Tatebe et al., 2019). Both

MIROC-ES2L and MIROC6 adopt the dust scheme from the SPRINTARS aerosol module (Takemura et al., 2009).

In addition to the CMIP6 archive, we consider an updated CESM (2004–2013) with the dust scheme of Kok et al. (2014b)

(hereafter the Kok scheme; CESM2-CAM-Kok) (Li et al., 2022), and the Energy Exascale Earth System Model (E3SM, 1980–130

2014) using the Zender (E3SM2-Zender) and Kok (E3SM3-Kok) schemes (Feng et al., 2022; Xie et al., 2025). The key

difference between the two schemes is that the Kok scheme adopts physically based soil erodibility parameterizations and

eliminates the use of empirical dust source functions unlike the Zender scheme. These paired experiments allow us to evaluate

how the choice of dust schemes (Zender vs. Kok) or models (CESM vs. E3SM) affect dust emission simulations. Nonetheless,

we should point out that CESM2-CAM-Kok simulates dust as mineral components with observationally constrained mineral135

optical properties (Li et al., 2024), whereas CESM2-CAM-Zender does not account for particle mineralogy and simulates

different dust optical properties that may affect dust radiative feedback on meteorology. Also, E3SM3 includes extensive

updates over E3SM2 that may affect the near-surface meteorological and land surface conditions relevant to dust emissions

(Xie et al., 2025).

We further compare the ESMs with two aerosol reanalysis products: Modern-Era Retrospective Analysis for Research and140

Applications version 2 (MERRA2, 1980–2014) (Gelaro et al., 2017), and Japanese Reanalysis for Aerosol (JRAero, 2011–

2017) (Yumimoto et al., 2017). MERRA2 is produced by the GEOS-5 data assimilation system with radiatively-coupled

Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. Dust emission in GOCART is represented using

the Ginoux et al. (2001) scheme. JRAero is produced by the Japan Meteorological Agency MASINGAR mk-2 global aerosol

transport model, which simulates dust emission using the Shao et al. (1996) energy-based scheme, same as MRI-ESM2.0145

(Yumimoto et al., 2017; Yukimoto et al., 2019). The meteorological and land surface conditions in MERRA2 and JRAero

are constrained by observational data assimilation, and thus are expected to better capture historical climate and land cover

changes than the ESMs. MERRA2 and JRAero also benefit from assimilation of bias-corrected total AOD, which provides

some constraint on the dust column burden but does not directly constrain dust emissions.

We evaluate the consistency between ESMs and reanalysis products in representing the interannual variability of total dust150

emission fluxes. To facilitate comparison across common dust-emitting regions, we divide global dust source areas into three

climate zones: hyperarid, arid, and semiarid, based on the aridity index (AI) defined as the ratio of 1970–2000 climatological

mean precipitation to potential evapotranspiration using the data from Zomer et al. (2022). The hyperarid zone is defined as

AI≤0.05, arid zone as 0.05<AI≤0.2, and semiarid zone as 0.2<AI≤0.5. Using these climatologically defined zones allows us

to assess model discrepancies over common dust-emitting areas. Figure 1 shows that the hyperarid zone primarily covers North155

Africa, Arabian Peninsula, Iranian Plateau, and Tarim Basin. Arid and semiarid zones cover other major sources, including the

Sahel (North Africa), Turan Depression (Central Asia), Gobi Desert (East Asia), Thar Desert (South Asia), Kalahari Desert

(Southern Africa), Chihuahua Desert (North America), Patagonia steppe (South America), and the Great Sandy and Simpson

Deserts (Australia). The rationale of this climate zone-based analysis is that the relative importance of wind speed versus

hydroclimate conditions is expected to depend strongly on climate regime. Specifically, hyperarid areas are expected to be160

dominated by permanently dry, barren surfaces with very low hydroclimate variability, and thus dust emission is primarily

6



Figure 1. Definitions of hyperarid, arid, and semiarid climate zones.

controlled by wind speed. Whereas, the arid and semiarid zones are expected to exhibit increased precipitation and hydroclimate

variability resulting in stronger influence on the sediment availability.

2.2 Dominance analysis technique

Past studies have used linear regression coefficients to quantify dust sensitivities to its physical drivers (e.g., Pu and Ginoux,165

2016; Aryal and Evans, 2021; Zhao et al., 2022). In multiple linear regression, a regression coefficient represents the mean

change in the response variable per unit change in a given predictor, holding all other predictors constant. This interpretation

assumes mutual independence among predictors, an assumption that is often violated by strong correlations among hydrocli-

mate variables. As a result, linear regression coefficients may yield misleading inference of predictor importance. Moreover,

regression coefficients, standardized or not, may not provide a direct comparison of predictor influence due to the varying170

dynamic ranges in ESMs.

In this study, we apply the dominance analysis technique to quantify the relative influence of wind and hydroclimate drivers

on dust variability. Dominance analysis quantifies the marginal contribution of each predictor to the total explained variance

(R2) in the response variable by evaluating all possible subset models (2p − 1 subsets for p predictors) in a multiple linear

regression framework (Budescu, 1993; Azen and Budescu, 2003). For each predictor, the method calculates its average incre-175

mental contribution to the total R2 across all subset models of the same size (i.e., models with the same number of predictors),

and then average these values to obtain the predictor’s unique contribution to the total R2. A key property of this method is that

the sum of individual predictor contributions equals the R2 of the full model (i.e., with all predictors included), thereby allow-

ing the partitioning of explained variance among correlated predictors. The predictor-specific R2 values can thus be interpreted
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as the portions of total variance in the response variable that are uniquely and jointly attributed to each predictor, accounting180

for their interactions and multicollinearity.

We use the monthly total dust emission flux as the response variable and consider six predictors: 10-m wind speed, total

precipitation (including liquid and solid phases), water content in the uppermost soil layer (hereafter as soil moisture), 2-m

specific humidity, 2-m air temperature, and leaf area index (LAI). The total dust emission flux is a bulk quantity that represents

the source strength. Although ESMs differ in how they partition the total flux into discrete particle size bins—a key factor185

influencing dust transport and atmospheric lifetime—we expect the size partitioning to have minimal impact on diagnosing the

emission process itself, particularly its sensitivity to the selected predictors. The primary drivers of emission variability operate

upstream of the size partitioning of mobilized soil particles. The six predictors are chosen because they are either directly

used as input parameters in dust flux calculations or strongly correlated with dust emission intensity, as suggested in numerous

studies (e.g., Engelstaedter et al., 2003; RAVI et al., 2006; Zou and Zhai, 2004; Sokolik et al., 2021; Cowie et al., 2015; Kim190

and Choi, 2015; Xi and Sokolik, 2015a, b; Xi, 2023). Among them, wind speed represents the wind erosivity driver, while the

remaining variables collectively represent the hydroclimate effect on sediment availability.

Dominance analysis is performed for all ESMs and MERRA2 over grid cells with nonzero emissions using deseasonalized

and normalized data. JRAero is excluded from the dominance analysis due to missing predictors and its short time span. We first

subtract month-wise climatological means from the monthly dust fluxes and predictors, and then convert the deseasonalized195

data into 0–1 range via min-max normalization. For ESMs that use bare soil fraction as a scaling factor in dust flux calculations

(e.g., CNRM-ESM2.1, INM-CM5.0, UKESM1.0), the dust flux is first normalized by the bare soil fraction in order to isolate

the influence of the selected predictors. The grid-level total and predictor-specific R2 values are used to assess the internal

spatial variability (i.e., within each climate zone) and inter-model consistency in the total explained variance and predictor

relative importance.200

3 Results

3.1 Climatological distribution

Figure 2 displays the climatological mean annual dust fluxes from 21 ESMs, the model ensemble mean, and MERRA2 and

JRAero datasets for the 2005–2014 period (2004–2013 for CESM2-CAM-Kok and 2011–2017 for JRAero). All datasets cap-

ture the global dust belt stretching from West Africa to East Asia, as well as the less intense sources in the Americas and205

Australia. E3SM3-Kok and HadGEM2-GC31 simulate the most extensive dust-emitting areas including high-latitude and sub-

humid areas. In contrast, CESM2-CAM-Zender, CESM2-WACCM-Zender, and NorESM2 simulate discrete and limited dust-

emitting areas by excluding areas with dust source function values below 0.1. E3SM2-Zender uses the original, unmodified

Zender et al. (2003) dust source function and thus produces a more spatially continuous pattern (Fig. 2e).

The global total dust flux varies greatly among the ESMs, ranging from 890 to 7727 Tg yr−1 with nearly an order of210

magnitude difference (Fig. 2a–2u). The model ensemble mean estimate is 2786 Tg yr−1 (Fig. 2v) with a standard deviation

of 1821 Tg yr−1, corresponding to a diversity of 65% (defined as the ratio of standard deviation to model ensemble mean).
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Figure 2. Climatological mean dust emission fluxes from (a–u) individual Earth system models, (v) model ensemble mean, (w) MERRA2

reanalysis, and (x) JRAero reanalysis. Global annual total dust emissions are displayed on each panel.

9



Figure 3. Contributions of different climate zones to global annual dust emissions. Numbers indicate percentages above 5%.

Based on models with a dust size upper limit of 20 µm, global dust emissions vary from 1062 to 6561 Tg yr−1 with a mean of

3012 Tg yr−1 and diversity of 51%. This uncertainty range is consistent with prior assessments. For example, Huneeus et al.

(2011) compared 14 models from AeroCom Phase I and reported a global dust emission range of 500–4400 Tg yr−1 with a215

diversity of 58%. Out of the 14 models, 7 models considered particle diameters up to 20 µm and reported a flux of 980–4300

Tg yr−1 with a diversity of 46%. Similarly, Gliß et al. (2021) compared 14 AeroCom Phase III models and found a range of

850–5650 Tg yr−1 with a diversity of 64%. Wu et al. (2020) reported a range of 740–8200 Tg yr−1 with a diversity of 66%

based on 15 CMIP5 models. Out of the 15 models, 7 models considering a diameter range of 0–20 µm yielded 740–3600 Tg

yr−1 with a diversity of 43%. More recently, Zhao et al. (2022) compared 15 models from the CMIP6 AMIP experiment and220

reported a range of 1400–7600 Tg yr−1 with a diversity of 61%. Past studies, together with our results, indicate persistent large

uncertainties in global dust emissions, despite improvements in model resolutions and physics.

The model ensemble mean global total dust flux is significantly higher than that of MERRA2 (1605 Tg yr−1, Fig. 2w),

but closely aligns with JRAero (2780 Tg yr−1, Fig. 2x). In general, the model ensemble mean exhibits a more spatially

homogeneous pattern over North Africa and Arabian Peninsula, whereas MERRA2 and JRAero display more heterogeneous225

and localized patterns.
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Figure 3 displays the fractional contributions of different climate zones to global dust emissions. The hyperarid zone accounts

for more than half of global total emissions in most ESMs except two models: CanESM5.1 and INM-CM5.0, both of which

simulate relatively uniform emission patterns with less than 50% from the hyperarid zone (Fig. 2i, 2q). This may be due

to known deficiencies of these two models. As noted in Sigmond et al. (2023), improper parameter tuning related to the230

hybridization of dust tracers caused spurious dust events and inaccurate dust distributions in CanESM5.1. An interpolation

error in the bare soil fraction also distorted the model’s dust source characterization, resulting in poor agreement with satellite

observations (Sigmond et al., 2023). In INM-CM5.0, the vertical dust flux is calculated as a function of friction velocity only,

without accounting for the dependence of threshold wind velocity on land surface conditions (Volodin and Kostrykin, 2016;

Volodin, 2022). While this simplification may be appropriate for the hyperarid zone, it can introduce significant biases over235

arid and semiarid zones where hydroclimate conditions play an increasingly important role in dust emissions.

Over the arid climate zone, the dust emission fraction ranges from 8% (CESM2-CAM-Kok) to 37% (UKESM-1.0), reflect-

ing substantial discrepancies among the ESMs. These discrepancies become even larger over the semiarid zone, where the

contribution ranges from less than 1% to 18%. Three ESMs allocate more than 10% of dust to the semiarid zone: CanESM5.1

(18%), INM-CM5.0 (15%), and UKESM1.0 (12%). Thus, as the climate zone shifts from hyperarid to semiarid, the ESMs240

show larger discrepancies in their estimates of relative source strength. This climate zone-based comparison offers a first-order

view of model representations of the dust sensitivity to hydroclimate conditions. Based on the model ensemble mean, global

dust emissions are partitioned as 61% from hyperarid, 27% from arid, and 5% from semiarid zones. In contrast, MERRA2 and

JRAero produce most dust from hyperarid and arid zones, with negligible contributions from the semiarid zone.

Among the ESMs, CESM2-CAM-Zender, CESM2-WACCM-Zender and NorESM2 produce similar total emissions and245

regional fractions, suggesting that the choice between CAM and WACCM has minimal influence when the same dust scheme

(Zender) is used. The paired CESM and E3SM experiments show different changes in regional fractions. For instance, the

hyperarid zone fraction increases from 61% in CESM2-CAM-Zender to 88% in CESM2-CAM-Kok, but slightly decreases

from 63% in E3SM2-Zender to 58% in E3SM3-Kok. The GISS-E2 models show no differences in the regional distributions.

However, the total emission is about 40% lower when using the MATRIX aerosol scheme. This could be due to different model250

tuning parameters, or underestimation of coarse dust particles (>5 µm diameter) in the MATRIX modal size distribution,

as pointed out by Bauer et al. (2022). UKESM1.0 simulates nearly twice as much dust as HadGEM3-GC3.1, along with

slightly more even distributions. As described in Woodward et al. (2022), UKESM1.0 is built on HadGEM3-GC3.1 but applies

model tunings that enhance friction velocity and suppress soil moisture. These tunings are expected to increase the wind

gustiness and soil dryness in UKESM1.0, thereby strengthening dust emissions. UKESM1.0 also excludes emissions from255

seasonally vegetated regions, resulting in smaller dust-emitting areas (Fig. 2p) compared to HadGEM3-GC3.1 (Fig. 2o). The

three Japanese models (MRI-ESM2.0, MIROC-ES2L, and MIROC6) exhibit large differences in total emissions and, to a lesser

degree, regional distributions. MRI-ESM2.0 produces similar regional fractions to JRAero but nearly twice the total emissions.

Despite using the same dust scheme, MIROC-ES2L produces five times more dust than MIROC6. This discrepancy can be

largely explained by the stronger winds in MIROC-ES2L, which produces 50% higher global mean wind speed than MIROC6.260
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Figure 4. Percentage of statistically significant (p≤0.1), positive correlations out of every possible pairwise comparisons of monthly dust

emission fluxes from 21 Earth system models. Black contours represent the model ensemble mean annual dust flux of 10 and 100 Tg yr−1.

Moreover, MIROC6 prescribes non-zero LAI even in hyperarid regions, which likely further suppresses dust emissions relative

to MIROC-ES2L (Hiroaki Tatebe, personal communications).

3.2 Interannual variability

This section evaluates the consistency among the ESMs in simulating the interannual variability of dust emissions. Monthly

dust emission fluxes from all ESMs are first regridded to a common resolution of 0.9°×1.25° (the native grid of CESM2).265

To remove the influence of annual cycles, we subtract the month-wise climatological means from each grid cell, yielding

deseasonalized dust emission anomalies. Spearman’s rank correlation coefficients are then calculated between the deseason-

alized anomalies for all possible model pairs. With 21 ESMs, this yields 210 pairwise comparisons. To quantify the extent of

inter-model agreement, we calculate the percentage of model pairs that exhibit statistically significant (p≤0.1), positive correla-

tions, which is displayed in Fig. 4. A higher percentage indicates stronger inter-model agreement in simulating the interannual270

variability of dust emissions.

Despite its dominant contributions to global dust emissions, the hyperarid zone shows generally poor model agreement,

with less than 10% of pairwise comparisons yielding statistically significant, positive correlations. Because dust emissions

from hyperarid areas are primarily controlled by wind speed, this weak agreement reflects inconsistent wind simulations in the

ESMs. Indeed, we find that only 10% of model pairs produce statistically significant, positively correlated wind variability in275
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Figure 5. Spearman’s rank correlation coefficients between dust emission flux anomalies averaged over hyperarid, arid, and semiarid climate

zones. Dots indicate statistically significant correlations (p≤0.1). Summary tables are based on Earth system models only (MERRA2 and

JRAero not included).

the hyperarid zone. Similarly, Evan (2018) reported that dust-producing winds over the Sahara are mainly driven by large-scale

meteorological processes and that most CMIP5 models failed to capture the near-surface wind variability. These results suggest

that accurately representing near-surface winds is critical for reducing model discrepancies in dust variability over hyperarid

areas.

Compared to the hyperarid zone, arid and semiarid zones (such as the Sahel, South Asia, East Asia and Australia) exhibit280

significantly stronger model agreement. To illustrate how model consistency varies with climate zones, Fig. 5 presents the

pairwise correlation matrices based on dust flux anomalies averaged over hyperarid, arid, and semiarid zones. The percentage

of statistically significant, positively correlated model pairs increases from 10% in the hyperarid zone to 14% in the arid

zone and 17% in the semiarid zone, indicating progressively higher model agreement in regions where dust emissions are

increasingly influenced by hydroclimate and land surface conditions. Meanwhile, the semiarid zone exhibits a larger percentage285

of negatively correlated model pairs (15%) compared to hyperarid (5%) and arid (6%) zones. This dipole pattern suggests

that as the climate regime transitions from hyperarid to semiarid, the ESMs exhibit both stronger agreement and worsened

disagreement in simulating dust emission variability.

What causes this complex behavior? In semiarid environment such as temperate grasslands and steppes, dust emissions are

strongly modulated by antecedent land surface conditions in addition to wind speed, such as precipitation, soil moisture, and290

vegetation growth-decay cycle, which exert strong lagged influence on the soil erodibility (Shinoda et al., 2011; Nandintsetseg

and Shinoda, 2015). For example, dry anomalies during the prior wet season (e.g., reduced snowfall or rainfall, accelerated

snow retreat) can subsequently suppress vegetation growth, thereby prolonging bare soil exposure and increasing wind erosion

risk. This delayed dust emission response to preceding drought exemplifies the effect of land surface memory, whereby the

slow adjustment of land surface states (such as soil moisture, snow cover, and vegetation) over weeks to months influences295
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Figure 6. Statistical associations between the pairwise model correlation coefficients (p≤0.1 shown in red) in dust emission fluxes and

hydroclimate variability over (a) hyperarid, (b) arid, and (c) semiarid climate zones.

subsequent dust emission long after the initial forcing (e.g., drought). Therefore, we speculate that the simultaneous increase of

both model consistency and divergence from hyperarid to semiarid zones reflects a "double-edged sword" effect of land surface

memory: models with coherent representations of hydroclimate variability converge in the simulated dust emission variability

(i.e., more positive correlations), while those with divergent hydroclimate representations diverge in the dust variability (i.e.,

more negative correlations).300

To verify this hypothesis, we examine the statistical association between pairwise model correlations in dust emissions and

those in hydroclimate variability. Specifically, we first perform a principle component analysis (PCA) of the five hydrocli-

mate variables (i.e., precipitation, soil moisture, specific humidity, air temperature, LAI) for the hyperarid, arid, and semiarid

zones. The leading principle component (PC1), which explains at least 40% of the total variance in all zones, is used as a

proxy for the dominant hydroclimate variability. Spearman’s rank correlation coefficients are then calculated for all pairwise305

model comparisons of deseasonalized monthly PC1 values, following the same approach as in Fig. 5. Figure 6 compares the

correlation coefficients for model pairs with the same sign (i.e., either both positive or both negative) in dust emission fluxes

and hydroclimate PC1. The regression slope and coefficient of determination (r2) quantify the degree of statistical associa-

tion between model correlations in dust emission and hydroclimate variability. The positive association in all climate zones

suggests that ESMs with stronger consensus in hydroclimate variability tend to produce more consistent dust variability, and310

vice versa. More importantly, both the number of significantly correlated model pairs (N) and correlation strength (slope and

r2) show significant increases from hyperarid to semiarid zones. This result supports our hypothesis regarding the dual role of

land surface memory: it enhances agreement among ESMs with coherent hydroclimate representations, while simultaneously

exacerbating disagreement among those with divergent hydroclimate variability.
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Figure 7. Total explained variance (R2) in dust emission fluxes by six near-surface predictors (wind speed, precipitation, soil moisture,

specific humidity, air temperature and LAI) in Earth system models and MERRA2. Global mean R2 values are shown on each panel.
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Figure 8. The ratio of wind speed-associated R2 to the combined R2 of five hydroclimate variables (precipitation, soil moisture, specific

humidity, air temperature and LAI) in Earth system models and MERRA2.
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3.3 Relative importance of wind and hydroclimate drivers315

In this section, we present the dominance analysis of the collective and relative influence of wind and hydroclimate drivers

on the dust emission variability. Figure 7 presents the total variance explained (R2) by near-surface wind speed and five

hydroclimate variables (precipitation, soil moisture, specific humidity, air temperature, and LAI) in the ESMs and MERRA2.

Results for CESM2-WACCM-Zender and NorESM2 are very similar to those of CESM2-CAM-Zender and thus not shown.

The ESMs exhibit substantial differences in the total R2, reflecting a large spread in the internal model variability and320

coupling strength between dust emission and the six selected predictors. CanESM5.1 yields the lowest global R2, followed by

MPI-ESM1.2, MIROC6, and EC-Earth3-AerChem, in which the selected predictors explain a relatively small fraction of the

dust variability. The low explanatory power may be explained by several reasons. Specifically, model deficiencies and errors

(e.g., in CanESM5.1, Section 3.1) may weaken or distort the relationships between dust emissions and the predictors. The

use of over-simplified parameterizations and/or static land surface input (e.g., in INM-CM5.0) may weaken the dust–predictor325

relationship. In addition, dust emission involves inherently nonlinear processes and thus its relationship with the predictors

may deviate from the linearity assumption in dominance analysis. As shown in Fig. 7, the total R2 values tend to be much

lower in arid and semiarid zones than in the hyperarid zone, likely due to increased nonlinearity between dust emission and

hydroclimate variables which diminishes their collective explanatory power in a multilinear regression framework. Finally, the

use of monthly model output, due to data availability, may dampen the short-term variability and statistical association between330

dust emission and the predictors.

Despite these limitations, most ESMs produce significant total R2 values over major source areas, especially in the hyperarid

zone where the total R2 exceeds 0.6. Switching from the Zender to Kok dust scheme leads to generally lower R2 values in

CESM and E3SM (Fig. 7a–d). The GISS-E2 models show little differences between the OMA or MATRIX schemes, and a

modest increase from version 2.1 to 2.2. UKESM1.0 and HadGEM3-GC3.1 show minimal differences, both with high R2335

values globally. MIROC6 yields lower R2 than MIROC-ES2L, especially over the hyperarid zone. MERRA2 produces higher

R2 than most ESMs, especially over arid and semiarid zones. In summary, there are large spatial variability within individual

ESMs and large inter-model discrepancies in the variance explained by the selected predictors.

To assess the relative importance of wind and hydroclimate drivers, Fig. 8 displays the ratio of wind speed-associated R2 to

the combined R2 of five hydroclimate variables. In all ESMs except GFDL-ESM4, the wind-to-hydroclimate R2 ratio is well340

above 1 over the hyperarid zone, which is consistent with the dominant role of wind speed in controlling dust emissions from

persistently dry, barren surfaces. In contrast, arid and semiarid zones exhibit greater discrepancies, with ratios either above or

below 1 depending on the model. This reflects increased model discrepancies regarding the relative importance of wind and

hydroclimate drivers in transitional regions where dust emission is increasingly influenced by hydroclimate and land surface

conditions.345

Based on the wind-to-hydroclimate R2 ratios, we classify global dust-emitting areas into three regimes: wind-dominated

(ratio>1.2), hydroclimate-dominated (ratio<0.8), and equally-important (0.8–1.2). We then calculate the fractions of dust

emissions originating from the three regimes in each model. The results are displayed in Fig. 9. The ESMs show general
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Figure 9. Fractional contributions of wind-dominated, equally-important, and hydroclimate-dominated regimes to global dust emissions in

Earth system models and MERRA2.

agreement in the “equally-important” regime, with most models producing less than 10% of dust from regions where wind and

hydroclimate drivers have nearly equal influence on dust emissions. GFDL-ESM4 produces the highest contribution (12%) in350

this regime.

The wind-dominated regime contributes the majority of global dust emissions (>80%) in most ESMs and MERRA2, consis-

tent with the dominant contribution of the hyperarid zone (Fig. 3). However, three models yield anomalously low contributions:

GFDL-ESM4 (36%), INM-CM5.0 (54%) and CanESM5.1 (75%). These deviations can be explained by different reasons. As

shown in Fig. 3, INM-CM5.0 and CanESM5.1 produce relatively spatially homogeneous emission pattern, which explains355

the lower contributions from hyperarid or wind-dominated areas. In comparison, the low estimate in GFDL-ESM4 is due to

the model’s anomalously strong hydroclimate influence over the hyperarid zone. As shown in Fig. 8i, GFDL-ESM4 exhibits

markedly low wind-to-hydroclimate ratios (<1) over North Africa, Arabian Peninsula, and Iranian Plateau, which are conse-

quently misclassified into the hydroclimate-dominated regime. These regions are characterized by scarce precipitation and very

low hydroclimate variability, which is expected to have negligible influence on dust emissions. For CESM and E3SM, switch-360
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Figure 10. Ridgeline plots of the fractional contributions of wind speed to the total R2 over (a) hyperarid, (b) arid, and (c) semiarid climate

zones. The median and mean values are denoted by red and blue vertical lines, respectively. Color shading represent the mean total R2 values.

ing from the Zender to Kok dust scheme slightly reduces the wind-dominated dust fraction: from 85% to 80% in CESM, and

from 99% to 96% in E3SM. The GISS-E2 models yield similar estimates regardless of model version or aerosol scheme, with

82–85% dust from the wind-dominated regime. Similarly, UKESM1.0 and HadGEM3-GC3.1 yield similar estimates, with

90% of dust emitted from wind-dominated regions. MERRA2 simulates 98% emissions from the wind-dominated regime,

higher than most ESMs.365

The above analysis not only confirms the anomalous dust emission patterns in CanESM5.1 and INM-CM5.0 as previously

shown in Fig. 3, but also identifies GFDL-ESM4 as an outlier due to its misrepresentation of predictor relative importance.

Here we further evaluate the contribution of wind speed to the total R2 in different climate zones. For each climate zone, we

use ridgeline plots to illustrate the statistical distributions of grid-level wind speed-associated R2 fractions. The results are

displayed in Fig. 10. In the ridgeline plots, if the median value of wind speed-associated R2 fractions (denoted by a red vertical370

line in Fig. 10) is above 50%, it means wind speed dominates the dust variability at more than half of the grid cells. If the

median value is below 50%, the dust variability is dominated by hydroclimate drivers at more than half of the grid cells.

In the hyperarid zone (Fig. 10a), most ESMs and MERRA2 capture the dominant control of wind speed, with the median

R2 fractions exceeding 80%. The three GISS-E2 models show similar spatial variability, with slightly lower median values

(∼70%). Two models stand out as notable outliers: GFDL-ESM4 and CESM2-CAM-Kok, both of which exhibit large variabil-375
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ity and low median values. In particular, GFDL-ESM4 yields a median wind R2 fraction of 42%, indicating an overestimated

sensitivity to hydroclimate drivers in the hyperarid zone, particularly over North Africa, Arabian Peninsula and Iranian Plateau

(Fig. 8i). Similarly, CESM2-CAM-Kok exhibits large spatial variability with a median wind R2 fraction of 64%, driven by

dominant hydroclimate influence over West Africa and the Tarim Basin (Fig. 8b). In comparison, CESM2-CAM-Zender cap-

tures the dominant wind influence with a median value of 86%. The suboptimal performance of CESM2-CAM-Kok relative to380

CESM2-CAM-Zender persists when comparing common dust-producing areas in the two models.

In the arid zone (Fig. 10b), the total R2 is generally smaller due to reduced explanatory power of the predictors. The ESMs

also show larger disagreement in the relative importance of wind and hydroclimate drivers. The influence of wind speed is

reduced and more variable, but still remains dominant in most ESMs and MERRA2. The GISS-E2 models produce relatively

equal importance of wind and hydroclimate drivers. In contrast, four models—GFDL-ESM4, INM-CM5.0, MIROC-ES2L and385

MIROC6—yield dominant hydroclimate influence with the median wind R2 fraction falling well below 50%, indicating a

transition from wind- to hydroclimate-dominated regimes. CESM2-CAM-Kok also reflects this transition, with a median value

of 46%. In both CESM and E3SM, switching from the Zender to Kok scheme results in weaker wind and stronger hydroclimate

influences, likely due to the physically based soil erodibility treatment in the Kok scheme which enhances the dust sensitivity

to hydroclimate variability, as previously suggested in Kok et al. (2014a).390

Results for the semiarid zone (Fig. 10c) are considered less robust due to significantly smaller dust-emitting areas or model

grid cells (Fig. 1). In general, the wind influence further declines, while hydroclimate divers become more important. The

magnitude of this shift, however, varies widely, leading to larger discrepancies. Specifically, hydroclimate drivers continue

to dominate in CESM2-CAM-Kok, GFDL-ESM4, INM-CM5.0, MIROC-ES2L and MIROC6, same as in the arid zone. The

following ESMs display a clear transition to hydroclimate-dominated regimes: E3SM2-Zender, CNRM-ESM2.1, CanESM5.1,395

HadGEM3-GC3.1, and UKESM1.0. IPSL-CM6A and GISS-E2 models also show increased hydroclimate influence, though to

a lesser extent. The remaining ESMs and MERRA2 continue to display dominance of wind speed, albeit with increased spatial

variability.

The above analysis indicates that GFDL-ESM4 and CESM2-CAM-Kok simulate anomalously strong hydroclimate influence

in the hyperarid zone. To identify the specific drivers of these anomalies, Fig. 11 presents the median fractional contributions400

of five hydroclimate variables to the total R2. In the hyperarid zone, most ESMs capture the negligible sensitivity of dust

emission to hydroclimate variables. Several exceptions exist, however. CESM2-CAM-Kok shows unusually strong influence

from precipitation and specific humidity, while GFDL-ESM4 exhibits anomalously strong sensitivity to soil moisture. The

GISS-E2 models display moderately elevated sensitivity to soil moisture and specific humidity, which explains their moderate

wind influence in the hyperarid zone (Fig. 10a).405

The overestimation of hydroclimate influence in the hyperarid zone may be explained by a combination of two mechanisms:

(1) the hydroclimate variability is overestimated in the model, which induces spurious effects on dust emissions; or (2) the

hydroclimate variability is reasonably captured, but the dust scheme incorporates overly strong sensitivity to hydroclimate

drivers. Shevliakova et al. (2024) reported that the GFDL-ESM4 land model significantly overestimates soil moisture over

dryland regions, with values more than double those from satellite observations in dust source regions like the central Sahara410
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Figure 11. Median factional contributions of hydroclimate variables to the total explained variance (R2) in Earth system models and

MERRA2 over (a) hyperarid, (b) arid, and (c) semiarid climate zones. Hydroclimate variables are precipitation (P), soil moisture (SM),

specific humidity (SH), air temperature (T), and leaf area index (LAI).

and Tarim Basin. This bias likely explains the strong apparent sensitivity of dust emission to soil moisture in GFDL-ESM4

(Fig. 11a).

The abnormal hydroclimate influence in CESM2-CAM-Kok may be partly explained by dust emission parameterizations in

the Kok scheme, which introduces enhanced sensitivity to the threshold wind velocity compared to the Zender scheme (Kok

et al., 2014a). Because of this heightened dependence on land surface conditions, the Kok scheme does not require predefined415

dust source functions and is considered more physically realistic for projecting dust responses to future climate and land-use

changes. Another possible reason is the relatively short simulation period in CESM2-CAM-Kok (2004–2013), which may

not fully capture the long-term variability and predictor influence as in CESM2-CAM-Zender (1980–2014). In this regard,

the E3SM experiments provide a more robust comparison between the Zender and Kok schemes. As shown in Fig. 11a, the

E3SM models exhibit negligible hydroclimate influence in the hyperarid zone, regardless of the dust scheme used. In the arid420

zone, however, E3SM3-Kok shows higher hydroclimate influence than E3SM2-Zender due to increased sensitivity to specific

humidity (Fig. 11b). This comparison provides additional evidence that the Kok scheme amplifies the dust emission sensitivity

to hydroclimate conditions.

In the arid zone (Fig. 11b), most ESMs show enhanced influence from soil moisture and specific humidity, consistent with

empirical evidence that both variables strongly affect the soil erodibility and wind erosion risk (e.g., Csavina et al., 2014; RAVI425

et al., 2006; Kim and Choi, 2015). Interpreting the LAI influence, however, is more complex due to several factors. First, unlike
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other hydroclimate variables, LAI can be either prescribed from climatology or simulated by the model’s dynamic vegetation

component (Table 1). Models using prescribed LAI are expected to show minimal interannual variability and hence limited

influence on dust emissions. Second, the LAI effect on dust emission is treated differently. For example, CESM assumes a

linear relationship between bare soil fraction and LAI when LAI is below 0.3, while GFDL-ESM4 assumes an exponential430

decrease in bare soil fraction as a function of LAI. Because LAI is often used to derive bare soil fraction in vertical dust flux

calculations, these differences can alter the modeled dust sensitivity to vegetation cover. Most ESMs in Fig. 11b exhibit weak to

negligible LAI influence, likely reflecting either prescribed LAI or the normalization of dust fluxes prior to dominance analysis

(see Section 2). One outlier is GFDL-ESM4 which exhibits the strongest sensitivity to LAI, even well above the sensitivity to

soil moisture. This can be explained by the strong coupled between LAI and dust emission in the model, and the fact that no435

normalization was applied to GFDL-ESM4 due to missing bare soil fraction output from the CMIP6 archive.

4 Conclusions

This study evaluates discrepancies and biases among 21 ESMs in representing the interannual variability of windblown dust

emissions and the relative importance of near-surface wind speed and hydroclimate drivers (precipitation, soil moisture, specific

humidity, air temperature, and LAI). We treat dust emission flux as an unobservable, model-specific quantity and use dominance440

analysis to quantify the variance explained in dust emission fluxes by wind and hydroclimate drivers within each model. The

analysis is conducted over three climatologically defined climate zones (hyperarid, arid, and semiarid), and further examines

the effect of dust emission parameterizations through paired CESM and E3SM experiments with the Zender et al. (2003) and

Kok et al. (2014b) schemes.

The hyperarid zone contributes more than half of global dust emissions in all models except CanESM5.1 and INM-CM5.0,445

which simulate relatively spatially even emission patterns with less than 50% from the hyperarid zone, likely due to known

deficiencies and over-simplifications in dust emission representations. In the hyperarid zone, the ESMs exhibit poor agreement

with each other and with MERRA2 in simulating the dust variability, with only 10% of pairwise model comparisons yielding

statistically significant, positive correlations. In arid and semiarid zones, the ESMs exhibit a dipole pattern with both improved

agreement and increased disagreement. This behavior can be explained by a "double-edged sword" effect of land surface450

memory: models with coherent representations of hydroclimate variability converge in their dust variability, while those with

divergent hydroclimate representations diverge in dust emission responses.

The relative influence of wind and hydroclimate drivers also varies with climate regimes. Most ESMs capture the domi-

nant control of wind speed and weak sensitivity to hydroclimate conditions in the hyperarid zone, except CESM2-CAM-Kok

and GFDL-ESM4, both of which show great spatial variability and abnormally strong influence from precipitation, specific455

humidity, and soil moisture. The overestimated hydroclimate influence in GFDL-ESM4 can be explained by the model’s

overestimation of soil moisture and consequent spurious effects on dust emissions. The enhanced hydroclimate influence in

CESM2-CAM-Kok (relative to CESM2-CAM-Zender) may be explained, at least partly, by the physically based soil erodibil-

ity formulations in the Kok et al. (2014b) scheme, which replaces the use of predefined dust source functions. A similar pattern
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is found in E3SM, where switching from the Zender et al. (2003) to the Kok et al. (2014b) scheme strengthens the hydroclimate460

influence in the arid zone. However, due to concurrent updates in model physics (e.g., dust mineralogy, radiative feedbacks,

and meteorology), further experiments are needed to isolate the effects of dust emission parameterizations on dust–climate

sensitivities.

In arid and semiarid zones, the influence of wind speed generally weakens while the hydroclimate influence strengthens.

However, the relative importance of wind and hydroclimate drivers becomes increasingly inconsistent between the models, with465

an increasing number of ESMs shifting toward comparable or dominant-dominated regimes. In general, MERRA2 produces

stronger wind influence and weaker hydroclimate influence than the ESMs.

In summary, this study provides new insights into how ESMs represent the temporal variability and physical drivers of

windblown dust emissions. Most ESMs capture the dominant wind control over permanently dry, barren surfaces, their poor

agreement in dust variability highlights large inconsistencies in the simulated near-surface winds. The dipole model behavior470

in arid and semiarid zones underscores the important role of hydroclimate variability and land surface processes. Improving

model representations of soil and vegetation dynamics and dust-climate interactions in these regions is essential for reducing

uncertainties in future projections of dust emissions under changing climate and land-use conditions.
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